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ABSTRACT
Purpose. The purpose of this study is to compare two libraries dedicated to theMarkov
chain Monte Carlo method: pystan and numpyro. In the comparison, we mainly
focused on the agreement of estimated latent parameters and the performance of
sampling using the Markov chain Monte Carlo method in Bayesian item response
theory (IRT).
Materials andmethods. Bayesian 1PL-IRT and 2PL-IRT were implemented with
pystan and numpyro. Then, the Bayesian 1PL-IRT and 2PL-IRT were applied to two
types of medical data obtained from a published article. The same prior distributions of
latent parameters were used in both pystan and numpyro. Estimation results of latent
parameters of 1PL-IRT and 2PL-IRT were compared between pystan and numpyro.
Additionally, the computational cost of the Markov chain Monte Carlo method was
compared between the two libraries. To evaluate the computational cost of IRTmodels,
simulation data were generated from the medical data and numpyro.
Results. For all the combinations of IRT types (1PL-IRT or 2PL-IRT) and medical data
types, the mean and standard deviation of the estimated latent parameters were in good
agreement between pystan and numpyro. In most cases, the sampling time using the
Markov chainMonte Carlo method was shorter in numpyro than that in pystan. When
the large-sized simulation data were used, numpyro with a graphics processing unit
was useful for reducing the sampling time.
Conclusion. Numpyro and pystan were useful for applying the Bayesian 1PL-IRT and
2PL-IRT. Our results show that the two libraries yielded similar estimation result and
that regarding to sampling time, the fastest libraries differed based on the dataset size.

Subjects Bioinformatics, Algorithms and Analysis of Algorithms, Scientific Computing and
Simulation
Keywords Item response theory, Markov chain Monte Carlo, Graphics processing unit

INTRODUCTION
Item response theory (IRT) is a statistical framework used for analyzing test results and
evaluating test items and test takers quantitatively. While IRT is commonly used in
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educational and psychological research (Embretson & Reise, 2000; Hays, Morales & Reise,
2000;Cappelleri, Jason Lundy & Hays, 2014), there are several applications of IRT tomedical
research. For example, Choi et al. (2010) used IRT for constructing the computer adaptive
testing system of short-form patient-reported outcome measures with the data from
the Patient-Reported Outcomes Measurement Information System project. Gershon et al.
(2012) used IRT to build the quality of life item banks for adults with neurological disorders.
The most notable example of computer adaptive testing system using IRT is the National
Institutes of Health Patient-Reported Outcomes Measurement Information System
(PROMIS) (https://www.healthmeasures.net/explore-measurement-systems/promis).
PROMIS is an NIH-funded initiative to develop and validate patient reported outcomes
for clinical research and practice.

Generally, IRT is applied to the results of binary responses to the test items (e.g., correct
and incorrect answers). In medical diagnosis, the results of various diagnostic procedures
are frequently defined as binary responses. Therefore, it is possible to apply IRT to the
data of medical diagnosis. To apply IRT to the data of medical diagnosis, the following
correspondence is assumed: (i) the patient as the test item, (ii) the doctor as the test taker,
and (iii) the results of the binary responses obtained through medical diagnosis as test
results. For example, Nishio et al. (2020) used IRT for analyzing the results of medical
diagnoses by radiologists.

The Bayesian IRT can be implemented using probabilistic programming languages or
dedicated libraries (e.g., JAGS, Stan, pystan, and numpyro) (Python Software Foundation,
2023; Depaoli, Clifton & Cobb, 2016; Carpenter et al., 2017; Phan, Pradhan & Jankowiak,
2019). For example, previous studies used Stan for the implementation of the Bayesian
IRT, graded response model, and nominal response model (Luo & Jiao, 2017; Nishio et al.,
2020; Nishio et al., 2022). The recent advances in hardware and software make it possible
to use the Bayesian IRT efficiently. However, there is no study comparing the efficiency of
the Bayesian IRT from the viewpoint of computational cost.

