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ABSTRACT

In the process of solving the Traveling Salesman Problem (TSP), both Ant Colony
Optimization and simulated annealing exhibit different limitations depending on the
dataset. This article aims to address these limitations by improving and combining
these two algorithms using the clustering method. The problems tackled include Ant
Colony Optimization’s susceptibility to stagnation, slow convergence, excessive
computations, and local optima, as well as simulated annealing’s slow convergence
and limited local search capability. By conducting tests on various TSPLIB datasets,
the algorithm proposed in this article demonstrates improved convergence speed and
solution quality compared to traditional algorithms. Furthermore, it exhibits certain
advantages over other existing improved algorithms. Finally, this article applies this
algorithm to logistics transportation, yielding excellent results.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation

Keywords k-Medoids algorithm, The ant colony algorithm, The simulated annealing algorithm, 2-
opt operator, Logistics and transportation

INTRODUCTION

Since the Traveling Salesman Problem (TSP) is widely used in artificial intelligence,
logistics transportation, circuit board design, and other fields (Di Placido, Archetti ¢
Cerrone, 2022; Crisan, Pintea ¢ Palade, 2017; Yu, Lian & Yang, 2021; Wang et al., 2016;
Lim, Kanagaraj ¢» Ponnambalam, 2014; Li et al., 2018), it has been studied by a large
number of scholars. Some researchers are currently using exact algorithms such as the
branch-and-bound algorithm, mixed integer linear programming method, and dynamic
programming method to solve the TSP instances (Dell’Amico, Montemanni ¢ Novellani,
2021; Gelareh et al., 2020; Lu, Benlic ¢ Wu, 2018). However, as instances become more
complex and data sets become larger, the exact algorithms no longer have advantages.
Instead, various approximate algorithms are more suitable for solving the instances that
are complex and the data is huge.

The bionic algorithm is a heuristic algorithm that simulates natural phenomena or
processes. Many research scholars have used bionic algorithms, such as the genetic
algorithm, particle swarm optimization and so on to approximate the solution of TSP
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instances (Zheng et al., 2023; Zheng, Zhang ¢ Yang, 2022; Al-Gaphari, Al-Amry & Al-
Nuzaili, 2021; Khan & Maiti, 2019; Zhong et al., 2018). Ant Colony Optimization and
simulated annealing also are considered suitable for solving the TSP.

In nature, the foraging habits of ants served as the basis principle for the Ant Colony
Optimization (ACO) (Colorni, Dorigo ¢» Maniezzo, 1991). The Italian researcher, M.
Dorigo, based it on the fact that ants can usually choose an optimal route between their
nest and food supply. In the years since the proposal of the Ant Colony Optimization,
numerous scholars have shown interest in enhancing its performance and have put forth
various approaches for improvement (Dorigo, Maniezzo ¢ Colorni, 1996; Stutzle & Hoos,
20005 Dong, Guo & Tickle, 2012). Even today, many researchers continue to refine and
propose diverse methods to enhance the ACO. This sustained interest and ongoing efforts
in improving the ACO are primarily driven by its significant potential for solving complex
optimization problems efficiently and effectively. The researchers discovered that ants
release a chemical known as a pheromone when foraging. The ACO uses this pheromone
as a cue for its pathfinding direction and always proceeds in the direction of higher
pheromone concentration. The ACO is characterized by excellent robustness, rapid high
accuracy, strong local exploration capabilities, and distributed parallel computing for
small-scale solutions. In large-scale instances, the algorithm performs poorly because it is
prone to stalling, slow convergence, excessive computing effort, and falling into local
optimal solutions. Scholars have suggested a variety of improved methods to solve these
flaws. Many academics believe that refreshing the pheromone update methods in the ACO
is an area for development. The primary reason is that the pheromone is essential to the
ACO (Du et al., 2022; Ning et al., 2021, 2018). Du et al. (2022) propose a method to correct
pheromone levels, which encourages ants to deposit pheromones in nearby cities, enabling
them to select superior cities. Ning et al. (2021) propose a pheromone matrix with negative
feedback. This way expands the diversity of the way that ants choose links and places links
that have not been visited before inferior links, so the effectiveness of the ants at
constructing paths is improved dramatically. In order to enhance the global search
capability, Ning et al. (2018) propose a novel pheromone smoothing mechanism designed
to reinitialize the pheromone matrix when the ACO’s search process approaches a defined
stagnation state. However, since pheromones are among the quantities produced by the
model, the enhanced algorithms that depend on them cannot overcome the model’s
restrictions. Meanwhile, in the TSP instances, the ACO uses a roulette wheel strategy to
choose the next city to visit and then travels across every city. Therefore, the pheromone
strategy of the improved ACO is also unable to avoid the selection of poor path points that
lead the algorithm to the local optimal solution. Some scholars have found the
shortcomings of the optimal search strategy and framework of the ACO and have
proposed their methods (Gao, 2020; Giilcii et al., 2018; Wei, Han ¢ Hong, 2014;
Ratanavilisagul, 2017). Gao (2020) propose a new ACO that utilizes a strategy of
combining pairs of searching ants to diversify the solution space. Additionally, to reduce
the influence of having a limited number of meeting ants, a threshold constant is
introduced. This method improves the solution accuracy and reduces the work of the ant
colony. Giilcii et al. (2018) propose using the 3-opt operator as a means to improve the
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quality of the ACO’s solution. Wei, Han ¢ Hong (2014) the authors propose embedding
the ACO into the cultural algorithm framework using a dual inheritance mechanism to
make the optimal solution evolve in the population space and belief space. Although these
methods improve the quality of the solution, they prolong the time to solve the problem by
applying complex search strategies, which leads to stagnation of the algorithm in dealing
with large-scale TSP instances. Many other scholars have found that the shortcomings of
the ACO can be compensated for using a combination of other algorithms (Gong et al,
2022; Wang & Han, 2021; Rokbani et al., 2021; Yang et al., 2020; Gulcu et al., 2018; Qian &
Su, 2018; Gunduz, Kiran ¢ Ozceylan, 2015); they obtain excellent solutions for the TSP.
Gong et al. (2022) propose a hybrid algorithm based on a state-adaptive slime mold model
and fractional-order ant system (SSMFAS) to address the TSP. Wang ¢» Han (2021)
propose the hybrid symbiotic organisms search (SOS) and ACO (SOS-ACO). Gulcu et al.
(2018) propose a parallel cooperative hybrid algorithm for solving the TSP instances.
Physical annealing served as the basis for the simulated annealing (SA) (Metropolis
et al., 1953) concept. This concept was used in the discipline of combinatorial optimization
by Kirkpatrick, Gelatt & Vecchi (1983). In the years since the proposal of the SA, numerous
scholars have shown interest in enhancing its performance and have put forth various
approaches for improvement (Allwright ¢» Carpenter, 1989; Lin, Kao ¢ Hsu, 1993; Geng
et al, 2011). The SA is a global search algorithm with flexible, widespread, efficient
operation, less initial condition requirements, and other advantages. Currently, many
researchers have found that the search strategy and parameter tuning of the SA can be
challenging. As a result, they have proposed various improvement methods to address
these difficulties (Wang et al., 2015; Zhao, Xiong ¢ Shu, 2015; Lin, Bian ¢ Liu, 2016).
Wang et al. (2015) propose a multi-agent SA with instance-based sampling (MSA-IBS) by
exploiting the learning ability of instance-based search algorithms to solve TSP instances.
Zhao, Xiong & Shu (2015) propose a SA with a hybrid local search for the TSP, which
improves solution accuracy. Lin, Bian ¢ Liu (2016) propose a hybrid SA—tabu search
algorithm to solve the TSP. Fully considering the characteristics of the hybrid algorithm,
they develop a dynamic neighborhood structure for the hybrid algorithm to improve
search efficiency by reducing the randomness of the conventional 2-opt neighborhood.
More scholars have found that the SA can be combined with other algorithms to provide a
better result. The popular hybrid SA for the TSP is the list-based SA. This novel hybrid
algorithm mainly combines SA with the list-based threshold accepting (LBTA) algorithm.
It has proven to be an effective solution for solving large-scale TSP instances (Zhan et al.,
2016; Wang et al., 2019; Ilin et al., 2022; Ilhan & Gokmen, 2022). Other researchers have
also discovered that combining SA with other algorithms not included in the LBTA also
can yield promising results and enhance the solving capability of the SA (Deng, Xiong ¢
Wang, 2021; He, Wu & Xu, 2018; Ezugwu, Adewumi & Frincu, 2017). Deng, Xiong & Wang
(2021) propose a hybrid Cellular Genetic Algorithm with the SA (SCGA), which is closer to
the theoretical optimal value and has good robustness. He, Wu ¢ Xu (2018) combine SA
and the genetic algorithm to propose the Improved Genetic Simulated Annealing
(IGSAA), This method makes SA more effective in avoiding getting stuck in local optima.
The symbiotic biological search algorithm and the SA were merged in the literature
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(Ezugwu, Adewumi & Frincu, 2017) to increase the accuracy of the solution and speed up
the convergence of the SA.

