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ABSTRACT
As a result of significant advancements in living conditions, individuals have redirected
their attention towards physical exercise. Skiing, as a widely popular sport, necessi-
tates the real-time maintenance of correct posture during movement. Therefore, we
present a dynamic skiing motion capture and human posture detection model that
leverages wireless device tracking. Primarily, personnel tracking is enabled through
the construction of service base stations and the utilization of wireless device tracking
technology. Subsequently, a human posture detection model is formulated in the form
of human posture key points, employing the image information of each frame obtained
via wireless devices. Finally, we introduce a spatio-temporal Transformer structure that
facilitates the detection and recognition of human posture in consecutive frames. Our
results demonstrate that our approach can precisely locate and track the position of
skiing personnel. Compared to the latest Blip and Conformer methods, our technique
yields F values that surpass them by 1.20% and 4.51%, respectively. Moreover, our
model can achieve convergent model parameters and accomplish training objectives
more efficiently, thus enabling posture detection and dynamic capture of skiing
personnel via image and video information.

Subjects Computational Biology, Artificial Intelligence, Computer Vision
Keywords Wireless device tracking, Ski motion capture, Human posture detection,
Spatio-temporal strategy

INTRODUCTION
With the aid of advanced technology, individuals have become increasingly health-
conscious, leading to a rise in outdoor sports participation. Among these activities, skiing
holds a special place in the hearts of many due to its challenging and exhilarating nature.
Skiing serves as an excellent test of human coordination and posture balance. Along with
ensuring an adequate amount of exercise, real-time monitoring of the human body’s
posture during exercise is essential to guarantee life safety. As such, we have directed our
focus towards motion capture of skiing and human posture, and conducted research on
safe skiing using wireless device tracking.

Wireless device tracking is a widely used technology in sports, with a primary focus
on two aspects: sports monitoring and auxiliary training. It enables real-time tracking of
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people’s motion data, including position, speed, acceleration, and attitude, allowing for
analysis and monitoring of the motion state. This enables individuals to better understand
their motion state and optimize their motion plan (Seifeldin, El-Keyi & Youssef, 2011;
Zeng et al., 2022; Xingyu, Lijun & Jiaquan, 2022). Moreover, wireless device tracking can
track people’s physiological indicators such as heart rate, respiration, and more during
exercise. By combining motion data analysis, it can aid in the prevention of sports injuries
and promote better health. In addition, incorporating virtual reality technology, wireless
device tracking can facilitate intelligent auxiliary training, providing the public with a more
intuitive and enriched sports experience and feedback.

By utilizing wireless device tracking technology, it has become viable to dynamically
capture and detect skiers’ posture in real-time. Employing a plethora of technical methods
such as sensors, cameras, computer vision, and deep learning models, the dynamic capture
of skiing performance can effectively discern and evaluate critical indicators, such as
posture, position, speed, acceleration, and other pertinent metrics during the skiing
process. Consequently, this facilitates the monitoring, analysis, and optimization of skiing
athletes’ motion states and performances. With dynamic capture, the movement state and
performance of skiers can be comprehended effectively, and valuable data feedback can
be provided to coaches to improve athletes’ training plans and elevate their performance
levels (Yi et al., 2022). Real-time human posture detection refers to the process of detecting
and analyzing the human body in video streams to acquire position information of crucial
points of the human body under various postures, such as the coordinates of the head,
shoulder, elbow, knee, and other crucial points. Through this, the posture detection and
analysis of the human body can be accomplished. Typically, real-time human posture
detection is implemented by means of deep learning models. With the assistance of
training data, these models can rapidly and accurately identify and track the crucial points
of the human body in real-time video streams, thus enabling the real-time detection and
analysis of human posture. Real-time human pose detection can be applied in various
fields, including sports training, health management, and virtual reality, to offer people a
more immersive, intuitive, and data-driven interactive experience (Bressel, Smith & Nash,
2022). Through the wireless collection of skiers’ information during skiing, we can obtain
their sports status and human posture in real-time (Li et al., 2022b).

Therefore, this article aims to ensure the safety of individuals while skiing, guide
beginners to adopt correct skiing postures, and monitor people’s skiing status in real-time.
To this end, we propose a dynamic skiing motion capture and human posture detection
model based on wireless device tracking, which serves to expand the information data of
skiing and ensure skiing safety. In order to highlight the human posture in the image, we
propose a structure of body key node and propose a feature attention method based on
network fusion. Further, we propose a spatio-temporal Transformer structure, which is
suitable for ski sports and integrates the detection module of key nodes described in the
former.

