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ABSTRACT
Simultaneous localization and mapping (SLAM) is a fundamental problem in
robotics and computer vision. It involves the task of a robot or an autonomous
system navigating an unknown environment, simultaneously creating a map of the
surroundings, and accurately estimating its position within that map. While
significant progress has been made in SLAM over the years, challenges still need to be
addressed. One prominent issue is robustness and accuracy in dynamic
environments, which can cause uncertainties and errors in the estimation process.
Traditional methods using temporal information to differentiate static and dynamic
objects have limitations in accuracy and applicability. Nowadays, many research
trends have leaned towards utilizing deep learning-based methods which leverage the
capabilities to handle dynamic objects, semantic segmentation, and motion
estimation, aiming to improve accuracy and adaptability in complex scenes. This
article proposed an approach to enhance monocular visual odometry’s robustness
and precision in dynamic environments. An enhanced algorithm using the semantic
segmentation algorithm DeeplabV3+ is used to identify dynamic objects in the image
and then apply the motion consistency check to remove feature points belonging to
dynamic objects. The remaining static feature points are then used for feature
matching and pose estimation based on ORB-SLAM2 using the Technical University
of Munich (TUM) dataset. Experimental results show that our method outperforms
traditional visual odometry methods in accuracy and robustness, especially in
dynamic environments. By eliminating the influence of moving objects, our method
improves the accuracy and robustness of visual odometry in dynamic environments.
Compared to the traditional ORB-SLAM2, the results show that the system
significantly reduces the absolute trajectory error and the relative pose error in
dynamic scenes. Our approach has significantly improved the accuracy and
robustness of the SLAM system’s pose estimation.

Subjects Artificial Intelligence, Autonomous Systems, Computer Vision, Robotics
Keywords Simultaneous localization and mapping (SLAM), Pose estimation, Deep learning,
Semantic segmentation, Dynamic scene, Moving consistency check

INTRODUCTION
Simultaneous Localization and Mapping (SLAM) (Cadena et al., 2016; Siah, Abdullah &
Sahran, 2013) is a technology that simultaneously estimates the robot’s trajectory and the
environment’s map. SLAM is mainly used in autonomous robot navigation (Mallios et al.,
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2010; Raibail et al., 2022), unmanned vehicles (Sun et al., 2018; Pavel, Tan & Abdullah,
2022), virtual and augmented reality (Kuswadi et al., 2018), indoor service robots, and
outdoor autonomous driving robots (Bresson et al., 2017; Azmi et al., 2019). In SLAM
technology, visual SLAM (Razali, Faudzi & Shamsudin, 2022) is a technology that uses
single or multiple cameras for real-time 3D environment reconstruction and camera
positioning. Compared with others, visual SLAM has the following advantages: (i) the cost
of the camera is low; (ii) the camera can obtain higher resolution when acquiring image
information with more detailed texture information; (iii) more accurate feature matching
and pose estimation results can be obtained; and (iv) the camera acquires images very
quickly, allowing visual SLAM to operate in real-time scenes. VSLAM has a wide range of
applications in fields such as robot navigation and localization, mapping, obstacle
avoidance, unmanned aerial vehicles, building and indoor navigation, industrial
automation, and service robots. With its real-time positioning and environmental
perception capabilities, VSLAM enables robots and unmanned systems to intelligently
navigate and operate in unknown or dynamic environments. As technology continues to
advance, the improvement of computational power, sensor technology, and algorithm
optimization will continuously enhance the performance and reliability of VSLAM. As a
core technology, VSLAM will continue to play a crucial role in the fields of robotics and
computer vision, providing smarter and more autonomous solutions for various
application scenarios. In the past few decades, the problem of visual SLAM has received
much attention, and some advanced visual SLAM algorithms have achieved satisfactory
performance (Zhang et al., 2022a, 2022b; Zhao et al., 2022; Rahman et al., 2019).

Klein & Murray (2008) proposed a keyframe-based visual SLAM algorithm called
PTAM (Parallel Tracking and Mapping). The algorithm divides the localization and
mapping tasks into two parallel threads, incorporates a keyframe mechanism, and employs
bundle adjustment (BA) for nonlinear optimization processing. These techniques
significantly reduce the image processing volume, enhance the system’s efficiency, and
preserve adequate visual environmental information. In 2015, Mur-Artal, Montiel &
Tardos (2015) proposed the classic ORB-SLAM algorithm based on a monocular camera.
The algorithm borrowed ideas from the PTAM algorithm and combined ORB features
with a bag-of-words (BoW) based on the loop-closure detection method. The SLAM
system was divided into three parts: tracking, local mapping, and loop-closure detection,
and ran with three synchronized threads. This system has the advantages of high
localization accuracy making it possible to run on low-performance embedded devices. In
2017, the team improved ORB-SLAM and proposed the ORB-SLAM2 (Mur-Artal &
Tardos, 2017) system, which supports stereo and RGB-D camera modes and is currently
one of the most widely used visual SLAM systems.