Firstly, in this article, we introduce two strategies to address slow convergence and
susceptibility to local optima of the ACO, which effectively accelerate its convergence and
enhance the accuracy to a considerable extent. Secondly, we propose two strategies to
overcome the accuracy limitations of the simulated annealing, which traditionally lacked
optimization ability. Subsequently, we analyze the shortcomings of the two improved
algorithms and synergistically combine their advantages to devise a new hybrid algorithm.
We thoroughly test this algorithm using 22 different TSP instances. Additionally, we
conduct a comprehensive comparison with other traditional algorithms and state-of-the-
art techniques from the literature. Finally, we apply this novel algorithm to the domain of
logistics and transportation, showcasing its potential and practicality in real-world
scenarios.

BASIC INTRODUCTION AND IMPROVEMENT OF BASIC
ALGORITHM

Description of the traveling salesman problem

In the DFJ formulation, the TSP can be represented by an assignment-complete graph
G = (V,E), where V represents the set of vertices and E represents the set of edges. The
distance between vertices i and j is denoted as d;; and is assumed to be known. To
represent the TSP mathematically, we introduce binary decision variables x;;, where x;; = 1
if the edge (i, /) is included in the loop path, and x;; = 0 otherwise. The objective is to
minimize the total distance traveled, which can be expressed as:

minZ = Zn:zn:dijx,-j (1)

i=1 j=1

Subject to the following constraints. Each city must be visited exactly once:

n
st xj=1i€V (2)
j=1

Each city must be left exactly once:
d xj=1jev (3)
i=1

Subtour elimination constraints to prevent subtours:

DD <l -1vScV.2<|s<n—1 (4)
i€S jes
Xij € {07 1}717] ev (5)
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In these constraints, S represents a subset of cities, and |S| denotes the cardinality of set
S. The subtour elimination constraints ensure that the solution does not contain any
subtours (partial cycles).

K-Medoids algorithm (K-M)

The K-Medoids algorithm (Ezugwu, Adewumi ¢ Frincu, 2017) is an exploratory
classification algorithm that seeks to take the ‘median’ in each cluster as the centroid, each
centroid is a sample point of the data set. Compared to the K-means algorithm, the K-M
has good robustness to anomalous data in the sample data, weakening the effect of outliers
on the overall clustering algorithm and reducing the bias of the clustering results, making it
more accurate and suitable for data used to deal with the TSP.

Introduction and improvement of the elite ant colony optimization
The elite ant colony optimization
The ACO has been under development for over 20 years, and numerous researchers have
been continuously improving and refining ACOs. Some notable improved ACO include
the Maximum-Minimum Ant Colony Optimization, Elite Ant Colony Optimization,
Sorting-Based Ant Colony Optimization, and others. Among them, the Elite Ant Colony
Optimization (EACO) (Dorigo, Maniezzo ¢ Colorni, 1996) introduces an elite ant strategy,
which rewards ants that discover the optimal path in the current cycle with additional
pheromones. This strategy reduces the number of iterations required by the ACO and
improves the quality of the solution to some extent.

(1) Transition probability

The ant colony uses a probabilistic selection method to decide to transfer from the
current city i to the next city j and releases a certain amount of pheromone during the
transfer process. In the initial process, the pheromone concentration of each path is equal,
then the transfer probability of an ant to transfer from the current city i to the next city j is
shown in Eq. (6).

[9@']1[%]/} ]§é tabuy
pk— 2 > 0t (6)
y ri tabuy
0 otherwise

n;; is the heuristic factor between the current city i and the next city j, 0 is the
pheromone concentration left by the ant between the current city i and the next city j,
tabuy [k = 1,2, 3...] is called the tabu list to record the cities that ant k has currently
traveled, o is the pheromone factor, meaning the importance of path with remaining
pheromones, f is the heuristic factor, denoting the affection of heuristic information.

(2) Update of pheromones

The pheromones on each road are updated once all the ants have traveled through all
the cities. The three steps of the EACO’s pheromone update are pheromone volatilization,
ant release of pheromones along their separate paths, and pheromone reward for elite ants.
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Pheromone volatilization equation:
T = (1= 7)y(t) (7)

¢ is representative of the rate of volatilization.
The number of pheromones remains on the path at the current iteration for ant k, which
can be calculated as:

Q (i) e Tk
A1) = { 4 (i,j) € 8
U( ) {0} otherwise )

Q is the pheromone augmentation factor, T* is the path of the ant k, d is the length of
the current edge, when d;;, smaller, more pheromones will be obtained on the current

edge.
Update formula for additional pheromones awarded to elite ants:
e (i j bk
Apest(py = d pa (b)) €T
v {0 otherwise ©)

e is the pheromone augmentation factor for the optimal path, L'

is the current loop
optimal solution, T% is the path of the elite ants.