The purpose of the current study was to compare the results of the Bayesian IRT
implemented with two dedicated libraries (pystan and numpyro). In the current study, the
Bayesian 1PL-IRT and 2PL-IRT implemented with pystan and numpyro were applied to
the two types of medical data obtained from Nishio et al. (2020). Our main contributions
in this article are as follows; (i) the two IRT models could be fitted with pystan and
numpyro, (ii) the two libraries yielded similar estimation results for the combinations
of the two IRT models and the two types of medical data, and (iii) depending on the
dataset size, we evaluated which package had better Markov chain Monte Carlo sampling
performance. For reproducibility, our implementation of the Bayesian IRT in pystan
and numpyro used in the current study is disclosed as open source through GitHub
(https://github.com/jurader/irt_pystan_numpyro). Selections of this article were previously
published as a preprint (Nishio et al., 2023).

MATERIALS & METHODS
Because this study used the medical data obtained from Nishio et al. (2020), institutional
review board approval or informed consent of patients was not necessary.
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Table 1 Characteristics of two types of medical data.

Name of data Number of
test takers

Number of
test items

Total number of
binary responses

BONE data 7 60 420
BRAIN data 14 42 588

Medical data
The two types of medical data (BONE and BRAIN data) were obtained from Nishio et al.
(2020). Table 1 shows the characteristics of the two types of medical data. The BONE data
include binary responses from 60 patients (test items) and seven radiologists (test takers),
and the BRAIN data include those from 42 patients and 14 radiologists. The total numbers
of the binary responses were 420 and 588 in the BONE and BRAIN data, respectively.
While the data from two modalities (computed tomography and temporal subtraction)
were used in Nishio et al. (2020), those from one modality (computed tomography) were
used in this study. As a result, the total numbers of the binary responses were half in this
study, compared with Nishio et al. (2020).

1PL-IRT
IRT is a statistical model for analyzing the results of binary responses. While there are
several types of IRT models (Gelman et al., 2013), 1PL-IRT and 2PL-IRT were used. In
the current study, latent parameters of IRT are estimated based on the results of medical
diagnoses by test takers.

In 1PL-IRT, one latent parameter (βi) is used to represent the difficulty of test item i, and
another latent parameter (θj) is used to represent the ability of test taker j. The following
equations represent 1PL-IRT.

Pr
(
rij = 1

)
=

1
1+exp(−zij)

zij = θj−βi

Here,

• Pr
(
rij = 1

)
represents the probability that the response of test taker j to test item i is

correct,
• βi is the difficulty parameter of test item i,
• θj is the ability parameter of test taker j.

2PL-IRT
In 2PL-IRT, two latent parameters (αi and βi) are used to represent test item i. The
following equations represent 2PL-IRT.

Pr
(
rij = 1

)
=

1
1+exp(−zij)
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zij =αi(θj−βi).

Here,
• αi and βi are the discrimination and difficulty parameters of test item i.

Experiments
We mainly used Google Colaboratory to run the experiments. The following software
packages were used on Google Colaboratory: pystan, version 3.3.0; jax, version 0.4.4; jaxlib,
version 0.4.4+cuda11.cudnn82; numpyro, version 0.10.1. Two cores of Intel(R) Xeon(R)
(2.20 GHz) and NVIDIA(R) Tesla T4(R) were used as CPU and a graphics processing unit
(GPU), respectively.

Experiments for agreement of latent parameters
The Bayesian 1PL-IRT and 2PL-IRT, implemented with pystan and numpyro, were applied
to the BONE and BRAIN data. For 1PL-IRT, the following prior distributions were used:

• βi∼N (0,2),
• θj ∼N (0,2),

where N represents a normal distribution in which the first and second arguments are the
average and variance of normal distribution, respectively. For 2PL-IRT, the following prior
distribution was used in addition to those of 1PL-IRT:
• log (αi)∼N (0.5,1).
The same prior distributions of the latent parameters were used in both pystan and

numpyro.
The following parameters were used for sampling using Markov chain Monte Carlo

method in both pytan and numpyro: number of chains (num_chains) = 6, number
of samples per one chain (num_samples) = 8,000, number of samples for warmup
(num_warmup)= 2,000. For numpyro GPU version, chain_method= ‘parallel’ was used.
After the sampling, the posterior distributions of the latent parameters were obtained for
the Bayesian 1PL-IRT and 2PL-IRT. The posterior distributions of the latent parameters
were then compared between pystan and numpyro.