However, with the development of deep learning methods in image processing,
segmentation algorithms based on deep learning have significant advantages in both
accuracy and speed compared to traditional clustering segmentation algorithms at the
region level. Currently, most deep learning-based semantic segmentation methods are
based on fully convolution networks (FCN) (Long, Shelhamer & Darrell, 2015), which
convent well-known classification models, including AlexNet, Vgg-16, GoogleNet (Szegedy
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et al., 2015), and ResNet (He et al., 2016), into fully convolutional models, achieving end-
to-end training for semantic segmentation problems on convolutional neural networks
(CNNs). Based on this, Ronneberger, Fischer & Brox (2015) proposed that the U-Net
network concatenates the feature maps of the encoder onto the up-sampled feature maps
of the corresponding decoder, allowing the decoder to learn relevant features lost during
encoder pooling at each stage. This method can handle large-resolution images and can be
trained with small datasets but cannot handle scale variation well. In 2014, Chen et al.
(2014) designed the DeeplabV1 model, which converts the fully connected layers of VGG-
16 into convolutional layers and uses dilated convolutions to expand the receptive field
without increasing the parameters. Based on this, the DeeplabV2 (Chen et al., 2017a)
model replaces the VGG-16 backbone with ResNet and introduces the Atrous Spatial
Pyramid Pooling (ASPP) module to obtain multi-scale features. Finally, the boundary
information is refined by the Dense Conditional Random Field (Dense CRF). The
subsequent DeeplabV3 (Chen et al., 2017b) model removes the Dense CRF and uses dilated
convolution modules of different scales to obtain multi-scale contextual information. In
2018, the team designed the DeeplabV3+ (Chen et al., 2018) network model based on the
DeeplabV3 model. The model consists of an encoder and a decoder, where the structure of
the encoder is the DeeplabV3 network, and the Xception network is used as the feature
extraction network. The decoder uses bilinear up-sampling and information from the
encoder stage to help restore the details and spatial dimensions of the target.

BACKGROUND
Most existing visual SLAM algorithms are based on static environment assumptions,
which have low accuracy and poor robustness in dynamic environments. Moreover, the
maps they create are usually based on geometric information, such as landmark-based
maps and point cloud maps. Therefore, they cannot provide a high-level understanding of
the surrounding environment. To solve this problem, many scholars have proposed SLAM
methods for dynamic environments. The detection methods of dynamic features in scenes
can be divided into two categories: dynamic feature detection, which relies only on
geometric information, and dynamic feature detection, which relies only on semantic
information.

In the methods that rely on geometric information, some common methods for
handling dynamic scenes include filtering, graph optimization, data association, and
motion estimation methods. The Extended Kalman Filter (EKF) (Viset, Helmons & Kok,
2022) and Unscented Kalman Filter (UKF) are the most commonly used filtering methods.
These algorithm model dynamic targets as state variables and use observed data for state
estimation and prediction, enabling tracking of dynamic objects and map updates. Graph
optimization methods (Chen et al., 2022; Jia et al., 2022) construct a graph model
representing sensor measurements and state variables as modes. Optimization algorithms
are then used to minimize the error function. in the graph, dynamic objects are typically
modeled as uncertain nodes connected to nodes representing the static environment.
The optimization algorithm can simultaneously estimate camera poses, map topology,
and dynamic object states. Data association methods (Rakai et al., 2022) involve
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nearest-neighbor matching and data association. These methods use the motion models of
objects and sensor measurements to determine whether they belong to the same object.
Motion estimation methods analyze pixel differences or feature matches between
consecutive frames to detect dynamic objects and utilize their motion information for
tracking and mapping. Common techniques include optical flow or feature-based methods
such as SURF (Bay et al., 2008) and SIFT (Rublee et al., 2011), which extract and match
features.

In semantic information, objects that can move are often considered dynamic objects
based on human experience and attempts. SOLO-SLAM (Sun et al., 2022) system is based
on the ORB-SLAM3 (Campos et al., 2021) algorithm, and it uses YOLO (Wu et al., 2022)
target detection networks to obtain semantic information and remove unstable features on
moving objects and improves upon it by introducing semantic threads and a new dynamic
point filtering strategy. By parallelizing the semantic and SLAM threads, the system
enhances the real-time performance of SLAM systems. The system also incorporates a
combination of dynamic regional degree and geometric constraints to enhance the filtering
effect for dynamic points. TwistSLAM (Gonzalez et al., 2022) algorithm is based on the
ORB-SLAM2. The system simultaneously estimates the camera pose and the motion of
moving objects in the scene, where the map constrains the movement of objects. During
mapping, semantic information is used to construct cluster maps corresponding to objects
in the scene. Once the cluster maps are built, the pose estimation can be performed using
only the static clusters (such as roads and buildings). The dynamic clusters can be tracked
and constrained by their velocity changes. DynaSLAM (Bescos et al., 2018) is based on
ORB-SLAM2, which incorporates dynamic object detection and background inpainting
capabilities. It utilizes multi-view geometry and deep learning methods to detect dynamic
objects and generates a static scene map based on this information. Then, the input frames
are processed to fill the regions occluded by dynamic objects, effectively restoring the
background.

