
An integrated platform for intuitive mathematical
programming modeling using LATEX (#28593)

1

First submission

Editor guidance

Please submit by 28 Jun 2018 for the benefit of the authors (and your $200 publishing discount).

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Raw data check
Review the raw data. Download from the materials page.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files
from the materials page.

5 Figure file(s)
3 Latex file(s)
1 Raw data file(s)

For assistance email peer.review@peerj.com

https://peerj.com/submissions/28593/reviews/342687/materials/
https://peerj.com/submissions/28593/reviews/342687/materials/
mailto:peer.review@peerj.com


Structure and
Criteria

2

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review
When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.

Intro & background to show context.
Literature well referenced & relevant.

Structure conforms to PeerJ standards,
discipline norm, or improved for clarity.

Figures are relevant, high quality, well
labelled & described.

Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.

Research question well defined, relevant
& meaningful. It is stated how the
research fills an identified knowledge gap.

Rigorous investigation performed to a
high technical & ethical standard.

Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.

Data is robust, statistically sound, &
controlled.

Speculation is welcome, but should be
identified as such.

Conclusions are well stated, linked to
original research question & limited to
supporting results.

https://peerj.com/submissions/28593/reviews/342687/
https://peerj.com/submissions/28593/reviews/342687/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/


Standout
reviewing tips

3

The best reviewers use these techniques

Tip Example

Support criticisms with
evidence from the text or from
other sources

Smith et al (J of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Give specific suggestions on
how to improve the manuscript

Your introduction needs more detail. I suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

Comment on language and
grammar issues

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 – the current phrasing makes
comprehension difficult.

Organize by importance of the
issues, and number your points

1. Your most important issue
2. The next most important item
3. …
4. The least important points

Please provide constructive
criticism, and avoid personal
opinions

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

Comment on strengths (as well
as weaknesses) of the
manuscript

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as I have noted above) which should be
improved upon before Acceptance.



An integrated platform for intuitive mathematical

programming modeling using LATEX

Charalampos P Triantafyllidis  1  ,  Lazaros G. Papageorgiou Corresp.  1 

1 Chemical Engineering, University College London, University of London, London, United Kingdom

Corresponding Author: Lazaros G. Papageorgiou

Email address: l.papageorgiou@ucl.ac.uk

This paper presents a novel prototype platform that uses the same LaTeX mark-up

language, commonly used to typeset mathematical content, as an input language for

modeling optimization problems of various classes. The platform converts the LaTeX model

into a formal Algebraic Modeling Language (AML) representation based on Pyomo through

a parsing engine written in Python and solves by either via NEOS server or locally installed

solvers, using a friendly Graphical User Interface (GUI). The distinct advantages of our

approach can be summarized in i) simplification and speed-up of the model design and

development process ii) non-commercial character iii) cross-platform support iv) no

limitation on application sector and v) minimization of working knowledge of programming

and AMLs to perform mathematical programming modeling. This is the first to the best of

our knowledge presentation of a workable scheme on using LaTeX for mathematical

programming modeling which assists in furthering our ability to reproduce and replicate

scientific work.
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and trade-offs. By exploiting mathematical modeling techniques, one may manipulate the24

system under analysis so as to guarantee its optimal and robust operation.25

The dominant computing tool to assist in modeling is the Algebraic Modeling Languages26

(AMLs) (Kallrath, 2004). AMLs have been very successful in enabling a transparent devel-27

opment of different types of models, easily distributable among peers and described with28

clarity, effectiveness and precision. Software suites such as AIMMS (Bisschop and Roelofs,29

2011), GAMS IDE (Bruce A. McCarl et. al., 2013), JuMP (Dunning et al., 2017) as the30

modeling library in Julia (Lubin and Dunning, 2015), Pyomo1 (Hart et al., 2017, 2011) for31

modeling in Python2, (Rossum, 1995) and AMPL (Fourer et al., 1993) are the most popular32

and widely used in both academia and industry. AMLs usually incorporate the following33

features:34

• a strict and specific syntax for the mathematical notation to describe the models;35

• Solver interfaces, the bridge between mathematics and what the solver can understand36

in terms of structural demands;37

• a series of available optimization solvers for as many classes of problems as supported38

(LP, MILP, MINLP etc.) with the associated functional interfaces implemented;39

• explicit data file formats and implementation of the respective import/export mecha-40

nisms.41

AMLs provide a level of abstraction, which is higher than the direct approach of generating42

a model using directly a programming language. The different levels in the design process43

of a model are depicted in Figure 1. Extending an AML (or even the entire modeling design44

process) can be done in the following two ways: we can either simplify the present framework45

