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ABSTRACT
The clustering problem is one of the most studied and challenging in machine
learning, as it attempts to identify similarities within data without any prior knowledge.
Among modern clustering algorithms, the network-based ones are some of the most
popular. Most of them convert the data into a graph in which instances of the data
represent the nodes and a similarity measure is used to add edges. This article proposes
a novel approach that uses a multipartite network in which layers correspond to
attributes of the data and nodes represent intervals for the data. Clusters are intuitively
constructed based on the information provided by the paths in the network. Numerical
experiments performed on synthetic and real-world benchmarks are used to illustrate
the performance of the approach. As a real application, the method is used to group
countries based on health, nutrition, and population information from theWorld Bank
database. The results indicate that the proposed method is comparable in performance
with some of the state-of-the-art clustering methods, outperforming them for some
data sets.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Clustering, Multipartite network

INTRODUCTION
Clustering methods aim to identify groups of similar instances of data to reveal common
characteristics that are not visible by other means. They represent one of the major classes
of machine learning methods with multiple practical applications (Ezugwu et al., 2022) as
they reveal connections within the data without using supplementary information. There
are many criteria for their classification, but recent trends group them into two major
categories: traditional and modern (Xu & Tian, 2015; Anand & Kumar, 2022). Traditional
methods are textbook approaches that tend to be used more by practitioners in other
research fields for practical applications. While they may be outperformed by some newer
approaches for some data sets, they have also passed the test of time, as they offer consistent
and competitive results that are interpretable and reliable. They are also relatively easy to
use and available in various implementations. Modern approaches tend to use newly
developed concepts such as deep neural networks or graph theory. A separate trend is to
propose general improvement methods, e.g., methods that can enhance the results of the
clustering by ameliorating the data set (Li et al., 2023; Wang et al., 2018).

The fact that the market for new clustering methods is saturated with variations of
traditional and modern methods proposed either as stand-alone clustering algorithms or
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as solutions for particular practical applications using specific information related to the
data should not be seen as dismissing the exploration of new approaches. An attempt at
a new approach is proposed in this article: the Multipartite Network Clustering (MN-C)
algorithm. MN-C uses a multipartite network to identify clusters in the data. The layers
of the multipartite network correspond to attributes of the data. The nodes of each layer
represent intervals for the corresponding attribute and are populated with instances having
the value of this attribute within that interval. Edges of the network connect the nodes that
contain the attributes of the same data instance. The clusters approximately correspond to
paths in the network. Numerical experiments illustrate the behaviour of the approach on
a set of synthetic and real-world benchmarks.

METHODS
Most clustering methods approach the problem in one of the following manners: using a
representation for the clusters in the form of central points or distribution in representative
or partition-based clustering; constructing clusters by successively aggregating/dividing
data in hierarchical clustering; using data density to define clusters (Bhattacharjee & Mitra,
2020). Graph-based models, in which the data is converted into a graph, and spectral
models, closely connected to the latter, in which matrix representations of graphs are
further analysed, are also popular (Hloch, Kubek & Unger, 2022). There are many variants
of these main approaches, using concepts from related fields, such as fuzzy computing or
neural networks (Ayyub et al., 2022).

The standard versions of the approaches mentioned above are considered traditional
methods (Xu & Tian, 2015). They include variants of partition-based methods, such as k-
means, partitioning around medoids (PAM), or Clustering Large Applications (CLARA).
DBSCAN and its variants are density-based methods in this group. Other traditional
methods are hierarchical trees, expectation–maximization clustering, and fuzzy analysis
clustering. Most of them can be found in textbooks (Zaki & Meira Jr., 2014) and have
implementations available for free or within commercial data analysis software packages.

Modern methods extend the traditional ones by including techniques from related
fields, such as network analysis or deep learning (Wierzchoń & Klopotek, 2017). They
include the class of spectral clustering methods (Nascimento & de Carvalho, 2011), affinity
propagation clustering (Frey & Dueck, 2007), density peaks clustering methods (Hou,
Zhang & Qi, 2020), and various deep clustering methods (Anand & Kumar, 2022; Zhou
et al., 2022). Advanced methods using graphs aim to perform the clustering on graphs,
such as graph neural networks (Tsitsulin et al., 2020), a marginalized graph autoencoder
inWang et al. (2017) and a local high-order graph clustering in Yin et al. (2017).