Experiments for computational cost
To evaluate the computation cost of 1PL-IRT and 2PL-IRT implemented with pystan
and numpyro, simulation data were generated from the medical data (BONE and BRAIN
data) and numpyro. The computer simulation was performed in the following steps: (i)
estimating the posterior distributions of the latent parameters of 1PL-IRT and 2PL-IRT for
the two types of medical data, and (ii) generating binary responses from the IRT equations
and the estimated posterior distributions for the two types of medical data. The total
number of binary responses in the simulation data were as follows: 420, 840, 2,100, 4,200,
8,400, 21,000, 42,000, 84,000, 210,000, and 420,000 for the BONE data; 588, 1,176, 2,940,
5,880, 11,760, 29,400, 58,800, 117,600, 294,000, and 588,000 for the BRAIN data. This
means that size of the simulation data ranged from the original size to 1,000 times. To
evaluate the computational cost in pystan and numpyro, the sampling time using Markov
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chain Monte Carlo method was measured. In numpyro, both CPU version and GPU
version were used for the sampling. The following parameters were used for the sampling
in both pytan and numpyro: number of chains (num_chains) = 2, number of samples per
one chain (num_samples)= 3,000, number of samples for warmup (num_warmup)= 500.
For numpyro GPU version, chain_method = ‘parallel’ was used. Due to the limitation of
Google Colaboratory, it was not possible to evaluate the sampling time in several large-sized
simulation data. Therefore, in addition to Google Colaboratory, we performed the same
experiment on a local workstation with Intel Core i9-9820X CPU and Nvidia Quadro RTX
8000.

RESULTS
Results for agreement of latent parameters
In the current study, we focused on the ability parameters of test takers, and the estimation
results of test items were omitted. Tables 2–5 present the estimation results of the ability
parameters of test takers. In addition, Figs. 1 and 2 show representative scatter plots of the
estimation results between pytan and numpyro, which are obtained from values of Tables 2
and 5, respectively. Tables 2–5 show the mean, standard deviation, and credible interval
(highest density interval) as the estimation results of the ability parameters of test takers.
Based on Tables 2–5 and Figs. 1 and 2, we found that there was good agreement between
pystan and numpyro for 1PL-IRT and 2PL-IRT of the BONE and BRAIN data.

From Tables 2–5, Lin’s concordance correlation coefficients (CCC) (Lin, 1989) of the
estimated mean of the ability parameters were calculated between (a) pystan v.s. numpyro
CPU version, (b) pystan v.s. numpyro GPU version, and (c) numpyro CPU version
v.s. numpyro GPU version. The results of CCC values are summarized in Table 6. The
following criteria were used to evaluate CCC (Nishio et al., 2016; Kojita et al., 2021); low
CCC values (<0.900) were considered to represent poor agreement, whereas higher CCC
values represented moderate (0.900–0.950), substantial (0.951–0.990), and almost perfect
agreement (>0.990). As shown in Table 6, the CCC values of the estimated mean of the
ability parameters indicate almost perfect agreement for 1PL-IRT and 2PL-IRT of the
BONE and BRAIN data.

In addition, when the number of samples were fewer (number of samples per one chain
was less than 8,000), the agreement of the ability parameters was investigated. The results
are shown in Table 7.

Results for computational cost
Figures 3–6 show the sampling time for the simulation data of the BONE and BRAIN data.
When original-size simulation data were used, the sampling time was shorter in pystan than
numpyro CPU version. However, in the simulation data of the BONE and BRAIN data
except for the original size, the sampling time was shorter in numpyro CPU version than
pystan. Moreover, when the large-sized simulation data (total number of binary responses
> 30,000–50,000) were used, the sampling time was shorter in numpyro GPU version than
numpyro CPU version. In addition to the experiments using Google Colaboratory, the
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Table 2 Estimation results of ability parameters of test takers in 1PL-IRT for BONE data.