The main contributions are as follows:
1. We propose a construction method of tracking base for people based on wireless to

help mangers locate the position of skiers.
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2. We extract spatial and semantic features of the image to enhance the region of skiers,
which can help model understand the pose.

3. We propose a method to construct spatio-temporal for Transformer for the dynamic
capture of skiing motion.

RELATED WORKS
Computer vision-based human motion capture and human pose
detection
Motion capture systems based on machine vision utilize image processing to extract
marker-free human motion information from images of the human body. In computer
vision, the main goal of human motion capture is to extract spatial feature information
from a single frame image or video sequence taken from one or multiple unsynchronized
or synchronized camera views, and subsequently recover or record information related to
human motion and posture.

Image-based tracking is one of the most commonly used methods for visual human pose
capture. Optical tracking methods are typically employed with the help of a camera and
computer. A camera captures a video image of human motion, and computer algorithms
then analyze the motion trajectory of the main joint points of the human body using
image recognition algorithms, resulting in the recognition of the human posture. Toshev
& Szegedy (2014) proposed the DeepPose model, which formulates the pose estimation
problem as a human joint point regression task and uses a deep convolutional neural
network for global inference. Ouyang, Xiao & Wang (2014) replaced support vector
machines with deep neural networks and performed nonlinear inference on the body
part information calculated by the hybrid part model, resulting in superior results. Chu
et al., (2016) incorporated prior knowledge about the spatial relative positions between
human joints to introduce geometric transformation kernels and a bidirectional treemodel,
which enabled the training of a convolutional neural network to learn the dependencies
between human joints, thereby improving human pose estimation results. Ju & Kml (2018)
employed a 2D human estimation method based on a convolutional neural network to
obtain the 2D joint point heat map of the target human body. They then trained a 2D to 3D
lifting network to obtain the 3D estimation results of the target human body. Tome, Russell
& Agapito (2017) proposed a joint task framework for 2D human joint point estimation
and 3D human motion reconstruction that combines the prior knowledge of pose in 3D
using a multi-stage convolutional neural network model. Pavlakos et al. (2017) created a
fine discrete 3D space surrounding the target human body and trained a convolutional
neural network to learn the likelihood that each target human joint point is located at a
specific 3D space point.

Wireless device tracking technology
The methodology utilized to estimate the location of a target wireless device is founded
on measuring the signal strength amidst neighboring wireless devices. This enables the
tracking of the device, although the accuracy of this method is hindered by environmental
interference that can hamper the propagation of the wireless signal. To tackle the issue
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Figure 1 The policy of wireless device tracking.
Full-size DOI: 10.7717/peerjcs.1618/fig-1

of time-varying environments, Wang et al. (2012) proposed a resilient scheme that leans
on the difference method. Since environmental changes usually transpire gradually, the
impact of measurements taken at adjacent moments is often negligible. By computing
the difference of adjacent moments, it is feasible to determine whether a link is obscured
by the target, thereby alleviating some of the challenges associated with time-varying
interference such as temperature and humidity. To address the issue of burst noise,
Givehchian et al. (2022) presented a solution. The surging popularity of wireless networks
has led to congestion in the limited frequency band, creating difficulties in the positioning
and tracking of devices. Kaltiokallio, Bocca & Patwari (2012) have put forth a method to
overcome this problem of device channel selection. They have illustrated that permitting
the device to operate in a channel with high interference can impede the accuracy of device
tracking. Therefore, they have proposed evaluating the quality of each channel in the offline
state, selecting the channel with less interference, and having the device operate on this
channel in the online phase (Mobsite et al., 2023;Mei et al., 2023; Liu et al., 2022;Ma et al.,
2022). While this approach mitigates co-channel interference to some extent, there still
exists the possibility of interference transpiring in the device’s current operating channel
during online operation (Gulati et al., 2009; Ye et al., 2021).

DYNAMIC SKIING MOTION CAPTURE AND HUMAN
POSTURE DETECTION MODEL BASED ON WIRELESS
DEVICE TRACKING
To accurately track the movement of skiers, we present a scheme for constructing a
personnel tracking base station based on wireless devices, as depicted in Fig. 1.

In the ski scene, multi-directional ranging positioning is formed by constructing
multiple base stations and a remote-control terminal. The skier simultaneously calculates
the distance between it andmultiple base stations, and according to the principle of wireless
device tracking, the position of the skier can be directly calculated. Then, the remote-control
terminal is used to point the camera in the scene at the skier, which provides the hardware
and network basis for the subsequent detection and analysis of ski attitude. The principle of
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wireless equipment tracking involves receiving the radio signal emitted by the equipment
and employing certain algorithms to compute its position.