The pheromones for all ants are updated using the following equation:

Tt +1) = (1= £)rgt) + 3 AL(E) + Ades (1) (10)
k=1

Adaptive elite ant colony optimization (AEACO)

The EACO exhibits similar robustness to the ACO and can be easily integrated with other
algorithms. While the EACO improves upon the number of iterations required by the
ACO, it still inherits the limitations of slow convergence and susceptibility to local optima.

Therefore, this article proposes two improvement strategies for the slow convergence of
the EACO.

Strategy one

The optimal path between a colony’s exploration of a nest and a food source relies heavily
on the information transmitted through pheromones. If the ant colony already knows the
starting city a and the ending city b (the ending city is the city before the ant colony returns
to its starting point), the ant colony tends to choose the city closer to the ending city,
leading to a biased selection process for the next visited city during exploration. Utilizing
the best pheromone information between the starting city a and the ending city b, the ant
colony can efficiently determine the appropriate direction to explore, thereby accelerating
the search process. To address this, this article proposes an improved pheromone update
strategy in conjunction with the EACO. Furthermore, all edges are initialized based on the
distance between the starting city a and the ending city b. The concentration of
pheromones in the initialized ant colony is determined as follows:
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d,
7;;(0) :d—‘f+djb (11)
a

7;(0) is the initial pheromone concentration between the current city i and the next city
J» dap is the linear distance between the starting city a and the ending city b, d,; is the
distance from the starting city a to the next city j, dj, is the distance from the next city j to
the ending city b.

This strategy changes the initial pheromone concentration of the EACO and focuses on
the distance between the current city and the ending city, which provides directional
guidance for the initial ant colony and avoids blind searches of the ant colony, thus
improving the speed of solution and accuracy of the solution.

Strategy two

The method for ants to select the next city from the current city is primarily based on the
roulette wheel betting method. This method ensures a well-balanced algorithm, where ants
with higher fitness values are more likely to be selected, while ants with lower fitness values
still have a chance to be chosen. This approach allows the ant colony to explore and
experiment within the solution space, allowing all unvisited cities to be selected. However,
in the actual solution process, it is important to avoid consecutively visiting two cities that
are particularly far apart. If the ant colony selects a distant city as the next destination from
its current location, it would result in wasted iterations, leading to increased solution time
for the algorithm. More critically, it could significantly affect the overall direction of the
algorithm’s solution and potentially trap it in a local optimal solution. Therefore, this
article restricts the city selection process to the roulette wheel betting method. Ants are not
allowed to choose a more distant city as the next visited destination. This constraint is
expressed mathematically as follows:

A Zr¢tubuk diy
= — — (12)
Number of cities not visited
_J1 d,<R
ir — {O dir Z R (13)

R is the maximum distance from other cities that can be visited, /4 is parameter [1,2], d;,
is the current city i to a city r that has not been visited, Eq. (13) indicates whether the
unvisited city r can be added to the roulette match, 1 is acceptance and 0 indicates no
acceptance, x;, is the decision variable for the current city i to the unvisited city r.

Our algorithm called the Adaptive Elite Ant Colony Optimization (AEACO) is an
efficient optimization-seeking algorithm for small-scale TSP instances, which will
automatically adjust the number of iterations and the number of ants for different small-
scale instances. Meanwhile, a comparison test with the ACO and the AEACO is run to
evaluate the performance of the AEACO. The AEACO, ACO, and AEACO are put to the
test 30 times, with each algorithm’s optimal solution, average error rate, and solution time
is provided. Table 1, Figures 1 and 2 show the experimental results, Meanwhile, Time is the

Hao et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1609 7/31


http://dx.doi.org/10.7717/peerj-cs.1609
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Results of the ACO, EACO and AEACO for solving small-scale instances.

Instances  Opt Iterations Algorithm  Best SDgyg (%)  Time (s)
bays29 2,020 m = 29, itermax = 40 ACO 2,053 5.9 2.87
m = 29, itermax = 30 EACO 2,087 3.4 2.35
m = 29, itermax = 15 AEACO 2,020 0.3 0.85
berlin52 7,542 m = 52, itermax = 70 ACO 8,349.5 12.9 27.81
m = 52, itermax = 60 EACO 7,853.4 4.8 23.68
m = 52, itermax = 26 AEACO 7,612.39 1.7 8.83
pr76 108,159  m = 76, itermax = 150  ACO 126,151.2 18.3 170.91
m = 76, itermax = 100 EACO 120,576.7 13.5 126.67
m = 76, itermax = 38 AEACO 119,813.4 12.2 39.44
bays29 T hoo) 24807 berlin52 T ACO 145000 pr76 vl
10000 ——AEACO 24004 ——AEACO ——AEACO
140000
2350 -
9500 -
2300 135000 1
9000 4 2250 -
2200 - 130000 -

85001 2150
125000 |
2100 4
8000 -
\ 2050 + \ 120000 4

7500 T T T T T T T 2000 T T T T T T T T y T T T T
0 5 10 15 20 25 30 S 0.0 0.5 1.0 15 2.0 25 30 S 0 40 80 120 160 200 S

Figure 1 Iterative trajectory of the best result of the ACO, EACO and AEACO solving small-scale instances.
Full-size K&l DOT: 10.7717/peerj-cs.1609/fig-1

solution time for the algorithm to solve the TSP instance 30 times, SD is the error rate and
calculated by Eq. (14), which is the difference between the optimal solution (denoted as
Opt) obtained by the algorithm and the known optimal solution (denoted as KopS) of
TSPLIB, SD,,, is the average error of the solved result at the end of the every process after
30 runs, SDy is the error of the best solution after 30 runs and Best is best optimal
solution after 30 runs.

SD = <M> x 100 (14)
Kops

Parameter setting of ACO: o =1, f =5, Q =1, p = 1, the number of ants m is the
number of cities.

Parameter setting of EACO: =1, # =5,Q =1, p = 1, e = 0.5, the number of ants m
is the number of cities.
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20

ACO EACO AEACO ACO EACO AEACO ACO EACO AEACO
bays29 berlin52 pr76

Figure 2 Several errors in the results of the ACO, EACO and AEACO solving small-scale instances.
Full-size K&l DOT: 10.7717/peerj-cs.1609/fig-2

Table 2 MSA-1 with different ratios for solving TSP instances.
Instances (K) 1:1:1 2:1:1 1:2:1 1:1:2

Agiter 8Dy Agiter SDgyg Agiter SDgyg Agiter 8Dy

pr76 (512) 346.70 7.40 366.77 6.01 377.57 7.48 335.83 6.08
tsp225 (550) 503.50 5.74 512.70 6.20 508.80 7.20 474.20 5.58
pcb1173 (1,021) 976.89 28.97 989.78 27.42 956.63 28.45 750.23 23.56

Parameter setting of AEACO: « =7, #=10,p=0.1,Q=1,e=0.5, A = 1.2, the
number of ants m is the number of cities, the number of iterations of the algorithm is 0.5
times the number of cities.

