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ABSTRACT
Integrating artificial intelligence (AI) has transformed living standards. However,
AI’s efforts are being thwarted by concerns about the rise of biases and unfairness.
The problem advocates strongly for a strategy for tackling potential biases. This
article thoroughly evaluates existing knowledge to enhance fairness management,
which will serve as a foundation for creating a unified framework to address any bias
and its subsequent mitigation method throughout the AI development pipeline. We
map the software development life cycle (SDLC), machine learning life cycle (MLLC)
and cross industry standard process for data mining (CRISP-DM) together to have a
general understanding of how phases in these development processes are related to
each other. The map should benefit researchers frommultiple technical backgrounds.
Biases are categorised into three distinct classes; pre-existing, technical and emergent
bias, and subsequently, three mitigation strategies; conceptual, empirical and
technical, along with fairness management approaches; fairness sampling, learning
and certification. The recommended practices for debias and overcoming challenges
encountered further set directions for successfully establishing a unified framework.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Software Engineering
Keywords Algorithmic bias, Fairnessmanagement, Biasmitigation strategy,Data-drivenAI system,
Fairness in data mining

INTRODUCTION
Data-driven decision-making applications have been deployed in vital areas such as
finance (Baum, 2017), judiciary (Angwin et al., 2016; Abebe et al., 2020), employment
(Zhao et al., 2018b), e-commerce (Weith &Matt, 2022), education (Kim, Lee & Cho, 2022),
military intelligence (Maathuis, 2022) and health (Gardner et al., 2022). On one side, the
potential of AI is widely recognised and appreciated. On the other side, there is significant
uncertainty in managing negative consequences and subsequent challenges (National
Institute of Standards and Technology, 2022), and a major hindrance to progress is a bias
enrooted throughout the AI pipeline’s development process (Fahse, Huber & Giffen, 2021).

The consequences of unwanted discriminatory and unfair behaviours can be
detrimental (Pedreshi, Ruggieri & Turini, 2008), adversely affecting human rights (Mehrabi
et al., 2021), university admissions (Bickel, Hammel & O’Connell, 1975), profit and revenue
(Mikians et al., 2012) and facing legal risks (Pedreshi, Ruggieri & Turini, 2008;
Northeastern Global News, 2020; Romei & Ruggieri, 2014). “Bias has existed since the dawn
of society” (Ntoutsi et al., 2020). However, AI-based decision-making is criticised for
introducing different types of biases. The ever-growing worries demand AI-based systems
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to rebuild technical strategies to integrate fairness as a core component of its infrastructure.
Fairness is the absence of bias or discrimination. An algorithm that makes biased decisions
against specific people is considered unfair (Fenwick & Molnar, 2022). The ethical
implications of systems that affect individuals’ lives have sparked concerns regarding the
need for fair and impartial decision-making (Pethig & Kroenung, 2022;Hildebrandt, 2021).
Consequently, extensive research has been conducted to address issues of bias and
unfairness, while also considering the limitations imposed by corporate policies, legal
frameworks (Zuiderveen Borgesius, 2018), societal norms, and ethical responsibilities
(Hobson et al., 2021; Gupta, Parra & Dennehy, 2021).

There is still a lack of an organised strategy for tackling potential biases (Richardson
et al., 2021). When looking for the origin of bias in AI decision-making, it is prevalent that
the issue is either data or algorithms, and the root cause is humans. Humans transmit
cognitive bias while creating/generating data or designing algorithms (National Institute of
Standards and Technology, 2022; Fenwick & Molnar, 2022). Thoroughly evaluating
existing literature is partial to this work in learning fairness management towards
proposing a unified framework to address prejudice and its subsequent mitigation method.

In order to gain a comprehensive understanding, we frame our research by mapping the
software development life cycle (SDLC), machine learning life cycle (MLLC) and cross
industry standard process for data mining (CRISP-DM) process model to have a general
understanding of how phases in this development process are related to each other. We
categorise bias into three classes; pre-existing, technical and emergent bias and,
subsequently, three mitigation strategies; conceptual, empirical and technical, along with
fairness management approaches; fairness sampling, learning and certification. We discuss
them in light of their occurrence at a specific phase of the development cycle. The
recommended practices to avoid/mitigate biases and the challenges encountered in the
course of action to address them are discussed in the later part.

RATIONALE
A foundation must be established to accommodate all perplexing features, and it is
necessary to study various facets of bias and fairness from the perspective of software
engineering integration in AI. This study maps together the software development life
cycle (SDLC), machine learning life cycle (MLLC), and cross industry standard process for
data mining (CRISP-DM) processes. The mapping provides a general understanding of
how phases in these software engineering (SE) and AI development processes relate and
can benefit from SE’s best practices within AI. The proposed framework aims to detect,
identify, and localize biases on the spot and prevent them in the future by comprehending
their core causes. The framework handles bias as a defect management process in software
engineering.

THE AUDIENCE IT IS INTENDED FOR
We believe we are the first to present this innovative framework. The framework can help
ML researchers, ML engineers, data analysts, data scientists, software engineers, and
software architects develop superior versions of software applications with higher
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accuracy, better defect tracking, swifter control test timings and faster time-to-market
release.

SURVEY/SEARCH METHODOLOGY SECTION
Integrating bottom-up and top-down research methodologies was used to gather
publications on bias in AI/ML applications. Each co-author gathered pertinent material
and added it to a shared repository. The keywords for search are optimised in each search
with an expectation to shortlist articles containing exact information. The three core
domains of artificial intelligence, machine learning, and software engineering were the
focus of the search, as shown in Fig. 1. Furthermore, ‘AND’ and ‘OR’ string operators were
used along with double quotation marks to further narrow down to search fairness in
AI/ML.