(vertical abstraction) or extend the embedded functionality (horizontal abstraction) (Jackson,46

2012). The layers of abstraction between the conception and the semantics of a mathematical47

model and its computational implementation may not necessarily be thin. This means that48

1http://www.Pyomo.org/
2https://www.python.org/
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while eventually the aim of the presented platform has the same purpose as an AML that49

is to generate and solve models, simplification of the required syntax to describe the model50

is associated with higher complexity. Thus, in order to relax the syntactical requirements,51

we have to be able to process the same model with limited information (for instance, we do52

not declare index sets and parameters in the platform). This limited declaration of model53

components elevates the amount of processing that the platform has to conduct in order to54

provide equivalent formulations of the input.55

Figure 1: The levels of abstraction in modeling; from natural language to extracting the optimal solution

via computational resources.

Our work expands upon two axes : i) the programming paradigm introduced by Donald56

E. Knuth (Knuth, 1984) on Literate Programming and ii) the notions of reproducible and57

replicable research, the fundamental basis of scientific analysis. Literate Programming focuses58

on generating programs based on logical flow and thinking rather than being limited by the59

imposing syntactical constraints of a programming language. In essence, we employ a simple60

mark-up language, LATEX, to describe a problem (mathematical programming model) and61

then in turn produce compilable code (Pyomo abstract model) which can be used outside of62

the presented prototype platform’s framework. Reproducibility and the ability to replicate63

scientific analysis is crucial and challenging to achieve. As software tools become the vessel to64

unravel the computational complexity of decision-making, developing open-source software65

3
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is not necessarily sufficient; the ability for the averagely versed developer to reproduce and66

replicate scientific work is very important to effectively deliver impact (Leek and Peng, 2015;67

Editorial, 2014). To quote the COIN-OR Foundation 3, Science evolves when previous results68

can be easily replicated.69

In the endeavor of simplifying the syntactical requirements imposed by AMLs we have70

developed a prototype platform. This new framework is materializing a level of modeling71

design that is higher than the AMLs in terms of vertical abstraction. It therefore strengthens72

the ability to reproduce and replicate optimization models across literature for further anal-73

ysis by reducing the demands in working knowledge of AMLs or coding. The key capability74

is that it parses LATEX formulations of mathematical programs (optimization problems) di-75

rectly into Pyomo abstract models. The framework then combines the produced abstract76

model with data provided in the AMPL .dat format (containing parameters and sets) to77

produce a concrete model. This capability is provided through a graphical interface which78

accepts LATEX input and AMPL data files, parses a Pyomo model, solves with a selected79

solver (CPLEX, GLPK, or the NEOS server), and returns the optimal solution if feasible, as80

the output. The aim is not to substitute AMLS but to establish a link between those using81

a higher level of abstraction. Therefore, the platform does not eliminate the use of an AML82

or the advantages emanating from it.83

To the best of our knowledge, this is the first prototype workable scheme to address how84

LATEX could be used as an input language to perform mathematical programming model-85

ing, and currently supports Linear Programming (LP), Mixed-Integer Linear Programming86

(MILP) as well as Mixed-Integer Quadratic Programming (MIQP) formulations. Linear Op-87

timization (Bertsimas and Tsitsiklis, 1997; Williams, 1999) has proven to be an invaluable88

tool for decision support over the past decades. The corpus of models invented for linear89

optimization over the past decades and for a multitude of domains has been consistently in-90

creasing. It can be easily demonstrated with examples in Machine Learning, Supply Chain,91

Information Security, Environmental Modeling and Energy among many others (Yang et al.,92

2017, 2016; Tanveer, 2015; Silva et al., 2016; Xu et al., 2007; Grossmann et al., 2016; Papa-93

georgiou and Rotstein, 1998; Jovanović et al., 2016; Sitek and Wikarek, 2015; Triantafyllidis94

3https://www.coin-or.org/
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et al., 2018; Bieber et al., 2018; Wang et al., 2018; Cohen et al., 2017; Mitsos et al., 2009;95