From Fig. 1, the AEACO has demonstrated superior performance in terms of speed and
accuracy compared to the ACO and EACO, it is evident that the AEACO converges to the
optimal solution with minimal time and number of iterations, the convergence also speed
is also remarkably fast as depicted in Fig. 2 and Table 2, it can be observed that the AEACO
produces better results. Nevertheless, as the scale increases, the algorithm’s accuracy
diminishes, and the solution time considerably lengthens.

Introduction and improvement of simulated annealing algorithm

Simulated annealing (SA)

According to Metropolis et al. (1953), the basic idea behind solid annealing is to first slowly
cool the solid after heating it to a specific temperature. When a solid is heated, its interior
particles become disorganized as the temperature rises, and internal energy increases.
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When a solid is cooled, on the other hand, its interior particle population becomes ordered
as the temperature drops, and internal energy decreases when a particular equilibrium
state is reached at each temperature. The SA replicates the steps involved in this principle,
including the initial temperature setting, the initial solution, and the temperature decline.

The SA commences from an initial solution, denoted as x, and proceeds by perturbing x
according to predefined rules to generate a candidate solution, denoted as y. The
Metropolis criterion is a fundamental acceptance rule used in the SA to determine whether
a new solution should be accepted or rejected during the optimization process. The
acceptance of y is determined using the Metropolis criterion. If accepted, y replaces x as the
new initial solution, from which further candidate solutions are generated. As the
temperature decreases, the initial solution x evolves iteratively. Eventually, this progressive
evolution, driven by the decreasing temperature, leads the algorithm to converge towards
the global optimal solution.

1 E, —E.<0
pP=19 bk (15)
e Tk otherwise

Eoq and E,, are the objective function value and Ty is the current temperature.

The SA receives worse solutions with a certain probability. Therefore, the climbing
ability is strong and it is not easy to fall into the local optimum, but the SA is slow to
converge and has poor local search ability.

Simulated annealing with multiple optimization seeking methods (MSA)

The SA is a powerful global optimization algorithm known for its excellent hill-climbing
ability. However, the SA is heavily dependent on the initial temperature and a single
optimization search method. As a result, the algorithm can fall into premature
convergence and become trapped in local optimal solutions. Therefore, this article
proposes two strategies to improve the deficiencies of the SA.

Strategy one
The traditional simulated annealing, which primarily employs perturbation operations to
perturb the solution sequence, uses a random exchange of the positions of a specific pair of
cities as its perturbation mechanism in the TSP instances, which is the primary cause of the
algorithm’s slow convergence. The perturbation mechanism, however, plays a critical role
in the algorithm’s superiority. As the perturbation approach for the SA process cannot be
overly complicated, we will employ three conventional perturbation operations to change
the old solution sequence.

(1) Swap method: randomly swap two positions in the solution sequence.

(2) Random insert method: randomly swap two adjacent positions in the solution
sequence.

(3) 2-opt method: two positions in the solution sequence are randomly selected and
arranged in reverse order from these two positions.
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Strategy two

The traditional SA typically employ a sufficiently large initial temperature to enhance the
search performance. However, there is no universally recommended method for
determining the initial temperature. Selecting an inappropriate initial temperature not
only results in wasted time but also hampers the effectiveness of the solution search.
According to the method described in literature (Lin, Kao ¢ Hsu, 1993), we employed a
specific initial temperature approach tailored to the unique characteristics of our
algorithm:

E(Xavg) - E(Xmin>
alnp

T=-— (16)

Egye and E,,;, are the expected average and minimum values, respectively, of the
objective function for N randomly selected feasible solutions within the solution space, p is
parameter [0,1], a is a parameter value that mainly prevents the temperature starting point
from being too high, resulting in slow convergence of the algorithm.

The MSA-1 is randomly selected to perturb the solution sequence by the swap method,
random insertion method, and 2-opt method. The MSA-1 means that the MSA uses only
strategy 1 and not strategy 2. In this article, three instances of pr76, tsp225, and pcb1173
are used to test the MSA-1 for four different proportions of perturbations of the swap
method, random insertion method, and 2-opt method. The experimental results are shown
in Table 2. In the table, K is the number of temperature changes, Errors is the average error
of the solution after 30 experiments. Meanwhile, Agiter is the average of the number of
iterations in which the optimal result emerges during the solution of the TSP instances
after 30 times. SD,,, is the average error rate of solving 30 times.

As shown in Table 2, when the swap method:random insertion method:2—opt method =
1:1:2, the solution effect is better. A larger proportion of the 2-opt method is beneficial for
obtaining better solutions and reducing the number of iterations.

By utilizing the swap method, random insertion method, and 2-opt method to enhance
perturbation in the SA. The perturbation capabilities of the SA can be improved, which can
leading to more accurate solutions. Using strategy 2 to improve the initialization
temperature of the SA has the advantage of avoiding too high or too low a temperature that
would cause the algorithm to fall into a local optimal solution. In this study, comparison
tests between the MSA-1 and the conventional the SA are carried out using the same initial
solution sequence, initial temperature, termination temperature, cooling factor, and the
maximum number of iterations. The MSA does not use the same initial temperature. A
total of 30 tests are carried out, and the experimental results are displayed in Table 3 and
Fig. 3.

The parameters were set as follows: initial temperature: 300, termination temperature 1,
cooling factor: 0.998, and the maximum number of iterations: 100.

Experiments show that the solution accuracy of the MSA-1 is much higher than that of
the SA in the same environment. The main reason is that Strategy 1 improves the
exploration pattern of the SA. Comparing the MSA-1 and the MSA, MSA has strategy 2
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Table 3 Results of the SA, MSA-1 and MSA for solving different size instances.

Instances  Opt Initial solution  Algorithm  Best Worse SD,,;  Time (s)
pr76 108,159  144,831.45 SA 135,513.2 143,093.8 28.36 14.92
MSA-1 109,644.32  112,642.48 2.1 24.33
MSA 108,202.16  114,270.43 1.12 66.39
prl36 96,772 124,989.96 SA 113,226.76  118,201.66  19.2 23.13
MSA-1 99,787.90  104,539.30 5.8 44.38
MSA 98,575.38  102,455.69 4.2 117.4
lin318 42,029 53,884.25 SA 51,790.45 55,825.56  27.28 50.98
MSA-1 46,552.59 49,505.13 149 106.13
MSA 44,424.19 45,297.42 7.37 286.13
07 B D,
I 5D,
- S best
30

20 H

10

SA  MSA-1 MSA SA  MSA-1 MSA
pr76 pri36

SA  MSA-1 MSA

1lin318

Figure 3 Several errors in the results of the SA, MSA-1 and SA solving different size instances.
Full-size K&l DOT: 10.7717/peerj-cs.1609/fig-3

which provides an effective initial temperature, leading to a high convergence accuracy of
the MSA. But MSA of the average time is longer than the SA, resulting in the inability of
the SA to improve the solution accuracy and reduce the solution time, mainly because the

MSA is not sufficient in local search capability.