The common deep learning networks used for SLAM and semantic analysis are FCN,
SegNet, and DeepLab. FCN (Villa et al., 2018) is primarily used for semantic segmentation
tasks. It replaces the full connected layers in traditional CNNs with convolutional layers,
allowing the network to take images of any size as input and produce semantic
segmentation results of the same size. However, FCN tends to preserve less fine-grained
details, leading to less precise segmentation boundaries. In the SegNet (Badrinarayanan,
Kendall & Cipolla, 2017) framework, during the up sampling process, it can partially
reconstruct the original image, but still loses a significant amount of fine-gained
information due to the presence of pooling layers. Although pooling operations can
enlarge the receptive field, they also filter and discard a large amount of fine-grained
features. Consequently, the DeepLab (Chen et al., 2017a) model emerged. DeepLab
discards pooling layers, avoiding data loss during the pooling process, and adopts dilated
convolutions to increase the receptive field. Detailed convolutions contain two pieces of
information: the size of the convolution kernel and the dilation rate, which represents the
extent of expansion. Additionally, DeepLab incorporates a conditional random field (CRF)
(Quattoni, Collins & Darrell, 2004) to improve segmentation accuracy. The CRF layer is
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generally placed at the end of the network, imposing certain constraints on the final
predicted results to ensure consistency in object label predictions within the images.

DeeplabV3+ (Chen et al., 2018) is the Deep Lab series’s latest improved model version.
It adopts Atrous Spatial Pyramid Pooling (ASPP) to capture multi-scale contexture
information by analyzing images at different scales using dilated convolutions with varying
rates. This enables the model to understand objects of different sizes and capture fine-
grained details. The model follows an encoder-decoder architecture, where the encoder
extracts high-level features from the input image, and the decoder upsamples these
features to generate the final segmentation map. In the decoder, depth-wise separable
convolutions are used to reduce computational complexity, and skip connections are
employed to combine low-level and high-level features, improving object boundary
delineation. Additionally, DeepLabV3+ introduces image-level feature integration through
global pooling, further enhancing the model’s understanding of the global context.

This article presents a method that combines semantic segmentation technology with
motion consistency detection algorithms to eliminate dynamic object features and reduce
the errors in pose estimation in SLAM. By leveraging the prior information from semantic
segmentation and geometric data, the method effectively diminishes the impact of
dynamic objects. Moreover, in our research, we incorporated DeeplabV3+ into the feature
extraction stage of our dynamic SLAM system. Specifically, we used DeeplabV3+ to
identify dynamic objects in the image and then used a motion consistency check algorithm
to remove further feature points belonging to dynamic objects. This approach helped
improve our SLAM system’s robustness in dynamic environments.

ALGORITHM FRAMEWORK
The framework used in this article is shown in Fig. 1. First, ORB features are extracted
from the input image frame. Then, it uses DeeplabV3+ for semantic segmentation to
identify dynamic objects in the scene. A motion consistency check algorithm removes ORB
features belonging to dynamic objects. Then use the remaining static ORB features for
feature matching. The camera pose is then estimated using the matched ORB features.
Loop closures are then detected to correct for accumulated drift errors in the estimated
trajectory. Finally, the estimated map is optimized using a bundle adjustment algorithm.

SLAMmethod incorporates several key steps to improve the accuracy and robustness of
pose estimation in dynamic environments. Initially, ORB features, which are distinctive
key points, are extracted from the input image frames. Semantic segmentation using
DeeplabV3+ is then employed to identify and label dynamic objects in the scene. A motion
consistency check algorithm is subsequently applied to remove the ORB feature associated
with dynamic objects, effectively mitigating their impact on pose estimation. Feature
matching is performed using the remaining static ORB features, establishing
correspondences between consecutive frames. The matched features are then utilized to
estimate the camera’s pose through optimization techniques and triangulation (Hartley &
Sturm, 1997) which recovers the depth information of the 3D point P, thereby estimating
the actual position of the feature point in 3D space. This provides crucial map information
and camera pose estimation for the SLAM system. Finally, loop closure detection is
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implemented to identify previously visited locations, enabling the correction of
accumulated drift errors in the estimated trajectory. Finally, the estimated map is
optimized using a bundle adjustment algorithm, refining its accuracy and consistency.
These steps together contribute to reliable and accurate simultaneous localization and
mapping in dynamic environments.