Interestingly, each survey introduced some new types of bias or fairness definitions.
Only articles that detail bias in data, algorithms, assessment tools, fairness management
approaches, bias detection, identification, mitigation strategy, fairness matrices, AI/ML/SE
development cycles, datasets characteristics, AI ethics and principles issues were
shortlisted during the inclusion criteria. We are further guided to our goal by sections from
academic books, keynote addresses by renowned speakers (some of them are J.
Buolamwini, T. Gebru (Buolamwini & Gebru, 2018) and C. O’Neil (O’Neil, 2017)), and
various advisories published. Non-tabular data, domain/language-dependent technology,
and the absence of experimental results are among the exclusion factors that reduce the
number of articles we can find from 254 to 72. Due to a lack of mapping and tackling a
variety of interlinked biases, we faced many challenges, i.e., uncoordinated development
efforts, inefficient use of resources, poor quality of ML models, limited scalability,
amplification of biases, unfair decision-making, a lack of diversity, a loss of trust, and
ethical issues. And in short found difficulties in integrating ML models into software.
Addressing these issues requires a multifaceted approach that involves addressing biases at
multiple levels, including in the data, the algorithms and the decision-making processes. It
also requires a commitment to ethical and responsible development and use of
technologies, especially when all development cycles should be synchronised together.

REVIEW OF LITERATURE
The literature review on the subject is dense, with many forms of biases and mitigation
strategies, most of which are interlinked. It is essential to be aware of potential biases in the
AI pipeline and the appropriate mitigation strategies to address undesirable effects (Bailey
et al., 2019).

Realistic case study of AI bias
The previous 10 years have seen AI’s widespread adoption and popularity, allowing it to
permeate practically every aspect of our daily lives. However, safety and fairness concerns
have prompted practitioners to prioritise them while designing and engineering AI-based
applications (Chouldechova et al., 2018; Howard & Borenstein, 2018; Osoba & Welser,
2017). Researchers have enumerated a few applications that, because of biases, have a
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detrimental impact on people’s lives, such as biometrics apps, autonomous vehicles, AI
chat-bots, robotic systems, employment matching, medical aid, and systems for children’s
welfare.

The US judiciary uses the correctional offender management profiling for alternative
sanctions (COMPAS) (Pagano et al., 2023), an AI-based tool, to identify offenders more
likely to commit crimes again. However, the Pulitzer Prize-winning nonprofit news
organisation ProPublica (Angwin et al., 2016) discovered that COMPAS was racially
prejudiced and that black criminals were at high risk (Dressel & Farid, 2018). PredPol, or
predictive policing, is an AI-enabled software to predict the next crime location based on
the number of arrests and frequency of calls to the police regarding different offences.
PredPol was criticised for its prejudiced behaviour as it targeted racial minorities
(Benbouzid, 2019).

An AI algorithm known as the Amazon recruiting engine was developed to evaluate the
resumes of job applicants applying to Amazon and then shortlist eligible candidates for
further interviews and consideration. However, it turned out that the Amazon algorithm
was discriminatory regarding hiring women (Hofeditz et al., 2022). A labelling tool in
Google Photos adds a label to a photo that corresponds to whatever is seen in the image.
When it referred to images of a black software developer and his friend as gorillas, it was
determined to be racist (González Esteban & Calvo, 2022). The well-known programme
StyleGAN (Karras, Laine & Aila, 2019) automatically creates eerily realistic human faces
and produces white faces more frequently than racial minorities.

Biases based on racial, gender, and other demographic factors restrict communities
from using AI-automated technologies for regular tasks in the health and education sectors

Figure 1 Search words across three predefined domains-AI, ML & SE.
Full-size DOI: 10.7717/peerj-cs.1630/fig-1

Rana et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1630 4/27

http://dx.doi.org/10.7717/peerj-cs.1630/fig-1
http://dx.doi.org/10.7717/peerj-cs.1630
https://peerj.com/computer-science/


(Egan et al., 1996; Brusseau, 2022). Organisations must know the different types of biases
in their data/algorithm that can affect their machine learning (ML) models. Ultimately,
identifying and mitigating biases that skewed or produced undesirable outcomes and
impeded the advancements made by AI for the everyday person is more than necessary.

Assessment tools
A systematic effort has been made to provide appropriate tools for practitioners to adopt
cutting-edge fairness strategies into their AI pipelines. Software toolkits and checklists are
the two basic ways to ensure fairness (Richardson & Gilbert, 2021). Programming language
functions that can be used to identify or lessen biases are known as toolkits. AI
practitioners can employ checklists and detailed instructions by fairness specialists to
ensure ethical consideration is incorporated across their pipelines (Bailey et al., 2019).

Fairness indicators and the What-If toolkit (WIT) are well-known tools that Google
provides (Richardson et al., 2021). Fairness indicators are based on fairness metrics for
binary and multiclass classifiers (Agarwal, Agarwal & Agarwal, 2022). The What-If tool is
an interactive visual tool designed to examine, evaluate, and compare ML models
(Richardson et al., 2021). Uchicago’s Aequitas is utilised to assess ML-based outcomes to
identify various biases and make justified choices regarding the creation and
implementation of such systems (Saleiro et al., 2018). IBM’s AI Fairness 360 is a toolkit
providing fairness detection and mitigation strategies (Bellamy et al., 2019). LinkedIn’s
fairness toolkit (LiFT) provides detection strategies for measuring fairness across various
metrics (Brusseau, 2022). Microsoft’s Fairlearn, ML Fairness Gym, Scikit’s fairness tool, and
PyMetrics Audit-AI are readily available tools to detect/mitigate (or both) bias and ensure
fairness management. These assessment techniques expand practitioners’ options for
developing ethical products and maintaining stakeholder confidence (Dankwa-Mullan &
Weeraratne, 2022).