A hybrid algorithm combining enhanced ant colony optimization and
improved double simulated annealing via clustering (ACO-DSA)
After improving Ant Colony Optimization and simulated annealing, the AEACO helps the

initial ant colony form a good search path and rewards the elite ant colony that finds the

optimal path with extra pheromones. However, this algorithm cannot be used for the
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Figure 4 Formation of small cluster classes and cluster sequences.
Full-size K&] DOT: 10.7717/peerj-cs.1609/fig-4

larger TSP instances, mainly because the AEACO cannot get rid of the inherent defects of
the ACO. While the enhanced simulated annealing increases the algorithm’s perturbation
of the solution sequence and improves its climbing ability and solution accuracy, it also
leads to an increase in solution time. These two algorithms can work together as a
complement. From an overall perspective, these two algorithms can complement each
other, with the AEACO responsible for rapid search of small-scale TSP instances and the
MSA responsible for the overall TSP instances to jump out the local optimal solution
problem. Based on the above analysis, this article will use the clustering algorithm to
combine the advantages of the AEACO and the MSA with each other.

Steps of the algorithm
The algorithm in this article will be carried out in three processes.

Initialization process: Formation of small cluster classes and cluster sequences, intra-
cluster optimization.

First annealing process: Optimizing the sequence of clusters and intra-cluster
optimization.

Second annealing process: Global optimization.

Formation of small cluster classes and cluster sequences
TSP instances can be fundamentally viewed as sorting problems, allowing large-scale TSP
instances to be decomposed into multiple smaller ones. Solving the TSP involves
determining the sequence in which the salesman selects the next city from the current city,
typically focusing on cities around the current location. This approach is preferred over
selecting cities across significant distances to maintain precision. To address this, as shown
in Fig. 4, a clustering algorithm can be applied to partition all cities in the TSP instances
into several small clusters, comprising cities that are in close proximity to each other. These
clusters represent groups of closely located cities.

Steps for forming small cluster classes:

Step 1: Randomly select k cities as Medoids.

Step 2: The remaining cities of the data are divided into cluster classes according to the
principle of closest to the Medoids.
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Figure 5 Intra-cluster optimization. Full-size 4] DOT: 10.7717/peerj-cs.1609/fig-5

Step 3: Update: for each cluster formed by the assigned data points, select a new Medoid
that minimizes the total dissimilarity or distance within that cluster. Iterate through each
data point within the cluster and calculate the total dissimilarity as the sum of distances
between the data point and all other points in the cluster. Choose the data point with the
lowest total dissimilarity as the new Medoid for that cluster.

Step 4: Evaluate whether each cluster exceeds its maximum member capacity and
consider reclassifying any surplus members from the exceeding clusters to other
appropriate clusters.

Step 5: Repeat the process of 2—4 until all Medoids no longer change or the set maximum
number of iterations has been reached.

Step 6: Forming cluster sequence: using the greedy algorithm and cluster centroids to
sort the clusters.

Intra-cluster optimization

The AEACO is an efficient algorithm for solving small-scale TSP instances with known
starting city and ending city. Therefore, in this article’s algorithm, the AEACO is used to
find the best solution found for the TSP instances that are split into small-scale ones. As
shown in Fig. 5, the AEACO is used to find the best cluster solutions inside each of the m
cluster classes as well as the best sequence of solutions.

Steps for finding the best solution founds and solution sequences within the cluster
class:

Step 1: Parameter initialization: the number of m ants (the number of cities),
pheromone importance factor o, heuristic function importance factor f, pheromone
volatility factor p, total pheromone release Q, the maximal number of iterations itermax
(0.5 times the number of cities), elite reward strategy value e, parameter A.

Step 2: Initialization of pheromones: initialize the pheromone concentrations on each
path according to Eq. (11).

Step 3: Construct the solution space:

Select the set of cities set from unvisited cities according to strategy two of AEACO (Egs.
(12) and (13)).
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Each ant in the population selects the next city from cities set to move based on
pheromone trails and heuristic information.

Repeat the process until all ants have visited all cities, ensuring that each city is visited
exactly once.

Calculate the path length each ant and identify the ant with the best path (elite ant).

Step 4: Pheromone update: leave pheromones on each ant’s passing edge and reward
elite ants with a certain amount of extra pheromones on their passing edge.

Step 5: Termination condition: if iter <itermax (the current iteration number < the
maximum iteration number), clear the path record table and return to Step 3; if
iter > = itermax (the current iteration number >= the maximum iteration number),
terminate the calculation and output the best solution found.

Optimizing the sequence of clusters

The split into small-scale clusters needs to be recombined into a solution to the large-scale
TSP instances, however, in the process of combination, a suitable sequence is needed for
sorting. Therefore, the algorithm in this article uses the MSA to find the optimal ordering
of this cluster. To obtain a better solution, the received sequence of clusters is first
perturbed to produce a new sequence of clusters. Next, the optimal sequence of clusters is
internally searched for each cluster in the new sequence of clusters, and the optimal
solution and sequence of clusters are obtained by using the table of the nearest cities and
the optimal solution of clusters obtained from the internal search of clusters. Lastly, the
decision of whether to accept the new cluster sequence is made using the Metropolis
criterion, as shown in Fig. 6.

SE (Starting-Ending) strategy

As illustrated in the Fig. 7, the algorithm presented in this article primarily utilizes the
clustering method to partition cities into distinct clusters. Subsequently, it aims to
determine the optimal sequence for connecting these clusters. Hence, the most crucial
consideration lies in selecting cities that are interconnected within their respective clusters.
After the perturbation, it is necessary to determine the cities at the starting and ending
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Figure 7 Schematic diagram of the SE strategy. Full-size K&l DOT: 10.7717/peerj-cs.1609/fig-7

points within the perturbed part based on the cluster. To achieve this, pheromones and
distances from surrounding clusters to cities in the perturbed part are taken into account.
Selection probabilities are established using these factors and are combined with the
roulette pair method to select the starting city and ending city. The probability of selection
of interconnected cities in the current cluster selection and other clusters is given by the
formula:

B
Zbecluster} [vab]al [wab}/l

~k - a € cluster
pai{ = Zreclusterk Zueclusterk [Vrb] l[wrb]/jl « (17)
0 otherwise

Pheromone update of SE strategy:
Tyt 1) = (1= £2)5(8) + 1% (1) (18)

a denotes a city in the cluster k in the disturbed part, v,;, denotes the heuristic factor
between the city a and the city b, w,, is the pheromone concentration between the city i
and the city b, cluster; denotes the cluster of the disturbed part, cluster; denotes disturbed
parts of the surrounding cluster, «; denotes the pheromone factor, 5, denotes the heuristic
factor. 7, is representative of the rate of volatilization, U, is a constant; Lll’e“ is the current
loop optimal solution of MSA.

