
An integrated platform for intuitive mathematical
programming modeling using LATEX (#28593)

1

First submission

Editor guidance

Please submit by 28 Jun 2018 for the benefit of the authors (and your $200 publishing discount).

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Raw data check
Review the raw data. Download from the materials page.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files
from the materials page.

5 Figure file(s)
3 Latex file(s)
1 Raw data file(s)

For assistance email peer.review@peerj.com

https://peerj.com/submissions/28593/reviews/342687/materials/
https://peerj.com/submissions/28593/reviews/342687/materials/
mailto:peer.review@peerj.com

Structure and
Criteria

2

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review
When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.

Intro & background to show context.
Literature well referenced & relevant.

Structure conforms to PeerJ standards,
discipline norm, or improved for clarity.

Figures are relevant, high quality, well
labelled & described.

Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.

Research question well defined, relevant
& meaningful. It is stated how the
research fills an identified knowledge gap.

Rigorous investigation performed to a
high technical & ethical standard.

Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.

Data is robust, statistically sound, &
controlled.

Speculation is welcome, but should be
identified as such.

Conclusions are well stated, linked to
original research question & limited to
supporting results.

https://peerj.com/submissions/28593/reviews/342687/
https://peerj.com/submissions/28593/reviews/342687/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/

Standout
reviewing tips

3

The best reviewers use these techniques

Tip Example

Support criticisms with
evidence from the text or from
other sources

Smith et al (J of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Give specific suggestions on
how to improve the manuscript

Your introduction needs more detail. I suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

Comment on language and
grammar issues

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 – the current phrasing makes
comprehension difficult.

Organize by importance of the
issues, and number your points

1. Your most important issue
2. The next most important item
3. …
4. The least important points

Please provide constructive
criticism, and avoid personal
opinions

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

Comment on strengths (as well
as weaknesses) of the
manuscript

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as I have noted above) which should be
improved upon before Acceptance.

An integrated platform for intuitive mathematical

programming modeling using LATEX

Charalampos P Triantafyllidis 1 , Lazaros G. Papageorgiou Corresp. 1

1 Chemical Engineering, University College London, University of London, London, United Kingdom

Corresponding Author: Lazaros G. Papageorgiou

Email address: l.papageorgiou@ucl.ac.uk

This paper presents a novel prototype platform that uses the same LaTeX mark-up

language, commonly used to typeset mathematical content, as an input language for

modeling optimization problems of various classes. The platform converts the LaTeX model

into a formal Algebraic Modeling Language (AML) representation based on Pyomo through

a parsing engine written in Python and solves by either via NEOS server or locally installed

solvers, using a friendly Graphical User Interface (GUI). The distinct advantages of our

approach can be summarized in i) simplification and speed-up of the model design and

development process ii) non-commercial character iii) cross-platform support iv) no

limitation on application sector and v) minimization of working knowledge of programming

and AMLs to perform mathematical programming modeling. This is the first to the best of

our knowledge presentation of a workable scheme on using LaTeX for mathematical

programming modeling which assists in furthering our ability to reproduce and replicate

scientific work.

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

Reviewer
Sticky Note
This paper is well-written and easy to follow. While I think it it suited for publication, I did make a few notes in the main PDF that need to be addressed first.

I do appreciate the authors' effort to offer a solution that connects the model description in LaTeX to the optimization model to be solved (in this case, via Pyomo). However, this could potentially generate a "philosophical discussion" among researchers, and I would be interested in knowing the authors' views on the following arguments.

* Some people would argue that coding the model in a programming language is better because of flexibility (i.e., the language allows one to do more than just specifying objective function, constraints, and variables). Others would say that the additional flexibility is unnecessary as the sole purpose is to write a model in as much high-level and human-readable as possible, and then just solve it. I tend to prefer having additional flexibility, so using the proposed approach, which takes another step back (i.e., it's at a higher abstraction layer), would go against that. What do the authors think? Please see the next point.

* On the other hand, I would argue that using the proposed framework could have the advantage of more easily detecting (logic) errors in the model implementation. In other words, it may be easier to detect typos in the mathematical formulation than in a Pyomo, JuMP, GAMS, AIMMS, etc. model. I do think this an important pro of the proposed approach, which does not seem to be mentioned in the text.

* Another potential disadvantage of the proposed framework (maybe for some people more than others) is the fact that it currently has some stringent rules about the mathematical model description. For example, it is custommary to number equations/constraints, whether in a monolithic model block or interspersed with text explaining the meaning of each of them and, sometimes, the symbols in them. In other words, I am afraid this may result in duplicated work, i.e., the researcher would type the paper in LaTeX with all the equations and explanatory text, and would also have to create a separate .tex file with the model description that can be understood by the proposed framework. Perhaps these issues will be addressed in the future, in which case, I think it would be appropriate to say a few words about "future work" in the text.

Lastly, I think it would be appropriate to include timing information for each major step in the supplemental material, or at least add mentions in the main text. For example, how much time does it take to parse the .tex file, and then to generate the model in Pyomo, and then to solve it (this one is shown in the solver log)? Does it take much longer to parse the .tex file (which is the focus of this work) than all the other steps?

An integrated platform for intuitive mathematical programming1

modeling using LATEX2

Charalampos P. Triantafyllidisa, Lazaros G. Papageorgiou a,∗
3

aCentre for Process Systems Engineering, Department of Chemical Engineering,4

UCL (University College London), London WC1E 7JE, UK5

Abstract6

This paper presents a novel prototype platform that uses the same LATEX mark-up language,7

commonly used to typeset mathematical content, as an input language for modeling opti-8

mization problems of various classes. The platform converts the LATEX model into a formal9

Algebraic Modeling Language (AML) representation based on Pyomo through a parsing en-10

gine written in Python and solves by either via NEOS server or locally installed solvers,11

using a friendly Graphical User Interface (GUI). The distinct advantages of our approach12

can be summarized in i) simplification and speed-up of the model design and development13

process ii) non-commercial character iii) cross-platform support iv) no limitation on applica-14

tion sector and v) minimization of working knowledge of programming and AMLs to perform15

mathematical programming modeling. This is the first to the best of our knowledge presen-16

tation of a workable scheme on using LATEX for mathematical programming modeling which17

assists in furthering our ability to reproduce and replicate scientific work.