Considering the operating cost and construction cost, we built multiple signal base
stations to realize the location of skiers. First, we determine the rough location of the
person by receiving signals from at least three base stations or receivers, where the base
station or receiver measures the arrival time of the device’s signal with high precision clock
and hardware support. Then, we use the strength of the signal from the receiving device
to pinpoint the location of the device based on RSSI technology. Signal strength is usually
related to the distance between the device and the receiver. By collecting signal strength
from different locations, a model of signal strength can be built to estimate the location of
the device. Finally, we can further pinpoint the skier’s location by measuring the time it
takes the device’s signal to reach different base stations or receivers.

By employing the above three methods, we can effortlessly track the dynamic position
of skiing personnel, thereby enabling the mobilization of video sensors for real-time
monitoring of skiing personnel to ensure their personal safety.

Human posture detection model
The ski attitude detection is different from the ordinary image detection task. The detection
of ski attitude has very high similarity within class, and the detection area is irregular.
Considering the above reasons, we quantified the human posture into several fixed nodes.
In order to highlight the key points of the human body, we need to enhance the features of
the image. To achieve the precise capture of skiing movements, detecting human posture
in the image is of paramount importance, as illustrated in Fig. 2, in order to assess the
skier’s form during their performance. Additionally, we demonstrate the human body’s
key points in Fig. 3.

To begin with, we employ the Mosica data augmentation network to augment the
input image data using random scaling, cropping, and arrangement. We should explain
that the use of enhancements here is to enrich the information in an image. By fusing the
information in the four graphs into one, the detection of small targets can be realized, which
is exactly suitable for the characteristics of the key nodes in human body. By enriching
the dataset, the network’s training speed is greatly improved, while also reducing the
model’s memory requirements. The Focus structure is then utilized to perform feature
transformation on the input image, resulting in a 32-bit feature map that is passed to the
backbone network.

The Focus module splits the image into multiple pieces before entering the backbone,
similar to adjacent pooling in an image, resulting in four images of similar length with no
information loss. The feature channel is then extended by four times, and the resulting
new image is subjected to convolution.

The underlying network architecture comprises of CSPNet and FPN structures, which
extract features from both spatial and semantic information of the image.With CSPNet and
FPN, we can enhance the area of people’s key nodes and make themmore prominent in the
image.Meanwhile, we can solve the problem of different dimensions and coincidence of key
nodes in the image. In addition, FPN and CSPNet have stability for different sizes of poses
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Figure 2 Overview of our human posture detection model.
Full-size DOI: 10.7717/peerjcs.1618/fig-2

Figure 3 The settings of human posture detection.
Full-size DOI: 10.7717/peerjcs.1618/fig-3

in the image. This leads to the generation of three-dimensional feature layers that facilitate
candidate box prediction, enabling the detection of human posture and obtaining key
point images of the human body. Upon obtaining the key point posture image, we devised
an excellent posture classification algorithm based on the VGG16 network. Following
image transformation, the input image undergoes 13 convolutional layers and three fully
connected layers. The first two 64 × 64 convolutions are succeeded by two 128 × 128
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Figure 4 Ski body posture classification structure.
Full-size DOI: 10.7717/peerjcs.1618/fig-4
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Figure 5 Ski dynamic capture method based on time-space Transformer.
Full-size DOI: 10.7717/peerjcs.1618/fig-5

convolutions, followed by three 256 × 256 convolutions and two 512 convolutions, each
module concluded by a pooling operation. Finally, after three cycles of full connection
and softmax activation function, the feature classification results for the input image are
generated, leading to the realization of excellent skiing human posture judgment. Refer to
Fig. 4 for an illustrative overview of the process.

Ski motion dynamic capture method
By analyzing a single frame image, we can classify a human’s skiing posture, evaluating its
strengths and weaknesses at that particular moment. To capture the real-time dynamics
of skiing motion, we propose a method for dynamic capture of skiing motion based on
spatio-temporal Transformer, as illustrated in Fig. 5. Considering that the object of our
study is continuous video frames collected by wireless tracking equipment, we propose this
method. In addition, we combine the characteristics of ski sports in the model and embed
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the space–time mechanism for the detection of key nodes for human body to realize the
continuous monitoring of ski sports.

In addition, we need to explain why we don’t use LSTM and Transformer. LSTM and
Transformer are targeted at serialized tasks and the dynamic capture of skiing exactly has a
certain sequence. However, motion capture is a long sequence task. LSTM and Transformer
are not usually used to handle long sequence tasks due to hardware constraints. In order to
satisfy the property of long sequence and have a certain accumulation memory forgetting
mechanism, we propose a spatio-temporal model suitable for skiing dynamic capture.