pystan Estimation Diagnostics
mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat

theta[0] 2.201 0.501 1.257 3.133 40373 36621 1
theta[1] 3.387 0.61 2.25 4.531 47056 35326 1
theta[2] 3.105 0.583 2.055 4.233 44783 36038 1
theta[3] 2.845 0.556 1.8 3.882 44444 36888 1
theta[4] 1.383 0.452 0.511 2.205 38698 37129 1
theta[5] 2.401 0.517 1.443 3.378 40061 36388 1
theta[6] 2.2 0.5 1.273 3.153 40777 38464 1

numpyro
CPU

Estimation Diagnostics

mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat
theta[0] 2.2 0.508 1.277 3.185 32921 34003 1
theta[1] 3.391 0.615 2.26 4.567 34162 35373 1
theta[2] 3.099 0.586 2 4.201 35639 34188 1
theta[3] 2.845 0.553 1.818 3.888 34989 35124 1
theta[4] 1.382 0.454 0.517 2.225 29675 34343 1
theta[5] 2.4 0.519 1.449 3.392 33463 34351 1
theta[6] 2.198 0.506 1.267 3.174 33284 35760 1

numpyro
GPU

Estimation Diagnostics

mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat
theta[0] 2.199 0.506 1.242 3.134 32251 34882 1
theta[1] 3.384 0.615 2.252 4.556 34198 36149 1
theta[2] 3.1 0.585 2.015 4.212 36366 35577 1
theta[3] 2.843 0.556 1.786 3.875 34938 33051 1
theta[4] 1.379 0.451 0.538 2.236 30942 34819 1
theta[5] 2.4 0.521 1.466 3.419 32772 34828 1
theta[6] 2.199 0.506 1.262 3.163 32300 36210 1

Notes.
aNote: theta[i] of Table means θi of the equation of 1PL-IRT.

results of computational cost on the local workstation are shown in Figs. 7–10. The same
trend was observed when using Google Colaboratory and the local workstation.

DISCUSSION
The current study aimed to compare the estimation results of the ability parameter of test
takers using two different libraries (pystan and numpyro) for two different types of IRT
models and medical data (BONE and BRAIN data). The study found that there was good
agreement between pystan and numpyro for all the combinations of the IRT models and
medical data; there was almost perfect agreement between pystan and numpyro in the CCC
values of the estimated mean of ability parameters. The current study also compared the
sampling time for the simulation data of the BONE and BRAIN data. We found that while
the sampling time was shorter in pystan than numpyro CPU version for the original-size
data, it was shorter in numpyro CPU version than pystan for the simulation data except
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Table 3 Estimation results of ability parameters of test takers in 2PL-IRT for BONE data.

pystan Estimation Diagnostics
mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat

theta[0] 2.062 0.49 1.128 2.976 14702 24025 1
theta[1] 3.086 0.605 1.966 4.231 17011 25730 1
theta[2] 2.677 0.539 1.664 3.687 16745 26368 1
theta[3] 2.585 0.571 1.534 3.658 16199 25432 1
theta[4] 1.252 0.412 0.482 2.029 14322 22764 1
theta[5] 2.096 0.536 1.102 3.111 13843 23047 1
theta[6] 2.169 0.511 1.206 3.125 15188 26449 1

numpyro
CPU

Estimation Diagnostics

mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat
theta[0] 2.057 0.486 1.159 2.991 15715 25398 1
theta[1] 3.086 0.607 1.943 4.196 17702 27769 1
theta[2] 2.676 0.546 1.679 3.723 16704 26124 1
theta[3] 2.581 0.576 1.515 3.674 15881 25012 1
theta[4] 1.248 0.409 0.494 2.037 15187 26085 1
theta[5] 2.095 0.533 1.106 3.094 15093 24705 1
theta[6] 2.167 0.511 1.194 3.104 15545 27676 1

numpyro
GPU

Estimation Diagnostics

mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat
theta[0] 2.063 0.487 1.159 2.988 14397 25263 1
theta[1] 3.09 0.601 1.975 4.226 16891 27636 1
theta[2] 2.68 0.546 1.658 3.701 15578 27217 1
theta[3] 2.585 0.576 1.525 3.682 14965 24243 1
theta[4] 1.251 0.411 0.503 2.046 14136 23883 1
theta[5] 2.096 0.538 1.105 3.112 13277 23510 1
theta[6] 2.171 0.513 1.237 3.162 14117 24946 1

Notes.
Note: theta[i] of Table means θi of the equation of 2PL-IRT.

for the original size. For the large-sized simulation data, the sampling time was shorter in
numpyro GPU version than numpyro CPU version.