Keywords: LATEX, Python, Pyomo, Algebraic Modeling Languages, Mathematical18

Programming; Optimization;19

2010 MSC: 90C05, 90C11, 90C90, 97M10, 68T35, 97P3020

1. Introduction21

Mathematical modeling constitutes a rigorous way of inexpensively simulating complex22

systems’ behavior in order to gain further understanding about the underlying mechanisms23

∗Corresponding Author
Email addresses: h.triantafyllidis@ucl.ac.uk (Charalampos P. Triantafyllidis),

l.papageorgiou@ucl.ac.uk (Lazaros G. Papageorgiou)

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

Reviewer
Comment on Text
What do authors mean here? Is "application sector" an area of expertise, e.g., power systems optimization? I am not sure I follow it.

and trade-offs. By exploiting mathematical modeling techniques, one may manipulate the24

system under analysis so as to guarantee its optimal and robust operation.25

The dominant computing tool to assist in modeling is the Algebraic Modeling Languages26

(AMLs) (Kallrath, 2004). AMLs have been very successful in enabling a transparent devel-27

opment of different types of models, easily distributable among peers and described with28

clarity, effectiveness and precision. Software suites such as AIMMS (Bisschop and Roelofs,29

2011), GAMS IDE (Bruce A. McCarl et. al., 2013), JuMP (Dunning et al., 2017) as the30

modeling library in Julia (Lubin and Dunning, 2015), Pyomo1 (Hart et al., 2017, 2011) for31

modeling in Python2, (Rossum, 1995) and AMPL (Fourer et al., 1993) are the most popular32

and widely used in both academia and industry. AMLs usually incorporate the following33

features:34

• a strict and specific syntax for the mathematical notation to describe the models;35

• Solver interfaces, the bridge between mathematics and what the solver can understand36

in terms of structural demands;37

• a series of available optimization solvers for as many classes of problems as supported38

(LP, MILP, MINLP etc.) with the associated functional interfaces implemented;39

• explicit data file formats and implementation of the respective import/export mecha-40

nisms.41

AMLs provide a level of abstraction, which is higher than the direct approach of generating42

a model using directly a programming language. The different levels in the design process43

of a model are depicted in Figure 1. Extending an AML (or even the entire modeling design44

process) can be done in the following two ways: we can either simplify the present framework45

(vertical abstraction) or extend the embedded functionality (horizontal abstraction) (Jackson,46

2012). The layers of abstraction between the conception and the semantics of a mathematical47

model and its computational implementation may not necessarily be thin. This means that48

1http://www.Pyomo.org/
2https://www.python.org/

2

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

while eventually the aim of the presented platform has the same purpose as an AML that49

is to generate and solve models, simplification of the required syntax to describe the model50

is associated with higher complexity. Thus, in order to relax the syntactical requirements,51

we have to be able to process the same model with limited information (for instance, we do52

not declare index sets and parameters in the platform). This limited declaration of model53

components elevates the amount of processing that the platform has to conduct in order to54

provide equivalent formulations of the input.55

Figure 1: The levels of abstraction in modeling; from natural language to extracting the optimal solution

via computational resources.

Our work expands upon two axes : i) the programming paradigm introduced by Donald56

E. Knuth (Knuth, 1984) on Literate Programming and ii) the notions of reproducible and57

replicable research, the fundamental basis of scientific analysis. Literate Programming focuses58

on generating programs based on logical flow and thinking rather than being limited by the59

imposing syntactical constraints of a programming language. In essence, we employ a simple60

mark-up language, LATEX, to describe a problem (mathematical programming model) and61

then in turn produce compilable code (Pyomo abstract model) which can be used outside of62

the presented prototype platform’s framework. Reproducibility and the ability to replicate63

scientific analysis is crucial and challenging to achieve. As software tools become the vessel to64

unravel the computational complexity of decision-making, developing open-source software65

3

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

is not necessarily sufficient; the ability for the averagely versed developer to reproduce and66

replicate scientific work is very important to effectively deliver impact (Leek and Peng, 2015;67

Editorial, 2014). To quote the COIN-OR Foundation 3, Science evolves when previous results68

can be easily replicated.69

In the endeavor of simplifying the syntactical requirements imposed by AMLs we have70

developed a prototype platform. This new framework is materializing a level of modeling71

design that is higher than the AMLs in terms of vertical abstraction. It therefore strengthens72

the ability to reproduce and replicate optimization models across literature for further anal-73

ysis by reducing the demands in working knowledge of AMLs or coding. The key capability74

is that it parses LATEX formulations of mathematical programs (optimization problems) di-75

rectly into Pyomo abstract models. The framework then combines the produced abstract76

model with data provided in the AMPL .dat format (containing parameters and sets) to77

produce a concrete model. This capability is provided through a graphical interface which78

accepts LATEX input and AMPL data files, parses a Pyomo model, solves with a selected79

solver (CPLEX, GLPK, or the NEOS server), and returns the optimal solution if feasible, as80

the output. The aim is not to substitute AMLS but to establish a link between those using81

a higher level of abstraction. Therefore, the platform does not eliminate the use of an AML82

or the advantages emanating from it.83

To the best of our knowledge, this is the first prototype workable scheme to address how84

LATEX could be used as an input language to perform mathematical programming model-85

ing, and currently supports Linear Programming (LP), Mixed-Integer Linear Programming86

(MILP) as well as Mixed-Integer Quadratic Programming (MIQP) formulations. Linear Op-87

timization (Bertsimas and Tsitsiklis, 1997; Williams, 1999) has proven to be an invaluable88

tool for decision support over the past decades. The corpus of models invented for linear89

optimization over the past decades and for a multitude of domains has been consistently in-90

creasing. It can be easily demonstrated with examples in Machine Learning, Supply Chain,91

Information Security, Environmental Modeling and Energy among many others (Yang et al.,92

2017, 2016; Tanveer, 2015; Silva et al., 2016; Xu et al., 2007; Grossmann et al., 2016; Papa-93

georgiou and Rotstein, 1998; Jovanović et al., 2016; Sitek and Wikarek, 2015; Triantafyllidis94

3https://www.coin-or.org/

4

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

https://www.coin-or.org/
Reviewer
Cross-Out

Reviewer
Inserted Text
AMLs

et al., 2018; Bieber et al., 2018; Wang et al., 2018; Cohen et al., 2017; Mitsos et al., 2009;95

Melas et al., 2013; Romeijn et al., 2006; Knijnenburg et al., 2016; Kratica et al., 2014; Mouha96

et al., 2012; Heuberger et al., 2017; Liu and Papageorgiou, 2013, 2017).97

This paper is organized as follows: in section 2, we describe the current functionality sup-98

ported by the platform at this prototype stage. In section 3, we present the implementation99

details of the parser. Section 4 provides a description of an illustrative example. A discussion100

follows in section 5. Some concluding remarks are drawn in section 6. Examples of opti-101

mization models that were reproduced from scientific papers as well as their corresponding102

LATEX formulations and Pyomo models can be found in the Supplementary Information.103

