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ABSTRACT
The extraordinary success of deep learning is made possible due to the availability of
crowd-sourced large-scale training datasets. Mostly, these datasets contain personal
and confidential information, thus, have great potential of being misused, raising
privacy concerns. Consequently, privacy-preserving deep learning has become a
primary research interest nowadays. One of the prominent approaches adopted to
prevent the leakage of sensitive information about the training data is by
implementing differential privacy during training for their differentially private
training, which aims to preserve the privacy of deep learning models. Though these
models are claimed to be a safeguard against privacy attacks targeting sensitive
information, however, least amount of work is found in the literature to practically
evaluate their capability by performing a sophisticated attack model on them.
Recently, DP-BCD is proposed as an alternative to state-of-the-art DP-SGD, to
preserve the privacy of deep-learning models, having low privacy cost and fast
convergence speed with highly accurate prediction results. To check its practical
capability, in this article, we analytically evaluate the impact of a sophisticated
privacy attack called the membership inference attack against it in both black box as
well as white box settings. More precisely, we inspect how much information can be
inferred from a differentially private deep model’s training data. We evaluate our
experiments on benchmark datasets using AUC, attacker advantage, precision, recall,
and F1-score performance metrics. The experimental results exhibit that DP-BCD
keeps its promise to preserve privacy against strong adversaries while providing
acceptable model utility compared to state-of-the-art techniques.
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Keywords Membership inference attack, Differential privacy, Privacy-preserving deep learning,
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INTRODUCTION
Privacy has now become the primary concern of all domains using any form of deep
learning, e.g., computer vision (Ruan et al., 2020), natural language processing (NLP)
(Masri & Al-Jabi, 2023), medical diagnosis (Sharma et al., 2022), web search (Khan,
Mohibullah & Islam, 2017), etc. Since a deep learning (DL) model is trained on a massive
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amount of data, usually crowdsourced from a population (especially, large internet
companies such as Facebook, Twitter, Google, Apple, Amazon, BigML, etc., have a large
user base to collect data for training their DL models). The training data may contain
sensitive information about individuals, who have no idea how their data will be used after
collection. Normally, a DL model has enough capacity to memorize the training data, thus,
has a likelihood of leaking the information (Leino & Fredrikson, 2020). An adversary
queries the DL model to infer private information about the individual samples of the
training data by exploiting the prediction vector, thus creating severe privacy concerns.

From the privacy perspective, the most prominent privacy issue is the membership
inference attack (MIA) that infers whether a particular sample is included in the training
dataset of the targeted model (Shokri et al., 2017). The other famous attacks are model
inversion attack that aims to recover a sample from the model’s training dataset based on
guessing made on the prediction vector outputted by the model, property inference attack
to comprehend the attributes of the model’s training dataset, model extraction attack to
extract a trained model exploiting its predictions, and generative adversarial network
(GAN) based attacks to synthesize instances from a real dataset (Rigaki & Garcia, 2020).

Along with developing new attacks, the research community geared up to focus their
attention on privacy-preserving deep learning (PPDL). PPDL’s main objective is to prevent
an adversary from inferring sensitive information about the model’s training data. The
work done in this domain uses different mechanisms such as differential privacy (DP)
(Dwork & Roth, 2014; Sei, Okumura & Ohsuga, 2016; Oneto, Ridella & Anguita, 2017),
homomorphic encryption (Fontaine & Galand, 2007; Xie et al., 2014), partial parameters
sharing (Phong et al., 2017), functional exponentiation (Zhang et al., 2012), model splitting
(Dong et al., 2018), etc. Usually, most PPDL techniques do not allow trained model
publishing to achieve privacy. However, DP-based techniques claim to be privacy
preserved even by sharing these trained models publicly. Since these DP-based techniques
carry out differentially private model training and provide a guarantee to protect against a
strong adversary despite its background knowledge and computational power. As a result,
DP has become the most prominent and widespread mechanism used for guaranteeing
privacy in deep learning. Therefore, many big corporations, i.e., Google, Apple, and US
Census Bureau, have employed it.

As differential privacy has shifted from theory to practice, it has motivated researchers
to pay attention to the optimization and evaluation of differentially private deep learning
(DPDL) algorithms. Among these existing algorithms, differentially private stochastic
gradient descent (DP-SGD) (Abadi et al., 2016) is the extensively used optimization
algorithm in deep learning for classification problems, e.g., convolutional neural networks
and feedforward neural networks. Therefore, it has become part of the TensorFlow privacy
library due to its widespread use. Another recent work by Riaz et al. (2023) presents
differentially private block coordinate descent (DP-BCD), which claims to provide a
modest privacy guarantee while maintaining utility at an acceptable tradeoff compared to
other state-of-the-art techniques.

Despite the efforts spent on achieving DP through various mechanisms, there needs to
be an appropriate method to evaluate the robustness of the DPDL models. Since privacy
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analysis provides the details of privacy budget (e) consumption along with the model’s
accuracy on prediction guaranteeing privacy while providing utility. However, the
promised privacy preservation guarantee cannot provide the extent to which the DPDL
model is resilient to the above-discussed attacks and which privacy risks with high
certainty can be addressed by the model. One method to resolve this issue is to generate a
sophisticated attack on the DPDL technique to check its robustness against the targeted
attack. Among all existing attacks, MIA is claimed to be an effective attack since it infers
the presence of a particular data sample in the training dataset of a DL model, representing
an explicit privacy breach. Therefore, MIA has attracted researchers, and several enhanced
versions have been designed since its initial launch (Truex et al., 2019; Jayaraman et al.,
2021; Maini, Yaghini & Papernot, 2021; Choquette-Choo et al., 2021; Hu et al., 2022).
Moreover, it is applicable to almost all types of datasets, such as images, genomic data,
relational data, and others (Shokri et al., 2017; Long et al., 2018; Salem et al., 2019), for the
privacy test when sharing a trained DL model. Thus, researchers have adopted it to
evaluate the privacy endorsed by the famous DP-SGD. In the wake of such sophisticated
attack models, it becomes unavoidable to ask every DPDL model how well its privacy
guarantee withstands the MIA to prove its effectiveness.

In this article, we try to answer this question and evaluate the privacy guarantee of DP-
BCD by launching MIA against it. We conduct the attack in the white box setting, where
an adversary can access the model’s internals, such as model type, architecture, etc. For
this, we train the attack model on a dataset created by collecting the prediction results of
the shadow model. The shadow model’s structure is similar to the corresponding target
model in white box settings. The proposed mechanism is also checked by performing MIA
in black box settings without shadow model training, where an adversary can access only
the model predictions by querying the model. We measure the success of MIA on DP-BCD
in terms of precision, recall, attacker advantage, and AUC (area under the ROC curve) as
performance metrics. The empirical results demonstrate that compared to DP-SGD, DP-
BCD is less vulnerable to MIA while offering high utility. In some cases, membership
inference risks of DP-SGD resemble a non-private DL model. Since the capability of DP is
always questioned for not providing an intuitive guide for selecting privacy budget
parameter e. Consequently, DPDL applications tend to select a random value of e to
maintain a tradeoff between privacy and the utility of the model. Therefore, this study
elaborates on choosing a suitable amount of privacy budget e and how it practically affects
privacy.

In summary, our contributions are as follows.

� We evaluate membership privacy threat by implementing MIA in white box settings
with only one shadow model on the DP-BCD mechanism for heavy noise
(e ¼ 0:5; d ¼ 10�3) and moderate noise (e ¼ 1; d ¼ 10�4).

� We also implement MIA without shadow model training in black box settings,
ultimately arriving at a model and data-independent adversary. This type of MIA is also
performed for two different choices of privacy cost, i.e., heavy noise (e ¼ 0:5; d ¼ 10�3)
and moderate noise (e ¼ 1; d ¼ 10�4).
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� Extensive experiments demonstrate that severe MIA in both white and black box
settings with a suggested privacy budget in the form of moderate and heavy noise levels
prove the robustness of the DP-BCD model compared to other state-of-the-art
techniques.

The rest of the article is organized as follows. “Background” describes the background of
privacy issues in deep learning and various attacks. The detailed methodology of designing
membership inference attacks on the differentially private deep learning model is
presented in “Methodology”. In “Experimental Evaluation and Results”, we give details
about experimental evaluation and results. Finally, we conclude by mentioning the possible
future scope of this work in “Conclusion”.

BACKGROUND
In this section, the literature on privacy issues in deep learning and then attacks on
differentially private models is discussed in detail.