DeeplabV3+
The DeeplabV3+ network is composed of two parts: encoding and decoding modules. The
encoding module comprises improved Xception network (Chen et al., 2018) and ASPP
(Veeravasarapu, Rothkopf & Visvanathan, 2017). As shown in Fig. 2, the training samples
extract features through the Xception network, obtain multi-scale information through
ASPP and aggregate global features, and finally output the feature map with deep features
by 1 × 1 convolution. Make bilinear up-sampling for the feature map and 1 × 1
convolution for the same resolution shallow features corresponding to the Xception
network. Finally, the shallow features and deep features are connected by convolution
fusion, and the multi-scale features are bilinearly up-sampled to achieve classification
prediction.

Xception
The Xception network (Yu et al., 2022) framework is divided into three parts: the entry
flow, intermediate flow, and exit flow. The entry stream is used to sample the input image
to reduce the space size, while the middle stream is used to learn the correlation
relationship and continuously optimize the features. The exit stream sorts the features to
obtain a rough score map.

Figure 1 The framework of the whole system. Full-size DOI: 10.7717/peerj-cs.1628/fig-1
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ASPP and codec
The Atrous Spatial Pyramid Pooling (ASPP) module aims to capture the contextual
information of the input image and preserve spatial details. It mainly consists of multi-
scale feature extraction and global pooling. The ASPP module extracts feature from the
input feature map at different scales or receptive field sizes in the first part. Applying
convolutions with different dilation rates allows the network to effectively capture multi-
scale features without significantly increasing computation cost or reducing spatial
resolution. This enables the network to perceive objects of different sizes within the input
image. The second part involves global pooling on the input feature map. Global pooling
aggregates information across the entire spatial dimensions of the feature map, typically
using operations like average pooling or max pooling. This pooling operation helps the
network capture global context information, which is beneficial for semantic
understanding and improving segmentation accuracy. The ASPP module essentially
consists of a 1 × 1 convolution (leftmost green block) + pooling pyramid (middle three
blue blocks) + ASPP pooling (rightmost three layers), as shown in the diagram. The
dilation factors of the pooling pyramid layers can be customized, allowing for flexible
multi-scale feature extraction.

The codec module typically consists of an encoder and a decoder, specifically designed
for image processing tasks. Its purpose is to improve the efficiency of both forward and
backward propagation and reduce memory usage. In the encoder part, convolutional layers
with learnable filters are used to extract hierarchical features from the input image. These
filters are trained through backpropagation during the network’s training phase. The

Figure 2 The DeeplabV3+ network. Full-size DOI: 10.7717/peerj-cs.1628/fig-2
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encoder includes multiple convolutional and pooling layers to gradually reduce the spatial
dimensions of the feature map and extract high-level features. The input image is
transformed into a lower-resolution feature map, preserving important information by
applying successive convolution and pooling operations. The decoder part is responsible
for gradually restoring the spatial resolution of the segmented image. This is achieved
through up-sampling (e.g., deconvolution or interpolation) and convolution. The decoder
gradually recovers the low-resolution feature map to the same size as the original input
image, effectively restoring spatial details. This process ultimately generates accurate
segmentation results.

The combination of the ASPP module and the codec module in a deep learning
architecture enhances the network’s performance and efficiency for tasks like semantic
segmentation. The ASPPmodule captures contextual information and spatial details, while
the codec module improves the efficiency of information processing and memory usage,
leading to more accurate segmentation and effective handling of large-scale tasks.

Extended convolution and deep separable convolution

Expanded convolution (Yu & Koltun, 2015) injects holes into the core of standard
convolution to have a large receptive field without passing through the pooling layer and
aggregate a more comprehensive range of feature information without reducing the
resolution. As shown in Fig. 3, the convolution core of 3 × 3 is an example to illustrate the
increase of the receptive field. The receptive field of a 3 × 3 convolution nucleus with a void
rate of two has increased to 7 × 7. Similarly, 3 × 3 convolution with a void rate of four can
reach 15 × 15.

Depth separable convolution (Chen et al., 2018) decomposes the standard convolution
into depth convolution and point-by-point convolution (Fig. 4), in which depth
convolution does spatial convolution for each input channel independently point-by-point
convolution is used to combine depth convolution output. Deep-separable volumes
actively inhibit the increase of model parameters. DeeplabV3+ network will expand the
separation convolution and apply it to ASPP and decoder modules.