2. Functionality104

The set of rules that are admissible to formulate models in this platform are formal LATEX105

commands and they do not represent in-house modifications. We assume that the model will106

be in the typical format that optimization programs commonly appear in scientific journals.107

Therefore, the model must contain the following three main parts and with respect to the108

correct order as well:109

1. the objective function to be optimized (either maximized or minimized);110

2. the (sets of) constraints, or else the relationships between the decision variables and111

coefficients, right-hand side (RHS);112

3. the decision variables and their domain space.113

We used the programming environment of Python coupled with its modeling library, namely114

Pyomo. Similar approaches in terms of software selection have been presented for Differen-115

tial and Algebraic Equations (DAE) modeling and optimization in (Nicholson et al., 2018;116

Nikolić, 2016). By combining Python and Pyomo we have the ability to transform a simpli-117

fied representation of a mathematical model initially written in LATEX into a formal AML118

formulation and eventually optimize it. In other words, the platform reads LATEXcode and119

then writes Pyomo abstract models or the code generates code. The resulting .py file is120

usable outside of the platform’s frame, thus not making the binding and usage of these two121

5

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

necessary after conversion. The main components that we employed for this purpose are the122

following:123

• Front-end: HTML, JavaScript, MathJax4 and Google Polymer5;124

• Back-end: Python with Django6 and Pyomo.125

In order to increase the effectiveness and user-friendliness of the platform, a Graphical-User126

Interface (GUI) based on HTML, JavaScript (front-end) and Django as the web-framework127

(back-end) has been implemented, as shown in Figure 2. The user-input is facilitated128

mainly via Polymer objects7. As the main feature of the platform is to allow modeling129

in LATEX language, we used MathJax as the rendering engine. In this way, the user can see130

the compiled version of the input model. All of these components form a single suite that131

works across different computational environments. The front-end is plain but incorporates132

the necessary functionality for input and output, as well as some solver options. The role133

of the back-end is to establish the communication between the GUI and the parser with the134

functions therein. In this way the inputs are being processed inside Python in the back-135

ground, and the user simply witnesses a seamless working environment without having to136

understand the black-box parser in detail.137

The main components of the GUI are:138

• Abstract model input : The input of the LATEXmodel, either directly inside the Polymer139

input text-box or via file upload (a .tex containing the required source LATEX code)140

• Data files : The input of the data set which follows the abstract definition of the model141

via uploading the AMPL-format (.dat) data file142

• Solver options : An array of solver - related options such as:143

1. NEOS server job using CPLEX144

4https://www.mathjax.org/
5https://www.polymer-project.org/
6https://www.djangoproject.com/
7https://www.polymer-project.org/

6

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

2. Solve the relaxed LP (if MILP)145

3. Select GPLK (built-in) as the optimization solver146

4. Select CPLEX (if available) as the optimization solver (currently set to default)147

The following is an example of a LATEX formulated optimization problem which is ready148

to use with the platform; the well-known Traveling Salesman Problem (TSP) (Applegate149

et al., 2007):150

minimize
∑

i,j:i 6=j

(di,jxi,j)

subject to:
∑

j:i 6=j

(xi,j) = 1 ∀i

∑

i:i 6=j

(xi,j) = 1 ∀j

ui − uj + nxi,j ≤ n− 1 ∀i ≥ 2, j ≤ |j| − 1, i 6= j

u ∈ Z, x ∈ {0, 1}

and the raw LATEX code used to generate this was:151

152

\ t ex t {minimize} \sum\ l i m i t s { i , j : i \neq j }ˆ{} (d { i , j }x { i , j }) \\153

\ t ex t { sub j e c t to : }\\154

\sum\ l i m i t s { j : i \neq j }ˆ{} (x { i , j }) = 1 \quad \quad \ f o r a l l i \\155

\sum\ l i m i t s { i : i \neq j }ˆ{} (x { i , j }) = 1 \quad \quad \ f o r a l l j \\156

u { i } − u { j } + nx { i , j } \ l e q n − 1 \quad \quad \ f o r a l l i \geq 2 , j \ l e q | j157

| −1 , i \neq j \\158

u \ in \mathbb Z , x \ in \{0 ,1\}\\159
160

which is the input for the platform. The user can either input this code directly inside the161

Google polymer text box or via a pre-made .tex file which can be uploaded in the corre-162

sponding field of the GUI. Either way, the MathJax Engine then renders LATEX appropriately163

so the user can see the resulting compiled model live. Subject to syntax-errors, the MathJax164

engine might or might not render the model eventually, as naturally expected. Empty lines165

or spaces do not play a role, as well as commented-out lines using the standard notation (the166

percentage symbol %). The model file always begins with the objective function sense, the167

function itself, and then the sets of constraints follow, with the variables and their respective168

7

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

Figure 2: The simplified Graphical User Interface (GUI). The GUI contains the basic but fundamental options to use the platform, such as model

input, solver selection and solution extraction.

8

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

type at the end of the file.169

3. Parser - Execution Engine170

As parser we define the part of the code (a collection of Python functions) in the back-end171

side of the platform which is responsible for translating the model written in LATEXto Py-172

omo, the modeling component of the Python programming language. In order to effectively173

translate the user model input from LATEX, we need an array of programming functions to174

carry out the conversion consistently since preserving the equivalence of the two is implied.175

The aim of the implementation is to provide minimum loss of generality in the ability to176

express mathematical notation for different modeling needs.177

A detailed description of the implemented scheme is given in Figure 3. A modular design178

of different functions implemented in Python and the established communication of those179

(exchanging input and output-processed data) form the basic implementation concept. This180

type of design allows the developers to add functionality in a more clear and effective way.181

For instance, to upgrade the parser and support Mixed Integer Quadratic Programming182

(MIQP) problems, an update only to the parsing function assigned to convert the optimiza-183

tion objective function is required.184

Once the .tex model file and the .dat AMPL formatted data file are given, the platform185

then starts processing the model. The conversion starts by reading the variables of the model186

and their respective types, and then follows with component identification (locating the187

occurrence of the variables in each constraint) and their inter-relationships (multiplication,188

division, summation etc.). Additionally, any summation and constraint conditional indexing189

schemes will be processed separately. Constraint-by-constraint the parser gradually builds190

the .py Pyomo abstract model file. It then merges through Pyomo the model with its data191

set and calls the selected solver for optimization.192

3.1. Pre-processing193

A significant amount of pre-processing takes place prior of parsing. The minimum and194

essential is to first tidy up the input; that is, clear empty lines and spaces, as well as reserved195

(by the platform) keywords that the user can include but do not play any role in functional196

9

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

Figure 3: The overall flow of the implementation. From user input to solving the optimization problem or simply exporting the equivalent Pyomo

model file.