The present article presents a network-based clustering method that identifies clusters
from a multipartite network constructed from attributes of the data. In what follows, other
clustering methods that use network techniques are succinctly reviewed, and the newly
proposed method, Multipartite Network Clustering (MN-C), is introduced.
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Related work
Let X∈Rn×d be a data set containing n instances from Rd and with d attributes/features.
We denote by Xj the n-dimensional vector corresponding to attribute j, j = 1,...,d . The
clustering problem consists of grouping instances based on some similarity indicator.
While it is ideal for a method to determine the number of clusters in the data, sometimes,
for specific applications, the desired number of clusters k is indicated or required.

Most graph-based clustering methods construct a graph by treating the instances of the
data as the nodes in the graph. A similarity measure is used to compute the weight of the
edge connecting two nodes. Similar nodes will form cliques or communities that can be
detected using various tools, thus revealing the clusters in the data. Spectralmethods analyse
matrix representations of the graph to extract information about communities (Washio &
Motoda, 2003; Foggia et al., 2009). A discussion of the importance of constructing the graph
and suggested solutions can be found in Nie et al. (2016); Maier, Luxburg & Hein (2008).
In Huang et al. (2020), an ultra-scalable spectral clustering algorithm, called UNSPEC,
designed for extremely large-scale data sets with limited resources is presented.

There are many applications of graph-based methods: in text clustering (Hloch,
Kubek & Unger, 2022) and text representations (Rao & Chakraborty, 2021), in anomaly
detection (Akoglu, Tong & Koutra, 2015), labeling crime data (Das & Das, 2019), image
search (Yan et al., 2017), clustering protein sequences (Kawaji, Takenaka & Matsuda,
2004), etc.

Multipartite network clustering (MN-C)
Multipartite-Network Clustering clusters the data by using amultipartite graph constructed
from the data set. The network layers correspond to attributes of the data, and we assume
that we are searching for k classes. The main components of the MN-C algorithm are
described in detail in what follows.

The multipartite graph
A multipartite graph (Van Dam, Koolen & Tanaka, 2016) is a graph whose nodes can be
divided into disjoint sets, which are also called layers, within which no two nodes are
adjacent. A d-partite graph contains d layers.

MN-C uses a multigraph denoted by G(V ,E|X), where V is the set of nodes and E is
the set of edges constructed from the data set X . The number of layers of G is equal to the
number of attributes of X, denoted by d in this article. Each layer has a maximum of k
nodes, where k is the number of classes that we are searching for.

Layers and nodes
Each layer of the graph corresponds to an attribute in the data set. Each attribute Xj ,
j = 1,...,d , is divided into k intervals denoted by Ijl , l = 1,...,k and a network node Vj,l

is created for each interval. The way intervals are computed defines the structure of the
network. They can be designed in various manners, e.g., of equal length, to contain an
equal number of instances, or by including some problem-dependent information. In this
approach, MN-C constructs intervals of equal lengths between min(Xj) and max(Xj).
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The network has d layers and a maximum of d× k nodes. Each node ‘contains’ a
number of instances. An instance xi ∈ X will be placed in a node in each layer of the
network, corresponding to the interval within each of its components belongs:

xi ∈Vj,l if xij ∈ Ijl .

Algorithm 1 Construction of Multipartite Network
1: input: data set X, number of classes k;
2: output: network G= (V ,E|X);
3: V =∅;
4: for each attribute j do
5: Compute k intervals Ijl , l = 1,...,k {of equal size} between min(Xj) and max(Xj);
6: Add node vjl to V , where j is the layer of the node
7: end for
8: for each data instance xi ∈X do
9: Create path v1l1,v2l2,...,vdld with xij ∈ Ijlj ∀j=1,...,d − 1, by adding edges

(vjlj ,vj+1,lj+1) to E ; if an edge already exists, increase its weight by 1;
10: end for
11: Remove empty nodes from V ;
12: return d-partite graph G= (V ,E|X), and I = {Ijl}j=1,d,l∈{1,...,k} intervals correspond-

ing to nodes;

Edges
Each instance xi connects the nodes to which its attributes belong. Thus, if instance xi is
placed in nodes Vj,l ′ and Vj+1,l ′′ , for j = 1,...,d−1, an edge is added between the two
nodes if it does not yet exists. If an edge already exists between the two nodes, its weight is
increased by one. Thus, each instance in the data creates a path between the first layer of
the network and the last one.