Privacy issues in deep learning
DL is a state-of-art artificial intelligence (AI) mechanism that significantly improves
prediction accuracy using powerful data abstraction capabilities on highly-structured and
large-scale datasets (LeCun, Bengio & Hinton, 2015). The trained DL model has the
potential to leak the sensitive information of individuals learned from the data it was
trained on. For example, Homer et al. (2008) inferred the existence of a specific genome in
the genomic training dataset of a trained model by exploiting the published statistics of
genotype count distributions. In Calandrino et al. (2011), background information about a
customer and changes in the public output of the collaborative recommender system was
used to execute an inference attack that infers the customer’s transaction that causes the
changes in the system’s output.

Recent trends such as ML-as-a-Service (MLaaS) use a black-box API to provide
classification service. These APIs use the features of input samples containing sensitive
information. The adversary exploits the overfitting of these models to extract sensitive
information since the model’s internal wirings implicitly remember some details about
training data. White-box settings make MLmodels more vulnerable to attacks like training
data extraction attacks. For example, Ateniese et al. (2015) trained an attack model that
extracts meaningful statistics about the training dataset of target ML models (i.e., SVM and
HMM) by exploiting the information about their model parameters.

Moreover, the adversary uses the structure and type of the model, which turns the ML
against itself. The privacy attacks typically target DL models during their training and
inference phases. One sophisticated attack of this type is the model inversion attack
(Fredrikson et al., 2014), in which authors try to infer the input sample’s hidden features
corresponding to the output. Pharmacogenetics analysis was carried out in this attack to
capture the association between a drug dose and a patient’s genotype. However, it is not
considered an actual privacy breach due to the existence of inherent medical evidence
between the components. In a more aggressive attack of this kind (Fredrikson, Jha &
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Ristenpart, 2015), the attacker probes the facial recognition system by giving a randomly
generated image as input and using the confidence score of the output prediction vector to
refine the image. The recovered image is humanly recognizable, having 95% matching
accuracy with the actual image in the training set.

One more well-known attack is the model extraction attack crafted by Tramèr et al.
(2016) to retrieve the model parameters of a specific model trained on sensitive private
training data. The attacker aimed to mimic the functionality of the target model to train an
adversarial model by exploiting the close connection between the model parameters and
the training dataset. A contemporary attack designed by Sharif et al. (2016) tries to deceive
a biometric facial recognition system. Their proposed attack worked by training a deep face
recognition model in which the adversary either avoids the identification as an
authenticated individual or mimics another individual. Model stealing attacks (Hitaj,
Ateniese & Perez-Cruz, 2017; Orekondy, Schiele & Fritz, 2019) also make the adversarial
use of machine learning (ML) by designing a generative adversarial network (GAN) based
attack, where a malicious participant trains a model in a collaborative environment by
deceiving the honest participant to release extra information about the private training
dataset. In attribute inference attacks (Melis et al., 2019;Malekzadeh, Borovykh & Gündüz,
2021) during the training phase, the adversary is always active and uses extra information
about the training data samples to produce prototypical samples with the same target
model’s training set distribution. Collaborative model training has opened new avenues for
adversaries where a malicious participant can steal information by training a GAN
(Goodfellow et al., 2020; Gui et al., 2023).

Among the other attacks, there exist poisoning attacks (Chen & Koushanfar, 2023)
which poison the model’s training dataset to falsify the model predictions. The famous
examples are data poisoning attacks (Li et al., 2016), model poisoning attacks (Marulli,
Verde & Campanile, 2021; Ali et al., 2023), and label-flipping attacks (Imam & Vassilakis,
2019; Zhang et al., 2021), and others.

Most of the ML-based attacks typically suffer from various issues, i.e., model inversion
attacks have limited capabilities and only apply to face recognition systems. Similarly,
model extraction attacks are reported to work with specific model types, whereas some
attacks require a considerable amount of background information for fruitful outcomes. In
strong contrast, MIA, designed by Shokri et al. (2017), is an innovative and robust attack
that can work with any model environment and setting with limited access to information.
Given an input sample and target model, the objective of the attack is to infer the presence
of the particular sample in the training dataset of the targeted model. Since the inception of
MIA, a number of its variants have been proposed in the literature (Yeom et al., 2018;
Salem et al., 2019; Truex et al., 2019; Jayaraman et al., 2021; Maini, Yaghini & Papernot,
2021; Choquette-Choo et al., 2021;Hu et al., 2022). Our attack implementation to verify the
robustness of DP-BCD is based on the working of MIA and is discussed in detail in the
following section.
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Differential privacy and attacks
Differential privacy is a probabilistic privacy mechanism, a strong notion of privacy,
established by Dwork et al. (2006b), Dwork, Rothblum & Vadhan (2010), Dwork & Roth
(2014), and offers a more robust privacy guarantee for algorithms on aggregate datasets. It
guarantees that by analyzing a DLmodel’s predictions, it is impossible to infer the presence
or absence of a particular sample in the training dataset of the model. It is independent of
the adversary’s computational power or background information. Specifically,
implementing a differentially private mechanism M on two neighboring datasets, D1 and
D2 (with a difference of one sample only), makes the output indistinguishable. Differential
privacy (DP) is formally defined as follows.

Definition 1: A randomized mechanismM: D!R having domain D and range R is said
to establish (e; d)-DP if, for any two neighboring datasets D1 and D2 2 D with a difference
of one sample only and for any subset of possible outcomes S � R, then it satisfies the
following.

pr½MðD1Þ 2 S� � pr½MðD2Þ 2 S� � ee þ d (1)

The parameter e denotes the amount of privacy budget required to achieve the desired
privacy, which maintains the tradeoff between the accuracy of DL model predictions and
privacy preserved by the differentially private mechanism. The small e value indicates a
higher level of privacy with lower amount of information leakage. The additive term d is a
relaxation inserted in e-DP (pure DP). ( e; d)-DP is a variant of pure e-DP introduced by
Dwork et al. (2006a), which enables the likelihood of breaking the pure e-DP with
probability d, the value typically chosen as , 1

jDj.
One way to achieve privacy preservation of DP is to add a calibrated noise to perturb the

query function results. The amount of noise added is proportional to the function’s
sensitivity, sampled from Laplace or Gaussian distributions for achieving e-DP or
( e; d)-DP, respectively. Sensitivity is the maximum change determined by altering a single
dataset sample. It is defined as follows.

Definition 2: Consider any query function f : D!R, executed on datasets D1 and D2 2
D that differ only in the single record; then, the sensitivity of f denotes the maximal
difference of its outputs on D1 and D2. Formally,

Sf ¼ max
D1;D2

k f ðD1Þ � f ðD2Þ k1 (2)

where k f ðD1Þ � f ðD2Þ k1 is the norm of the vector.
For instance, the noise is normally drawn from the Gaussian distribution relaxing the

privacy by the parameter d.
which is defined by

MðDÞ ¼ f ðDÞ þ Nð0; S2f : r2Þ (3)

Nð0; S2f : r2Þ is the Gaussian noise with mean 0 and variance S2f : r
2. The noise variance is

proportional to the function’s sensitivity. The technique of differing record sensitivity is
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normally used for databases. In contrast, the DL model comprises multiple layers of
neurons that perform various types of nonlinear transformations of the inputs received on
the input layer. The function f is the composite function composed of different operations
performed at the DL model layers from inputs to outputs. Hence, one way to implement
the DP in DL is to limit the sensitivity of the individual function during computations
performed at each layer and inject noise to these functions having bounded sensitivity.

Various DPDL mechanisms have been presented in the literature to cope with the
privacy leakage issue. These mechanisms theoretically prove their privacy preservation and
provide a privacy analysis in the form of privacy cost (Yu et al., 2019; Adesuyi & Kim, 2020;
Xu et al., 2020). However, only a few of these mechanisms are tested by attack
implementations to verify their robustness against attacks. For example, Hay et al. (2016)
introduced an innovative framework, DPBENCH, for the standardized evaluation of 15
differentially private mechanisms on 27 datasets. Similarly, a statistical approach is
presented to detect the violation of standard DP in the implementation of various incorrect
DP-based mechanisms, and counter-examples are suggested for the correctness of
implementations (Ding et al., 2018). However, the impact of different variants of DP and
the selection of an appropriate amount of privacy budget (e) is not considered in this
approach. Carlini et al. (2019) analyzed the efficiency of DP to guard against the
memorization of training data by neural networks and demonstrated that DP-RMSProp
removes the privacy risk by carefully selecting the clipping threshold and noise level.
However, they do not suggest the appropriate values of e to be used to achieve the best
results of DP.