10

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

parsing (such as the \quad command). The platform also supports the use of Greek letters.197

For instance if a parameter is declared as α the platform identifies the symbol, removes198

the backslash and expects to find alpha in the data-file. This takes place also in the pre-199

processing stage.200

The user can also opt-out selectively the constraints by putting regular comments in201

LATEX, with the insertion of the percentage symbol (%) in the beginning of each expression.202

Once done, we attempt to simplify some types of mathematical expressions in order to be203

able to better process them later on. More specifically, we have two main functions that204

handle fractions and common factor (distributive expressions) simplifications. For example:205

AiBj

Di
is then converted to: (AiBj)/Di206

and207

β(α + 1) is converted as expected to: βα + β208

When handling fractions, the user can employ the frac environment to generate them; how-209

ever it is easier for the parser to process the analytical form. The same applies with the210

distributive form of multiplications. While it is more elegant for the eye and serves a com-211

pact representation, it is easier for the parser to extract the mathematical relationships from212

the analytical form.213

This keeps the basic component identification functions intact, since their input is trans-214

formed first to the acceptable analytical format. Instead of transforming the parsing func-215

tions, we transform the input in the acceptable format. However, the user does not lose216

neither functionality nor flexibility, as this takes place in the background. To put it simply,217

either the user inputs the analytic form of an expression or the compact, the parser is still218

able to function correctly.219

To frame the capabilities of the parser, we will now describe how the user can define220

optimization models in the platform with a given example and the successful parsing to221

Pyomo. The parser first attempts to split the model into its three major distinct parts:222

• the objective function223

11

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

Reviewer
Comment on Text
What do the authors mean by "easier for the parser" in this context? Does the code generation take longer if the user opts for the \frac command instead of using the forward slash? While I agree that it may be easier to read with the \frac command, I think it is irrelevant for the use which method to choose, assuming the generated code will be correct and equivalent. Unless, there are side effects of using an approach versus another. it seems that the next paragraph addresses some of these concerns, so I am unsure if saying that one approach is easier to handle than the other adds value in text, unless the side effects, if any, are specified.

• the sets of constraints224

• the types of the variables defined225

These three parts are in a way independent but interconnected as well.226

3.2. Processing Variables227

The parser first attempts to read the variables and their respective domain space (type).228

The platform is case sensitive since it is based on Pyomo. The processing is done using string229

manipulation functions, therefore the use of regular expressions in Python was essential and230

effective.231

Reasonably, the focus was on consistency and reliability, rather computational perfor-232

mance mainly due to the lightweight workload of the processing demands in general. In233

order to do that, the parser uses keywords as identifiers while scanning from the top to the234

bottom of the manually curated .tex file which contains the abstract model in LATEX. For235

the three respective different parts mentioned earlier, the corresponding identifiers are:236

1. Objective function: {minimize, maximize}237

2. Sets of constraints: {\leq, \geq, =}238

3. Variables and their types: {\mathbb , {0, 1}}239

This helps separate the processing into sections. Each section is analyzed and passes the240

information in Pyomo syntax in the .py output model file. Variable types can appear in the241

following way:242

• \in \mathbb R243

for Real numbers (∈ R)244

• \in \mathbb R_+245

for non-negative Real numbers (∈ R+)246

• \in \mathbb R_{*}^{+}247

for positive Real numbers (∈ R+
∗)248

12

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

Reviewer
Sticky Note
Are variable bounds supported? For example, a relaxed binary variable is a real variable with lower and upper bounds of 0 and 1, respectively. Or a more general case in which an integer variable has lower and upper bounds of 0 and the value based on parameter, i.e., it is parameterized? Or even if it's not parameterized, but neither bounds are +/- infinity.

• \in \{0,1\}249

for binary variables (∈ {0, 1})250

• \in \mathbb Z251

for integers (∈ Z)252

• \in \mathbb Z_+253

for non-negative integers (∈ Z+)254

• \in \mathbb Z_{*}^{+}255

for positive integers (∈ Z+
∗)256

In order to avoid confusion between lowercase and uppercase, the identifiers are converted257

to uppercase prior of comparison. Upon locating these keywords, the parser separates the258

processing and starts calling the corresponding functions. Once the variables and their259

types are processed (expected to be found at the bottom of the mathematical definition of260

the model), the parser then creates a list of strings for the names of the variables. This261

is one of the crucial structures of the parser and utilized alongside the entire run-time of262

the conversion process. A list of the same length, which holds the types of each respective263

variable, is also created. The platform in general uses Python lists to store information about264

variables, index sets, parameters, scalars etc.265

3.3. Decomposing constraints and objective function expressions266

Our approach for understanding the inter-mathematical relationships between the vari-267

ables and the parameters relied on exploiting the fundamental characteristics of Linear Pro-268

gramming:269

• Proportionality270

• Additivity271

• Divisibility272

13

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

These mathematical relationships can help us understand the structure of the expressions273

and how to decompose them. By decomposition we define the fragmentation of each mathe-274

matical expression at each line of the .tex input model file into the corresponding variables,275

parameters, summations etc. so as we can process the given information accordingly. A276

simple graphical example is given in Figure 4.277

Figure 4: A simple constraint having its components (partially) decomposed and therefore identified; sum-

mations, operators, scalars and numerical quantities.

The decomposition with the regular expressions is naturally done via the strings of the278

possible operators found, that is: addition, subtraction, division (+,−, /), since the asterisk279

to denote multiplication (∗ or ·) is usually omitted in the way we describe the mathematical280

expressions (e.g. we write ax to describe coefficient a being multiplied by variable x). In281

some cases however it is imperative to use the asterisk to decompose a multiplication. For282

example, say Ds is a parameter and s is also a variable in the same model. There is283

no possible way to tell whether the expression Ds actually means D*s or if it is about284

a new parameter altogether, since the parameters are not explicitly defined in the model285

definition (as in AMLs). Adding to that the fact that for the scalars there is no associated286

14

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

underscore character to identify the parameter as those are not associated with index sets,287

the task is even more challenging. Therefore, we should write D*s if D is a scalar. As for288

parameters with index sets, for example Dsisi causes no confusion for the parser because the289

decomposition based on the underscore character clearly reveals two separate components.290

In this way, the platform also identifies new parameters. This means that since we know291

for instance that s is a variable but Ds is not we can dynamically identify Ds on the fly292