Melas et al., 2013; Romeijn et al., 2006; Knijnenburg et al., 2016; Kratica et al., 2014; Mouha96

et al., 2012; Heuberger et al., 2017; Liu and Papageorgiou, 2013, 2017).97

This paper is organized as follows: in section 2, we describe the current functionality sup-98

ported by the platform at this prototype stage. In section 3, we present the implementation99

details of the parser. Section 4 provides a description of an illustrative example. A discussion100

follows in section 5. Some concluding remarks are drawn in section 6. Examples of opti-101

mization models that were reproduced from scientific papers as well as their corresponding102

LATEX formulations and Pyomo models can be found in the Supplementary Information.103

2. Functionality104

The set of rules that are admissible to formulate models in this platform are formal LATEX105

commands and they do not represent in-house modifications. We assume that the model will106

be in the typical format that optimization programs commonly appear in scientific journals.107

Therefore, the model must contain the following three main parts and with respect to the108

correct order as well:109

1. the objective function to be optimized (either maximized or minimized);110

2. the (sets of) constraints, or else the relationships between the decision variables and111

coefficients, right-hand side (RHS);112

3. the decision variables and their domain space.113

We used the programming environment of Python coupled with its modeling library, namely114

Pyomo. Similar approaches in terms of software selection have been presented for Differen-115

tial and Algebraic Equations (DAE) modeling and optimization in (Nicholson et al., 2018;116

Nikolić, 2016). By combining Python and Pyomo we have the ability to transform a simpli-117

fied representation of a mathematical model initially written in LATEX into a formal AML118

formulation and eventually optimize it. In other words, the platform reads LATEXcode and119

then writes Pyomo abstract models or the code generates code. The resulting .py file is120

usable outside of the platform’s frame, thus not making the binding and usage of these two121

5
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necessary after conversion. The main components that we employed for this purpose are the122

following:123

• Front-end: HTML, JavaScript, MathJax4 and Google Polymer5;124

• Back-end: Python with Django6 and Pyomo.125

In order to increase the effectiveness and user-friendliness of the platform, a Graphical-User126

Interface (GUI) based on HTML, JavaScript (front-end) and Django as the web-framework127

(back-end) has been implemented, as shown in Figure 2. The user-input is facilitated128

mainly via Polymer objects7. As the main feature of the platform is to allow modeling129

in LATEX language, we used MathJax as the rendering engine. In this way, the user can see130

the compiled version of the input model. All of these components form a single suite that131

works across different computational environments. The front-end is plain but incorporates132

the necessary functionality for input and output, as well as some solver options. The role133

of the back-end is to establish the communication between the GUI and the parser with the134

functions therein. In this way the inputs are being processed inside Python in the back-135

ground, and the user simply witnesses a seamless working environment without having to136

understand the black-box parser in detail.137

The main components of the GUI are:138

• Abstract model input : The input of the LATEXmodel, either directly inside the Polymer139

input text-box or via file upload (a .tex containing the required source LATEX code)140

• Data files : The input of the data set which follows the abstract definition of the model141

via uploading the AMPL-format (.dat) data file142

• Solver options : An array of solver - related options such as:143

1. NEOS server job using CPLEX144

4https://www.mathjax.org/
5https://www.polymer-project.org/
6https://www.djangoproject.com/
7https://www.polymer-project.org/
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2. Solve the relaxed LP (if MILP)145

3. Select GPLK (built-in) as the optimization solver146

4. Select CPLEX (if available) as the optimization solver (currently set to default)147

The following is an example of a LATEX formulated optimization problem which is ready148

to use with the platform; the well-known Traveling Salesman Problem (TSP) (Applegate149

et al., 2007):150

minimize
∑

i,j:i 6=j

(di,jxi,j)

subject to:
∑

j:i 6=j

(xi,j) = 1 ∀i

∑

i:i 6=j

(xi,j) = 1 ∀j

ui − uj + nxi,j ≤ n− 1 ∀i ≥ 2, j ≤ |j| − 1, i 6= j

u ∈ Z, x ∈ {0, 1}

and the raw LATEX code used to generate this was:151

152

\ t ex t {minimize} \sum\ l i m i t s { i , j : i \neq j }ˆ{} ( d { i , j }x { i , j }) \\153

\ t ex t { sub j e c t to : }\\154

\sum\ l i m i t s { j : i \neq j }ˆ{} ( x { i , j }) = 1 \quad \quad \ f o r a l l i \\155

\sum\ l i m i t s { i : i \neq j }ˆ{} ( x { i , j }) = 1 \quad \quad \ f o r a l l j \\156

u { i } − u { j } + nx { i , j } \ l e q n − 1 \quad \quad \ f o r a l l i \geq 2 , j \ l e q | j157

| −1 , i \neq j \\158

u \ in \mathbb Z , x \ in \{0 ,1\}\\159
160

which is the input for the platform. The user can either input this code directly inside the161