The fundamental structure of spatio-temporal Transformer is that of multi-head self-
attention, wherein the key component is self-attention. The principle of this component is
demonstrated in the following formula:

ẑi=MSA(LN(zi−1))+zi−1 (1)

zi=MLP(LN(ẑi))+ ẑi (2)

Attention(Q,K,V)= softmax
(
QKT
√
D
+B

)
V (3)

where Q, K and V denote the Query, Key and Value matrices, respectively. The LN is the
LayerNormlization and MLP refers to Multilayer Perceptron. Besides, z presents the image
features.

This article adopts a direct classification and regression method for feature vector
analysis, augmentedwith the confidence branch update template to enhance the algorithm’s
robustness. Since dynamic ski motion capture is a continuous object, it is necessary
to discard long-term accumulated memory information for the model. Therefore, we
embedded the confidence branch update template to make the model forget long-term
accumulated memory information and enhance the connection between adjacent frames,
and ensure the accurate capture of skiing action. The classification and regression branches
comprise of a three-layer perceptron and ReLU function. The classification and regression
branches predict each feature vector’s vector output by the Transformer feature fusion
module, obtaining foreground and background classification vectors and bounding box
regression vectors.

During tracking, clipped templates become unreliable in cases of object occlusion, loss,
and scale changes, so templates need not be updated under extreme interference factors.
This article proposes dynamic template updates only when the search area contains targets.
It adopts a parallel confidence branch as a model update strategy based on classification
and regression branches. The confidence branch includes a three-layer perceptron and
a Sigmoid function Transformer feature fusion module. The vector obtained by the
confidence branch serves to obtain the confidence score.

If the confidence score is greater than the set threshold γ , the target in the current search
area is trimmed as a dynamic template frame. Otherwise, the template does not need to
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be updated. In the inference phase, the initial template and search area of the first frame
are trimmed and sent to the tracking network to obtain the bounding box results and
confidence scores.

Y=

{
True if score>γ and frame= τ
False otherwise

. (4)

when the number of running frames reaches the update interval τ and the confidence score
is greater than γ , the dynamic template will be updated by the network.

EXPERIMENT AND ANALYSIS
Dataset and implement details
We have evaluated the effectiveness of our proposed method using the Ski 2DPose Dataset
(https://www.epfl.ch/labs/cvlab/data/ski-2dpose-dataset/). The dataset consists of videos
divided into 147 training sequences and 11 validation sequences of varying lengths, where
each segment represents a continuous motion.We split the videos at intervals ranging from
0.3 s to 10 s because we need to consider the diversity and stability of the data to obtain
more training, testing, and validation data to demonstrate the performance of our method.
Through such a frame extraction method, we can ensure the uniqueness of model training,
and can achieve the test results of other excellent methods on the data set. In addition, the
number of each pose is determined by the difficulty. The dataset features 1,982 images of
amateur to semi-professional alpine ski racers, where 24 joints, including skis and poles,
were hand-annotated.

The experiments were carried out on a device equipped with an i5-12500 CPU and an
RTX 3080 GPU, running on the Centos operating system, and implemented under the
PyTorch framework. The model was trained for a total of 200 rounds, with a batch size of
128 and an initial learning rate of 0.001. The optimizer used for the model was SGD, with a
momentum value of 0.9. and the weight decay term is set to 1×10−4. When achieving the
frames from the wireless device, we will never process the resolution of images. Because
of the different camera resolutions, we did not change the image size when processing
the image of the model. At the beginning of the model design, we take into account the
differences in actual application scenarios, and the resolution of the image will not affect
our deep learning model, and the accuracy will not fluctuate. In addition, we apply the
Mosica data augmentation for the all methods in our article, including the comparison of
other methods, to ensure the fairness in training and testing.

To evaluate themodel performance, we use precision, recall, and F-measure as evaluation
criteria, which are calculated as follows:

Precision=
TP

TP+FP
(5)

Recall=
TP

TP+FN
(6)

F=
2Precision ·Recall
Precision+Recall

. (7)

Wu et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1618 9/16

https://peerj.com
https://www.epfl.ch/labs/cvlab/data/ski-2dpose-dataset/
http://dx.doi.org/10.7717/peerj-cs.1618


Table 1 performance of our method and other methods.