Theweight of an edge represents the number of instances that are placed in the connected
nodes, i.e., belonging to the same corresponding intervals. The number of instances placed
in each interval will vary depending on their distribution. Intervals with no instances will
be ignored, i.e., empty nodes will be removed from the network.
Example 1 Consider a data set with 100 instances, six attributes, four clusters that are well
separated (generated by using the make_classification function from the scikit-learn
package in Python (Pedregosa et al., 2011), using for class_sep=10, resulting in four well-
separated clusters). Figure 1 presents the corresponding multipartite network with six
layers, each having two or three nodes.

Initial clusters
Each instance of the data set represents a network path from the first layer to the last one. It
is reasonable to assume that instances representing the same path may belong to the same
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Figure 1 Example 1 The network corresponds to a data set having 100 instances, six attributes, and four
classes. The data are well separated. The weight of an edge indicates the number of instances that have
components in the two intervals represented by the nodes.

Full-size DOI: 10.7717/peerjcs.1621/fig-1

cluster. In the first step of MN-C, instances that share a common path throughout all the
layers of the network are placed in the same cluster.

Depending on the structure of the data, this procedure may result in any number of
clusters, which may be greater than k, due to the number of possible paths in the network.
Not all paths in the network represent instances. We denote by k0 the number of clusters
resulting from the this initialization of the clustering. In what follows, a procedure to merge
clusters in order to reduce their number is performed, if necessary, i.e., if k0> k.

Merging clusters
A cluster C represents a path starting from the first layer to the last layer of the network
G. In the initial stage, each cluster contains one path. Clusters are merged by finding paths
that have the most common elements. Merging is performed in the order of the number
of instances corresponding to each cluster, starting with the smallest ones. The size of the
cluster is denoted by µ(C) and is the number of instances assigned to it. In the initial stage,
it represents the number of instances that belong to all node intervals from the cluster.

It is assumed that larger clusters are more stable, while those containing fewer instances
should be merged. In order to find, for each cluster C , the cluster for it to be merged with,
we compute the following strength indicator for two clusters C and C ′:

S(C,C ′)=
∑

ei,i+1∈C,C ′
wij . (1)

Thus, S adds theweights of common edges between two clusters. Each cluster ismergedwith
the one for which the strength indicator is the highest, i.e., they have more edges/instances
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in common. Thus

C∗= argmax
C ′

S(C,C ′). (2)

Clusters C and C∗ are merged by placing all instances from C in C∗. All clusters are merged
except the k largest ones. This process reduces the number of clusters from k0 to k1. To
reach the desired number of clusters k, the process is repeated for several iterations while
the number of clusters is greater than k, and stops when it reaches it, or gets smaller than
k.
Remark 1 If S(C,C ′)= 0 for all C ′ 6=C , then the merging cluster is found by looking for
the cluster having the most nodes in common with C . We write ν(C,C ′)= |v ∈V |v ∈
C∧v ∈C ′|. If there is no such cluster, then C is not merged with any other cluster.

Outcome
The outcome of MN-C is a set of clusters, corresponding to network paths. Each instance
in the data is assigned to a cluster.

Algorithm 2MN-C algorithm

1: Input: Data set X∈Rn×d , number of clusters k
2: Output: Set of clusters C1,C2,...,Ck ;
3: Construct weighted multipartite network G= (V ,E) (Algorithm 1)
4: Assign all data instances belonging to the same network path from the first to last

layer to the same cluster forming k0 clusters;
5: it = 0;
6: Change=True;
7: while kit > k and Change do
8: Order clusters in ascending order of size µ(C);
9: for each cluster Cl,l=1,...,kit −k do
10: Set C∗l = argmaxz=l+1,kit S(Cl ,Cz);
11: if S(Cl,C∗l ) 6= 0 then
12: Set Cl =C∗l ;
13: else
14: Set C∗l = argmaxz=l+1,kit |ν(Cl ,Cz)|;
15: if |C∗l | 6= 0 then
16: Set Cl =C∗l ;
17: end if
18: end if
19: end for
20: If no change has been made to clusters, Change= False
21: it← it+1;
22: end while
23: return Clusters C1,C2,...,Ckit−1
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NUMERICAL EXPERIMENTS
The performance of MN-C is evaluated on a set of synthetically generated and real-world
data sets for clustering and classification and compared with that of other standard
state-of-the-art clustering models.

Experimental set-up
In this subsection, the data used for the experiments is described, as well as the methods
used for the comparisons and the performance metric used for evaluating the results.