Google polymer text box or via a pre-made .tex file which can be uploaded in the corre-162

sponding field of the GUI. Either way, the MathJax Engine then renders LATEX appropriately163

so the user can see the resulting compiled model live. Subject to syntax-errors, the MathJax164

engine might or might not render the model eventually, as naturally expected. Empty lines165

or spaces do not play a role, as well as commented-out lines using the standard notation (the166

percentage symbol %). The model file always begins with the objective function sense, the167

function itself, and then the sets of constraints follow, with the variables and their respective168

7
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Figure 2: The simplified Graphical User Interface (GUI). The GUI contains the basic but fundamental options to use the platform, such as model

input, solver selection and solution extraction.
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type at the end of the file.169

3. Parser - Execution Engine170

As parser we define the part of the code (a collection of Python functions) in the back-end171

side of the platform which is responsible for translating the model written in LATEXto Py-172

omo, the modeling component of the Python programming language. In order to effectively173

translate the user model input from LATEX, we need an array of programming functions to174

carry out the conversion consistently since preserving the equivalence of the two is implied.175

The aim of the implementation is to provide minimum loss of generality in the ability to176

express mathematical notation for different modeling needs.177

A detailed description of the implemented scheme is given in Figure 3. A modular design178

of different functions implemented in Python and the established communication of those179

(exchanging input and output-processed data) form the basic implementation concept. This180

type of design allows the developers to add functionality in a more clear and effective way.181

For instance, to upgrade the parser and support Mixed Integer Quadratic Programming182

(MIQP) problems, an update only to the parsing function assigned to convert the optimiza-183

tion objective function is required.184

Once the .tex model file and the .dat AMPL formatted data file are given, the platform185

then starts processing the model. The conversion starts by reading the variables of the model186

and their respective types, and then follows with component identification (locating the187

occurrence of the variables in each constraint) and their inter-relationships (multiplication,188

division, summation etc.). Additionally, any summation and constraint conditional indexing189

schemes will be processed separately. Constraint-by-constraint the parser gradually builds190

the .py Pyomo abstract model file. It then merges through Pyomo the model with its data191

set and calls the selected solver for optimization.192

3.1. Pre-processing193

A significant amount of pre-processing takes place prior of parsing. The minimum and194

essential is to first tidy up the input; that is, clear empty lines and spaces, as well as reserved195

(by the platform) keywords that the user can include but do not play any role in functional196

9
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Figure 3: The overall flow of the implementation. From user input to solving the optimization problem or simply exporting the equivalent Pyomo

model file.
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parsing (such as the \quad command). The platform also supports the use of Greek letters.197

For instance if a parameter is declared as α the platform identifies the symbol, removes198

the backslash and expects to find alpha in the data-file. This takes place also in the pre-199

processing stage.200

The user can also opt-out selectively the constraints by putting regular comments in201

LATEX, with the insertion of the percentage symbol (%) in the beginning of each expression.202

Once done, we attempt to simplify some types of mathematical expressions in order to be203

able to better process them later on. More specifically, we have two main functions that204

handle fractions and common factor (distributive expressions) simplifications. For example:205

AiBj

Di
is then converted to: (AiBj)/Di206

and207

β(α + 1) is converted as expected to: βα + β208

When handling fractions, the user can employ the frac environment to generate them; how-209

ever it is easier for the parser to process the analytical form. The same applies with the210

distributive form of multiplications. While it is more elegant for the eye and serves a com-211

pact representation, it is easier for the parser to extract the mathematical relationships from212

the analytical form.213

This keeps the basic component identification functions intact, since their input is trans-214

formed first to the acceptable analytical format. Instead of transforming the parsing func-215

tions, we transform the input in the acceptable format. However, the user does not lose216

neither functionality nor flexibility, as this takes place in the background. To put it simply,217

either the user inputs the analytic form of an expression or the compact, the parser is still218

able to function correctly.219

To frame the capabilities of the parser, we will now describe how the user can define220

optimization models in the platform with a given example and the successful parsing to221

Pyomo. The parser first attempts to split the model into its three major distinct parts:222

• the objective function223

11
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• the sets of constraints224

• the types of the variables defined225

These three parts are in a way independent but interconnected as well.226

3.2. Processing Variables227

The parser first attempts to read the variables and their respective domain space (type).228