Effect of semantic analysis
We remove feature points that belong to dynamic pixels. We set the number of instances to
six, including standard or potentially dynamic objects in the dataset, and mark them with
different colors. Specifically, we set the human, chair, and monitor to light red, red, and
blue. The result shows that each pixel in the image (Sturm et al., 2012) is assigned to
different semantic categories. Humans are segmented into light red, indicating the areas
where human motion occurs. Computers, tables, chairs, and the background are
segmented into various colors, representing different objects or backgrounds in these
areas. Through this semantic segmentation approach, a better understanding of the
content in the image can be achieved, providing more accurate information for subsequent
computer vision tasks.
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Motion consistency detection
Through the DeeplabV3+ network, most dynamic objects can be segmented. However, the
segmentation effect of potentially dynamically moving objects is not ideal, such as a book
carried by a person or a chair moving with a person. To solve this problem, this article
further checks whether the feature is dynamic by using the geometric constraint of the
polar geometric feature. It will meet the polar constraint if it is a dynamic feature;
otherwise, it is not.

The principle is as follows: In two consecutive frames of an image, the characteristic
points P1 and P2. are the optical centers and cameras, respectively. The line connects and is
called the baseline. The baseline and point determine a plane π called the antipolar plane.
The intersection lines of the plane π and planes are called poles. The intersection points of
the baseline and image plane are called opposite poles. The homogeneous coordinates of
feature points can be expressed as Eq. (1).

P1 ¼ u1; v1; 1½ �;P2 ¼ u2; v2; 1½ � (1)

Figure 3 Expanded convolution. (A) Standard convolution. (B) 3 × 3 convolution with a void rate of 2.
(C) 3 × 3 convolution with void rate of 4. Full-size DOI: 10.7717/peerj-cs.1628/fig-3

Figure 4 Depth separable convolution. (A) Standard convolution. (B) Depth convolution. (C) Depth
separable convolution. Full-size DOI: 10.7717/peerj-cs.1628/fig-4
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In the formula, ui; vi i ¼ 1; 2ð Þ are the horizontal and vertical coordinates of Pi i ¼ 1; 2ð Þ.
Baseline l1 can be calculated by Eq. (2).

l1 ¼
X
Y
Z

2
4

3
5 ¼ FP1 ¼ F

u1
v1
1

2
4

3
5 (2)

In the formal, F is the basic matrix, which describes the mapping of the polar constraint
from a point in one image to the corresponding polar line in another image. The mapping
relationship can be described by Eq. (3).

PT
2 FP1 ¼ 0 (3)

If the point P1 and the base matrix F are known, P2 must satisfy the constraint if the
space point P is static. However, feature points with errors near the polar line are generated
due to the uncertainty in feature extraction and basic matrix F estimation. The two spatial
point mapping image points do not strictly meet Eq. (3). As shown in Fig. 5B, point P2 is
not completely on the polar line but is very close to it. Therefore, the distance between
point P2 and polar line l2 can be calculated by Eq. (4).

D ¼ PT
2 FP1

�� ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffikX k2þ kY k2p (4)

If D is less than the predetermined threshold, point P is considered static; otherwise, it is
considered dynamic.

The motion consistency detection algorithm is illustrated in Fig. 6. Dynamic features are
detected using epipolar geometry constraints. First, the current set of matching feature
points l2 is computed using optical flow based on the previous frame feature point set l1. If
the matching pairs are too close to the image edge or if the pixel differences of the 3 × 3
image block in the center of the matching pairs are too significant, the matching pairs will
be discarded. Then, at least five pairs of features are used to estimate the fundamental
matrix F, usually using the classical eight-point algorithm. Finally, the current frame’s
epipolar lines are calculated using the fundamental matrix F. The distance between point
P2 and its corresponding epipolar line in frame P1 is compared with a predetermined
threshold to determine whether the feature point has moved.

The algorithm flow of motion consistency detection is shown in Fig. 6, which uses
epipolar geometry constraints to detect dynamic features. Firstly, based on the feature
point set L1 of the previous frame, the matched feature point set L2 in the current frame is
calculated using optical flow. If the matching pairs are too close to the edge of the image, or
if the pixel difference of the 3 × 3 image block at the center of the matching pairs is too
significant, the matching pairs will be discarded. After that, at least five pairs of features can
be used to estimate the fundamental matrix F, usually using the classic eight-point method,
and then using the fundamental matrix F to calculate the epipolar line in the current frame.
Finally, it is determined whether the feature points have moved by calculating the distance
between the corresponding epipolar lines of P2 and P1 and the preset threshold.
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Figure 5 Epipolar geometry. (A) Correspondence between static points and feature points in consecutive adjacent frames. (B) Characteristic points
with errors near the polar line. Full-size DOI: 10.7717/peerj-cs.1628/fig-5