Synthetic data sets
In order to illustrate the behaviour ofMN-C on different types of data, a set of synthetic data
sets with various characteristics was generated by using the make_classification (https:
//scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html,
accessed Jan 2023) function in Python, by combining the following parameters:

• number of instances: 100, 200, 500, 1000, 2000;
• number of attributes: 30, 50, 100, 150, 200, 250, 1000;
• class separator: 0.1, 0.5, 1, controlling the overlap of different clusters;
• number of classes: 30, 50, 100, 150, 200, 250, 1000.

All reasonable combinations of parameter were considered, i.e., excluding the settings
with more classes than the number of instances.

Real-world data sets
A selection of data sets used for clustering and classification from the UCIMachine learning
repository (Dua & Graff, 2017) is presented. The names and characteristics of the data are
listed in Table 1.

Comparisons with other methods
MN-C is compared with 4 clustering methods that aim to find a given number of clusters:
Kmeans, Gaussian Mixture (GM), Affinity Propagation (AP), Birch, and Zaki & Meira Jr.
(2014); Frey & Dueck (2007); Zhang, Ramakrishnan & Livny (1996). Their corresponding
implementation in the sklearn Python library (Pedregosa et al., 2011) is used with its
default parameters. In addition, for the real-data sets, the results are also compared to two
spectral clustering methods, the standard implementation in Python, which we will call
SC and the Ultra-Scalable Spectral Clustering (UNSPEC), using the code provided by the
authors (Huang et al., 2020).

Performance evaluation
In order to evaluate and compare the results, the normalized mutual information indicator
(NMI) is used (Zaki & Meira Jr., 2014). NMI takes values between 0 and 1 and can be used
to compare results provided by a clustering method with a baseline represented by the
known clusters. Values closer to 1 indicate a better match.
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Table 1 UCIMachine learning repository data sets used to illustrate the behaviour of MN-C.

Data Name Instances Attributes Clusters

R1 Mammographic Mass 961 5 2
R2 Statlog (Vehicle Silhouettes) 846 18 4
R3 Breast Cancer Wisconsin (Prognostic) 198 33 23
R4 Thyroid allbp 2800 26 5
R5 Statlog (Australian Credit Approval) 690 14 2
R6 Acute Inflammations Data Set 120 6 2
R7 Turkiye Student Evaluation Data Set 5820 32 13
R8 Bank Marketing 4521 16 2
R9 BLOGGER 100 5 2
R10 Cardiotocography 10 class 2126 35 10
R11 Dermatology 366 34 6
R12 Flags - color 194 29 8
R13 Flags - religion 194 29 8
R14 Hungarian Heart Disease 294 13 5
R15 Leaf 340 15 30
R16 Lenses 24 4 3

Results and discussion
Synthetic data sets
We generated 588 synthetic data sets. The results are summarised in Fig. 2 and Table 2.
Figure 2 presents scatter plots of the values of the NMI obtained by MN-C and each of the
other methods. It is used to illustrate the overall performance of MN-C compared to the
other method: points located above the first bisector (represented in each image by a grey
dashed line) indicate that MN-C performs better. The points located below it indicate that
the NMI obtained by the other method are better. For each method, the plot is separated
based on the values of the class separator parameter, as this is the one that controls the
difficulty of the clustering problem.

Table 2 summarises the results obtained on the synthetic data sets in the following
manner: for each characteristic of the data set, the percentage of results for which MN-C
obtained higher NMI than the other method is presented. Next to each number, an asterisk
(*) indicates if, considering all data sets with the same characteristic, a t -test comparing
MN-C’s values of the NMI finds them to be significantly greater than those obtained by
the other method. A minus sign (-) indicates that overall there is no significant difference
between the methods. An (x) indicates that the results obtained by the other method are
significantly better.

The results indicate that MN-C is a competitive method, providing better results than
Kmeans, GaussianMixture, andAffinity propagation, but not better than the Birchmethod,
for the synthetic data sets. However, Fig. 2 shows that while the results obtained by MN-C
are worse in most cases, they are close to those obtained by Birch as they align to the first
bisector. We find in general MN-C better than the other three methods in more instances
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Figure 2 Overview of results for the synthetic data sets. Scatter plots of NMI values obtained by each
method compared with MN-C. A point above the first bisector represented as a dashed line indicates that
the NMI obtained by MN-C for the data set is greater than that obtained by the other method. Compared
with Kmeans 84.01% of MN-C results are above the line; with GM, 86.39% of results are above the line;
with Birch, 17.68% of results are above the line; and with AP, 88.94% of results are above the line.