Despite the availability of tools that incorporate explainable machine learning methods
and fair algorithms, none of them currently offers a comprehensive set of guidelines to
assist users in effectively addressing the diverse fairness concerns that arise at different
stages of the machine learning decision pipeline (Pagano et al., 2023). Moreover the
responsibility for identifying and mitigating bias and unfairness is often entirely placed on
the developer, who may not possess sufficient expertise in addressing these challenges and
cannot be solely responsible for the same (Schwartz et al., 2022). There is lack of consensus
on what constitutes fairness as there is no single definition of fairness. Moreover, these
tools have limited ability to detect complex forms of bias as they are designed to detect bias
due to protected attributes only and casual fairness demands to investigate underlying
relations between different attributes. Fairness assessment tools can themselves be biased.
For example, a tool that is designed to detect bias in natural language processing models
may be biased towards certain languages or dialects. Sometimes they can be time-
consuming and expensive to use for organizations to adopt these tools, especially small or
resource-constrained organizations. One more notable objection regarding them is that it
can be difficult to interpret the results which make it difficult for organization to take
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action to address any bias that is found. Majority of fairness assessment tools may not be
able to identify the root cause of bias.

Fairness management research datasets
Several standard datasets are available to make research on bias and fairness easier. Each of
them has sensitive or protected attributes that could be used to demonstrate unfair or
biased treatment toward underprivileged groups or classes. Table 1 summarises some of
these datasets’ characteristics. These datasets are used as a benchmark to evaluate and
compare the effectiveness of bias detection and mitigation strategies.

BROAD SPECTRUM OF BIAS
Since bias has existed for as long as human civilisation, research on the topic is popular.
The literature review, however, is full of various terminologies and theories that either
overlap or are interlinked, and this conflict is enough to perplex researchers. In this section,
we will try to throw light on a different aspect of bias in AI with a perspective to overcome
confusion and increase researchers’ understanding. This effort sets the groundwork for
building a unified framework for fairness management.

Bias, discrimination and unfairness
The existence of bias, discrimination, and unfairness are related topics, but it is essential to
distinguish them for further investigation/analysis (Future Learn, 2013). “Bias is the unfair
inclination or prejudice in a judgement made by an AI system, either in favour of or
against an individual or group” (Fenwick & Molnar, 2022). Discrimination can be
considered a source of unfairness due to human prejudice and stereotyping based on
sensitive attributes, which may happen intentionally or unintentionally. In contrast, bias
can be considered a source of unfairness due to the data collection (Luengo-Oroz et al.,
2021), sampling, and measurement (Li & Chignell, 2022). Discrimination is a difference in
the treatment of individuals based on their membership in a group (Ethics of AI, 2020).
Bias is a systematic difference in treating particular objects, people or groups compared to
others. Unfairness is the presence of bias where we believe there should be no systematic
difference (Zhao et al., 2018b). Bias is a statistical property, whereas fairness is generally an
ethical issue.

Protected, sensitive and potentially biased attributes
Until we stop making it, machine bias will keep appearing everywhere: bias in, bias out
(Alelyani, 2021). Protected attributes are characteristics that cannot be relied upon to make
decisions and may be chosen based on the organisation’s objectives or regulatory
requirements. Similarly, sensitive attributes are characteristics of humans that may be
given special consideration for social, ethical, legal or personal reasons (Machine Learning
Glossary: Fairness, (n.d.)). In literature, these terms are used interchangeably and in place
of one another. It is a potentially biased attribute if changing the value of an attribute
through the alternation function has an impact on prediction, such as altering a male
attribute to a female one or a black attribute to a white one (Alelyani, 2021). Any one of
these attributes in the dataset necessitates special consideration. Sex, race, color, age,
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marital status, family, religion, sexual orientation, political opinion, pregnancy, physical or
mental disability, career responsibilities, social origins, and national extraction are a few
attributes examples (Fair Work Ombudsman, (n.d.)). However, it has been observed that
groups/individuals still face discrimination through proxy attributes (Chen et al., 2019),
even in the absence of some protected or sensitive traits. Proxy attributes correlate with
protected or sensitive attributes, such as zip code (linked with race) (Mehrabi et al., 2021).

Trio-bias feedback loop
Data is the primary driving force behind most AI systems and algorithms, so they need
data to be trained. As a result, the functioning of these algorithms and systems is closely
tied to data availability. Underlying training data bias will manifest through an algorithm’s
predictions (trained on it). Furthermore, algorithms may reflect discriminatory behaviour
based on specific design considerations even when the data is fair. The biased algorithm’s
output can then be incorporated into the existing system and impact users’ choices,
producing more biased data that can be used to train the new algorithm. Figure 2 depicts
the feedback loop between data biases, algorithmic biases, and user involvement. Humans
are involved in data preparation and algorithm design; therefore, whether bias results from
data or an algorithm, humans are the root cause.

Categorisation of biases
The human bias has more than 180 varieties, for example Dabas (2021). Bias has been
broadly divided into three major categories to accomplish fairness with a focus on
detection and mitigation mechanisms and dispel confusion with many different types of
bias (Gan &Moussawi, 2022). Bias categories include pre-existing, technical and emergent
(Friedman et al., 2013).