(as we scan the current constraint) as being a parameter which is evidently multiplied with293

variable s, both having index set i associated with them. However, we need to pay attention294

on components appearing iteratively in different or in the same sets of constraints; did we295

have the component already appearing previously in the model again? In that case we do296

not have to declare it again in the Pyomo model as a new quantity, as that would cause a297

modeling error.298

By declaration we mean the real-time execution of a Python command that creates the299

associated terms inside the Pyomo abstract objected-oriented (OO) model. For instance if300

a set i is identified, the string model.i = Set(dimen = 1) is first written inside the text301

version of the Pyomo model file, and then on-the-fly executed independently inside the302

already parsing Python function using the exec command. The execution commands run in303

a sequential manner. All the different possible cases of relationships between parameters and304

variables are dynamically identified, and the parser keeps track of the local (per constraint)305

and global (per model) list of parameters identified while scanning the model in dynamically306

growing lists.307

Dynamic identification of the parameters and index sets is one of the elegant features of308

the platform, since in most Algebraic Modeling Languages (AMLs) the user explicitly defines309

the model parameters one-by-one. In our case, this is done in an intelligent automated310

manner. Another important aspect of the decomposition process is the identification of the311

constraint type (<=,=, >=), since the position of the operator is crucial to separate the312

left and the right hand side of the constraint. This is handled by an independent function.313

Decomposition also helps identify Quadratic terms. By automatic conversion of the caret314

symbol to ∗∗ (as this is one of the ways to denote power of a variable in Pyomo language)315

the split function carefully transfers this information intact to the Pyomo model.316

15

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

3.4. Summations and conditional indexing317

Summation terms need to be enclosed inside parentheses (· · ·), even with a single com-318

ponent. This accelerates identification of the summation terms with clarity and consistency.319

Summations are in a way very different than processing a simplified mathematical expression320

in the sense that we impose restrictions on how a summation can be used. First of all, the321

corresponding function to process summations tries to identify how many summation expres-322

sions exist in each constraint at a time. Their respective indexing expressions are extracted323

and then sent back to the index identification functions to be processed. The assignment324

of conditional indexing with the corresponding summation is carefully managed. Then, the325

summation commands for the Pyomo model file are gradually built. Summations can be326

expressed in the following form, and two different fields can be utilized to exploit conditional327

indexing (upper and lower brackets):328

329

\sum\ l i m i t s {p : X {n , p} = 1}ˆ{}(1− sb {p , k})330
331

which then compiles to:
∑

p:Xn,p=1

(1− sbp,k)332

This means that the summation will be executed for all values of p, (that is for p = 1 : |p|)333

but only whenXn,p = 1 at the same time. If we want to use multiple and stacked summations334

(double, triple etc.) we can express them in the same way by adding the indexes for which335

the summation will be generated, as for example:336

337

\sum\ l i m i t s { i , j }ˆ{}(X { i , j })338
339

which then compiles to:
∑

i,j

(Xi,j)340

341

and will run for the full cardinality of sets i, j. Dynamic (sparse) sets imposed on constraints342

can be expressed as:343

344

X { i , j } = Y { i , j } \ f o r a l l (i , j) \ in C \\345
346

which then compiles to: Xi,j = Yi,j ∀(i, j) ∈ C347

348

This means that the constraint is being generated only for those values of (i, j) which belong349

16

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

Reviewer
Sticky Note
Does the parser understand \left(and \right)? Or other commonly used brackets, such as \left[and \left\{? These may be used when there are fractions inside the brackets, and again to make the mathematical expression easier to read. From the text, it only seems that ordinary brackets, (and), are supported.

to the dynamic set C. In order to achieve proper and precise processing of summations350

and conditional indexing, we have built two separate functions assigned for the respective351

tasks. Since specific conditional indexing schemes can take place both for the generation352

of an entire constraint or just simply for a summation inside a constraint, two different353

sub-functions process this portion of information. This is done using the \forall command354

at the end of each constraint, which changes how the indexes are being generated for the355

vertical expansion of the constraints from a specific index set. Concerning summations it is356

done with the bottom bracket information for horizontal expansion, as we previously saw357

for instance with p : Xn,p = 1.358

A series of challenges arise when processing summations. For instance, which components359

are inside a summation symbol? A variable that might appear in two different summations360

at the same constraint can cause confusion. Thus, using a binary list for the full length361

of variables and parameters present in a constraint we identify the terms which belong to362

each specific summation. This binary list gets re-initialized for each different summation363

expression. From the lower bracket of each summation symbol, the parser is expecting to364

understand the indexes for which the summation is being generated. This is done by either365

simply stating the indexes in a plain way (for instance a, b or if a more complex expression366

is used, the for-loop indexes for the summations are found before the colon symbol (:).367

3.5. Constraint indexing368

At the end of each constraint, the parser identifies the “∀”’ (\forall) symbol which then369

helps understand for which indexes the constraints are being sequentially generated (vertical370

expansion). For instance ∀(i, j) ∈ C makes sure that the constraint is not generated for all371

combinations of index sets i, j, but only the ones appearing in the sparse set C. The sparse372

sets are being registered also on the fly, if found either inside summation indexing brackets373

or in the constraint general indexing (after the ∀ symbol) by using the keywords \in, \notin.374

The simplest form of constraint indexing is for instance:375

∑

j:i 6=j

(xi,j) = 1 ∀i,376

where the constraint is vertically expanding for all elements of set i and the summation is377

running for all those values of set j such that i is not equal to j. More advanced cases of378

17

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

constraint conditional indexing are also identified, as long as each expression is separated379

with the previous one by using a comma. For example in:380

∀i < |i|, j ≥ i+ 1381

we see each different expression separated so the parser can process the corresponding in-382

dexing. Three different functions handle identification on constraint- level and the input for383

the general function that combines these three, accepts as input the whole expression. We384

process each component (split by commas) iteratively by these three functions:385

1. to identify left part (before the operator/reserved keyword/command)386

2. the operator and387

3. the right-hand part388

For example, in i < |i|, the left part is set i, the operator is < and the right-hand part is the389

cardinality of set i. In this way, by adding a new operator in the acceptable operators list390

inside the code, we allow expansion of supported expressions in a straightforward manner.391

4. An illustrative parsing example392

Let us now follow the sequential steps that the parser takes to convert a simple example.393