Full-size DOI: 10.7717/peerjcs.1621/fig-2

for themost difficult settings, for example for class separator values of 0.1, a smaller number
of instances, a large number of attributes, and a larger number of classes.

Varying the number of clusters
MN-C uses the number of clusters as a parameter. For different values of this parameter, it
will divide the data into clusters that also contain grouped data, in a manner similar to that
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Table 2 Overview of results obtained on synthetic data sets: percentage of data instances in which
MN-C’s NMI are greater than that of the other method for different characteristics of the data sets. De-
tailed values are presented in Table 3.

Class sep. Kmeans GM Birch AP

0.1 86.73* 88.27* 19.39× 88.78*

0.5 83.67* 87.76* 19.9× 88.27*

1 81.63* 83.16* 13.78× 89.8*

Instances Kmeans GM Birch AP
100 96.83* 100.0* 55.56× 100.0*

200 95.24* 97.14* 35.24× 100.0*

500 88.89* 90.48* 7.14× 96.83*

1000 80.27* 82.99* 15.65× 85.71*

2000 70.07* 72.79* 0.0× 72.79*

Attributes Kmeans GM Birch AP
30 67.86 - 70.24 - 16.67× 79.76*

50 76.19* 77.38* 19.05× 86.9*

100 84.52* 88.1* 21.43× 89.29*

150 84.52* 89.29* 17.86× 90.48*

200 89.29* 92.86* 13.1× 89.29*

250 91.67* 90.48* 15.48× 92.86*

1000 94.05* 96.43* 20.24× 94.05*

Classes Kmeans GM Birch AP
30 42.86 - 52.38 - 9.52× 60.95*

50 79.05* 79.05* 10.48× 79.05*

100 92.38* 94.29* 22.86× 98.1*

150 96.43* 98.81* 14.29× 100.0*

200 98.81* 98.81* 26.19× 100.0*

250 100.0* 100.0* 6.35× 100.0*

1000 100.0* 100.0* 50.0× 100.0*

Notes.
*An asterisk (*) indicates that overall results for that particular data set characteristic obtained by MN-C are significantly better
than the other method.
-A minus sign (-) indicates that there is no significant difference, and a (×) indicates that results obtained by the other method
are better.

of the other clustering methods. For example, given a synthetic data set with 100 instances,
150 attributes, 30 classes, and a class separation parameter of 0.1, the NMI obtained by
all the methods, except AP which determines the number of clusters on its own, have a
similar trend, as illustrated in Fig. 3. The increasing values of NMI for all the methods
indicate that when more clusters are obtained, instances that belong to the same clusters
are grouped together in sub-clusters. Since NMI is an external performance measure it
cannot be used to detect the number of clusters, but it can show that the performance of
the method may be considered robust with respect to this parameter, as it places instances
from the same cluster together. It may also indicate that any method of determining the
number of clusters in the data based on some internal quality measure, such as the elbow
method (Yager & Filev, 1994; Thorndike, 1953), or information-based methods (Sugar &
James, 2003), can be used with MN-C in a manner similar to how they are used with other
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Figure 3 Evolution of values of NMI for different numbers of clusters k for a synthetic data set with
100 instances, 150 attributes, 30 classes, and a class separation parameter of 0.1. The vertical line indi-
cates the number of clusters in the data set.

Full-size DOI: 10.7717/peerjcs.1621/fig-3

clustering methods (Fu & Perry, 2020). Figure 4 illustrates the values of three internal
indicators that are known to be used with an elbow method to evaluate the number of
clusters based on the results of a learner for the same data set as in Fig. 3. The silhouette
score, distortion, and inertia all have descending values; a linear trend may be observed at
their left.

Real-world benchmarks
Results obtained by the four methods on the real-world benchmarks are presented in
Table 4. The value of the NMI and number of clusters determined by each method are
indicated. The data sets vary in the number of clusters, instances, and attributes. We
show a variety of situations in which the results obtained by MN-C are better than those
obtained by the other methods (including Birch, unlike the case of the synthetic data sets).
The results also illustrate the reality of the variability in clustering performance with large
differences between the methods for some data sets, e.g., R6, for which MN-C obtains a
value of 0.662 for the NMI, while the other methods obtain 0.041, 0.026, 0.453, and 0.031,
respectively. AP obtains 0.453 but with 11 clusters instead of two. This situation arises also
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Figure 4 Three internal performance indicators for different numbers of clusters, the same data set as
in Fig. 3. The vertical lines indicate the number of clusters in the data set. An almost linear trend can be
noticed at the left of this line.