A bias before the development of technology is referred to as pre-existing bias. This kind
of bias has its roots in social structures and manifests itself in individual biases. The same is
introduced into technology by people and organisations responsible for its development
(Curto et al., 2022), whether explicitly or implicitly, consciously or unconsciously
(Friedman et al., 2013). The AI literature identifies that the most typical biases are pre-

Table 1 Few popular datasets, along with their characteristics.

Dataset name Attributes No. of
records

Area

COMPAS (Bellamy et al., 2019) Criminal histories, jail & prison times, demographics, COMPAS risk scores 18,610 Social

German credit (Pagano et al., 2023) Housing status, personal status, amount, credit score, credit, sex 1,000 Financial

UCI adult (Schwartz et al., 2022) Age, race, hours-per-week, marital status, occupation, education, sex, native country 58,842 Social

Diversity in faces (National Institute of Standards
and Technology, 2022)

Age, pose, facial symmetry and contrast, craniofacial distances, gender, skin color,
resolution along with diverse areas and ratios

1 million Facial images

Communities and crime (Dua & Graff, 2017) Crime & socio-economic data 1,994 Social

Winobias (Rhue & Clark, 2020) Male or female stereotypical occupations 3,160 Coreference
resolution

Recidivism in Juvenile justice (Merler et al., 2019) Juvenile offenders’ data and prison sentences 4,753 Social

Pilot parliaments benchmark (Redmond, 2011) National parliaments data (e.g., gender and race) 1,270 Facial images
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existing (Gan &Moussawi, 2022). A few examples of pre-existing bias are the wrong model
of Microsoft bot (Victor, 2016), Duane Buck’s murder (O’Neil, 2017), the stance on fairness
(O’Neil, 2017), criminal justice models (Bughin et al., 2018), and the understanding of
concepts and reasonability of CO2 emissions (Luengo-Oroz, 2019).

Technical bias refers to concerns about a product’s technological design, such as
technical limitations or decisions (Friedman et al., 2013). Technical issues faced in
prominent software like IMPACT, Tech, LSI-R, Kyle’s job application and hiring
algorithms are because of technical bias. Emergent bias emerges after the practical use of a
design as a result of a shift in social awareness or cultural norms (Friedman et al., 2013).
PredPol, St. George’s model, COMPAS, and facial analysis tech were adversely affected due
to emergent bias.

Origins of biases within the development cycle
The literature regarding the causes of biases and potential mitigation strategies is still
scattered, and work on a systematic methodology for dealing with potential biases
(Nascimento et al., 2018) and building well-established ML frameworks is in progress
(Suresh & Guttag, 2021; Ricardo, 2018; Silva & Kenney, 2019). In this article, we attempt to
overcome confusion and enhance understanding regarding the origin of different
categories of bias during the development cycle by mapping SDLC, MLLC and CRISP-DM
on a single scale, as shown in Fig. 3.

Professional designers or developers introduce pre-existing bias into the technical
process, which is why it drags into the modelling phase of the CRISP-DM cycle (Barton
et al., 2019). Technical bias, as opposed to pre-existing bias, results from how problems in
the technical design are resolved. The design process and model evaluation contain many
areas where technical bias can be identified (Friedman et al., 2013;Ho & Beyan, 2020). Pre-
existing and technical biases occur prior to and within the technical development process.
However, emergent bias appears during the actual use of the technical product after
development (Barton et al., 2019). Emergent bias can be detected before deployment
(during testing) and is often the most obvious category of bias (Gan & Moussawi, 2022).
The same type of bias has several names in the literature. Therefore, biases were

Figure 2 Trio bias feedback loop among data, algorithm and user.
Full-size DOI: 10.7717/peerj-cs.1630/fig-2
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descriptively synthesised and characterised based on their origins (Ho & Beyan, 2020; Fink,
2019). Based on a thorough understanding of the development cycles, commonly
encountered distinct types of biases were assigned to the phases based on their origin, as
shown in Fig. 4.

The bias type and subtype distribution across different phases will create an appropriate
detection method (Fahse, Huber & Giffen, 2021). Equal opportunity, equalized odds,
conditional demographic disparity, disparate impact, Euclidean distance, Mahalanobis
distance, Manhattan distance, demographic disparity, and different tools and libraries are
used for bias detection (Garg & Sl, 2021).

Bias minimising strategies
Value sensitive design (VSD) is a methodology that can contribute to understanding and
addressing issues of bias in AI systems (Simon, Wong & Rieder, 2020) and to promote
transparency (Cakir, 2020) and ethical principles in AI systems (Dexe et al., 2020). It is a
framework that provides recommendations for minimising or coping with various biases
(Gan & Moussawi, 2022; Friedman et al., 2013), is adopted in this research as a potential
strategy to minimise the biases associated with AI. In the VSD study, “value” is a general
phrase that relates to what user values in life (Atkinson, Bench-Capon & Bollegala, 2020).
This theoretically-based approach provides three possible solutions based on the types of
investigations to prevent problems and advocate AI-specific value-oriented metrics that all
stakeholders mutually agreed on.

Conceptual, empirical and technical are three different kinds of investigations. A
conceptual investigation primarily focuses on analysing or prioritising different
stakeholders’ values in the design and use of technology (Barton et al., 2019; Floridi, 2010).