Steps to optimize the sequence of clusters:

Step 1: Parameter initialization: temperature initialization T operation with Eq. (16),
the maximum number of iterations L, the termination temperature T,,4, and the cooling
factor py(1 < p, <0).

Step 2: Initialization of pheromones: set the same pheromone on each path.

Step 3: The initialization process of the cluster sequence: perform the internal cluster
search for each cluster, and build up the optimal solution table of each cluster and the
internal sequence table of each cluster according to the sequence of clusters.

Step 4: Perturbation of cluster sequence: perturbation of cluster sequence using swap
method, random insertion method and 2-opt method with a probability of 1:1:2.

Step 5: Calculate the results after the perturbation:

Using SE strategy to find the starting city and the ending city of the perturbed part of the
clusters.

Hao et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1609 16/31


http://dx.doi.org/10.7717/peerj-cs.1609/fig-7
http://dx.doi.org/10.7717/peerj-cs.1609
https://peerj.com/computer-science/

PeerJ Computer Science

Using an intra-cluster optimization search for the clusters in the perturbed part.

Update the optimal solution table and the internal sequence table of the clusters.

Step 6: The Metropolis criterion: use the Metropolis criterion to determine whether to
receive a new cluster sequence.

Step 7: Determine if the maximum number of iterations has been reached: if so, exit the
current loop, otherwise return to Step 3.

Step 8: Pheromone update: leave pheromones on each ant’s passing edge and reward
elite ants with a certain amount of extra pheromones on their passing edge.

Step 9: Cooling: Ty = p,Tp.

Step 10: Stop condition: determine whether the termination temperature T, is
reached, if T,p = Teng, the algorithm ends. Otherwise return to Step 3.

Step 11: Formation of a quality solution: connect all clusters.

Global optimization

Since the clustering algorithm splits the TSP instances into several small TSP instances,
mainly based on the nearest principle, resulting in the solution of this algorithm is not
necessarily the optimal solution, due to the strong climbing ability of the MSA can jump
out of the local optimal solution, so the global search for the sequence after experiencing
the clustered sequence seeking is performed to increase the quality of the solution of the
algorithm in this article.

Steps for global optimization search:

Step 1: Parameter initialization: initial temperature T (Initial temperature calculated by
combining Eq. (16) and historical data from Optimizing the sequence of clusters), the
maximum number of iterations L;, termination temperature Tgyp, cooling factor
p1(1<p; <0).

Step 2: Solution sequence perturbation: the solution sequence is perturbed using the
swap method, random insertion method, and 2-opt method with a probability of 1:1:2.

Step 3: The Metropolis criterion: the Metropolis criterion is used to determine whether
to receive new sequences and new solutions.

Step 4: Determine if the maximum number of iterations has been reached: if so, exit the
current loop, otherwise return to Step 2.

Step 5: Cooling: Ty = p,T;.

Step 6: Stop condition: determine whether the termination temperature Tgyp is reached,
if Tnvow = Tenp, the algorithm ends. Otherwise return to Step 2.

Step 7: Output the best solution found: output the best solution found and solution
sequence.

The flow of ACO-DSA

As shown in Fig. 8, we demonstrate the entire algorithmic flow of our algorithm.
The process of initialization
Step 1: The n cities are clustered using the K-M algorithm.
Step 2: Using the greedy algorithm and cluster centroids, create a cluster sequence.
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Step 3: The starting and ending cities of each cluster are selected using the SE strategy.
The AEACO is then employed to find the best solution found and sort each cluster based
on the cluster class order. Finally, the optimal solution table and the internal sequential
table are constructed.

First annealing process

Step 4: Initial temperature, termination temperature, number of iterations, and cooling
factor of intra-cluster optimization are initialized for the operation.

Step 5: Perturb the cluster sequence and perform intra-cluster optimization search for
the cities in the perturbed part of the cluster to calculate the solution value of the perturbed
part.

Step 6: If the new solution sequence is accepted, determine using the Metropolis
acceptance criterion: whether to update the optimal solution table for each cluster and the
internal sequence table for each cluster; if not, do not update these two tables.

Step 7: Judge whether the number of iterations is reached, if not, return to Step 5,
otherwise, execute the next step.

Step 8: Judge whether the termination temperature is reached, if not, return to Step 5,
otherwise find out the solution sequence and solution based on the optimal solution table
of each cluster and the internal sequence table of each cluster, and execute the next step.

Second annealing process
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Step 9: Initial temperature, termination temperature, number of iterations, and cooling
factor of global optimization are initialized for the operation.

Step 10: Perturb the solution sequence and calculate the new solution.

Step 11: Use the Metropolis acceptance criterion to judge whether the new solution
sequence is received, if so, update the solution sequence; otherwise, do not update the
solution sequence.

Step 12: Judge whether the number of iterations is reached, if not, return to Step 10,
otherwise, execute the next step.

Step 13: Judge whether the termination temperature is reached, if not, return to Step 10,
otherwise, output the solution sequence and the best solution found.

EXPERIMENT AND RESULT ANALYSIS
To test the effectiveness of the ACO-DSA, experiments will be conducted using TSP
instance of different sizes from the TSPLIB database, which are arranged as follows:

(1) The ACO-DSA is used to find the optimal solution for different TSP instance sizes.

(2) The effect of varying clusters of clusters on the first annealing at the same TSP scale
and temperature control.

(3) The ACO-DSA is compared with other algorithms.

This article experiments in the following environment: Python 3.8, Winl1 operating
system, Intel(R) Core(TM) i7-8550U processor, 8 GB RAM.

Testing the solution effect of the ACO-DSA

To verify the operational effectiveness of the ACO-DSA, 30 tests are run on TSP instances
of different sizes. In particular, Table 4 shows the relevant parameter settings of the
algorithm in this article for each instance. In the table, Size represents the number of
clusters into which the TSP instance is divided. Meanwhile, parameter settings of AEACO
and SE strategy are: o« = 7, f = 10, p = 0.1,Q = 1,e = 0.5, 4 = 1.2, The number of ants is
the number of cities, The number of iterations of the algorithm is 0.5 times the number of
cities, o1 = 7, §; = 10. Table 5 shows the relevant results of each instance in each process
and the average of the sum of the optimal solutions that emerge after 30 times of
conducting and the total time required for each experiment. Time is the solution time of
the process, SD is the error rate and calculated by Eq. (14), SD,,, is the average error of the
solved result at the end of the every process after 30 runs, SDj, is the error of the best
result after 30 runs and Best is the best result after 30 runs.