Our results show that there was almost perfect agreement in the ability parameters of
the Bayesian IRT between pystan and numpyro. This suggests that researchers can choose
either library for implementing the Bayesian IRT. While numpyro requires only Python,
both Python and Stan (two different programming languages) are necessary for pystan.
Many practitioners and researchers may find numpyro to be simple and straightforward.

Although we used the simulation data, our results of sampling time show that the fastest
libraries differed based on the total number of binary responses. Specifically, pystan was the
fastest for the original-size simulation data, while numpyro CPU version was the fastest for
the small-sized and medium-sized data. For the large-sized simulation data, the sampling
time was shorter in numpyro GPU version than numpyro CPU version. This implies that
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Table 4 Estimation results of ability parameters of test takers in 1PL-IRT for BRAIN data.

pystan Estimation Diagnostics
mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat

theta[0] 1.615 0.567 0.569 2.695 19440 27845 1
theta[1] 0.929 0.53 −0.044 1.946 17105 28114 1
theta[2] 1.617 0.57 0.561 2.698 19394 29146 1
theta[3] 0.926 0.527 −0.075 1.902 17568 27120 1
theta[4] 1.139 0.537 0.145 2.163 18614 28549 1
theta[5] 1.144 0.543 0.117 2.147 16985 28225 1
theta[6] −0.641 0.476 −1.557 0.23 14932 25140 1
theta[7] −1.251 0.474 −2.144 −0.362 15336 26550 1
theta[8] 1.615 0.566 0.548 2.677 19382 29906 1
theta[9] 0.721 0.515 −0.234 1.702 17127 28476 1
theta[10] 1.615 0.566 0.568 2.693 19343 29784 1
theta[11] 1.615 0.567 0.568 2.695 19363 27743 1
theta[12] 0.166 0.492 −0.766 1.078 15641 26534 1
theta[13] 0.346 0.499 −0.607 1.264 16040 27328 1

numpyro
CPU

Estimation Diagnostics

mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat
theta[0] 1.615 0.562 0.613 2.722 18474 28342 1
theta[1] 0.921 0.527 −0.056 1.924 17348 27983 1
theta[2] 1.612 0.565 0.545 2.667 19804 27694 1
theta[3] 0.921 0.527 −0.062 1.922 17238 27787 1
theta[4] 1.141 0.539 0.122 2.139 17777 28747 1
theta[5] 1.136 0.538 0.129 2.153 17642 27878 1
theta[6] −0.643 0.473 −1.51 0.256 15441 24593 1
theta[7] −1.253 0.474 −2.141 −0.36 15186 24014 1
theta[8] 1.614 0.567 0.555 2.678 19272 27497 1
theta[9] 0.718 0.515 −0.253 1.69 17100 26777 1
theta[10] 1.611 0.566 0.519 2.648 19627 29707 1
theta[11] 1.612 0.568 0.556 2.701 19678 28018 1
theta[12] 0.163 0.491 −0.752 1.093 15522 25928 1
theta[13] 0.339 0.499 −0.584 1.294 15960 25830 1

numpyro
GPU

Estimation Diagnostics

mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat
theta[0] 1.618 0.561 0.581 2.689 18841 29675 1
theta[1] 0.925 0.527 −0.06 1.914 17399 26758 1
theta[2] 1.615 0.568 0.564 2.697 19508 27450 1
theta[3] 0.923 0.527 −0.057 1.929 17223 27357 1
theta[4] 1.143 0.537 0.151 2.166 17784 29717 1
theta[5] 1.139 0.541 0.157 2.196 17700 28834 1
theta[6] −0.641 0.474 −1.524 0.247 15313 25672 1
theta[7] −1.252 0.476 −2.139 −0.354 15033 26341 1
theta[8] 1.617 0.567 0.551 2.672 19673 26825 1

(continued on next page)
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Table 4 (continued)

theta[9] 0.722 0.515 −0.275 1.67 17220 26307 1
theta[10] 1.613 0.566 0.559 2.689 19741 28897 1
theta[11] 1.614 0.566 0.546 2.681 19503 27841 1
theta[12] 0.166 0.492 −0.754 1.097 15657 26378 1
theta[13] 0.342 0.498 −0.576 1.307 15644 25302 1

Notes.
Note: theta[i] of Table means θi of the equation of 1PL-IRT.