The platform is case sensitive since it is based on Pyomo. The processing is done using string229

manipulation functions, therefore the use of regular expressions in Python was essential and230

effective.231

Reasonably, the focus was on consistency and reliability, rather computational perfor-232

mance mainly due to the lightweight workload of the processing demands in general. In233

order to do that, the parser uses keywords as identifiers while scanning from the top to the234

bottom of the manually curated .tex file which contains the abstract model in LATEX. For235

the three respective different parts mentioned earlier, the corresponding identifiers are:236

1. Objective function: {minimize, maximize}237

2. Sets of constraints: {\leq, \geq, =}238

3. Variables and their types: {\mathbb , {0, 1}}239

This helps separate the processing into sections. Each section is analyzed and passes the240

information in Pyomo syntax in the .py output model file. Variable types can appear in the241

following way:242

• \in \mathbb R243

for Real numbers (∈ R)244

• \in \mathbb R_+245

for non-negative Real numbers (∈ R+)246

• \in \mathbb R_{*}^{+}247

for positive Real numbers (∈ R+
∗ )248
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• \in \{0,1\}249

for binary variables (∈ {0, 1})250

• \in \mathbb Z251

for integers (∈ Z)252

• \in \mathbb Z_+253

for non-negative integers (∈ Z+)254

• \in \mathbb Z_{*}^{+}255

for positive integers (∈ Z+
∗ )256

In order to avoid confusion between lowercase and uppercase, the identifiers are converted257

to uppercase prior of comparison. Upon locating these keywords, the parser separates the258

processing and starts calling the corresponding functions. Once the variables and their259

types are processed (expected to be found at the bottom of the mathematical definition of260

the model), the parser then creates a list of strings for the names of the variables. This261

is one of the crucial structures of the parser and utilized alongside the entire run-time of262

the conversion process. A list of the same length, which holds the types of each respective263

variable, is also created. The platform in general uses Python lists to store information about264

variables, index sets, parameters, scalars etc.265

3.3. Decomposing constraints and objective function expressions266

Our approach for understanding the inter-mathematical relationships between the vari-267

ables and the parameters relied on exploiting the fundamental characteristics of Linear Pro-268

gramming:269

• Proportionality270

• Additivity271

• Divisibility272
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These mathematical relationships can help us understand the structure of the expressions273

and how to decompose them. By decomposition we define the fragmentation of each mathe-274

matical expression at each line of the .tex input model file into the corresponding variables,275

parameters, summations etc. so as we can process the given information accordingly. A276

simple graphical example is given in Figure 4.277

Figure 4: A simple constraint having its components (partially) decomposed and therefore identified; sum-

mations, operators, scalars and numerical quantities.

The decomposition with the regular expressions is naturally done via the strings of the278

possible operators found, that is: addition, subtraction, division (+,−, /), since the asterisk279

to denote multiplication (∗ or ·) is usually omitted in the way we describe the mathematical280

expressions (e.g. we write ax to describe coefficient a being multiplied by variable x). In281

some cases however it is imperative to use the asterisk to decompose a multiplication. For282

example, say Ds is a parameter and s is also a variable in the same model. There is283

no possible way to tell whether the expression Ds actually means D*s or if it is about284

a new parameter altogether, since the parameters are not explicitly defined in the model285

definition (as in AMLs). Adding to that the fact that for the scalars there is no associated286
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underscore character to identify the parameter as those are not associated with index sets,287

the task is even more challenging. Therefore, we should write D*s if D is a scalar. As for288

parameters with index sets, for example Dsisi causes no confusion for the parser because the289

decomposition based on the underscore character clearly reveals two separate components.290

In this way, the platform also identifies new parameters. This means that since we know291

for instance that s is a variable but Ds is not we can dynamically identify Ds on the fly292