Precision Recall F value

CNN 72.90 73.69 73.32
LSTM 70.98 67.36 69.47
CNN-LSTM 75.40 76.78 76.89
CNN-Transformer 78.45 77.12 78.58
SwinTransformer 78.59 79.54 80.02
Vit 79.45 78.23 79.21
Deit 78.43 78.23 78.53
Blip 80.32 79.32 80.78
Conformer 78.23 77.49 77.47
Ours 80.23 80.90 81.98

Results and discussion
We conducted experiments on the Ski 2DPose Dataset to evaluate the effectiveness of
our dynamic ski motion capture and human pose detection model based on wireless
device tracking. In addition, we also compared our method with several models that are
capable of handling multimodal features, such as CNN (Kattenborn et al., 2021), LSTM (Yu
et al., 2019), CNN-LSTM (Livieris, Pintelas & Pintelas, 2020), CNN-Transformer (Li,
Chen & Zhang, 2020), SwinTransformer (Liu et al., 2021), Vit (Dosovitskiy et al., 2020),
Deit (Touvron et al., 2021), Blip (Li et al., 2022a), and Conformer (Samarakoon & Fung,
2023). Table 1 summarizes the comparison results, and our method achieves the best
performance, ranking first in precision, recall, and F-value with scores of 80.23%, 80.90%,
and 81.98%, respectively. Compared with CNN-LSTM and CNN-Transformer, our
method improves F-value by 5.09% and 3.40%, respectively. Furthermore, our method
outperforms the latest Blip and Conformer method in terms of F-measure by 2.54% and
4.51%, respectively. Although our model has a large number of parameters and requires a
relatively long inference time that can achieve the 9.77 of FPS, we consider that CNN-based
models may lose the details of multimodal features, while LSTM and Transformer-based
models may lose some global features and have inaccurate classification. Our model
balances sensitivity and feature preservation while ensuring accuracy by appropriately
cutting the structure of the model.

We present the convergence analysis of our novel dynamic ski motion capture and
human posture detection model, in comparison with other established methods, during
the training phase, as illustrated in Fig. 6. Our method, which is based on wireless device
tracking, exhibits rapid convergence of the model parameters during training, effectively
accomplishing the training objective. In addition, we showcase the humanposture detection
results of our approach for consecutive skiingmotion frames, providing a visually appealing
representation, as depicted in Fig. 7. Our method excels in dynamically capturing skiing
motion and accurately reconstructing the skiing personnel’s body posture, ensuring their
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Figure 6 The training of our method and other methods.
Full-size DOI: 10.7717/peerjcs.1618/fig-6

Table 2 Test of our application.

Volunteer 1 2 3 4 5 6 7 8 9 10 Our model

Action 1 # × # # × # × # × # #

Action 2 # × × × # × × # × × ×

Action 3 # × # # × # # × # × ×

Action 4 # × × × # # # # × # #

safety. However, certain skiing movements entail inherent risks that may lead to the
unavailability of some human body key points, as demonstrated in Fig. 7 (3).

Application test
To verify the practicality of our proposed system, we collaborated with eleven highly
experienced ski coaches to conduct a real-world evaluation of our dynamic ski motion
capture and human posture detection model, which is based on wireless device tracking. In
Table 2, ten professional skiing instructors executed four predetermined skiing maneuvers,
which were then predicted and classified using our system to determine their conformity
to standard or non-standard movements. The subjective ratings of these ten ski instructors
were employed to assess the four movements, with successful motion capture and human
posture detection of skiing deemed accomplished if the scores aligned with the majority
of instructors. It is worth noting that for each skiing maneuver, our system accurately
identifies whether it adheres to standardization or not, which provides invaluable technical
support for the dynamic tracking of skiing and human posture detection.
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1 2 3 4 5

Figure 7 The training of our method and other methods.
Full-size DOI: 10.7717/peerjcs.1618/fig-7

CONCLUSION
In order to accomplish real-time monitoring and dynamic capture of skiing personnel
postures, we introduced a dynamic skiing motion capture and human posture detection
model that exploits a wireless device tracking. By establishing a service base station, we
facilitated personnel location and tracking using wireless equipment. Additionally, we
leveraged image information obtained by wireless devices to construct a human posture
detection model that standardizes skiing movements. Our spatio-temporal Transformer
structure empowered the dynamic capture of successive frames of human skiing. Our
experimental outcomes demonstrated the high accuracy of our approach in real-time
skiing personnel location, comprehensive human posture detection, and skiing dynamics
analysis, thereby provided crucial technical support for ensuring skiing venue safety. Our
experimental outcomes demonstrated the high accuracy of our approach in real-time
skiing personnel location, comprehensive human posture detection, and skiing dynamics
analysis, which can achieve the F value of 81.98%, thereby providing crucial technical
support for ensuring skiing venue safety. In the future, we will explore to construct the
more concise model to boost the sports supervision.
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