Jayaraman & Evans (2019) evaluated DP for the accuracy and privacy of ML models.
They studied the effect of different e values on available relaxed versions of DP, specifically
for gradient perturbation mechanisms. Li et al. (2013) argued that variants of DP
compromise privacy by relaxing the standard concept of DP while getting better utility. Liu
et al. (2019) performed a thorough evaluation of DPML models using the Neyman–
Pearson criterion and quantified privacy breaches in them for different choices of e. They
suggested the choice of privacy parameter e according to the auxiliary information
available to the adversary in the form of the probability distribution of the data or tuple
dependencies knowledge (Kontorovich, Sadigurschi & Stemmer, 2022). Another attempt
made by Ali et al. (2022) introduced the concept of enhanced DP to preserve the privacy of
dependent tuples of a correlated dataset. They also performed MIA on their model to
check the validity of the proposed approach and concluded that enhanced DP proved
successful in preserving the privacy of the correlated dataset. However, the approach
utilized a considerable amount of privacy budget to provide an acceptable utility.

There are several remarkable techniques proposed in the literature to cope with the
privacy breach issues of DL models. Among all these techniques, DP-SGD, the
differentially private version of SGD, is the most prominent since SGD is the most popular
algorithm for ML model optimization. Therefore, it has attracted most researchers’
attention for privacy analysis by attack implementations. For example, Rahman et al.
(2018) analyzed the impact of MIA on the DP-SGD mechanism for different choices of e.
Their experimental results demonstrated that DPDL models preserve privacy at the cost of
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model utility, i.e., an acceptable utility made the model vulnerable to inference attacks.
Jagielski, Ullman & Oprea (2020) evaluated the impact of data poisoning attacks on DP-
SGD to investigate the extent to which it preserved privacy while providing acceptable
accuracy in practice. Bernau et al. (2019) compare the MIA impact on local and central
differential privacy. The authors calculated the performance metric AUC and deduced that
both exhibit similar characteristics for privacy-utility tradeoffs for different values of e.
Recently, a sampling attack for MIA has been proposed to check the applicability of DP as
a guard against privacy leakage (Rahimian, Orekondy & Fritz, 2021). Besides DP-SGD,
another defense mechanism called knowledge distillation is also checked against different
inference attacks. The authors called their proposed technique ML-Doctor and claimed
that both defense techniques can not withstand all types of inference attacks effectively
(Liu et al., 2022). Similarly, Tang et al. (2022) devised a Split-AI ensemble-based self-
distillation approach to preserve the privacy of ML models against MIAs. The proposed
approach provides an attractive tradeoff between model utility and privacy. However, it
cannot provide verifiable guarantees against all adversaries as opposed to DP.

In deep learning, DP-SGD is considered a state-of-the-art privacy-preserved
optimization mechanism. Therefore, its capabilities against prominent attacks are analyzed
in the literature. The objective of this article is to evaluate the impact of MIA on another
recently proposed differentially private optimization mechanism, i.e., DP-BCD, and
compare it against state-of-the-art mechanisms available in the literature to test its
competencies. We adopt this approach since the target DPDL model is versatile, efficient,
converge in early epochs, and provides state-of-the-art privacy and utility trade-off.

METHODOLOGY
This section describes the detail of the MIA and the targeted differentially private deep
learning technique, i.e., DP-BCD (Riaz et al., 2023). The attack is performed in white black
box and black box settings. In white box settings, model internals such as type,
architecture, etc., are known to the adversary. Therefore, a shadow model is trained to
generate the dataset for the training of the attack model. Whereas in white box settings, no
shadow model training is required; only the target model outputs are used to train the
attack model (e.g., losses, logits, predictions). The following subsections provide the detail
of each of these techniques.

Membership inference attacks
MIA exploits the fact that all DL models predict differently on training and testing data,
i.e., it reacts differently to never seen before data. The most probable factors that make the
inference attack successful are, exploiting the target model’s overfitting, classification
problem complexity, in-class standard deviation, and type of DL model targeted (Yeom
et al., 2018; Truex et al., 2019). However, an adversary mostly takes advantage of overfitting
of the model as during training most DL models consisting of too many layers with each
layer having a large number of neurons, store training data on its internal wirings instead
of learning from it, thus, falls prey to overfitting. Shokri et al. (2017) were the pioneers in
introducing the MIAs in 2017. Since then, it has grabbed the researchers’ attention to
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mitigate the vulnerabilities of a given model, quantify the membership risk influences, and
research to make these attacks more efficient. The fundamental theme of MIAs is
straightforward, i.e., having a DL model trained on some training dataset, it determines
whether a particular sample was present in the model’s training dataset.

How do MIA work?

Normally, the functionality of our MIA is analogous to the original attack model described
by Shokri et al. (2017). It targets a trained classification DL model ftarget that produces a
prediction vector containing confidence scores for each output class when a data sample xi
is fed. Since, we are targeting DP-BCD, which is a public model, means that model’s
internal, i.e., architecture, parameters, input and output formats, are accessible to the
adversary. It is also supposed that the adversary may know the population from which
target model’s training dataset was drawn. In addition to the background knowledge of the
population, having access to the target model’s input and output formats enables an
adversary to retrieve samples independently from the same population.

MIA works by building a binary attack model fattack that takes the prediction vector
produced by the target model and a sample xi. The attack model then decides whether
sample xi was a member of the training dataset X of the target model. The systematic flow
to accomplish a membership inference attack is illustrated in Fig. 1. For the attack model

fattack, the adversary first constructs K (one for each class) shadow models f jshadow. It is

assumed that the shadow models f jshadow mimic the behavior of the target model ftarget since
its training data is drawn from the same population as used for the target model’s training
dataset X. The difference is that shadowmodels training dataset X0, and ground truth y0 are
known to the adversary. Next, the shadow models are trained on the sampled dataset.
Afterward, the prediction vector’s confidence score produced by the shadow models both
for train and test datasets is integrated to create input-output pairs (x0i; f

j
shadow; y

0
i) for the

training of the attack model in an attempt to make it learn the task of distinguishing
between members and nonmembers according to the target DL model’s prediction
performed on them.

Shadow models
As mentioned earlier, the attack model comprises several shadow models that are generally
constructed for each output class. According to the pioneer attack model (Shokri et al.,
2017), the larger the number of shadow models, the more accurate the results of the attack
model will be. They also described three methods for generating shadow datasets, i.e., noisy
real-world data that resembles the original dataset X, data synthesis with the help of ftarget ,
or using statistics over X. Since the training dataset of each of these shadow models
resembles the format and distribution of the target model’s private training dataset, thus,
there is a chance that individual datasets for the shadow model may contain similar data
samples. However, it cannot be assumed that the target model’s dataset (train and test) and
the shadow model’s datasets overlap.

Keeping in view the complexity and training cost of shadow training models, we
implement the model and data-independent MIA revised by Salem et al. (2019). It notably
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reduces the cost of performing the attack, thereby giving the same accuracy as given by
Shokri et al. (2017) by implementing multiple shadow models. We perform MIA in two
settings, i.e., attack with the shadow model training or without the shadow model training.

Attack with the shadow model training
In this case, only one shadow model is required instead of multiple. We adopt the
assumption made by Shokri et al. (2017) that the training data Dshadow for the shadow
model is drawn from the population as for the target model. Further, it is assumed that the
shadow model follows the training procedure and type of target model. To this end,
adversaries can either use the same machine learning as a service (MLaaS) as used for
building the target model or approximate the behavior of the target model by performing a
model extraction attack. Since a shadow model, which is built by taking the services of
MLaaS, follows a pay-per-query business model, thus is a costly method. We assume that
the target model is public; thus, knowing its type and architecture is easy. Therefore, the
same architecture is adopted for the shadow model as for its corresponding target model.
The adversary records the shadow model’s output prediction vectors VðxiÞ generated on
training and test datasets. These prediction vectors are stored in a single database, which is
split into different portions corresponding to their labels for the “in” and “out” classes. For
the shadow model training, the Dshadow is split into two disjoint sets, i.e., DTrain

shadow and

DOut
shadow for training the shadow model and as non-members, respectively.

Attack without the shadow model training
For MIA implementation in the absence of a shadow model, the adversary only uses the
original (target) model’s predictions on the target data sample, which is enough to infer its
membership in the target model’s training dataset. It does not require any shadow model
training to imitate the original model’s behavior, strengthening the attack more efficiently.
In this setting, the target model ftarget under attack kind of serves as a “shadow model”
fshadow that impeccably approximates its own behavior and makes the MIA much simpler
and more efficient.

Figure 1 The overview of membership inference attacks (MIA).
Full-size DOI: 10.7717/peerj-cs.1616/fig-1
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Attack model
The adversary implements the attack model as a binary meta classifier fattack. The attack
model is implemented differently for two settings of MIA, for instance, with shadow
model, and without shadow model.