Consider the well-known transportation problem:394

minimize
∑

i,j

(ci,jxi,j)

subject to:
∑

j

(xi,j) ≤ ai ∀i

∑

i

(xi,j) ≥ bj ∀j

x ∈ R+

We will now provide in-depth analysis of how each of the main three parts in the model can395

be processed.396

18

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

4.1. Variables397

The parser first attempts to locate the line of the .tex model file that contains the398

variable symbols and their respective domains. This is done by trying to identify any of399

the previously presented reserved keywords specifically for this section. The parser reaches400

the bottom line by identifying the keyword mathbbR + in this case. Commas can separate401

variables belonging to the same domain, and the corresponding parsing function splits the402

collections of variables of the same domain and processes them separately.403

In this case, the parser identifies the domain and then rewinds back inside the string404

expression to find the variable symbols. It finds no commas, thus we collect only one variable405

with the symbol x. The platform then builds two Python lists with the name of the variables406

found and their respective types.407

4.2. Objective function408

The parser then reads the optimization sense (by locating the objective function expres-409

sion using the keywords, in this case minimize) and tries to identify any involved variables410

in the objective function. In a different scenario, where not all of the model variables are411

present in the objective function, a routine identifies one-by-one all the remaining variables412

and their associated index sets in the block of the given constraint sets.413

The parser first attempts to locate any summation symbols. Since this is successful,414

the contained expression is extracted as c{i,j}x{i,j}, by locating the parentheses bounds ().415

In case of multiple summations, or multiple expressions inside the parentheses, we process416

them separately. The bounds of the summation symbol (the lower and upper brackets)417

respectively will be analysed separately. In this case, the upper one is empty, so the lower418

one contains all the indexes for which the summation has to scale. Separated by commas, a419

simple extraction gives i, j to be used for the Pyomo for-loop in the expression. There is no420

colon identified inside the lower bracket of the summation, thus no further identification of421

conditional indexing is required.422

A split function is then applied on the extracted mathematical expression c {i, j}x {i, j}423

to begin identification of the involved terms. Since there are no operators (∗,+,−, /) we424

have a list containing only one item; the combined expression. It follows that the underscore425

19

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

characters are used to frame the names of the respective components. It is easy to split on426

these characters and then create a list to store the pairs of the indexes for each component.427

Thus, a sub-routine detects the case of having more than just one term in the summation-428

extracted expression. In this example, c is automatically identified as a parameter because429

of its associated index set which was identified with the underscore character and since it430

does not belong to the list of variables.431

The global list of parameters is then updated by adding c, as well as the parameters432

for the current constraint/objective expression. This helps us clarify which parameters are433

present in each constraint as well as the set of parameters (unique) for the model thus far,434

as scanning goes on. Once the parameter c and variable x are identified and registered435

with their respective index sets, we proceed to read the constraint sets. The parser creates436

expressions as the ones shown below for this kind of operations:437

438

model . i = Set (dimen=1) \\439

model . j = Set (dimen=1) \\440

model . c = Param(model . i , model . j , i n i t i a l i z e = 0) \\441

model . x = Var (model . i , model . j , domain=NonNegativeReals) \\442
443

Since the objective function summation symbol was correctly identified with the respective444

indexes, the following code is generated and executed:445

446

447

de f ob j e xp r e s s i on (model) :448

model .F = sum(model . c [i , j]∗model . x [i , j] f o r i in model . i f o r j in model . j)449

r e turn model .F450

model .OBJ = Object ive (r u l e=ob j exp r e s s i on , s ense = minimize)451
452

4.3. Constraints453

Since the constraints sets are very similar, for shortness we will only analyze the first one. The454

parser first locates the constraint type by finding either of the following operators ≤,≥,=.455

It then splits the constraint in two parts, left and right across this operator. This is done to456

carefully identify the position of the constraint type operator for placement into the Pyomo457

constraint expression later on.458

20

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

The first component the parser gives is the terms identified raw in the expression ([′x′
i,j,

′ a′i]).459

Parameter a is identified on the fly and since x is already registered as a variable and the460

parser proceeds to only register the new parameter by generating the following Pyomo ex-461

pressions:462

463

model . a = Param(model . i , i n i t i a l i z e = 0)464
465

The platform successfully identifies which terms belong to the summation and which do not466

and separates them carefully. Eventually the ∀ symbol gives the list of indexes for which the467

constraints are being generated. This portion of information in the structure of a Pyomo468

constraint definition goes in replacing X in the following piece of code:469

470

471

de f a xb c on s t r a i n t r u l e 1 (model ,X) :472
473

and the full resulting function is:474

475

476

de f a xb c on s t r a i n t r u l e 1 (model , i) :477

model . C 1= sum(model . x [i , j] f o r j in model . j) <= model . a [i]478

r e turn model . C 1479

model . AxbConstraint 1=Constra int (model . i , r u l e=axb c on s t r a i n t r u l e 1)480
481

5. Discussion482

Developing a parser that would be able to understand almost every different way of483

writing mathematical models using LATEX is nearly impossible; however, even by framing484

the way the user could write down the models, there are some challenges to overcome.485

For instance, the naming policy for the variables and parameters. One would assume that486

these would cause no problems but usually this happens because even in formal modeling487

languages, the user states the names and the types of every component of the problem.488

Starting from the sense of the objective function, to the names and the types of the variables489

and parameters as well as their respective sizes and the names of the index sets, everything490

is explicitly defined. This is not the case though in this platform; the parser recognizes the491

21

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

parameters and index sets with no prior given information. This in turn imposes trade-offs492

in the way we write the mathematical notation. For instance multiple index sets have to be493

separated by commas as in xi,j instead of writing xij.494

By scanning a constraint, the parser quickly identifies as mentioned the associated vari-495

ables. In many cases parameters and variables might have multiple occurrences in the same496

constraint. This creates a challenging environment to locate the relationships of the param-497

eters and the variables since they appear in multiple locations inside the string expressions498

and in different ways. On top of this, the name of a parameter can cause identification prob-499

lems because it might be a sub/super set of the name of another parameter, e.g. parameter500

AB, and parameter ABC. Therefore naming conflicts are carefully resolved by the platform501

by meticulously identifying the exact location and occurrences of each term.502

Challenges also arise in locating which of the terms appearing in a constraint belong503

to summations, and to which summations; especially when items have multiple occurrences504

inside a constraint, there needs to be a unique identification so as to include a parameter505

(or a variable) inside a specific summation or not. We addressed this with the previously506

introduced binary lists. Then for each of those summation symbols, the items activated507

(1) are included in the summation or not (0) and the list is generated for each different508

summation within the expression.509

Finally, it is worth mentioning that the amount of lines/characters to represent a model510

in LATEXin comparison with the equivalent model in Pyomo is substantially smaller. In this511

respect, the platform accelerates the modeling development process.512

6. Conclusions513

We presented a platform for rapid model generation using LATEXas the input language514

for mathematical programming, starting with the classes of LP, MILP and MIQP. The plat-515

form is based on Python and parses the input to Pyomo to successfully solve the underlying516

optimization problems. It uses a simple GUI to facilitate model and data input based on517

Django as the web-framework. The user can exploit locally installed solvers or redirect to518