Full-size DOI: 10.7717/peerjcs.1621/fig-4

for other data sets. While these results cannot be generalized, they do indicate the potential
of MN-C to undercover the clustering structure of different real-world data sets.

A real world application
A country’s health and nutrition situation is often assumed to be directly linked with
economic indicators. Each year, the World Bank categorizes countries into four income
groups: Low income, Lower middle income, Upper middle income, and High income
based, on GNI per capita.

GNI per capita stands for Gross National Income per capita. It is a measure used to assess
the economic well-being of a country and its residents. GNI represents the total income a
country’s residents earn, including domestically and income generated abroad. ‘Per capita’
means that the GNI is divided by the country’s total population, giving an average income
figure for each individual. GNI per capita is often used as an indicator to compare the
average income levels between different countries or to track a single country’s economic
growth and development over time. It provides a useful metric for understanding the
average income and standard of living of the population in a particular nation. Figure 5
presents a map of the distribution of countries into the four groups in 2022.
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Table 3 Average and standard deviation for NMI obtained by all the methods on the synthetic data sets, grouped by one characteristic of the
data: the class separator, number of instances, number of attributes, and number of classes, fromwhich the data obtained in Table 2 are com-
puted. Table 2 also indicates significant results comparing values.

MN-C Kmeans GM AP Birch

mean std mean std mean std mean std mean std

Class sep.
0.1 0.6120 0.2644 0.5801 0.2588 0.5728 0.2602 0.3845 0.1421 0.6254 0.2505
0.5 0.6120 0.2641 0.5808 0.2559 0.5736 0.2587 0.3755 0.1511 0.6273 0.2484
1.0 0.6118 0.2644 0.5901 0.2486 0.5834 0.2522 0.3792 0.1535 0.6372 0.2385

Instances

100 0.8148 0.1465 0.7912 0.1668 0.7836 0.1724 0.4333 0.1261 0.8182 0.1449
200 0.7701 0.1991 0.7475 0.2083 0.7418 0.2141 0.4408 0.1256 0.7788 0.1895
500 0.6221 0.2167 0.5843 0.2016 0.5764 0.2037 0.3864 0.1269 0.6390 0.2005
1000 0.5658 0.2672 0.5355 0.2536 0.5275 0.2568 0.3728 0.1617 0.5874 0.2461
2000 0.4495 0.2576 0.4252 0.2284 0.4193 0.2293 0.3143 0.1509 0.4779 0.2376

Attributes

30 0.6124 0.2653 0.6181 0.2371 0.6142 0.2382 0.4450 0.1462 0.6362 0.2383
50 0.6123 0.2651 0.6020 0.2457 0.5998 0.2477 0.4097 0.1485 0.6328 0.2432
100 0.6123 0.2659 0.5863 0.2540 0.5789 0.2559 0.3912 0.1312 0.6308 0.2455
150 0.6117 0.2653 0.5761 0.2585 0.5700 0.2594 0.3680 0.1507 0.6284 0.2479
200 0.6119 0.2642 0.5740 0.2601 0.5641 0.2636 0.3480 0.1526 0.6281 0.2497
250 0.6111 0.2657 0.5709 0.2613 0.5607 0.2631 0.3598 0.1414 0.6281 0.2494
1000 0.6120 0.2649 0.5581 0.2647 0.5485 0.2701 0.3365 0.1451 0.6255 0.2529

Classes

30 0.3133 0.2113 0.3177 0.1814 0.3088 0.1775 0.2360 0.0955 0.3563 0.1897
50 0.4645 0.2315 0.4464 0.2148 0.4366 0.2156 0.3004 0.1118 0.4922 0.2127
100 0.6668 0.2279 0.6343 0.2397 0.6270 0.2431 0.3910 0.1345 0.6800 0.2171
150 0.6912 0.1656 0.6467 0.1803 0.6407 0.1842 0.4183 0.0981 0.7003 0.1585
200 0.7621 0.1636 0.7203 0.1881 0.7146 0.1922 0.4550 0.1161 0.7690 0.1586
250 0.7369 0.1009 0.6791 0.1156 0.6725 0.1187 0.4457 0.1049 0.7431 0.0980
1000 0.9437 0.0560 0.9227 0.0782 0.9222 0.0787 0.5825 0.1413 0.9449 0.0548