Attack model with the presence of a shadow model
In this scenario, we implement the attack model as a supervised binary classifier which
requires labeled training data, such as ground truth membership. To achieve this, the
adversary trains the shadow model and uses its output posteriors to get the ground truth
for the training of target model ftarget . For instance, she employs the trained shadow model
to retrieve posterior probabilities produced by the prediction performed on all data
samples in Dshadow that comprise DTrain

shadow and Dout
shadow. She picks the three topmost

posteriors (two in the case of two classes of a dataset) corresponding to each sample of

Dshadow as its prediction vector. In case, the data sample is from DTrain
shadow; its corresponding

prediction feature vector is given the label 1 (member) or given label 0 (nonmember)
otherwise. Next, all the produced prediction vectors and labels are utilized for training the
attack model fattack. The adversary executes the attack by querying the f with xi and getting
its corresponding posteriors to discover whether xi is present in DTrain

target (training data of
target model f ). Same as the shadow model, she obtains the three largest posteriors
produced against xi and infuses them into fattack to retrieve its prediction as member or
nonmember.

It is worth noting that here only one shadow model and one attack model are used to
perform the attack, whereas MIA performed by Rahman et al. (2018) uses multiple shadow
models and attack models typically one for each class. Thus, the approach followed in our
work reduced the attack cost to a greater extent.

Attack model without a shadow model training
In the setting of MIA without a shadow model, the adversary works without any shadow
model for the attack implementation. We implement the attack model as an unsupervised
classifier, for which there is no need to conduct any shadow model training. In such a
situation, an adversary can depend solely on the target model’s output prediction vectors
VðxiÞ generated on target data sample xi (Salem et al., 2019). A similar attack designed by
Yeom et al. (2018), requires the target data sample’s class label to effectively implement
MIA making which is challenging in sensitive cases, e.g., biomedical settings (Berrang
et al., 2018). However, the attack model proposed by Salem et al. (2019) encompasses a
broader range of scenarios.

Firstly, the adversary acquires the prediction vector VðxiÞ for a specific data sample xi.
Next, she retrieves the top posterior confidence score, compares it with a certain preset
threshold, and checks whether this highest score is above it. Data sample xi is predicted as a
member of the training set if the answer is yes and vice versa. The purpose of picking the
maximum posterior score as the feature is that the DL model is more confident about
predicting already seen samples (it was trained on) than the unseen samples. The reason is
that, for some data examples, one posterior is exceptionally high than others, i.e., the data
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sample belongs to the training set of the target model. Concludingly, there is a significant
difference between the highest confidence score and the remaining ones for a member data
sample than a nonmember data sample. Moreover, the confidence score of a member data
sample is much higher than a nonmember.

The adversary can choose a suitable threshold value for the implantation of MIA that
suits well in her particular scenario, as used by various ML applications (Zhang et al., 2017;
Backes et al., 2017). For example, if the prediction precision is essential she can select a
relatively high threshold value. A relatively low threshold value is recommended if the
adversary focuses on prediction recall (Salem et al., 2019).

Differentially private deep learning model
We evaluate the impact of MIA on the DPDL model, i.e., DP-BCD, since it is an efficient
algorithm having appealing properties of less privacy cost consumption, speedy
convergence, and prediction results with high accuracy. This particular DPDL model
comprises two major segments: developing a differentially private version of the BCD
algorithm, named DP-BCD, and performing a privacy analysis. The details of each of these
is discussed in the following subsections.

Differentially private block coordinate descent
Generally, DP can be implanted in the DL model before, after, or during training. In
literature, it is found that the most suitable place to inject noise is during training.
Therefore, Riaz et al. (2023) implement DP during model training to launch the privacy-
preserved version of the BCD algorithm known as Differentially Private Block Coordinate
Descent (DP-BCD). The model employs Gaussian noise instead of Laplace noise to achieve
DP. The noise is drawn according to the bounded sensitivity of each sample. BCD
algorithm breaks the working of deep learning problems into multi-block variables. During
the forward pass, it computes the model’s output at the output layer and compares it to the
actual values to optimize the objective function. The block variables (W j, U j, V j) also get
their calculated values in forward pass. Afterward, the block variables are updated
following a cyclic pattern for updating process, i.e., except for the block variable updating
currently, the remaining block variables keep their previous updates. This process iterates
up to K epochs in backward order from the output to the input layer to get an optimal
value of the objective function L. However, in DP-BCD, before the update step, the weight
block variable Wk

j is scaled by scaling factor C, thereby limiting the sensitivity of block
variables to make sure that all samples of the training data uniformly affect the learned
parameters. It helps to avoid overfitting and speedy convergence of the model. Finally, the
sensitivity-dependent noise is added to the Wk

j which is propagated to other block
variables automatically, thereby making all block variables differentially private. On this
wise, DP is achieved without jeopardizing their utility and accuracy. The flow of the DP-
BCD algorithm, and MIA implementation on the DP-BCD mechanism, is pictorially
depicted in Fig. 2. For a detailed understanding, one may consult Algorithm 1 of Riaz et al.
(2023) work.
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Privacy analysis
Following the typical BCD training process, DP-BCD also requires updating the block
variables repeatedly by accessing training data multiple times until the model converges to
an optimum value. Nevertheless, iterating over the training data, again and again, breaches
privacy and becomes the source of information leakage about the training data. Thus, it
provokes some privacy cost from the total privacy budget e. It calls for keeping track of
privacy loss during the training of the model to calculate cumulative privacy cost to keep
the privacy loss within the bearable budget limit. Accumulating the privacy cost acquired
by each access to the model’s training data is called privacy accounting and was devised by
McSherry (2009). In differentially private settings, the mechanism M iterates for K epochs,
thus, consists of MK individual mechanisms. Each of these mechanisms has its privacy
guarantee incurring a privacy cost following the basic composition theorem (Dwork et al.,
2006a; Dwork & Lei, 2009) and subsequently its advanced, refined versions (Dwork &
Rothblum, 2016; Kairouz, Oh & Viswanath, 2015). We follow the methods adopted by Riaz
et al. (2023) and performed privacy accounting using strong composition (Dwork,
Rothblum & Vadhan, 2010) contained in the existing composition theorems for DP.

Figure 2 Membership inference attack on DP-BCD mechanism.
Full-size DOI: 10.7717/peerj-cs.1616/fig-2
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However, it gives loose bounds on privacy expenditure, thereby exhausting the modest
privacy budget rapidly in a few epochs, which may cause problems for models with deep
layers converging after a large number of iterations. In our case, since the model converges
in very early epochs, thus, consumes less privacy cost while providing acceptable utility.

To cover up the discrepancies of the strong composition theorem, Abadi et al. (2016)
introduced a state-of-the-art technique for privacy accounting called moments accountant.
It considers the tail bounds of noise distribution under consideration and provide a tighter
bound on privacy spending. This capability makes moments accountant Oðre ffiffiffiffi

K
p

; d)-DP
by selecting an appropriate noise scale and scaling factor C having noise magnitude r.
Here, r is the per-layer ratio, and K is the number of epochs. It saves the

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
logð1=dÞp

in e
part and Kr in d part in case of strong composition which was formerly known for
providing the best bounds on privacy accounting. The moments accountant uses log
moments ofMK deriving much tighter bounds on total privacy loss. As a result, it enables
DP-BCD to access training data as many times as required by the training process for
getting noticeable accuracy.

EXPERIMENTAL EVALUATION AND RESULTS
In this section, we present the results of MIA implementation on the DP-BCDmechanism.
Various experiments with different settings of MIA are performed to evaluate the validity
of the proposed approach and to provide a comparison with existing approaches. We use
three benchmark datasets for experiment evaluation, the MNIST digit recognition, Breast
Cancer, and Purchase100 datasets. We selected benchmark images and numerical datasets
for classification tasks in deep learning. Moreover, it practically proves that the
applicability of MIA is not discriminated toward any specific dataset or model type, as
exhibited by Shokri et al. (2017), Salem et al. (2019).

Performance metrics used to evaluate MIA on DP-BCD
For the evaluation, we make a dataset by retrieving samples (xi, yi) from both the training
and testing datasets of the DP-BCD model with an equal ratio of 50% likelihood. A good
privacy-preserving model learns from the training data but does not memorize it. This
article performs empirical tests for measuring potential memorization. We launch an MIA
against the target DP-BCD model to evaluate its privacy protection performance.
Technically, the experiments build MIA classifiers that infer whether a particular sample is
present in the training set or not. The more accurate such attack is, the more memorization
is present, and thus the less privacy-preserving the model is. This privacy vulnerability (or
memorization potential) is measured via the area under the ROC-curve (AUC) or via
maxfjfpr � tprjg (advantage) of the attack classifier. These measures are very closely
related. Moreover, the precision and recall metrics are also calculated. The detail of these
metrics is given below.