NEOS server. This prototype platform delivers transparency and clarity, speedup of the519

model design and development process (by significantly reducing the required characters to520

22

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

type the input models) and abstracts the syntax from programming languages and AMLs.521

It therefore delivers reproducibility and the ability to replicate scientific work in an effective522

manner from an audience not necessarily versed in coding. Future work includes full ex-523

pansion of the platform’s capabilities to support nonlinear terms as well as differential and524

algebraic equations.525

Author Contributions526

Conceived and designed the experiments: LGP. Analyzed the data: LGP, CPT. Per-527

formed the computational work and prepared figures and tables: CPT. Wrote the paper:528

CPT and LGP. Approved the final draft: LGP.529

7. Acknowledgments530

We gratefully acknowledge financial support from The Leverhulme Trust under Grant531

number RPG-2015-240 and the UK Engineering and Physical Sciences Research Council532

(EPSRC) under project EP/M027856/1. We would also wish to thank Prof. Eric Fraga and533

Dr. Aristotelis Kittas for useful discussions.534

References535

Applegate, D. L., Bixby, R. E., Chvatal, V., Cook, W. J., 2007. The Traveling Salesman Problem: A536

Computational Study (Princeton Series in Applied Mathematics). Princeton University Press, Princeton,537

NJ, USA.538

Bertsimas, D., Tsitsiklis, J., 1997. Introduction to Linear Optimization, Third printing edition Edition.539

Athena Scientific.540

Bieber, N., Ker, J. H., Wang, X., Triantafyllidis, C., van Dam, K. H., Koppelaar, R. H., Shah, N., 2018.541

Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy 113, 584542

– 607.543

URL http://www.sciencedirect.com/science/article/pii/S0301421517307838544

Bisschop, J., Roelofs, M., 2011. AIMMS language reference, version 3.12. Paragon Decision Technology.545

Bruce A. McCarl et. al., 2013. McCarl Expanded GAMS User Guide, GAMS Release 24.2.1. GAMS Devel-546

opment Corporation, Washington, DC, USA.547

URL http://www.gams.com/mccarl/mccarlhtml/gams_user_guide_2005.htm548

23

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

http://www.sciencedirect.com/science/article/pii/S0301421517307838
http://www.gams.com/mccarl/mccarlhtml/gams_user_guide_2005.htm

Cohen, M. C., Leung, N.-H. Z., Panchamgam, K., Perakis, G., Smith, A., 2017. The impact of linear549

optimization on promotion planning. Operations Research 65 (2), 446–468.550

URL https://doi.org/10.1287/opre.2016.1573551

Dunning, I., Huchette, J., Lubin, M., 2017. Jump: A modeling language for mathematical optimization.552

SIAM Review 59 (2), 295–320.553

URL https://doi.org/10.1137/15M1020575554

Editorial, 2014. Software with impact. Nature Methods 11 (211).555

URL http://dx.doi.org/10.1038/nmeth.2880556

Fourer, R., Gay, D., Kernighan, B., 1993. AMPL: A Modeling Language for Mathematical Programming.557

Scientific Press.558

URL https://books.google.co.uk/books?id=8vJQAAAAMAAJ559

Grossmann, I. E., Apap, R. M., Calfa, B. A., Garca-Herreros, P., Zhang, Q., 2016. Recent advances in math-560

ematical programming techniques for the optimization of process systems under uncertainty. Computers561

& Chemical Engineering 91, 3 – 14.562

URL http://www.sciencedirect.com/science/article/pii/S0098135416300540563

Hart, W. E., Laird, C. D., Watson, J.-P., Woodruff, D. L., Hackebeil, G. A., Nicholson, B. L., Siirola, J. D.,564

2017. Pyomo–optimization modeling in python, 2nd Edition. Vol. 67. Springer Science & Business Media.565

Hart, W. E., Watson, J.-P., Woodruff, D. L., 2011. Pyomo: modeling and solving mathematical programs566

in python. Mathematical Programming Computation 3 (3), 219.567

URL https://doi.org/10.1007/s12532-011-0026-8568

Heuberger, C. F., Rubin, E. S., Staffell, I., Shah, N., Dowell, N. M., 2017. Power capacity expansion planning569

considering endogenous technology cost learning. Applied Energy 204 (Supplement C), 831 – 845.570

URL http://www.sciencedirect.com/science/article/pii/S0306261917309479571

Jackson, M., 2012. Aspects of abstraction in software development. Software & Systems Modeling 11 (4),572

495–511.573

URL https://doi.org/10.1007/s10270-012-0259-7574

Jovanović, I., Savić, M., Živković, Ž., Boyanov, B. S., Peltekov, A., 2016. An linear programming model575

for batch optimization in the ecological zinc production. Environmental Modeling & Assessment 21 (4),576

455–465.577

URL https://doi.org/10.1007/s10666-015-9485-z578

Kallrath, J., 2004. Modeling Languages in Mathematical Optimization (APPLIED OPTIMIZATION).579

Kluwer Academic Publishers, Norwell, MA, USA.580

Knijnenburg, T. A., Klau, G. W., Iorio, F., Garnett, M. J., McDermott, U., Shmulevich, I., Wessels, L.581

F. A., 2016. Logic models to predict continuous outputs based on binary inputs with an application to582

personalized cancer therapy. Scientific Reports 6, 36812.583

URL http://dx.doi.org/10.1038/srep36812584

24

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

https://doi.org/10.1287/opre.2016.1573
https://doi.org/10.1137/15M1020575
http://dx.doi.org/10.1038/nmeth.2880
https://books.google.co.uk/books?id=8vJQAAAAMAAJ
http://www.sciencedirect.com/science/article/pii/S0098135416300540
https://doi.org/10.1007/s12532-011-0026-8
http://www.sciencedirect.com/science/article/pii/S0306261917309479
https://doi.org/10.1007/s10270-012-0259-7
https://doi.org/10.1007/s10666-015-9485-z
http://dx.doi.org/10.1038/srep36812

Knuth, D. E., 1984. Literate programming. Comput. J. 27 (2), 97–111.585

URL http://dx.doi.org/10.1093/comjnl/27.2.97586

Kratica, J., Dugoija, D., Savi, A., 2014. A new mixed integer linear programming model for the multi level587

uncapacitated facility location problem. Applied Mathematical Modelling 38 (7), 2118 – 2129.588

URL http://www.sciencedirect.com/science/article/pii/S0307904X13006240589

Leek, J. T., Peng, R. D., 2015. Opinion: Reproducible research can still be wrong: Adopting a prevention590

approach. Proceedings of the National Academy of Sciences 112 (6), 1645–1646.591

URL http://www.pnas.org/content/112/6/1645592

Liu, S., Papageorgiou, L. G., 2013. Multiobjective optimisation of production, distribution and capacity593

planning of global supply chains in the process industry. Omega 41 (2), 369 – 382.594