(as we scan the current constraint) as being a parameter which is evidently multiplied with293

variable s, both having index set i associated with them. However, we need to pay attention294

on components appearing iteratively in different or in the same sets of constraints; did we295

have the component already appearing previously in the model again? In that case we do296

not have to declare it again in the Pyomo model as a new quantity, as that would cause a297

modeling error.298

By declaration we mean the real-time execution of a Python command that creates the299

associated terms inside the Pyomo abstract objected-oriented (OO) model. For instance if300

a set i is identified, the string model.i = Set(dimen = 1) is first written inside the text301

version of the Pyomo model file, and then on-the-fly executed independently inside the302

already parsing Python function using the exec command. The execution commands run in303

a sequential manner. All the different possible cases of relationships between parameters and304

variables are dynamically identified, and the parser keeps track of the local (per constraint)305

and global (per model) list of parameters identified while scanning the model in dynamically306

growing lists.307

Dynamic identification of the parameters and index sets is one of the elegant features of308

the platform, since in most Algebraic Modeling Languages (AMLs) the user explicitly defines309

the model parameters one-by-one. In our case, this is done in an intelligent automated310

manner. Another important aspect of the decomposition process is the identification of the311

constraint type (<=,=, >=), since the position of the operator is crucial to separate the312

left and the right hand side of the constraint. This is handled by an independent function.313

Decomposition also helps identify Quadratic terms. By automatic conversion of the caret314

symbol to ∗∗ (as this is one of the ways to denote power of a variable in Pyomo language)315

the split function carefully transfers this information intact to the Pyomo model.316

15

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science



3.4. Summations and conditional indexing317

Summation terms need to be enclosed inside parentheses (· · · ), even with a single com-318

ponent. This accelerates identification of the summation terms with clarity and consistency.319

Summations are in a way very different than processing a simplified mathematical expression320

in the sense that we impose restrictions on how a summation can be used. First of all, the321

corresponding function to process summations tries to identify how many summation expres-322

sions exist in each constraint at a time. Their respective indexing expressions are extracted323

and then sent back to the index identification functions to be processed. The assignment324

of conditional indexing with the corresponding summation is carefully managed. Then, the325

summation commands for the Pyomo model file are gradually built. Summations can be326

expressed in the following form, and two different fields can be utilized to exploit conditional327

indexing (upper and lower brackets):328

329

\sum\ l i m i t s {p : X {n , p} = 1}ˆ{}(1− sb {p , k})330
331

which then compiles to:
∑

p:Xn,p=1

(1− sbp,k)332

This means that the summation will be executed for all values of p, (that is for p = 1 : |p|)333

but only whenXn,p = 1 at the same time. If we want to use multiple and stacked summations334

(double, triple etc.) we can express them in the same way by adding the indexes for which335

the summation will be generated, as for example:336

337

\sum\ l i m i t s { i , j }ˆ{}(X { i , j })338
339

which then compiles to:
∑

i,j

(Xi,j)340

341

and will run for the full cardinality of sets i, j. Dynamic (sparse) sets imposed on constraints342

can be expressed as:343

344

X { i , j } = Y { i , j } \ f o r a l l ( i , j ) \ in C \\345
346

which then compiles to: Xi,j = Yi,j ∀(i, j) ∈ C347

348

This means that the constraint is being generated only for those values of (i, j) which belong349
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to the dynamic set C. In order to achieve proper and precise processing of summations350

and conditional indexing, we have built two separate functions assigned for the respective351

tasks. Since specific conditional indexing schemes can take place both for the generation352

of an entire constraint or just simply for a summation inside a constraint, two different353

sub-functions process this portion of information. This is done using the \forall command354

at the end of each constraint, which changes how the indexes are being generated for the355

vertical expansion of the constraints from a specific index set. Concerning summations it is356

done with the bottom bracket information for horizontal expansion, as we previously saw357

for instance with p : Xn,p = 1.358

A series of challenges arise when processing summations. For instance, which components359

are inside a summation symbol? A variable that might appear in two different summations360

at the same constraint can cause confusion. Thus, using a binary list for the full length361

of variables and parameters present in a constraint we identify the terms which belong to362

each specific summation. This binary list gets re-initialized for each different summation363

expression. From the lower bracket of each summation symbol, the parser is expecting to364

understand the indexes for which the summation is being generated. This is done by either365

simply stating the indexes in a plain way (for instance a, b or if a more complex expression366

is used, the for-loop indexes for the summations are found before the colon symbol (:).367

3.5. Constraint indexing368

At the end of each constraint, the parser identifies the “∀”’ (\forall) symbol which then369

helps understand for which indexes the constraints are being sequentially generated (vertical370

expansion). For instance ∀(i, j) ∈ C makes sure that the constraint is not generated for all371

combinations of index sets i, j, but only the ones appearing in the sparse set C. The sparse372

sets are being registered also on the fly, if found either inside summation indexing brackets373

or in the constraint general indexing (after the ∀ symbol) by using the keywords \in, \notin.374