Precision: Precision is calculated as the true positives divided by the number of total
positive (true positives + false positives) predictions. In the case of MIA, it is the
proportion of training samples determined as members that are indeed present in the
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training dataset of the target model. In addition, the random guessing strategy also yields
50% as the baseline precision value. The formula to calculate precision is as under:

Precision ¼ TP
TP þ FP

(4)

Recall: The recall is calculated as true positive divided by the true positive and false
negative. In the case of MIA, it is the proportion of samples that are correctly predicted as
members. Based on our threshold inference strategy, it represents the MIA’s ability to
predict that a training sample has a greater (or equal) prediction confidence value than the
predetermined threshold. Recall is calculated using the formula given in Eq. (5).

Recall ¼ TP
TP þ FN

(5)

Area under the ROC curve (AUC): AUC curve is a performance measurement for
classification problems at various threshold settings. ROC is a probability curve, and AUC
represents the degree or measure of separability. It tells how much the model is capable of
distinguishing between classes. The higher the AUC, the more accurate the model is, i.e.,
accurately predicting the class of the data sample. In our case, members as members (class
1) and nonmembers as nonmembers (class 0). ROC curve represents the accuracy of the
attacker at distinguishing between members and nonmembers.

The ROC curve is plotted with true positive rate (TPR) against the false positive rate
(FPR), with TPR on the y-axis and FPR on the x-axis. Where TPR and FPR are calculated
as follows:

TPR=Recall ¼ TP
TP þ FN

(6)

FPR ¼ FP
TN þ FP

(7)

Attacker advantage: Given a model, an attacker advantage calculates the membership
attacker’s (or adversary’s) advantage. It measures the maximum advantage over all
available classifier thresholds that characterize how well an adversary can distinguish
between members and nonmembers and returns a single float number with membership
attacker’s advantage. Equation (8) calculates the advantage measure.

Attacker’s advantage ¼ TPR� FPR (8)

Attack implementation on the MNIST dataset
In this section, we discuss the MNIST dataset in detail and the results obtained by
performing MIA with both settings with and without the trained shadow model on the
MNIST dataset. The success of MIA is determined for different slices of data given as
under:

� Entire dataset: one of the slices is the entire dataset.
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� Individual classes of the dataset: one slice per class result.

� Classification correctness: slicing dataset according to the classification correctness of
data samples, i.e.,

– Correctly classified true

– Correctly classified false (misclassified data samples)

MNIST
MNIST is a standard handwritten digit recognition dataset comprising grey-level images of
handwritten digits ranging from 0 to 9, with each image having a size of 28 × 28 pixels
(Lecun et al., 1998). Providing an input image to the DPDL model, the classification task
performed on the MNIST dataset predicts the digit written in the input image. The MNIST
dataset size is 70,000 image samples with 60,000 training and 10,000 testing samples.

For MIA settings with shadow model training, we combine the training and testing
samples to create a unified dataset. Then we randomly divide it into two equal halves, each
consisting of 35,000 samples. The two divided datasets, namely,Dtarget andDShadow are used
for the training and testing of the target model and shadow model respectively. For target
model training, the halved dataset Dtarget is further divided into DTrain

target and DOut
target , where

DTrain
target is used for target model training and DOut

target samples are supposed as nonmembers

samples. Moreover, the other half Dshadow is used for the shadow model by again splitting
into two halves, DTrain

shadow and DOut
shadow. D

Train
shadow is used for the training of shadow model and

DOut
shadow is used for testing.

For an attack model without shadow model training, there is no need for a dataset for
the shadow model. Therefore, we combine training and test datasets to produce a single
dataset, randomly split into two equal datasets, each consisting of an equal number of
samples. One-half of the dataset is used to train the target model, and the other half is used
as nonmembers.

Target model training

The target model architecture of the MNIST consists of a single hidden layer and an output
layer. The only hidden layer contains 2,000 units replacing the requirement of more
hidden layers, the output layer has 10 classes for 10 (0–9) digits of the MNIST dataset, the
activation function ReLU is used at all layers, and Mean Squared Error (MSE) is employed
as a loss function. The model comprises one hidden layer with an increased number of
neuron units, and exhibits far better efficiency in terms of reduced training time (converges
in early epochs) and increased model accuracy. The whole training data set is passed
through the model in one batch at a time, opposing the batching method used in DP-SGD
training. The model uses the default values of hyperparameters, i.e., 1, 1, and 5 for
a; �; and c respectively. For DP implementation, Gaussian noise is injected into the
scaled block weight variable whose scaling in done at a scaling factor of C = 0.01. The
parameters r, r = U/N, and K contributed to the computation of total privacy cost ðe; dÞ.
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Moreover, the target model is trained similarly for both settings of MIA, i.e., with
shadowmodel, and without shadowmodel. Further, the non-private model for the MNIST
dataset consists of the same architecture as for the private target model.

Training shadow model
Shadow model training is required to perform MIA with shadow model settings. Since the
target DPDL model is a public model providing white box access to it. Therefore, the
adversary follows the assumption of knowing the target model type and architecture; thus,
the architecture of the shadowmodel fshadow is identical to its corresponding target model f .
In an attempt to make MIA more successful, the shadow model is trained in the same
settings as the target model is trained.

Training attack model
Similarly, as with the shadow model, supervised attack model training is required to
perform MIA with shadow model settings. As discussed earlier, we train a binary attack
model on predictions produced by the shadow model fshadow, which is a separate shadow
model in the case with shadowmodel settings. Whereas, the target model ftarget itself is used
as a type of fshadow in the case when the attack model is trained without shadow model
training settings. Given an input data sample, the output of the binary attack model fattack is
in the form of probabilities over two output classes, i.e., “in” and “out,” which represents
the membership or non-membership of that particular data sample in the target model’s
training dataset, respectively. We build a simple, fully connected neural network
comprising one hidden layer that contains 64 neuron units. ReLU is used as an activation
function for the hidden layer, and at the output layer, SoftMax with two outputs is used to
produce predictions for the “in” and “out” membership.

Varying the privacy parameter e
We track the impact of each setting type of MIA against two differentially private models
with different noise levels, i.e., heavy noise and moderate noise providing privacy
guarantee of (e ¼ 0:5; d ¼ 10�3) and (e ¼ 1; d ¼ 10�4), respectively. Moreover, to gain
further insight, we also track the impact of MIA on a totally non-private base model having
the same network architecture as the corresponding DPDL model for each dataset.

MIA results for trained shadow model settings
For trained shadow model MIA settings, we execute MIA against the previously trained
DPDLmodel and evaluate its success for different noise levels. To achieve this, we calculate
the AUC value as an attack accuracy evaluation metric of private models for heavy
(e ¼ 0:5; d ¼ 10�3) and moderate noise (e ¼ 1; d ¼ 10�4) levels. AUC represents the
relationship between TPR and FPR (Fredrikson et al., 2014; Backes et al., 2017; Pyrgelis,
Troncoso & De Cristofaro, 2017; Pang & Zhang, 2017; Zhang et al., 2018). An AUC with a
value of 0.5 is considered a random guess; however, higher than 0.5 values, on the contrary,
indicate potential privacy issues. In our case, the attack performed for heavy and moderate
noise resulted in an AUC value close to 0.5 (in some cases even less than 0.5), evident from
Figs. 3 and 4 for heavy and moderate noise, respectively. It reveals that the attack cannot
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successfully cross the privacy boundaries of the DPDL model to identify its training
samples. It proves that the DP-BCD preserves the model’s privacy and safeguards it against
inference attacks.

Besides AUC, we also calculate several other metrics, most notably precision, recall, and
attacker advantage for the membership inference classifier. Tables 1 and 2 describe the
detailed privacy report for each class regarding accuracy in terms of AUC calculated,
precision, recall, and attacker advantage for heavy and moderate noise, respectively. In our
case, the precision answers how many of the samples predicted as members are actually
members, i.e., the ratio of the correctly predicted members by the attack model to all
predicted with member labels. Whereas recall is the number of samples correctly predicted
as members out of actual members of the training dataset of the target model, i.e., the ratio
of the correctly predicted members to all who are members in reality. Undoubtedly, the
results indicate that the attack success against the target DPDL models for both noise levels

Figure 3 Trained attack results on AUC, precision, and recall calculated for heavy noise
(e ¼ 0:5; d ¼ 10�3). Full-size DOI: 10.7717/peerj-cs.1616/fig-3

Figure 4 Trained attack results on AUC, precision, and recall calculated for moderate noise
(e ¼ 1; d ¼ 10�4). Full-size DOI: 10.7717/peerj-cs.1616/fig-4
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Table 1 MIA result summary of trained attack on MNIST dataset for heavy noise level.