Figure 3 Mapping the SDLC, MLLC and CRISP-DM across different biases categories, minimizing
strategies and fairness management. Full-size DOI: 10.7717/peerj-cs.1630/fig-3
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Empirical investigation assesses a technical design’s effectiveness using factors like how
people react to technological products (Barton et al., 2019; Floridi, 2010). It frequently
entails observation and recording; quantitative and qualitative research methods are
appropriate. Because of these characteristics, the phases are limited to data understanding
(slightly), data preparation, modeling (to some extent), deployment and feedback.

The primary focus of the technical investigation is on technology while focusing on how
technological characteristics and underlying mechanics promote or undermine human
values and involves proactive system design to uphold values discovered in conceptual
investigations (Gan &Moussawi, 2022; Friedman et al., 2013; Ho & Beyan, 2020). VSD has
revealed the relationships between different types of investigations and types of AI biases
(Umbrello & Van de Poel, 2021). Researchers concluded by recognising the value of
conceptual and empirical investigation for addressing pre-existing bias, investigations for
minimising technical bias, and technical and empirical investigation for tackling emerging
bias (Gan & Moussawi, 2022).

Bias mitigation methods
Several methods can mitigate a single bias, and multiple biases can be mitigated by a single
method. The socio-technical approach comprising technical and nontechnical methods is
widely adopted to counterattack the harmful effects of biased decisions (Fahse, Huber &
Giffen, 2021). This approach mitigates bias and prevents it from recurring in the future.
Table 2 depicts which method effectively mitigates different types of bias whenever it
appears in different stages of the AI development cycle. The mitigation process is not
executed during Feedback. From risk management’s perspective, to evaluate an AI system’s

Figure 4 Distribution of biases w.r.t categories across phases of the CRISP-DM development cycle.
Full-size DOI: 10.7717/peerj-cs.1630/fig-4
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performance, ‘Fairness’ outclass any other vital measure, i.e., dependability, efficiency, and
accuracy (Barton et al., 2019; Suri et al., 2022).

Various strategies have been put forth by researchers and practitioners to address bias in
AI. These strategies encompass data pre-processing, model selection, and post-processing
decisions. However, each of these methods has its own set of limitations and difficulties,
such as the scarcity of diverse and representative training data, the complexity of
identifying and quantifying different forms of bias and the potential trade-offs between
fairness and accuracy (Pagano et al., 2023). Additionally, ethical considerations arise when
determining which types of bias to prioritize and which groups should be given priority in
the mitigation process (Pagano et al., 2022). Bias mitigation methods can be complex,
computationally expensive and can introduce new biases for example, a method that tries
to balance the representation of different groups in a dataset may introduce a new bias in

Table 2 A socio-technical approach for bias mitigation across the CRISP-DM development cycle.

Business
understanding

Data
understanding

Data preparation Modelling Evaluation Deployment

Measurement
bias

Team diversity,
exchange with
domain expert

Proxy
estimation

Rapid prototyping

Social bias Learning fair representation, rapid prototyping,
reweighting, optimized preprocessing, data
massaging, disparate impact remover

Adversarial debiasing, multiple models,
latent variable model, model
interpretability equalized odds, prejudice
remover

Sampling bias Resampling Randomness

Representation
bias

Team diversity Data plotting,
exchange with
domain
experts

Reweighing, data augmentation Model interpretability

Negative bias Cross dataset generalization Bag of words

Label bias Exchange with
domain
experts

Data massaging

Sample
selection bias

Reweighing

Confounding
bias

Randomness

Design Bias Rapid prototyping Exchange with domain experts, resampling,
model interpretability, multitask learning

Sample
treatment
bias

Resampling Data augmentation

Human
evaluation
bias

Resampling Representative
benchmark subgroup
validity, data
augmentation

Test dataset
bias

Data augmentation

Deployment
bias

Team diversity,
consequences
in context

Rapid prototyping Monitoring
plan, human
supervision

Feedback bias Human
supervision,
randomness
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favor of the majority group. They can be brittle such as that they can be sensitive to
changes in the data or the model. This can make it difficult to ensure that the model
remains fair over time. Another notable aspect that needs to be addressed are that there is a
lack of understanding of the long-term effects of bias mitigation methods & standardized
evaluation metrics. These methods can be opaque as it can be difficult to understand how
they work, subsequently it can make it difficult to trust these methods, and to ensure that
they are not introducing new biases. They might feel it difficult to adapt to new tasks, as
result of it, they may not be effective for all machine learning models.

Despite these obstacles, the mitigation of bias in AI is of utmost importance to establish
just and equitable systems that benefit everyone in society (Balayn, Lofi & Houben, 2021).
Continuous research and development of mitigation techniques are crucial to overcome
these challenges and ensure that AI systems are employed for the welfare of all individuals
(Huang et al., 2022).

FAIRNESS MANAGEMENT APPROACH
Bias and fairness are two mutually exclusive aspects of reality. In the absence of a unified
definition, an absence of bias or preference for individuals or groups based on their
characteristics is generally regarded as ‘fairness’. It is necessary to do more than mitigate
any bias detected to ensure that an AI system may be regarded as fair. Instead, “fairness-
aware” system design should be encouraged (Orphanou et al., 2021). This approach
incorporates “fairness” as a crucial design component from conception to deployment
(sometimes extended to maintenance or upgradation). Figure 5 shows the fairness
management approach and several implementation methods across the CRISP-DM
model. The following steps constitute the fairness management approach:

Fairness formalisation
Constraints, measures, specifications and criteria to ensure fairness is defined during the
business understanding and data understanding phases (Northeastern Global News, 2020),
as depicted in Fig. 5. In fact, at this stage, the benchmarks for auditing or evaluating
fairness are stated.