According to experiments, when using the ACO-DSA to solve instances of various sizes,
the solution accuracy increases at the end of each process and converges to a specific range
of accuracy. Figure 9 shows some examples of optimal paths obtained by the ACO-DSA,
every result was excellent.

Testing the impact of cluster size

Decomposing the instance into numerous small clusters and effectively ranking each
cluster is the primary priority of the first annealing process of the ACO-DSA. The effect of
the number of clusters on the time and accuracy of the ACO-DSA is investigated by
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Table 4 Parameter settings of the ACO-DSA for different TSP instances.

Instances  Size  First annealing process Second annealing process

a9 Po Po Ly Tena aj P1 Pi L, Tenp
eil51 10 2 0.01  0.998 1 0.05  0.01 2 0998 100 0.1
berlin52 10 2 0.01  0.998 1 2 0.01 2 0998 100 2
st70 10 2 0.01  0.998 1 1 0.01 2 0998 100 0.5
eil76 10 2 0.01  0.998 1 0.07  0.01 2 0.998 150 0.002
pr76 10 2 0.01  0.998 1 50 0.01 5 0998 150 50
kroA100 15 2 0.01  0.998 1 7 0.01 5 0998 200 5
eil101 10 2 0.01  0.998 1 0.1 0.01 2 0998 200 0.1
prl07 10 2 0.01  0.998 1 20 0.01 2 0998 200 5
bier127 15 2 0.01  0.998 1 40 0.01 5 0998 200 1
ch130 15 2 0.01  0.998 1 1.2 0.01 2 0998 200 1.2
prl36 15 2 0.01  0.998 1 20 0.01 2 0998 200 5
ch150 20 2 0.01  0.998 1 1 0.01 4 0998 250 1
kroA200 20 2 0.01  0.998 1 0.1 0.01 4 0998 250 1
tsp225 20 2 0.01  0.998 1 0.5 0.01 5 0998 300 1
pr299 30 2 0.01  0.998 5 10 0.01 20  0.998 300 1
lin318 40 2 0.01  0.998 1 7 0.01 5 0998 400 1
pr439 50 2 0.01  0.998 1 20 0.01 20 0998 500 0.5
rat575 80 2 0.01  0.998 50 10 0.01 20 0998 800 0.01
p654 100 2 0.01  0.998 50 5 0.01 5 0998 500 0.1
rat783 150 2 0.01  0.998 1 1 0.01 1 0.998 800 0.001
vm1084 150 2 0.01  0.998 50 10 0.01 20 0998 1,000 1
d2103 400 2 0.01 0998 200 10 0.01 20 0998 1,500 1

varying the number of clusters and the number of iterations while maintaining the same
termination temperature and cooling factor. As depicted in Table 6, we illustrate the
influence of the number of clusters and the number of iterations on the initial stage of the
proposed algorithm using the pr299 instance. The horizontal axis of the table represents
the number of cities in the cluster (5, 10, 15, and 20), while the vertical axis represents the
number of iterations Ly (1, 5, 10, 15, 20, and 25).

The formula for calculating the number of cities in the cluster is shown below:

L Number of all cities
cities = (19)
Number of cluster classes

Parameter settings for the pr299 instances: termination temperature: 10, cooling factor:
0.998, ap = 2, py = 0.01 (Error indicates the average error rate of solving 10 times, Time
represents the solution time for the first annealing process of the ACO-DSA to solve the
TSP instance 10 times).

The results indicate that increasing the number of cities in the cluster leads to longer
optimization times. However, it also achieves better optimization results for the same case.
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Table 5 Results of the operation of the ACO-DSA clustering for different TSP instances.

Instances Opt Initialization process First annealing process Second annealing process SDpest Best
Time (s) 8D,y Time (s) 8Dy, Time (s) 8Dy,

eil51 426 0.69 10.40 5.75 5.96 4.15 3.28 0.67 428.9
berlin52 7,542 0.62 29.86 4.28 6.66 6.27 1.94 0.03 7,544.4
st70 675 0.80 11.24 8.13 6.04 0.83 3.99 0.31 677.1
eil76 538 1.07 15.42 20.69 9.57 18.14 3.99 1.92 548.3
pr76 108,159 1.11 15.40 20.60 5.99 9.36 2.74 0.00 108,159.4
kroA100 21,282 0.78 22.82 17.47 6.80 18.99 2.32 0.47 21,381.8
eil101 629 0.79 17.99 65.50 9.37 17.01 5.75 4.30 656.0
prio7 44,303 2.17 9.29 16.36 3.66 61.53 0.70 0.00 44,301.7
bier127 118,282 8.97 16.89 76.78 8.98 80.85 3.85 0.36 118,703.6
ch130 6,110 4.47 18.88 60.84 7.81 27.09 413 0.12 6,117.5
pri3e 96,772 6.88 10.55 87.83 4.77 24.29 2.74 0.62 97,367.8
ch150 6,528 6.74 17.05 71.68 9.38 25.35 4.81 0.45 6,557.3
kroA200 29,368 12.15 18.80 101.98 10.23 111.51 5.84 3.61 30,428.7
tsp225 3,916 3.40 17.74 96.05 7.99 72.54 3.94 1.40 3,970.9
pr299 48,191 8.93 25.74 706.82 8.87 185.36 3.84 0.02 48,200.6
lin318 42,029 9.65 29.87 164.10 14.22 195.36 6.02 3.93 43,680.7
pr439 107,217 11.73 29.37 478.63 12.66 369.67 7.50 4.24 111,763.1
rat575 6,773 28.31 2891 239.53 15.25 646.80 8.63 3.90 7,036.8
p654 34,643 29.31 3291 134.77 16.25 746.80 6.12 3.22 35,757.4
rat783 8,806 25.87 33.74 268.14 12.81 876.58 10.71 5.01 9,247.5
vm1084 239,297 30.80 38.74 768.16 15.81 1,176.55 11.68 8.36 259,303.1
d2103 80,450 56.65 40.76 2,000.87 20.76 2,098.76 13.87 10.28 88,722.59

Similarly, when maintaining the same number of cities in the cluster, a higher number of
iterations results in superior optimization outcomes, albeit with a significant increase in
processing time. Specifically, when using 20 cities in the cluster and 25 iterations, the
solution accuracy reaches its peak. Nevertheless, it is not recommended to choose a
configuration with a large number of cities in the cluster and a high number of iterations
due to the considerable time consumption.