Figure 6 Moving consistency check algorithm. Full-size DOI: 10.7717/peerj-cs.1628/fig-6
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RESULTS
We compare three SLAM systems with the same dataset. Experiments show that the
algorithm significantly improves the accuracy and robustness of the algorithm in a
dynamic environment based on the original ORB-SLAM2. In order to evaluate the
comprehensive ability of the system, the TUM public data set is used to conduct
experiments on the system. The TUM data set consists of 39 sequences, which are recorded
by Microsoft’s Kinect sensor at a frequency of 30 Hz in different indoor scenes, including
color images, depth images, and true poses, and contains texture-rich office dynamic
scenes. The high dynamic sequence and low dynamic sequence meet the conditions for
evaluating the comprehensive ability of the system in dynamic scenarios. At the same time,
the data set also provides two standards for evaluating the tracking results of the SLAM
system, namely absolute trajectory error and relative pose error. The absolute trajectory
error directly calculates the difference between the camera pose’s real value and the SLAM
system’s estimated value. This standard can very intuitively reflect the algorithm’s accuracy
and the trajectory’s global consistency. The absolute trajectory error of the i-th frame is
defined as in Eq. (5).

Mi :¼ Q�1
i STi (5)

Qi is the algorithm-estimated pose of the i-th frame; Qi is the real pose of the i-th frame;
S is the transformation matrix from the estimated pose to the real pose. The relative pose
error is used to calculate the difference between the real pose and the estimated pose within
the same period D. This standard is conducive to the evaluation of translation and rotation
drift. The relative pose error of the i-th frame is defined in Eq. (6).

Ni :¼ Q�1QiþD

� ��1
T�1
i TiþD

� �
(6)

This experiment runs the traditional ORB-SLAM2 and the improved system on the
above data sets. The computer configuration of the experiment is CPU i7-10750H, GPU
RTX3080 16G. We conducted two experiments. The TUM RGB-D dataset fr3 is a widely
used benchmark dataset for indoor visual SLAM. It contains various indoor scenes with
different levels of complexity, including cluttered rooms, corridors, and offices. The dataset
comprises synchronized RGB and depth image sequences and ground-truth poses
obtained through a motion capture system. The dataset also includes many dynamic
objects, with humans being the primary dynamic objects in the scenes. The dataset
provides a challenging testbed for SLAM algorithms to handle various dynamic objects in
the scene while maintaining accurate tracking and mapping.

TRAJECTORY AND POSE ERRORS
We compared our system with the ORB-SLAM2 (Mur-Artal & Tardos, 2017) system and
the Dynamic-SLAM (Xiao et al., 2019) system and evaluated them quantitatively using
absolute trajectory and relative pose errors. The TUM dataset is a highly authoritative
RGB-D indoor open-source dataset, where the dynamic scene part is widely used for
various metric evaluations in the field of dynamic SLAM. The dynamic part are divided
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into two major categories: low-dynamic scenes and high-dynamic scenes. The
“TUM_fr3_sitting” sequence contains subtle movements of people and objects, while the
“TUM_fr3_walking” sequence involves significant movements of people and objects,
putting a great deal of strain on the tracking robustness of the system. The camera motions
in these two categories can also be further divided into four subcategories: “xyz” denotes
camera movements along the three main axes; “static” indicates minimal camera
movement; “rpy” represents camera rotations about the roll, pitch, and yaw angles along
the three axes; “half-sphere” refers to camera movements on a half-sphere. These different
types of camera motions and scene variations provide a diverse and challenging dataset for
evaluating the performance of dynamic SLAM systems under different conditions.

The experiment mainly used the walking sequence in the TUM dataset because people
in the sequence move back and forth, which can be considered highly dynamic objects. The
experiment also tested the sitting sequence, where people sit on chairs and move slightly,
and can be considered as low dynamic objects. xyz, static, rpy, and half represent four types
of camera ego-motion. We provide root mean square error (RMSE), mean error, median
error, standard deviation, maximum error, and minimum error. RMSE and standard
deviation can better reflect the stability and robustness of the system. As shown in the
Fig. 7, the relative pose error graph for the high-dynamic sequence “fr3_walking_xyz” were
compared between ORB-SLAM2, our system, and Dynamic_slam with the ground truth
trajectory. Further comparison in Fig. 8 shows that the absolute trajectory error and
relative pose error of the system described in the article are significantly smaller than those
of ORB-SLAM2 and the Dynamic-SLAM system. This further validates that the article’s
semantic visual SLAM system, based on DeepLabV3+ for semantic segmentation and
motion consistency detection, performs better by removing dynamic objects. Tables 1 and
2 present the typical value of absolute trajectory error and relative pose error respectively.

We evaluated the performance of our proposed method on an indoor scene dataset with
dynamic objects. Our method achieved an average absolute translation error of 0.002 m
and an average absolute rotation error of 2.099, which is an improvement over the baseline
ORB-SLAM2 method, which had errors of 0.02497 m and 2.11 for the two metrics,
respectively. In addition, our method successfully removed dynamic points from the
feature set, resulting in more robust and accurate pose estimation. We further analyzes the
performance of our method in scenes with varying degrees of dynamic objects.