Fairness sampling
Fairness sampling generally refers to preprocessing skewed data through different
methods, such as oversampling (Orphanou et al., 2021). Issues with data, i.e., inaccuracy,
incompleteness, improperly labelling, too much/less, inconsistency, and silos, are
addressed at this stage (Walch, 2020). Fair sampling is accomplished during the data
understanding and data preparation phases.

Fairness learning
It is not always feasible to develop a fair model by eliminating the bias in the initial data
before training. Designing a fair classifier that uses a fair algorithm is the solution in such
scenarios (Acharyya et al., 2020). As a result, we can still use a biased dataset to train the
model, and the fair algorithm still produces predictions through in-processing methods
carried out during the modelling and evaluation phases (Acharyya et al., 2020).
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Fairness certification
At the final stage of the testing and deployment phases, it is evaluated whether a prediction
aligns with the criteria mentioned in the fairness formalisation phase by executing post-
processing methods (Floridi, 2010). Fairness certification solutions verify that unfairness
does not surface during the feedback phase.

Limitations and challenges of existing approaches
After thoroughly examining various aspects of tools, methodologies, frameworks, and
fairness solution spaces, it is now appropriate to consolidate and summarize the overall
major limitations and challenges encountered throughout this exploration:

1. One of the shortcomings of current approaches is the lack of transparency and
interpretability (Srinivasu et al., 2022). Many tools and strategies employed to mitigate
biases in various domains, such as machine learning algorithms or content moderation
systems, often lack clear explanations of how they address bias (Feuerriegel, Dolata &
Schwabe, 2020). This lack of transparency makes it difficult for users to understand the
underlying biases being addressed and the effectiveness of the applied methods
(Berente et al., 2019). Additionally, without proper transparency (Society to Improve
Diagnosis in Medicine, 2021), it becomes challenging to identify potential unintended
consequences or biases that may arise from the bias management methods themselves
(Turney, 1995).

2. Another major shortcoming lies in the limited customization and adaptability
(Basereh, Caputo & Brennan, 2021). Most tools and strategies are developed with a
one-size-fits-all approach, which may not adequately account for the specific biases

Figure 5 Fairness management approach across multiple phases of the CRISP-DM development
cycle. Full-size DOI: 10.7717/peerj-cs.1630/fig-5
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prevalent in different contexts or domains (Qiang, Rhim & Moon, 2023). This limits
their effectiveness in managing biases that are nuanced and context-dependent.
Furthermore, these methods often do not provide enough flexibility for users to
customize and fine-tune the bias management mechanisms according to their specific
needs and requirements.

3. Existing methods, tools, and strategies for bias management rely on manual
intervention, which makes the process time-consuming and prone to human error.
When bias management is carried out manually, it becomes difficult to ensure
consistent and comprehensive coverage of all potential biases. Additionally, manual
methods may lack scalability and efficiency, particularly when dealing with large
datasets or complex models (Chhillar & Aguilera, 2022). Therefore, there is a need for
more automated and robust approaches to bias management.

4. Bias can be unintentionally introduced when the dataset used to train AI models is not
representative of the real-world population it is designed to serve (Schwartz et al.,
2022). For example, if a facial recognition system is trained primarily on data from
lighter-skinned individuals, it may exhibit higher error rates for darker-skinned
individuals. This lack of diversity can perpetuate existing societal biases and lead to
discriminatory outcomes (Delgado et al., 2022; Michael et al., 2022).

5. Existing methodologies tend to place a heavy emphasis on technical solutions for bias
mitigation, often neglecting the importance of interdisciplinary collaboration (Madaio
et al., 2022). Addressing bias in AI requires input from diverse stakeholders (Michael
et al., 2022), including ethicists, social scientists, and policymakers. Without
incorporating a multidisciplinary perspective, frameworks may overlook crucial ethical
considerations and fail to account for the broader societal impact of AI systems.

6. Many existing strategies tend to oversimplify the concept of bias, reducing it to a binary
problem. They often focus on mitigating only explicit biases while overlooking implicit
biases, which are more subtle and deeply ingrained in societal structures (Peters, 2022).
Addressing implicit biases requires a more nuanced understanding of the underlying
social dynamics and power structures. Failure to consider these complexities can result
in incomplete or ineffective bias mitigation strategies.

7. Identifying and mitigating the various interlinked biases that can arise in AI systems
poses a significant challenge due to their diverse nature and complexity.

8. In some cases, there may be a potential trade-off between fairness and accuracy. For
example, if an AI system is designed to be fair to all groups, it may not be as accurate as
it could be.

9. There are ethical considerations around how to mitigate bias in AI systems (Straw,
2020). For example, should we prioritize fairness to individuals or to groups? Should
we focus on mitigating historical bias or on preventing future bias.

10. The prevailing focus of most approaches lies in addressing bias reactively, leading to
high costs associated with corrective measures. There is a pressing need to adopt a
proactive stance and mitigate bias as soon as it is identified.
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Lack of comprehensive evaluation frameworks is another hurdle in way to achieve
fairness. While some methods may claim to address biases, there is often a lack of
standardized evaluation frameworks to assess their effectiveness and potential trade-offs
(Landers & Behrend, 2023). This absence of robust evaluation frameworks hinders the
attainment of fairness on a global scale.

RECOMMENDED PRACTICES TO AVOID/MITIGATE BIAS
After understanding the categorisation and minimising strategies of biases and knowing
how to implement a fairness management approach during the model development life
cycle, it is time to look at best practices to avoid/mitigate bias and ensure fairness. A few of
them are as follows:

� Considering human customs in AI use and promoting all concerned stakeholders on the
board i.e., developers, users/general public, policy makers etc. to achieve an effective
strategy (Floridi, 2010).