Heavy noise (e ¼ 0:5; d ¼ 10�3)
Attack type = trained attack

Slice feature/ Attacker AUC Precision Recall F1 score
Slice value advantage

Entire dataset 0.21 0.49 0.51 0.49 0.50

Class 0 0.04 0.51 0.49 0.50 0.50

Class 1 0.22 0.51 0.48 0.50 0.49

Class 2 0.10 0.54 0.45 0.51 0.48

Class 3 0.23 0.48 0.52 0.50 0.51

Class 4 0.23 0.53 0.49 0.52 0.50

Class 5 0.08 0.54 0.46 0.50 0.48

Class 6 0.14 0.49 0.49 0.49 0.49

Class 7 0.22 0.51 0.49 0.50 0.50

Class 8 0.18 0.52 0.48 0.50 0.49

Class 9 0.11 0.54 0.47 0.50 0.48

Correctly classified 0.05 0.49 0.51 0.50 0.50

True

Correctly classified 0.19 0.46 0.52 0.48 0.50

False

Table 2 MIA result summary of trained attack on MNIST dataset for moderate noise level.

Moderate noise (e ¼ 1:0; d ¼ 10�4)
Attack type = trained attack

Slice feature/ Attacker AUC Precision Recall F1 score
Slice value advantage

Entire dataset 0.14 0.52 0.48 0.50 0.49

Class 0 0.09 0.54 0.47 0.51 0.49

Class 1 0.24 0.53 0.47 0.50 0.48

Class 2 0.22 0.53 0.48 0.51 0.49

Class 3 0.20 0.53 0.49 0.51 0.50

Class 4 0.16 0.53 0.48 0.51 0.49

Class 5 0.06 0.51 0.50 0.51 0.51

Class 6 0.24 0.55 0.47 0.52 0.50

Class 7 0.05 0.52 0.49 0.51 0.50

Class 8 0.20 0.54 0.46 0.51 0.48

Class 9 0.08 0.53 0.48 0.51 0.49

Correctly classified 0.22 0.54 0.47 0.51 0.49

True

Correctly classified 0.06 0.52 0.49 0.50 0.49

False
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is not significant and indicate the success is like a random guess accuracy almost for all of
the classes. Therefore, these results prove the fulfillment of DPDL’s promise to guard
against a knowledgeable adversary having access to the training mechanism and the model
architecture.

MIA results without trained shadow model settings
For the MIA setting without a shadowmodel training, we perform the attack and assess the
success of maximal prediction vector outcome on distinguishing members and
nonmembers in the presence of a preset threshold. Usually, we choose a list of threshold
values from 0.5 (uncertain of training or test) to 1 (100% certain of training) to compute
corresponding attack evaluation metrics. The membership probability (from 0 to 1)
represents each sample’s probability of being in the training set. Again, the success of the
attack is measured in the form of attacker advantage, AUC, precision, and recall for heavy
noise (e ¼ 0:5; d ¼ 10�3) and moderate noise (e ¼ 1; d ¼ 10�4) as depicted in Figs. 5 and
6, respectively. Moreover, the detailed privacy report is described in Tables 3 and 4 for
heavy and moderate noise, respectively. For a specified threshold value (0.5 in our case), we
count how many training and test samples have membership probabilities larger than the
threshold to compute precision and recall values. We skip the threshold value if it exceeds
every sample’s membership probability.

It is important to note that MIA results are almost like those obtained in the presence of
a trained shadow model. It demonstrates that such a simple attack is as effective as a
sophisticated attack performed with the aid of a trained shadowmodel. Therefore, it makes
implementing MIA probably much easier and cheaper to check the privacy risks of DL
models. All these empirical results verify that DP-BCD is efficient and robust enough to
preserve the privacy of DL models compared to the state-of-the-art DP-SGD (Abadi et al.,
2016).

Figure 5 Threshold attack results on AUC, precision, and recall calculated for heavy noise
(e ¼ 0:5; d ¼ 10�3). Full-size DOI: 10.7717/peerj-cs.1616/fig-5
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Comparison with the non-private model

To compare the privacy leaked by the non-private model, we also calculate the AUC value
for the non-private model as shown in Fig. 7. Likewise, the maximum AUC value
calculated for heavy noise (e ¼ 0:5; d ¼ 10�3) and moderate noise (e ¼ 1; d ¼ 10�4) is
depicted in Fig. 8. The private models can keep their promise to withstand privacy attacks
consuming privacy costs of (e ¼ 0:5; d ¼ 10�3) and (e ¼ 1; d ¼ 10�4), respectively. It can

Figure 6 Threshold attack results on AUC, precision, and recall calculated for moderate noise
(e ¼ 1; d ¼ 10�4). Full-size DOI: 10.7717/peerj-cs.1616/fig-6

Table 3 MIA result summary of threshold attack on MNIST dataset for heavy noise level.

Heavy noise (e ¼ 0:5; d ¼ 10�3)
Attack type = threshold attack

Slice feature/ Attacker AUC Precision Recall F1 score
Slice value advantage

Entire dataset 0.02 0.49 0.51 0.50 0.50

Class 0 0.03 0.50 0.50 0.50 0.50

Class 1 0.03 0.49 0.50 0.49 0.50

Class 2 0.03 0.51 0.49 0.50 0.50

Class 3 0.02 0.49 0.51 0.50 0.50

Class 4 0.02 0.50 0.51 0.50 0.50

Class 5 0.06 0.48 0.51 0.49 0.50

Class 6 0.06 0.49 0.51 0.50 0.50

Class 7 0.02 0.51 0.49 0.50 0.50

Class 8 0.02 0.50 0.50 0.50 0.50

Class 9 0.06 0.47 0.52 0.49 0.51

Correctly classified 0.02 0.49 0.51 0.50 0.50

True

Correctly classified 0.03 0.50 0.50 0.50 0.50

False
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be seen from Fig. 8 that the maximum AUC values of private models are slightly above 0.5,
whereas the non-private model exhibits vulnerability to MIA, making it almost a lousy
choice. It serves as evidence that DP-BCD is robust enough to preserve the privacy of the
MNIST dataset.

Table 4 MIA result summary of threshold attack on MNIST dataset for moderate noise level.

Moderate noise (e ¼ 1:0; d ¼ 10�4)
Attack type = threshold attack

Slice feature/ Attacker AUC Precision Recall F1 score
Slice value Advantage

Entire dataset 0.01 0.50 0.50 0.50 0.50

Class 0 0.05 0.52 0.49 0.51 0.50

Class 1 0.03 0.51 0.49 0.50 0.50

Class 2 0.05 0.52 0.48 0.50 0.49

Class 3 0.06 0.47 0.53 0.50 0.51

Class 4 0.04 0.51 0.49 0.50 0.49

Class 5 0.03 0.50 0.49 0.50 0.49

Class 6 0.07 0.53 0.47 0.51 0.49

Class 7 0.03 0.49 0.51 0.49 0.50

Class 8 0.06 0.53 0.48 0.51 0.49

Class 9 0.06 0.48 0.52 0.50 0.51

Correctly classified 0.04 0.51 0.49 0.50 0.50

True

Correctly classified 0.01 0.50 0.50 0.50 0.50

False

Figure 7 AUC calculated for the non-private model. Full-size DOI: 10.7717/peerj-cs.1616/fig-7
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Comparison with the state-of-the-art DP-SGD
The state-of-the-art optimization algorithm used in literature for DL models is DP-SGD.
Rahman et al. (2018) comprehensively implemented MIA on DP-SGD to verify its privacy
robustness. Therefore we compare MIA results on DP-BCD with DP-SGD. We
demonstrate the difference between the two by comparing privacy cost consumed, the
accuracy achieved, and MIA success results in the form of an F1-score. For the same
privacy budget consumption e ¼ 1, DP-BCD beats DP-SGD by providing 18.9% increase
in prediction accuracy and an 8.1% decrease in MIA success accuracy in the form of F1-
score as elaborated in Table 5.

Attack implementation on Breast Cancer dataset
We also conduct experiments on the Breast Cancer dataset to perform MIA in both
settings with and without shadowmodel training for different noise levels. MIA’s success is
again determined for different slices of data, i.e., the entire dataset, individual classes of the
dataset, by classification correctness such as correctly classified true and correctly classified
false (misclassified data samples).