The DataBank (https://databank.worldbank.org/, accessed June, 2023) also reports a
multitude of yearly values of indicators related to various socio-economic statuses of
countries around the world. Among them, we find Health, Nutrition, and Population
statistics (https://databank.worldbank.org/source/health-nutrition-and-population-
statistics, accessed June 2023). There are 467 indicators for 266 countries, for health,
nutrition, and population. To illustrate the behaviour of MNC on real data, we have used
the health, nutrition, and population indicators from 2021 to group countries. When
retrieving the data from the database, we found that more values were available for this
year than for the latest, 2022.
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Table 4 Values of the NMI and number of clusters obtained by eachmethod for the real-world benchmarks.

Data MN-C /count Kmeans /count GM /count AP /count Birch /count

R1 0.238 2 0.096 2 0.015 2 0.000 1 0.078 2
R2 0.209 4 0.185 4 0.182 4 0.205 20 0.177 4
R3 0.288 23 0.265 23 0.262 23 0.221 13 0.251 23
R4 0.053 5 0.012 5 0.046 5 0.000 1 0.017 5
R5 0.326 2 0.010 2 0.079 2 0.063 55 0.016 2
R6 0.662 2 0.041 2 0.026 2 0.453 11 0.031 2
R7 0.078 13 0.028 13 0.023 13 0.000 1 0.023 13
R8 0.015 2 0.001 2 0.007 2 0.000 1 0.001 2
R9 0.022 2 0.022 2 0.022 2 0.000 1 0.015 2
R10 0.620 10 0.047 10 0.531 10 0.066 29 0.044 10
R11 0.446 6 0.103 6 0.291 6 0.305 14 0.111 6
R12 0.180 8 0.079 8 0.084 8 0.142 21 0.092 8
R13 0.155 8 0.110 8 0.120 8 0.000 1 0.115 8
R14 0.163 5 0.042 5 0.112 5 0.116 22 0.051 5
R15 0.456 30 0.377 30 0.407 30 0.312 20 0.309 30
R16 0.293 3 0.210 3 0.160 3 0.234 8 0.027 3

Figure 5 World Bank data. Countries are coloured based on their income group.
Full-size DOI: 10.7717/peerjcs.1621/fig-5
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Figure 6 World Bank data. Countries are coloured based on MNC clustering results.
Full-size DOI: 10.7717/peerjcs.1621/fig-6

Because of the large number of missing values in the data, we discarded all indicators
with more than one-half the number of countries. Similarly, we also discarded countries
with more than 30 indicators with missing values. This resulted in a data set with 193
countries and 245 indicators. The rest of the missing values were replaced with the average
value of that indicator for the corresponding region, which is part of the data set.

We ran all the algorithms on the resulting data set. MNC obtained an NMI of 0.32 for
the four clusters. All the other methods obtained NMIs below 0.05. Figure 6 illustrates
the four country groups identified by MNC. While these groups do not overlap with the
income level classes, their distributions are not dissimilar. We find that most countries in
the upper-middle and high income groups are in the same group in terms of the given
health indicators. For example, while China and Russia are in a different income group
than the United States of America and Canada (upper middle income versus high income),
they are placed all together, also with high-income countries from Europe, by MNC based
on the health indicators.

The clusters identified byMNCmay also indicate that there is a common level for health,
nutrition, and population status among countries with similar income as well as based on
geographic regions. It also shows that lower-income countries have similar values for these
indicators also.
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CONCLUSIONS
A simple network-based approach to the clustering problem has been presented. Data
attributes are separated in intervals and placed in the nodes of a layer of a multipartite
network. Thus, the network has a number of layers equal to the number of attributes. Each
data instance adds a path to the network from the first to the last layer. MN-C identifies
clusters by finding instances that are on the same or close paths in the network. Numerical
experiments show that the approach is competitive against some standard state-of-the-art
clustering techniques on a set of synthetic and real-world benchmarks. A real-world
application that groups countries based on Health Nutrition and Population information
available from theWorld Bank database is presented. Future research directions can explore
different ways of constructing intervals for the network nodes and finding ways to identify
or recommend a number of clusters.
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