� Domain-specific knowledge must be incorporated to detect and mitigate bias
(Srinivasan & Chander, 2021).

○ When collecting data, it is vital to have expertise in extracting the most valuable data
variables (Pospielov, 2022).

○ Be conscious of the data’s sensitive features, including proxy features, as determined
by the application (Vasudevan & Kenthapadi, 2020).

○ Datasets should, to the greatest extent possible, represent the actual population being
taken into account (Celi et al., 2022). Data selection by random sampling can perform
effectively (Pospielov, 2022).

○ Preprocess the data to guarantee the maximum possible level of accuracy while
minimising relations between results and sensitive attributes or to present data
preserving privacy (Floridi, 2010).

○ For annotating the data, appropriate standards must be specified (Zhang et al., 2022).

○ Consider crucial elements such as the data type, problem, desired outcome, and data
size while choosing the best model for the data set (Pospielov, 2022).

� The right model choice is one of the critical components of fairness management.
Compared to linear models, which give exact weights for each feature being taken into
account, deep models like decision trees can more easily conceal their biases (Barba,
2021).

� Bias detection should be incorporated as a necessary component of model evaluation
and focus on model accuracy and precision (Schmelzer, 2020).

� Track the models’ performance in use and continually evaluate it (Schmelzer, 2020).

� Encourage all stakeholders to report bias and management should take it positively
(Shestakova, 2021).
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� In order to prevent perpetuating inequity, AI systems must be responsible during the
design, development, evaluation, implementation, and monitoring phases (Stoyanovich,
Howe & Jagadish, 2020).

� Process and result transparency should be defined in a way that can be interpretable
without in-depth knowledge of the algorithm (Seymour, 2018).

CHALLENGES, OPPORTUNITIES AND FUTURE WORK
There are several obstacles to overcome before ethical AI applications and systems are
successfully developed, free from bias, and wholly engineered along fairness lines. Planning
to overcome these obstacles sets the direction of future research. A few serious challenges
are:

� Despite numerous approaches to detect and mitigate bias/unfairness, no absolute results
are yet available for the cutting edge to handle each type of biasness (Ntoutsi et al., 2020;
Pagano et al., 2023).

� A mathematical definition cannot express all notions of fairness (Ntoutsi et al., 2020).
From the ML perspective, literature is enriched with various definitions of fairness. One
of the unsolved research issues is how to combine these definitions and propose a unique
notion of fairness (Le Quy et al., 2022). Achieving it can evaluate AI systems in more
unified and comparable manners. The ideals of fairness are incompatible with the
operationalisation of the “from equality to equity” concept (Fenwick & Molnar, 2022),
which necessitates approaching the issue from an operational war posture (Belenguer,
2022). Moreover, it demands integrating social and political knowledge in the primary
process as critical elements (Rajkomar et al., 2018; Elizabeth, 2017).

� The literature review has a lot to say about the bias/fairness of the data and algorithm
used by data-driven decision-making systems. However, not all areas have received the
same degree of research community attention, i.e., classification, clustering, word
embedding, semantic role labelling, representation learning VAE, regression, PCA,
named entity recognition, machine translation, language model, graph embedding,
coreference resolution, and community detection (Mehrabi et al., 2021).

� In the context of fairness-aware ML, exploratory analysis of datasets is still not practiced
widely (Le Quy et al., 2022). Real, synthetic and sequential decision-making datasets are
not adequately exploited.

� The role of sensitive/protected attributes in measuring the performance of predictive
models has been studied a lot. However, the role of proxy attributes in the same
perspective demands more research work (Le Quy et al., 2022).

� Most research being done at the moment focuses on techniques that reduce bias in the
underlying machine learning models through the algorithm’s approach. Due to this, a
research gap may be filled by a data-centered approach to the subject (Rajkomar et al.,
2018).
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� The oldest benchmark dataset was gathered 48 years ago from nations with active data
protection laws. However, to meet the demands of the modern day, general data quality
or collection regulations still need to be researched and developed (Ntoutsi et al., 2020).

Establishing an agile approach to address bias in AI systems:
A framework for managing bias in AI systems should be created to encourage fairness,
accountability, and transparency throughout the AI system lifetime while integrating
software engineering best practices, in light of the challenges listed above. Effectively
reducing bias requires a multifaceted, adaptable, transparent, scalable, accessible,
interdisciplinary, and iterative approach.

Agile methods can be employed to address bias in AI systems. By adopting an agile
approach, AI developers can continuously monitor and mitigate bias throughout the
development lifecycle and all stakeholders will be well informed with current situation
(Benjamins, Barbado & Sierra, 2019). Framework based on agile approach can not only
mitigate bias at the spot in proactive manners but also eradicate it from appearing in future
by eliminating all interlinked biases as (Landers & Behrend, 2023; Caldwell et al., 2022). To
design a framework for fair AI several working variables play a key role. Let us explore
some of these variables in detail:-
Data collection and preprocessing
The first working variable to consider is the data used to train AI models. It is essential to
ensure that the data collected is representative and diverse (Zhao et al., 2018a), without any
inherent biases (de Bruijn, Warnier & Janssen, 2022). Biases can emerge if the data reflects
historical prejudices or imbalances (Clarke, 2019). Careful preprocessing is necessary to
identify and address these biases to prevent unfair outcomes. For example, if a facial
recognition system is trained predominantly on a specific demographic, it may exhibit
racial or gender biases.