Figure 8 Maximum AUC calculated from both trained and threshold attack for heavy noise (A) and
moderate noise (B). Full-size DOI: 10.7717/peerj-cs.1616/fig-8

Table 5 Comparison with state-of-the-art DP-SGD.

DP-BCD DP-SGD

DP privacy cost e ¼ 1:0; d ¼ 10�4 e ¼ 1:0; d ¼ 10�5

Model utility (prediction accuracy %) 94.6 75.7

Attack accuracy (F1-score %) 50.0 58.1
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Breast Cancer dataset
The Breast Cancer dataset (https://www.kaggle.com/datasets/uciml/breast-cancer-
wisconsin-data) comprises 569 data examples of cancer patients. Each example instance
contains 30 attributes, which are computed from a digitally created image of a fine needle
aspirate (FNA) of a breast mass. These features describe the properties of the cell nuclei
captured in the image. The class label is either malignant or benign, i.e., the type of breast
cancer. The dataset is divided into equal halves to train/test the target and shadow models.

Target model training
A simple feedforward neural network is designed for the target model training of the Breast
Cancer dataset. The model architecture consists of a single hidden layer comprising 30
neuron units and an output layer containing two classes since it is a binary classifier. A
similar architecture is used for both private as well as non-private models. As far as internal
parameters are concerned, for the activation of neurons, we use ReLU, and loss is
calculated using mean squared error (MSE). For the private model, we apply DP using a
constant noise magnitude of r = 4 to train the model in the least time-consuming desirable
privacy budget, i.e., a modest cost consisting of a single-digit value. Following the original
approach, the sensitivity of the block weight variableWk

j is bounded using a scaling factor
of C = 0.05. The parameters r, r = U/N, and K contributed to the computation of total
privacy cost ðe; dÞ. The experimented values of hyperparameters enhancing the model
accuracy while preserving privacy are practically analogous to those implemented for the
MNIST dataset.

Furthermore, the target model is trained in a similar fashion for both settings of MIA,
i.e., with shadow model, and without shadow model.

Shadow and attack model training
The shadow and target model training is the same as for the MNIST dataset.

MIA with trained shadow model settings
For trained shadow model MIA settings, we execute MIA against the previously trained
private model for the Breast Cancer dataset and evaluate its success for different noise
levels. The results in the form of AUC, precision, and recall for heavy (e ¼ 0:5; d ¼ 10�3)
and moderate noise (e ¼ 1; d ¼ 10�4) levels are graphically portrayed in Figs. 9 and 10.
The results depict that the AUC values of private models are about 0.5 (in some cases even
less than 0.5), which advocates the competency and robustness of DP-BCD as an
unbeatable private model.

Tables 6 and 7 describe the detailed privacy report for each slicing specification
described above regarding accuracy in terms of attacker advantage, AUC calculated,
precision, and recall. It is clear from the results that MIA does not achieve a noticeable
success against the target DPDL models for both noise levels under all slicing types.
Therefore, these results prove the DPDL’s promise to guard against a knowledgeable
adversary having access to the training mechanism and the model architecture.
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MIA without trained shadow model settings
For the MIA setting without a shadowmodel training, we perform the attack and assess the
success of the threshold attack. Similarly, the success of the attack is measured in the form
of attacker advantage, AUC, precision, and recall for heavy noise (e ¼ 0:5; d ¼ 10�3) and

Figure 9 Results of MIA targeting breast cancer private model calculating AUC, precision, and recall
values for heavy noise (e ¼ 0:5; d ¼ 10�3). Full-size DOI: 10.7717/peerj-cs.1616/fig-9

Figure 10 Results of MIA targeting breast cancer private model calculating AUC, precision, and
recall values for moderate noise (e ¼ 1; d ¼ 10�4). Full-size DOI: 10.7717/peerj-cs.1616/fig-10
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moderate noise (e ¼ 1; d ¼ 10�4) as illustrated in Tables 8 and 9, respectively. In the
Breast Cancer dataset, again, the MIA results are almost like those obtained in the presence
of a trained shadow model as depicted in Figs. 9 and 10 for heavy and moderate noise,
respectively. All these empirical results verify that DP-BCD is efficient and strong enough
to preserve the privacy of DL models for numeric datasets also, i.e., breast cancer.

Comparison with the non-private model
The privacy leaked by the baseline non-private model and private models (for both heavy
and moderate noise) is shown in Figs. 11 and 12, respectively. The maximum AUC values
calculated for the private model trained on the Breast Cancer dataset as depicted in Fig. 12
are somehow higher than that for the MNIST dataset showing the success of MIA to some
extent. One of the root causes of the MIA’s success is overfitting (Shokri et al., 2017). Over-
fitting is a situation where a trained model tries to memorize every sample in an attempt to
fit too closely to the training data. The standard method to determine the overfitting level
of a model is to find the difference between the training and test accuracies. A noticeable

Table 6 MIA result summary of trained attack on Breast Cancer dataset for heavy noise level.

Heavy noise (e ¼ 0:5; d ¼ 10�3)
Attack type = trained attack

Slice feature/ Attacker AUC Precision Recall F1 score
Slice value advantage

Entire dataset 0.30 0.42 0.55 0.47 0.51

Class 0 0.24 0.39 0.57 0.47 0.51

Class 1 0.19 0.44 0.52 0.47 0.50

Correctly classified 0.12 0.46 0.49 0.45 0.47

True

Correctly classified 0.36 0.54 0.49 0.56 0.52

False

Table 7 MIA result summary of trained attack on breast cancer dataset for moderate noise level.

Moderate noise (e ¼ 1; d ¼ 10�4)
Attack type = trained attack

Slice feature/ Attacker AUC Precision Recall F1 score
Slice value advantage

Entire dataset 0.07 0.49 0.50 0.49 0.49

Class 0 0.38 0.42 0.53 0.46 0.49

Class 1 0.24 0.54 0.46 0.51 0.49

Correctly classified 0.21 0.47 0.53 0.49 0.51

True

Correctly classified 0.48 0.45 0.59 0.45 0.51

False
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difference indicates the overfitting of the model on the training data, and a more significant
difference means a more overfitted model which exposes more information about its
training data.

However, in the case of the Breast Cancer dataset, DP-BCD again keeps its promise to
withstandMIA, just like in the case of MNIST. It can be observed from Fig. 12 that for both
heavy (e ¼ 0:5; d ¼ 10�3) and moderate noise e ¼ 1; d ¼ 10�4, the maximum AUC
values of private models are slightly above 0.5 as compared to a non-private model, which
is much higher, therefore, reveals vulnerability to MIA, making it almost a bad choice.
Hence, the results serve as evidence that the private models hold their promise to offer
protection against membership inference for the privacy costs of (e ¼ 0:5; d ¼ 10�3) and
(e ¼ 1; d ¼ 10�4), respectively.

Attack implementation on Purchase100 dataset
To validate the performance of DP-BCD on different types of datasets, We also train the
DPDL model on the Purchase100 dataset and perform MIA in both settings, with and

Table 8 MIA result summary of threshold attack on breast cancer dataset for heavy noise level.

Heavy noise (e ¼ 0:5; d ¼ 10�3)
Attack type = threshold attack

Slice feature/ Attacker AUC Precision Recall F1 score
Slice value advantage

Entire dataset 0.05 0.50 0.48 0.48 0.48

Class 0 0.09 0.48 0.49 0.48 0.49

Class 1 0.10 0.53 0.47 0.50 0.48

Correctly classified 0.06 0.49 0.49 0.48 0.48

True

Correctly classified 0.38 0.56 0.44 0.52 0.47

False

Table 9 MIA result summary of threshold attack on breast cancer dataset for moderate noise level.

Moderate noise (e ¼ 1; d ¼ 10�4)
Attack type = threshold attack

Slice feature/ Attacker AUC Precision Recall F1 score
Slice value advantage

Entire dataset 0.05 0.50 0.50 0.50 0.50

Class 0 0.09 0.48 0.49 0.47 0.48

Class 1 0.09 0.53 0.47 0.50 0.48

Correctly classified 0.06 0.52 0.51 0.50 0.50

True

Correctly classified 0.38 0.58 0.41 0.47 0.43

False
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without shadow model training for different noise levels. Since the Purchase100 dataset
contains 100 classes, therefore, the MIA is performed on the entire dataset and by
classification correctness such as, correctly classified true and correctly classified false
(misclassified data samples).