Translation drift and rotational drift refer to the phenomena in which a robot or system
gradually deviates from the expected path during the localization and mapping process.
The accumulation of position estimation causes translational drift is inferred based on
sensor data and motion models. However, inaccuracies in the sensors, motion model
approximations, and unknown environment complexities can result in positioning errors.
These errors accumulate over time, leading to a deviation between the estimated and actual
positions, known as translational drift. On the other hand, rotational drift is typically
caused by errors in the robot’s orientation estimation. In SLAM, the robot must estimate
its orientation or pose (e.g., Euler angles or quaternions) to determine its positioning
reletative to the environment. However, sensor errors, approximations in the motion
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models, and environmental uncertainties can introduce biases in the orientation
estimation, leading to rotational drift.

Tables 3–5 presents the results of performance improvements in different types of
sequences for a certain system. The improvements are measured in terms of Root Mean
Square Error and standard deviation error. It seems that the system shows significant
enhancements in more dynamic sequences, as indicated by the high improvement values
in RMSE and standard deviation error. For example, in the fr3_walking_static sequence,
the system achieved a remarkable 92.85% and 92.24% improvement in standard deviation

Figure 7 Absolute trajectory error. (A) Plotting the trajectory on the xy-plane. (B) Plotting the tra-
jectory in the xz-plane. Full-size DOI: 10.7717/peerj-cs.1628/fig-7

Figure 8 Typical value of absolute trajectory error. Full-size DOI: 10.7717/peerj-cs.1628/fig-8

Zhang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1628 14/21

http://dx.doi.org/10.7717/peerj-cs.1628/fig-7
http://dx.doi.org/10.7717/peerj-cs.1628/fig-8
http://dx.doi.org/10.7717/peerj-cs.1628
https://peerj.com/computer-science/


error. This reflects the system’s improved stability and robustness in handling such
dynamic scenarios. However, traditional ORB-SLAM2 systems, known for their ability to
handle low dynamic scenes effectively, already perform well in low dynamic sequences like
the fr3_sitting_static sequence, leaving less room for further improvement with this
system. In summary, the system showed significant enhancements in handing more
dynamic sequences, but its performance was limited in scenarios with complex camera
motions and did not bring substantial improvements in low dynamic scenes where
traditional ORB-SLAM2 systems already perform well.

Table 1 Typical value of absolute trajectory error.

Method Parameter Ours ORB-SLAM2 Dynamic_SLAM

APE w.r.t. translation part (m) Max 0.007 0.056 0.022

Mean 0.003 0.026 0.009

Median 0.003 0.024 0.009

RMSE 0.003 0.03 0.01

SSE 0.039 2.743 0.324

STD 0.001 0.016 0.005

APE w.r.t. rotation part (unit-less) Max 2.258 2.27 2.263

Mean 2.096 2.11 2.101

Median 2.099 2.113 2.104

RMSE 2.098 2.112 2.103

SSE 12,694.4 12,866.4 12,755

STD 0.081 0.08 0.081

Table 2 Typical value of relative pose error.

Method Parameter Ours ORB-SLAM2 Dynamic_SLAM

APE w.r.t. translation part (m) Max 0.01 0.011 0.01

Mean 0.0025 0.0027 0.0026

Median 0.0024 0.0025 0.0023

RMSE 0.0031 0.0033 0.0032

SSE 0.029 0.031 0.029

STD 0.001 0.001 0.001

APE w.r.t. rotation part (unit-less) Max 2.18 2.18 2.18

Mean 0.0057 0.0059 0.0057

Median 0.004362 0.004361 0.004362

RMSE 0.041 0.046 0.041

SSE 4.888 4.888 4.888

STD 0.040773 0.040772 0.040778
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DISCUSSION
In summary, ORB-SLAM2 is a powerful visual SLAM system that performs well in static
or mildly dynamic environments. However, it has limitations when dealing with more
complex dynamic scenes, primarily due to its reliance on feature point extraction and
matching for localization and map construction. Feature points in dynamic scenes can
become unstable or undergo frequent changes, leading to positioning errors and unstable
map reconstruction. To address the challenges of dynamic scenes, researchers are making
efforts to improve the robustness and adaptability of SLAM systems. Among various
approaches, introducing semantic information shows promising prospects. By
comprehending the semantics of objects in the scene, the SLAM system can better

Table 3 Translational drift.