URL http://www.sciencedirect.com/science/article/pii/S0305048312000813595

Liu, S., Papageorgiou, L. G., 2017. Fair profit distribution in multi-echelon supply chains via transfer prices.596

Omega.597

URL http://www.sciencedirect.com/science/article/pii/S0305048316307897598

Lubin, M., Dunning, I., 2015. Computing in operations research using Julia. INFORMS Journal on Com-599

puting 27 (2), 238–248.600

URL https://doi.org/10.1287/ijoc.2014.0623601

Melas, I. N., Samaga, R., Alexopoulos, L. G., Klamt, S., 2013. Detecting and removing inconsistencies be-602

tween experimental data and signaling network topologies using integer linear programming on interaction603

graphs. PLOS Computational Biology 9 (9), 1–19.604

URL https://doi.org/10.1371/journal.pcbi.1003204605

Mitsos, A., Melas, I. N., Siminelakis, P., Chairakaki, A. D., Saez-Rodriguez, J., Alexopoulos, L. G., 2009.606

Identifying drug effects via pathway alterations using an integer linear programming optimization formu-607

lation on phosphoproteomic data. PLOS Computational Biology 5 (12), 1–11.608

URL https://doi.org/10.1371/journal.pcbi.1000591609

Mouha, N., Wang, Q., Gu, D., Preneel, B., 2012. Differential and Linear Cryptanalysis Using Mixed-Integer610

Linear Programming. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 57–76.611

URL https://doi.org/10.1007/978-3-642-34704-7_5612

Nicholson, B., Siirola, J. D., Watson, J.-P., Zavala, V. M., Biegler, L. T., 2018. pyomo.dae: a modeling and613

automatic discretization framework for optimization with differential and algebraic equations. Mathemat-614

ical Programming Computation 10 (2), 187–223.615

URL https://doi.org/10.1007/s12532-017-0127-0616

Nikolić, D. D., 2016. Dae tools: equation-based object-oriented modelling, simulation and optimisation617

software. PeerJ Computer Science 2, e54.618

URL https://doi.org/10.7717/peerj-cs.54619

Papageorgiou, L. G., Rotstein, G. E., 1998. Continuous-domain mathematical models for optimal process620

25

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

http://dx.doi.org/10.1093/comjnl/27.2.97
http://www.sciencedirect.com/science/article/pii/S0307904X13006240
http://www.pnas.org/content/112/6/1645
http://www.sciencedirect.com/science/article/pii/S0305048312000813
http://www.sciencedirect.com/science/article/pii/S0305048316307897
https://doi.org/10.1287/ijoc.2014.0623
https://doi.org/10.1371/journal.pcbi.1003204
https://doi.org/10.1371/journal.pcbi.1000591
https://doi.org/10.1007/978-3-642-34704-7_5
https://doi.org/10.1007/s12532-017-0127-0
https://doi.org/10.7717/peerj-cs.54

plant layout. Industrial & Engineering Chemistry Research 37 (9), 3631–3639.621

URL http://dx.doi.org/10.1021/ie980146v622

Romeijn, H. E., Ahuja, R. K., Dempsey, J. F., Kumar, A., 2006. A new linear programming approach to623

radiation therapy treatment planning problems. Operations Research 54 (2), 201–216.624

URL https://doi.org/10.1287/opre.1050.0261625

Rossum, G., 1995. Python reference manual. Tech. rep., Amsterdam, The Netherlands, The Netherlands.626

Silva, J. C., Bennett, L., Papageorgiou, L. G., Tsoka, S., 2016. A mathematical programming approach for627

sequential clustering of dynamic networks. The European Physical Journal B 89 (2), 39.628

URL https://doi.org/10.1140/epjb/e2015-60656-5629

Sitek, P., Wikarek, J., 2015. A hybrid framework for the modelling and optimisation of decision problems in630

sustainable supply chain management. International Journal of Production Research 53 (21), 6611–6628.631

URL http://dx.doi.org/10.1080/00207543.2015.1005762632

Tanveer, M., 2015. Robust and sparse linear programming twin support vector machines. Cognitive Compu-633

tation 7 (1), 137–149.634

URL https://doi.org/10.1007/s12559-014-9278-8635

Triantafyllidis, C. P., Koppelaar, R. H., Wang, X., van Dam, K. H., Shah, N., 2018. An integrated optimi-636

sation platform for sustainable resource and infrastructure planning. Environmental Modelling Software637

101, 146 – 168.638

URL http://www.sciencedirect.com/science/article/pii/S1364815217301391639

Wang, X., Guo, M., Koppelaar, R. H. E. M., van Dam, K. H., Triantafyllidis, C. P., Shah, N., 2018. A640

nexus approach for sustainable urban energy-water-waste systems planning and operation. Environmental641

Science & Technology 52 (5), 3257–3266, pMID: 29385332.642

URL https://doi.org/10.1021/acs.est.7b04659643

Williams, H. P., 1999. Model Building in Mathematical Programming, 4th Edition, 4th Edition. Wiley.644

URL http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471997889645

Xu, G., Tsoka, S., Papageorgiou, L. G., 2007. Finding community structures in complex networks using646

mixed integer optimisation. The European Physical Journal B 60 (2), 231–239.647

URL https://doi.org/10.1140/epjb/e2007-00331-0648

Yang, L., Liu, S., Tsoka, S., Papageorgiou, L. G., 2016. Mathematical programming for piecewise linear649

regression analysis. Expert Systems with Applications 44, 156–167.650

URL http://dx.doi.org/10.1016/j.eswa.2015.08.034651

Yang, L., Liu, S., Tsoka, S., Papageorgiou, L. G., 2017. A regression tree approach using mathematical652

programming. Expert Systems with Applications 78, 347 – 357.653

URL http://www.sciencedirect.com/science/article/pii/S0957417417300957654

26

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science

http://dx.doi.org/10.1021/ie980146v
https://doi.org/10.1287/opre.1050.0261
https://doi.org/10.1140/epjb/e2015-60656-5
http://dx.doi.org/10.1080/00207543.2015.1005762
https://doi.org/10.1007/s12559-014-9278-8
http://www.sciencedirect.com/science/article/pii/S1364815217301391
https://doi.org/10.1021/acs.est.7b04659
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0471997889
https://doi.org/10.1140/epjb/e2007-00331-0
http://dx.doi.org/10.1016/j.eswa.2015.08.034
http://www.sciencedirect.com/science/article/pii/S0957417417300957