Purchase100 dataset
The Purchase100 dataset (https://www.kaggle.com/c/acquire-valued-shoppers-challenge/
data) comprises customers’ hopping transactions over a year. Following Shokri et al.
(2017), Salem et al. (2019), we get a simplified version of this dataset with 197,324 records.
Each record consists of 600 binary features where each feature represents a product
containing a value of 0 or 1 which depicts whether the customer purchases it. For our

Figure 11 AUC calculated for the non-private model. Full-size DOI: 10.7717/peerj-cs.1616/fig-11

Figure 12 Maximum AUC calculated from both trained and threshold attack for heavy noise (A) and
moderate noise (B). Full-size DOI: 10.7717/peerj-cs.1616/fig-12
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DPDL’s classification task, we apply the K-means clustering algorithm to group the records
into 100 different classes. This new version of the dataset containing 100 classes is now
called Purchase100.

Target model training
Similar to the other datasets, a simple feedforward neural network is designed for the target
model training on the Purchase100 dataset. The model architecture consists of a single
hidden layer comprising 1,000 neuron units and an output layer containing 100 classes. A
similar architecture is used for both private as well as non-private models. The internal
parameters for private and non-private models are the same as for the other datasets.

Shadow and attack model training
The training of shadow and target models is the same as for MNIST and the Breast Cancer
datasets.

MIA with and without trained shadow model settings
We test the competency of DP-BCD based DPDL model trained on the Purchase100
dataset by evaluating MIA success for different noise levels for both settings with shadow
model training and without shadow model training. Figures 13 and 14 show the results in
the form of AUC, precision, and recall for heavy (e ¼ 0:5; d ¼ 10�3) and moderate noise
(e ¼ 1; d ¼ 10�4) levels. The results demonstrate that the AUC values of private models
are about 0.5 and even less than 0.5 in some cases for both with and without shadowmodel
settings. These results advocate that DP-BCD keeps its promise to safeguard the private
data within the Purchase100 training dataset.

Tables 10 and 11 describe the detailed privacy report regarding accuracy in terms of
AUC calculated, precision, recall, and attacker advantage for heavy and moderate noise,
respectively. In the case of the Purchase100 dataset, we calculate these metrics for the entire
dataset and classification correctness slices. Since the dataset contains 100 classes,
reporting results for every class does not seem very worthwhile. Tables 10 and 11 show that
for both trained (logistic regression) and threshold attack, the adversary is unable to
retrieve much information, especially in heavy noise (e ¼ 0:5; d ¼ 10�3). However, the
results for moderate noise (e ¼ 1:0; d ¼ 10�4) are also very convincing since DP-BCD
shows resistance to MIA for this noise level too.

Comparison with the non-private model
To demonstrate the privacy leaked by the non-private model, the AUC value calculated for
the non-private model is shown in Fig. 15. For the DPDL model, the maximum AUC value
calculated for heavy and moderate noise is depicted in Figs. 16. In the case of the
Purchase100 dataset, it can be observed from these figures that the maximum AUC value
calculated for DP-BCD based private model is comparable to the MNIST datasets since the
Purchase100 training dataset also contains a large number of samples for every class.
Hence, DP-BCD retains its efficiency and privacy-preserving guarantee as in the case of
MNIST and Breast Cancer datasets. Figure 16 depicts that for both heavy
(e ¼ 0:5; d ¼ 10�3) and moderate noise e ¼ 1; d ¼ 10�4, the maximum AUC values of
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private models are slightly above 0.5 as compared to a non-private model, which is
considerably higher and exhibiting vulnerabilities for adversaries. Hence, DP-BCD
consuming single-digit privacy cost provides the best alternative to the non-private model
against MIA.

Figure 13 Results of MIA implemented Purchase100 private model calculating AUC, precision, and
recall values for heavy noise (e ¼ 0:5; d ¼ 10�3). Full-size DOI: 10.7717/peerj-cs.1616/fig-13

Figure 14 Results of MIA implemented on Purchase100 private model calculating AUC, precision,
and recall values for moderate noise (e ¼ 1; d ¼ 10�4).

Full-size DOI: 10.7717/peerj-cs.1616/fig-14
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DP-BCD proves its promise to strike a balance between the model utility and the
privacy guarantee of training data. It aims to bridge the gap between private and non-
private models while providing an effective privacy guarantee of sensitive information.

Table 10 MIA result summary on Purchase100 dataset for heavy noise level.

Heavy noise (e ¼ 0:5; d ¼ 10�3)

Slice feature/ Attacker AUC Precision Recall F1 score Attack type
Slice value advantage

Entire dataset 0.06 0.51 0.48 0.48 0.48 Threshold

Entire dataset 0.17 0.51 0.53 0.47 0.50 Logistic regression

Correctly classified true 0.21 0.50 0.49 0.50 0.49 Threshold

Correctly classified true 0.08 0.48 0.49 0.45 0.47 Logistic regression

Correctly classified false 0.18 0.52 0.44 0.52 0.47 Threshold

Correctly classified false 0.13 0.52 0.49 0.55 0.52 Logistic regression

Table 11 MIA result summary on Purchase100 dataset for moderate noise level.

Moderate noise (e ¼ 1; d ¼ 10�4)

Slice feature/ Attacker AUC Precision Recall F1 score Attack type
Slice value advantage

Entire dataset 0.19 0.51 0.50 0.50 0.50 Threshold

Entire dataset 0.08 0.52 0.50 0.49 0.49 Logistic regression

Correctly classified true 0.24 0.52 0.51 0.50 0.50 Threshold

Correctly classified true 0.12 0.47 0.53 0.49 0.51 Logistic regression

Correctly classified false 0.22 0.53 0.50 0.49 0.49 Threshold

Correctly classified false 0.05 0.45 0.52 0.45 0.49 Logistic regression

Figure 15 AUC calculated for the non-private model. Full-size DOI: 10.7717/peerj-cs.1616/fig-15
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Experiments on benchmark real datasets demonstrate that our mechanism not only
bridges the gap between private and non-private models but also prevents the disclosure of
sensitive information effectively.

Comparison with the other techniques
We compare the DP-BCD model with the state-of-the-art defense techniques proposed in
the literature by comparing their robustness against MIA. Rahimian, Orekondy & Fritz
(2021) performed MIA on DP-SGD and randomized response, whereas Tang et al. (2022)
targeted MemGuard, adversarial regularizations, and their proposed technique self
ensemble architecture (SELENA) for MIA. For DP-SGD and randomized response
techniques, the authors did not provide the model’s prediction accuracy and only
discussed the MIA success performance. Therefore, we left model accuracy blank for these
techniques in the comparison table. The MIA performance comparison of all these
techniques with DP-BCD is presented in Table 12. We use attack accuracy and AUC as
evaluation metrics since both metrics with 50% values mean random guess and represent
an unsuccessful attack. It is evident from the table that DP-BCD is 1~15%more resistant to

Figure 16 Maximum AUC calculated from both trained and threshold attack for heavy noise (A) and
moderate noise (B). Full-size DOI: 10.7717/peerj-cs.1616/fig-16

Table 12 Comparison with state-of-the-art techniques.

Defense technique Model accuracy (%) Attack performance

Randomized response – 0.57

DP-SGD – 0.52

MemGuard 83.2 0.66

Adversarial regularizations 78.5 0.57

SELENA 79.3 0.54

DP-BCD 80 0.51
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MIA with noticeable accuracy as compared to other state-of-the-art techniques. Therefore,
this comparison result proves that DP-BCD is strong enough to preserve the privacy of DL
models against a knowledgeable adversary.

CONCLUSION
Recently, a differentially private version of DP-BCDwas developed as a substitute for state-
of-the-art DP-SGD with speedy model convergence and less privacy cost consumption.
However, with the development of modern attack models targeting deep models to extract
sensitive information, such theoretical evaluation is not enough to prove its robustness,
since it is not obvious how accurately DP-BCD trade-off utility for privacy. Therefore, in
this article, we analytically evaluated the impact of a sophisticated MIA privacy attack
against DP-BCD to check its practical capability. We implemented MIA with one shadow
model and without shadow model training in both black box and white box settings. The
shadow model presence did not give any prominent advantage to MIA, though it made the
attack implementation straightforward and more efficient, which supports the results
obtained for non-private deep models (Salem et al., 2019). The experimental results exhibit
that DP-BCD keeps its promise to preserve privacy against strong adversaries while
providing acceptable model utility in all settings.

Some interesting future directions suggestion include studying the effect of different
neural network architectures on the success of MIA. Other than the MNIST and Breast
Cancer datasets, we would like to evaluate the performance of DP-BCD on colored image
datasets, such as CIFAR10. Another exciting avenue to extend the work would be to
analyze the impact of attacks other than MIA (such as model inversion attack) on the DP-
BCD model.
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