Parameter Data list fr3_walking_static fr3_walking_rpy fr3_walking_helf fr3_sitting_static

RMSE (m) ORB-SLAM2 0.014 0.009 0.015 0.017

Ours 0.001 0.002 0.004 0.001

Mean (m) ORB-SLAM2 0.0129 0.0076 0.0135 0.0146

Ours 0.001 0.0018 0.0038 0.0015

Median (m) ORB-SLAM2 0.0114 0.0066 0.0119 0.0128

Ours 0.0009 0.0014 0.0031 0.0013

STD (m) ORB-SLAM2 0.0068 0.0048 0.0078 0.0086

Ours 0.0006 0.0012 0.0025 0.0009

Improvement (%) RMSE 92.85 77.77 73.33 88.82

Mean 92.24 76.31 71.85 89.72

Median 92.10 78.78 73.94 89.84

STD 91.17 75.00 67.94 89.53

Note:
The bold text indicates the improvement results.

Table 4 Rotational drift.

Parameter Data list fr3_walking_static fr3_walking_rpy fr3_walking_helf fr3_sitting_static

RMSE (°) ORB-SLAM2 7.234 13.203 13.002 0.3321

Ours 1.61 8.49 3.12 0.32

Mean (°) ORB-SLAM2 4.768 13.29 9.203 0.312

Ours 1.26 6.39 4.28 0.28

Median (°) ORB-SLAM2 0.626 11.39 8.39 0.31

Ours 0.201 5.194 2.394 0.279

STD (°) ORB-SLAM2 6.5391 8.4947 6.0083 0.1342

Ours 0.239 5.242 2.104 0.123

Improvement (%) RMSE 77.74 35.69 76.00 3.64

Mean 73.57 51.92 53.49 10.25

Median 67.89 54.39 71.47 10.00

STD 96.34 38.29 64.98 8.34

Note:
The bold text indicates the improvement results.
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distinguish between static and dynamic objects and exclude dynamic objects from the
localization and map construction process, thus enhancing system stability. The
introduction of semantic information can be achieved through deep learning techniques,
and this article utilizes DeeplabV3+ to realize this goal.

We can address these limitations by incorporating DeepLabV3+, which utilizes dilated
convolutions to increase the receptive field without increasing parameter count, and
introducing the Atrous Spatial Pyramid Pooling (ASPP) module for feature extraction. The
ASPP module captures semantic information at different scales through dilated
convolutions with different sampling rates, improving the accuracy of segmentation results
and filtering out dynamic objects. After being processed by DeepLabV3+, the motion
consistency check algorithm is further applied to determine whether the remaining feature
points belong to the static background or dynamic objects. The algorithm observes the
motion patterns of feature points between adjacent frames: if the motion pattern is
consistent with the surrounding features and matches the expected camera motion pattern,
the feature points are considered part of the static background. Conversely, if the motion
pattern of the feature point is inconsistent with the surrounding feature points or does not
match the expected camera motion pattern, it is considered a dynamic object.

CONCLUSIONS
Applying DeepLabV3+ to ORB-SLAM2 enhances the system’s perception and semantic
understanding capabilities of dynamic objects. Through the dual filtering process, feature
points belonging to dynamic objects are effectively eliminated, thereby improving the
robustness and accuracy of the SLAM system in dynamic environments. Compared with
the traditional ORB-SLAM2 visual SLAM system, the prior semantic knowledge is
obtained to provide an advanced understanding of the environment by introducing a
deeplabv3+ network to detect potential dynamic objects. Combining the motion
consistency detection algorithm with the semantic segmentation algorithm makes the

Table 5 Absolute trajectory error.

Parameter Data list fr3_walking_static fr3_walking_rpy fr3_walking_helf fr3_sitting_static

RMSE (m) ORB-SLAM2 0.2219 0.5612 0.2354 0.0054

Ours 0.008 0.29 0.072 0.004

Mean (m) ORB-SLAM2 0.2231 0.5452 0.2215 0.0031

Ours 0.005 0.254 0.055 0.002

Median (m) ORB-SLAM2 0.1622 0.5485 0.1214 0.0064

Ours 0.006 0.1334 0.0513 0.0052

STD (m) ORB-SLAM2 0.1365 0.2033 0.2531 0.0024

Ours 0.001 0.182 0.051 0.002

Improvement (%) RMSE 96.39 48.33 69.41 25.92

Mean 97.75 53.34 75.16 35.48

Median 96.30 75.68 57.74 18.75

STD 98.60 10.47 79.84 16.67

Note:
The bold text indicates the improvement results.
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improved system significantly less in absolute trajectory error and relative position error
than the traditional ORB-SLAM2 and dynamic environment, which improves the accuracy
and robustness of the system position estimation. In future work, further optimization of
the motion consistency detection algorithm could enhance the system’s performance,
potentially by incorporating more advanced techniques or leveraging additional sensor
modalities. Furthermore, the system could be extended to handle more complex and
challenging environments, such as crowded urban scenes or poor light environments, to
evaluate its effectiveness in such scenarios.
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