Table 5 Estimation results of ability parameters of test takers in 2PL-IRT for BRAIN data.

pystan Estimation Diagnostics
mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat

theta[0] 1.18 0.531 0.203 2.181 17825 28333 1
theta[1] 0.902 0.496 −0.008 1.843 15625 27710 1
theta[2] 1.254 0.518 0.296 2.235 18845 29397 1
theta[3] 0.704 0.538 −0.3 1.707 14418 26881 1
theta[4] 1.136 0.503 0.226 2.111 17740 28371 1
theta[5] 1.04 0.52 0.096 2.035 17265 28069 1
theta[6] −0.509 0.394 −1.235 0.242 12631 24324 1
theta[7] −1.27 0.433 −2.075 −0.446 15054 26335 1
theta[8] 1.458 0.572 0.369 2.512 17362 28080 1
theta[9] 0.94 0.531 −0.024 1.965 15271 26223 1
theta[10] 1.767 0.575 0.696 2.852 18638 29705 1
theta[11] 1.365 0.509 0.411 2.317 18758 29696 1
theta[12] 0.332 0.453 −0.51 1.193 13643 24442 1
theta[13] 0.324 0.465 −0.542 1.209 14035 24973 1

numpyro
CPU

Estimation Diagnostics

mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat
theta[0] 1.183 0.528 0.182 2.157 18389 29763 1
theta[1] 0.898 0.488 0.009 1.837 16627 28545 1
theta[2] 1.256 0.515 0.288 2.225 18436 28429 1
theta[3] 0.704 0.535 −0.291 1.711 14966 25748 1
theta[4] 1.134 0.501 0.19 2.071 17305 28056 1
theta[5] 1.044 0.518 0.089 2.031 16558 26045 1
theta[6] −0.505 0.394 −1.225 0.262 12487 23078 1
theta[7] −1.265 0.432 −2.078 −0.465 15003 25697 1
theta[8] 1.455 0.567 0.419 2.539 18819 28511 1
theta[9] 0.943 0.53 −0.035 1.942 16732 27505 1
theta[10] 1.766 0.573 0.644 2.801 17756 27724 1
theta[11] 1.365 0.506 0.426 2.326 19432 29606 1
theta[12] 0.334 0.453 −0.51 1.197 12867 24284 1
theta[13] 0.327 0.462 −0.523 1.204 13323 26250 1

(continued on next page)
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Table 5 (continued)

numpyro
GPU

Estimation Diagnostics

mean sd hdi_3% hdi_97% ess_bulk ess_tail r_hat
theta[0] 1.186 0.527 0.226 2.197 17302 20916 1
theta[1] 0.897 0.488 0.001 1.827 16923 26620 1
theta[2] 1.251 0.517 0.292 2.22 15879 16665 1
theta[3] 0.702 0.532 −0.303 1.695 16956 26275 1
theta[4] 1.133 0.5 0.204 2.08 18464 28238 1
theta[5] 1.04 0.515 0.081 2.007 16628 28830 1
theta[6] −0.507 0.392 −1.248 0.228 13277 24086 1
theta[7] −1.264 0.433 −2.076 −0.458 14157 19916 1
theta[8] 1.455 0.565 0.395 2.504 17398 23571 1
theta[9] 0.942 0.528 −0.051 1.925 17510 22661 1
theta[10] 1.762 0.573 0.644 2.807 16888 24176 1
theta[11] 1.363 0.504 0.414 2.302 17175 12944 1
theta[12] 0.33 0.449 −0.503 1.18 13347 25251 1
theta[13] 0.33 0.463 −0.529 1.203 13968 25446 1

Notes.
Note: theta[i] of Table means θi of the equation of 2PL-IRT.

Figure 1 Representative scatter plots of estimated ability parameters of 1PL-IRT between numpyro
and pystan for BONE data. (A) Plot for mean of estimated ability parameters, (B) plot for SD of estimated
ability parameters. Note: (A) and (B) are obtained from values from Table 2.

Full-size DOI: 10.7717/peerjcs.1620/fig-1

practitioners and researchers should select either pystan or numpyro based on the data
size. Figure 11 shows our recommendation for selecting pystan and numpyro.