Algorithmic transparency and explainability

To design a fair AI framework, it is crucial to consider the transparency and explainability
of the algorithms used (Umbrello & Van de Poel, 2021). Black-box algorithms that provide
no insight into their decision-making processes can pose challenges in identifying and
rectifying biases (Clarke, 2019). By promoting algorithmic transparency, stakeholders can
understand how decisions are made and detect any unfairness in the system. Explainable
AI techniques, such as providing interpretable explanations for decisions, can also enhance
fairness and accountability (Toreini et al., 2020).

Evaluation metrics

Establishing appropriate evaluation metrics is another essential working variable in
designing a fair AI framework. The metrics used to assess the performance of AI systems
should go beyond traditional accuracy measures (Buolamwini & Gebru, 2018) and
incorporate fairness considerations (Clarke, 2019). For instance, metrics like disparate
impact, equal opportunity, and predictive parity can help identify and mitigate biases
across different demographic groups. Evaluating AI systems on these fairness metrics
ensures that fairness is a fundamental goal rather than an afterthought.
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Regular audits and monitoring

A fair AI framework requires ongoing audits and monitoring to identify and rectify biases
that may emerge over time. Regular assessments can help evaluate the fairness of AI
algorithms and models in real-world scenarios (Landers & Behrend, 2023). It allows for
continuous improvement and ensures that any biases are promptly addressed. Organizations
should establish mechanisms to monitor the performance of AI systems, collect feedback
from users, and engage in iterative improvements to enhance fairness (Saas et al., 2022).
Moreover, encourage continuous learning within your team about bias, fairness, and ethical
AI. Continuously stay informed about the most recent research and best practices in this
domain and ensure ongoing updates.

Stakeholder inclusivity

Involving diverse stakeholders in the design and deployment of AI systems is a critical
working variable for fair AI. Including representatives from different communities,
demographic groups, and experts from various fields can help identify potential biases and
ensure fairness (Clarke, 2019). It is crucial to consider the perspectives and experiences of
those who may be disproportionately affected by AI systems. Such inclusivity can lead to a
more comprehensive understanding of biases and result in fairer outcomes (Johansen,
Pedersen & Johansen, 2021).

Ethical guidelines and governance

Ethical guidelines and governance play a vital role in shaping the design of a fair AI
framework (Hildebrandt, 2021). Organizations should establish clear policies and
guidelines that explicitly address fairness concerns. These guidelines should define what
constitutes fairness and provide actionable steps to ensure it is upheld. Integrating ethical
considerations into the design and decision-making processes can help prevent biases
(Jobin, Ienca & Vayena, 2019). In nutshell, agile methods provide a framework for
effectively addressing bias in AI systems. By adopting diverse teams, defining clear goals
and metrics, conducting frequent reviews and iterations, ensuring transparency, curating
unbiased datasets, monitoring and evaluating system performance, collaborating with
stakeholders, and prioritizing ethics, organizations can develop and deploy AI systems that
are fair, unbiased, and inclusive.

CONCLUSION
The presence of bias in our world is reflected in the data. It can appear at any phase of the
AI model development cycle. It is not only the developers’ core responsibility to ensure
model fairness but AI fairness requires a collaborative effort from all stakeholders i.e.,
policymakers, regulators (Yavuz, 2019), users, general public etc. for responsible and
ethical AI solutions (Rajkomar et al., 2018). The future will see AI play an even more
significant impact in both our personal and professional lives. Recognising the benefits and
challenges of developing ethical and efficient AI models is crucial (John-Mathews, Cardon
& Balagué, 2022). AI developers bring with them a variety of disciplines and professional
experiences.
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Narrowing the subject to a single profession or area of expertise would oversimplify the
situation. Mapping SDLC, MLLC, and CRISP-DM on a single reference will boast an
understanding of practitioners from various technical frameworks to a single point. Once
the bias is identified and mitigated at each phase of the development process, the technical
team will remain vigilant and unable to de-track or display negligence. The fairness
management approach will further enhance the effectiveness of revealing the hidden
shortcomings during the development process.

From this perspective, a firm grasp of standard practices will be the foundation for a
unified AI framework for fairness management. Through the proposed framework,
organisations of all sizes can manage the risk of bias (Straw, 2020) throughout a system’s
lifecycle and ensure that AI is accountable by design. In order to manage the associated
risks with AI bias, the proposed framework ought to have the following key characteristics:

� Outlines a technique for conducting impact assessments

� Promotes better awareness of already-existing standards, guidelines, recommendations,
best practices, methodologies, and tools and indicates the need for more effective
resources.

� Integrate best practices from software engineering similar to ‘defect management’ to
tackle bias as ‘defect’. Then, detect, identify and localise bias on the spot before
proceeding further and eliminating its chance of appearing in future.

� Ensure each stakeholder comprehends his or her responsibility.

� Sets out corporate governance structures, processes and safeguards that are needed to
achieve desired goals.

� Law and regulation agnostic.

� In light of the field of AI’s rapid growth, the framework should be updated to ensure it is
up-to-date and adapted.

Briefly, AI fairness management is centered on a governance framework that
encourages the prevention of bias from manifesting in a way that unjustifiably leads to less
favorable or harmful outcomes and enables businesses to create more accurate and
practical applications and more persuasive to customers. Overall, a framework for fair AI
should provide a structured approach to manage biases and ensure that AI systems operate
ethically, fairly, and transparently, while accommodating the complexities and challenges
inherent in AI development and deployment.
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