The simplest form of constraint indexing is for instance:375

∑

j:i 6=j

(xi,j) = 1 ∀i,376

where the constraint is vertically expanding for all elements of set i and the summation is377

running for all those values of set j such that i is not equal to j. More advanced cases of378

17

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science



constraint conditional indexing are also identified, as long as each expression is separated379

with the previous one by using a comma. For example in:380

∀i < |i|, j ≥ i+ 1381

we see each different expression separated so the parser can process the corresponding in-382

dexing. Three different functions handle identification on constraint- level and the input for383

the general function that combines these three, accepts as input the whole expression. We384

process each component (split by commas) iteratively by these three functions:385

1. to identify left part (before the operator/reserved keyword/command)386

2. the operator and387

3. the right-hand part388

For example, in i < |i|, the left part is set i, the operator is < and the right-hand part is the389

cardinality of set i. In this way, by adding a new operator in the acceptable operators list390

inside the code, we allow expansion of supported expressions in a straightforward manner.391

4. An illustrative parsing example392

Let us now follow the sequential steps that the parser takes to convert a simple example.393

Consider the well-known transportation problem:394

minimize
∑

i,j

(ci,jxi,j)

subject to:
∑

j

(xi,j) ≤ ai ∀i

∑

i

(xi,j) ≥ bj ∀j

x ∈ R+

We will now provide in-depth analysis of how each of the main three parts in the model can395

be processed.396
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4.1. Variables397

The parser first attempts to locate the line of the .tex model file that contains the398

variable symbols and their respective domains. This is done by trying to identify any of399

the previously presented reserved keywords specifically for this section. The parser reaches400

the bottom line by identifying the keyword mathbbR + in this case. Commas can separate401

variables belonging to the same domain, and the corresponding parsing function splits the402

collections of variables of the same domain and processes them separately.403

In this case, the parser identifies the domain and then rewinds back inside the string404

expression to find the variable symbols. It finds no commas, thus we collect only one variable405

with the symbol x. The platform then builds two Python lists with the name of the variables406

found and their respective types.407

4.2. Objective function408

The parser then reads the optimization sense (by locating the objective function expres-409

sion using the keywords, in this case minimize) and tries to identify any involved variables410

in the objective function. In a different scenario, where not all of the model variables are411

present in the objective function, a routine identifies one-by-one all the remaining variables412

and their associated index sets in the block of the given constraint sets.413

The parser first attempts to locate any summation symbols. Since this is successful,414

the contained expression is extracted as c{i,j}x{i,j}, by locating the parentheses bounds ().415

In case of multiple summations, or multiple expressions inside the parentheses, we process416

them separately. The bounds of the summation symbol (the lower and upper brackets)417

respectively will be analysed separately. In this case, the upper one is empty, so the lower418

one contains all the indexes for which the summation has to scale. Separated by commas, a419

simple extraction gives i, j to be used for the Pyomo for-loop in the expression. There is no420

colon identified inside the lower bracket of the summation, thus no further identification of421

conditional indexing is required.422

A split function is then applied on the extracted mathematical expression c {i, j}x {i, j}423

to begin identification of the involved terms. Since there are no operators (∗,+,−, /) we424

have a list containing only one item; the combined expression. It follows that the underscore425
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characters are used to frame the names of the respective components. It is easy to split on426

these characters and then create a list to store the pairs of the indexes for each component.427

Thus, a sub-routine detects the case of having more than just one term in the summation-428

extracted expression. In this example, c is automatically identified as a parameter because429

of its associated index set which was identified with the underscore character and since it430

does not belong to the list of variables.431

The global list of parameters is then updated by adding c, as well as the parameters432

for the current constraint/objective expression. This helps us clarify which parameters are433

present in each constraint as well as the set of parameters (unique) for the model thus far,434

as scanning goes on. Once the parameter c and variable x are identified and registered435

with their respective index sets, we proceed to read the constraint sets. The parser creates436

expressions as the ones shown below for this kind of operations:437

438

model . i = Set ( dimen=1) \\439

model . j = Set ( dimen=1) \\440

model . c = Param(model . i , model . j , i n i t i a l i z e = 0) \\441

model . x = Var (model . i , model . j , domain=NonNegativeReals ) \\442
443

Since the objective function summation symbol was correctly identified with the respective444

indexes, the following code is generated and executed:445

446

447

de f ob j e xp r e s s i on (model ) :448

model .F = sum(model . c [ i , j ]∗model . x [ i , j ] f o r i in model . i f o r j in model . j )449

r e turn model .F450

model .OBJ = Object ive ( r u l e=ob j exp r e s s i on , s ense = minimize )451
452