Tables 3 and 4 show that the total number of latent parameters may affect the usefulness
of GPU for reducing the sampling time. In complex models, such as 2PL-IRT used in this
study, numpyro GPU version may tend to be faster than numpyro CPU version. The effect
of GPU on the sampling time should be evaluated in future studies.

This study had several limitations. First, we evaluated only Bayesian 1PL-IRT and
2PL-IRT. Further studies are needed to investigate the effectiveness of pystan and numpyro
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Figure 2 Representative scatter plots of estimated ability parameters of 2PL-IRT between numpyro
and pystan for BRAIN data. (A) Plot for mean of estimated ability parameters, (B) plot for SD of esti-
mated ability parameters. Note: (A) and (B) are obtained from values from Table 5.

Full-size DOI: 10.7717/peerjcs.1620/fig-2

Table 6 Agreement of estimated ability parameters between pystan vs. numpyro CPU version, pystan
vs. numpyro GPU version, and numpyro CPU version vs. numpyro GPU version.

Data type IRT type CCC between pystan vs.
numpyro CPU
version

CCC between pystan vs.
numpyro GPU
version

CCC between
numpyro CPU
version vs. numpyro
GPU version

BONE data 1PL-IRT 1.000 1.000 1.000
BONE data 2PL-IRT 1.000 1.000 1.000
BRAIN data 1PL-IRT 1.000 1.000 1.000
BRAIN data 2PL-IRT 1.000 1.000 1.000

Notes.
Note: The CCC values indicate almost perfect agreement. Because of the significant digits in the CCC calculation, ‘‘1.000’’ was
used in Table 6. However, this ‘‘1.000’’ means that the CCC value was approximately 1. Actually, the CCC value of ‘‘1.000’’
was less than 1 (e.g., 0.9999847).
Abbreviation: Lin’s concordance correlation coefficients, CCC.

in other types of Bayesian models. Second, although we evaluated the sampling time, we
used the simulation data instead of real-world data. Future studies should use real-world
data to evaluate the sampling time. Third, we mainly used Google Colaboratory. Although
Google Colaboratory has several merits (e.g., ease of use and availability), our experiments
were performed using limited types of hardware. Fourth, because the data and purpose of
our study are different from those of Nishio et al. (2020), it is impossible to compare our
results with those from that article.
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Table 7 Agreement of estimated ability parameters between pystan vs numpyro_cpu, pystan vs
numpyro_gpu, and numpyro_cpu vs numpyro_gpu in fewer samples.

Data type IRT type Number of
samples per
one chain

CCC between
pystan and
numpyro_cpu

CCC between
pystan and
numpyro_gpu

CCC between
numpyro_cpu
and numpyro_gpu

BONE data 1PL-IRT 10 0.986 0.994 0.995
BONE data 1PL-IRT 20 0.986 0.998 0.992
BONE data 1PL-IRT 40 0.992 0.999 0.994
BONE data 1PL-IRT 80 0.997 0.999 0.998
BONE data 1PL-IRT 160 0.999 1.000 0.999
BONE data 1PL-IRT 320 1.000 1.000 1.000
BONE data 1PL-IRT 640 1.000 1.000 1.000
BONE data 1PL-IRT 1,280 1.000 1.000 1.000
BONE data 1PL-IRT 2,560 1.000 1.000 1.000
BONE data 1PL-IRT 5,120 1.000 1.000 1.000
BONE data 2PL-IRT 10 0.965 0.971 0.998
BONE data 2PL-IRT 20 0.987 0.990 0.998
BONE data 2PL-IRT 40 0.995 0.994 0.999
BONE data 2PL-IRT 80 0.990 0.992 0.999
BONE data 2PL-IRT 160 0.998 0.998 0.999
BONE data 2PL-IRT 320 1.000 1.000 1.000
BONE data 2PL-IRT 640 0.999 1.000 1.000
BONE data 2PL-IRT 1,280 1.000 1.000 1.000
BONE data 2PL-IRT 2,560 1.000 1.000 1.000
BONE data 2PL-IRT 5,120 1.000 1.000 1.000
BRAIN data 1PL-IRT 10 0.983 0.985 0.999
BRAIN data 1PL-IRT 20 0.994 0.990 0.999
BRAIN data 1PL-IRT 40 0.999 0.999 0.999
BRAIN data 1PL-IRT 80 1.000 0.999 1.000
BRAIN data 1PL-IRT 160 1.000 1.000 1.000
BRAIN data 1PL-IRT 320 1.000 1.000 1.000
BRAIN data 1PL-IRT 640 1.000 1.000 1.000
BRAIN data 1PL-IRT 1,280 1.000 1.000 1.000
BRAIN data 1PL-IRT 2,560 1.000 1.000 1.000
BRAIN data 1PL-IRT 5,120 1.000 1.000 1.000
BRAIN data 2PL-IRT 10 0.990 0.996 0.997
BRAIN data 2PL-IRT 20 0.997 0.997 0.999
BRAIN data 2PL-IRT 40 0.999 0.999 1.000
BRAIN data 2PL-IRT 80 0.999 0.999 1.000
BRAIN data 2PL-IRT 160 1.000 1.000 1.000
BRAIN data 2PL-IRT 320 1.000 1.000 1.000
BRAIN data 2PL-IRT 640 1.000 1.000 1.000
BRAIN data 2PL-IRT 1,280 1.000 1.000 1.000
BRAIN data 2PL-IRT 2,560 1.000 1.000 1.000