4.3. Constraints453

Since the constraints sets are very similar, for shortness we will only analyze the first one. The454

parser first locates the constraint type by finding either of the following operators ≤,≥,=.455

It then splits the constraint in two parts, left and right across this operator. This is done to456

carefully identify the position of the constraint type operator for placement into the Pyomo457

constraint expression later on.458
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The first component the parser gives is the terms identified raw in the expression ([′x′
i,j,

′ a′i]).459

Parameter a is identified on the fly and since x is already registered as a variable and the460

parser proceeds to only register the new parameter by generating the following Pyomo ex-461

pressions:462

463

model . a = Param(model . i , i n i t i a l i z e = 0)464
465

The platform successfully identifies which terms belong to the summation and which do not466

and separates them carefully. Eventually the ∀ symbol gives the list of indexes for which the467

constraints are being generated. This portion of information in the structure of a Pyomo468

constraint definition goes in replacing X in the following piece of code:469

470

471

de f a xb c on s t r a i n t r u l e 1 (model ,X) :472
473

and the full resulting function is:474

475

476

de f a xb c on s t r a i n t r u l e 1 (model , i ) :477

model . C 1= sum(model . x [ i , j ] f o r j in model . j ) <= model . a [ i ]478

r e turn model . C 1479

model . AxbConstraint 1=Constra int (model . i , r u l e=axb c on s t r a i n t r u l e 1 )480
481

5. Discussion482

Developing a parser that would be able to understand almost every different way of483

writing mathematical models using LATEX is nearly impossible; however, even by framing484

the way the user could write down the models, there are some challenges to overcome.485

For instance, the naming policy for the variables and parameters. One would assume that486

these would cause no problems but usually this happens because even in formal modeling487

languages, the user states the names and the types of every component of the problem.488

Starting from the sense of the objective function, to the names and the types of the variables489

and parameters as well as their respective sizes and the names of the index sets, everything490

is explicitly defined. This is not the case though in this platform; the parser recognizes the491

21

PeerJ Comput. Sci. reviewing PDF | (CS-2018:05:28593:0:2:NEW 3 Jun 2018)

Manuscript to be reviewedComputer Science



parameters and index sets with no prior given information. This in turn imposes trade-offs492

in the way we write the mathematical notation. For instance multiple index sets have to be493

separated by commas as in xi,j instead of writing xij.494

By scanning a constraint, the parser quickly identifies as mentioned the associated vari-495

ables. In many cases parameters and variables might have multiple occurrences in the same496

constraint. This creates a challenging environment to locate the relationships of the param-497

eters and the variables since they appear in multiple locations inside the string expressions498

and in different ways. On top of this, the name of a parameter can cause identification prob-499

lems because it might be a sub/super set of the name of another parameter, e.g. parameter500

AB, and parameter ABC. Therefore naming conflicts are carefully resolved by the platform501

by meticulously identifying the exact location and occurrences of each term.502

Challenges also arise in locating which of the terms appearing in a constraint belong503

to summations, and to which summations; especially when items have multiple occurrences504

inside a constraint, there needs to be a unique identification so as to include a parameter505

(or a variable) inside a specific summation or not. We addressed this with the previously506

introduced binary lists. Then for each of those summation symbols, the items activated507

(1) are included in the summation or not (0) and the list is generated for each different508

summation within the expression.509

Finally, it is worth mentioning that the amount of lines/characters to represent a model510

in LATEXin comparison with the equivalent model in Pyomo is substantially smaller. In this511

respect, the platform accelerates the modeling development process.512

6. Conclusions513

We presented a platform for rapid model generation using LATEXas the input language514

for mathematical programming, starting with the classes of LP, MILP and MIQP. The plat-515

form is based on Python and parses the input to Pyomo to successfully solve the underlying516

optimization problems. It uses a simple GUI to facilitate model and data input based on517

Django as the web-framework. The user can exploit locally installed solvers or redirect to518

NEOS server. This prototype platform delivers transparency and clarity, speedup of the519

model design and development process (by significantly reducing the required characters to520
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type the input models) and abstracts the syntax from programming languages and AMLs.521

It therefore delivers reproducibility and the ability to replicate scientific work in an effective522

manner from an audience not necessarily versed in coding. Future work includes full ex-523

pansion of the platform’s capabilities to support nonlinear terms as well as differential and524

algebraic equations.525
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