(continued on next page)
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Table 7 (continued)

Data type IRT type Number of
samples per
one chain

CCC between
pystan and
numpyro_cpu

CCC between
pystan and
numpyro_gpu

CCC between
numpyro_cpu
and numpyro_gpu

BRAIN data 2PL-IRT 5,120 1.000 1.000 1.000

Notes.
Note: (i) Except for the number of samples per one chain (num_samples), the parameters for sampling using Markov chain
Monte Carlo method are the same as those of the main experiment. (ii) In the main experiment, number of samples per one
chain is 8000. (iii) Estimated mean of ability parameter was used in calculating CCC. (iv) Rhat values are not always less than
1.10 in this experiment.
Abbreviation: Lin’s concordance correlation coefficients, CCC.

Figure 3 Sampling time of 1PL-IRT for simulation BONE data.
Full-size DOI: 10.7717/peerjcs.1620/fig-3

Figure 4 Sampling time of 2PL-IRT for simulation BONE data.
Full-size DOI: 10.7717/peerjcs.1620/fig-4
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Figure 5 Sampling time of 1PL-IRT for simulation BRAIN data.
Full-size DOI: 10.7717/peerjcs.1620/fig-5

Figure 6 Sampling time of 2PL-IRT for simulation BRAIN data.
Full-size DOI: 10.7717/peerjcs.1620/fig-6
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Figure 7 Sampling time of 1PL-IRT for simulation BONE data on local workstation.
Full-size DOI: 10.7717/peerjcs.1620/fig-7

Figure 8 Sampling time of 2PL-IRT for simulation BONE data on local workstation.
Full-size DOI: 10.7717/peerjcs.1620/fig-8
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Figure 9 Sampling time of 1PL-IRT for simulation BRAIN data on local workstation.
Full-size DOI: 10.7717/peerjcs.1620/fig-9

Figure 10 Sampling time of 2PL-IRT for simulation BRAIN data on local workstation.
Full-size DOI: 10.7717/peerjcs.1620/fig-10

CONCLUSIONS
The current study demonstrated that both pystan and numpyro were effective in the
estimation for 1PL-IRT and 2PL-IRT of the BONE and BRAIN data. Our results show that
the two libraries yielded similar estimation results. In addition, our results of sampling
time show that the fastest libraries differed based on the total number of binary responses.
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Figure 11 Recommendation for selecting pystan and numpyro.
Full-size DOI: 10.7717/peerjcs.1620/fig-11
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Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:
- https://github.com/jurader/irt_pystan_numpyro
- jurader. (2023). jurader/irt_pystan_numpyro: First release (1st_release). Zenodo.

https://doi.org/10.5281/zenodo.8187939
The data is available at: NishioM, Akasaka T, Sakamoto R, Togashi K. Bayesian Statistical

Model of Item Response Theory in Observer Studies of Radiologists. Acad Radiol. 2020
Mar;27(3):e45-e54. doi: 10.1016/j.acra.2019.04.014. Epub 2019 May 28.
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