Comparison with other algorithms

Table 7 displays the experimental results concerning the algorithm proposed in this article
and several traditional algorithms, namely Ant Colony optimization (ACO), simulated
annealing (SA), genetic algorithm (GA), and particle swarm optimization (PSO), after
conducting 30 tests. The experimental records indicate that as the size of the instance
increases, both ACO and PSO exhibit a deteriorating trend in solution accuracy and
solution time performance. However, GA and PSO tend to converge to a certain level of
accuracy. Remarkably, when compared to the traditional algorithms, the algorithm
proposed in this article demonstrates superior performance. In terms of the average
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Table 6 Results of testing the number of different clusters and different iterations of pr299 instance.

opt To L, 5 10 15 20
Time (s) Error Time (s) Error Time (s) Error Time (s) Error

48,191 10 1 15.73 16.93 130.18 11.03 338.44 8.90 589.09 7.33

5 68.52 12.31 706.82 8.87 1,076.87 8.45 2,459.12 6.98

10 14735 9.76  1,201.82 8.66 1,809.76  8.19 4989.82 6.89

15 21097 9.24 1,765.56 8.39  2,982.89 7.83 6,878.32  6.70

20  280.64 8.20  2,105.67 7.88  3,650.88 7.40 8,887.66  6.38

25 33045 7.52  2,650.84 7.32  4,205.59 7.20 10,965.88  5.88

optimal solution error rate across all instances, the algorithm proposed in this article
achieves a value of 1.49, while ACO, SA, GA, and PSO attain values of 29.39, 5.59, 2.84, and
11.16, respectively. Additionally, considering the average value of the average error rate
across all instances, this article’s algorithm exhibits a value of 3.98, while ACO, SA, GA,
and PSO exhibit values of 35.62, 9.30, 4.97, and 13.44, respectively. Moreover, the
algorithm proposed in this article also demonstrates advantages in terms of solution time.
Figure 10 shows the analyzed graphs of the results of this article’s algorithm and the
ACO, SA, GA, and PSO. The line graphs show the error rates of the optimal solutions
obtained by the SA, GA, PSO, and this article’s algorithm after 30 solving of 10 TSP
instances, and it can be seen that this article’s algorithm achieves the best optimal solution.
The bar chart shows the comparison of the two error rates of the ACO, SA, GA, and PSO.
Table 8 displays the experimental results concerning the algorithm proposed in this
article and several other literature algorithms, the design idea of the ACO-ABC (Gunduz,
Kiran & Ozceylan, 2015) in the literature is the same as the algorithm in this article, both of
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Table 7 Comparison results of the ACO-DSA with other traditional algorithms for different TSP instances.

ACO SA GA PSO This article
Instances Opt SDpest  SDgyyg  Time SDpest  SDgyye  Time SDpest  SDgy Time SDpest  SDgy Time SDpess  SDgye  Time
berlin52 7,542 10.71 12.90 2781 0.03 581 46.51 0.03 6.14 18.10 1.00 6.74 12.15 0.03 194 11.17
pr76 108,159 16.63 18.30 17091 21.57 23.89 70.17 1.74 3.58 56.87 12.04 16.89 3293 0.00 274 31.07
kroA100 21,282 6245 81.25 31934 212 446 112.68 0.77 2.19 122.04 11.02 14.38 66.55 047  2.32 37.24
eil101 629 19.66 23.96 350.35 6.68 10.53 12445 521 6.88 137.02 14.61 16.54 5799 430 5.75 83.30
pr107 44303 7.24 972 45034 3.16 9.55 131.96 0.54 0.95 156.80 1.84 2.80 62.44 0.00 0.70 80.06
ch130 6,110 19.35 20.48 87544 273 571 236.96 3.25 5.78 246.96 12.40 16.06 67.69 0.12 4.13 92.40
ch150 6,528 21.76 2430 1,05532 323 7.50 268.59 1.14 242 23859 733 827 92.79 045 481 103.77
tsp225 3916 26.88 28.84 197225 396 6.77 451.99 2.50 4.57 42199 15.66 17.86 208.85 140 394 17199
lin318 42,029 51.09 67.73 2,501.34 548 9.10 788.48 5.66 6.26 2,725.49 15.38 16.57 56796 393 6.02 369.11
pr439 107,217 58.09 68.73 3,450.45 6.84 9.67 1,521.78 794 10.88 3,721.78 20.29 18.27 1,087.44 424 750 860.03
Average 29.39 3562 1,117.36 558 9.30 37536 2.88 4.97 784.56 11.16 13.44 22568 149 398 184.01
—=— SA - the average of SD,,,
—=— GA he average of SD,
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Figure 10 Comparison results the ACO-DSA with other traditional algorithms in terms of solution accuracy for different TSP instances.
Full-size K&] DOT: 10.7717/peerj-cs.1609/fig-10

them use the ACO to obtain the initial solution, and finally use other optimization
methods to improve the initial solution. The IGSSA (He, Wu ¢ Xu, 2018) and the ACO-
PSO (Qian & Su, 2018) are respectively improvements to the Ant Colony Optimization

and simulated annealing (Note: where *-” indicates that they are not mentioned in their

literature).

Figure 11 shows the comparison of this article’s algorithm with other algorithms in the

literature. The average of SD,,, and the average of SDy.,; are the optimal solution error rate

and the average error rate for all the TSP instances solution results mentioned in other

literature and compared with the results of this article’s algorithm. From the analysis of
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Table 8 Comparison results of the ACO-DSA with other methods in the literature for different TSP instances.

ACO-ABC IGSSA ACO-PSO This article
Instances  Opt Best SDpest  SDgyg  Best SDpest  SDgyg  Best SDpest  SDgyg  Best SDpest  SDyyg
berlin52 7,542 7,5444  0.03 0.03 7,5444 0.03 0.60 7,663.6 1.61 2.76 7,5444  0.03 1.94
bier127 118,282 — — — — — — 124,842.7 5.55 6.37 118,703.6  0.36 3.85
ch130 6,110 — — — — — — 6,473.5 5.95 6.80 6,117.5 0.12 4.13
ch150 6,528 6,641.7 1.74 2.28 — — — 6,852.1 4.96 5.49 6,557.3  0.45 4.81
eil101 629 672.7 695 8.65 — — — 700.7 11.40 12.35 656.0 4.30 5.75
eil51 426 431.7 135 4.08 4289 0.67 1.17 448.6 5.29 6.31 4289  0.67 3.28
eil76 538 565.5 242 3.71 5444 1.18 1.80 568.0 5.58 6.01 5483 192 3.99
kroA100 21,282 22,122.8  3.95 5.42 — — — 22,387.6 5.20 8.53 21,381.8 047 2.32
pr107 44,303 — — — 44,301.7  0.00 0.21 46,249.4 4.39 5.08 44,301.7  0.00 0.70
prl36 96,772  — — — 98,169.3 1.44 2.49 — — — 97,367.8  0.62 2.74
pr76 108,159  113,798.6 5.21 6.39 — — — — — — 108,159.4  0.00 2.74
st70 675 687.2 1.81 3.79 677.1 031 0.96 — — — 677.1 031 3.99
tsp225 3,916 4,090.5 4.46 6.18 — — — — — — 3,970.9 140 3.94

Fig. 11, it is obtained that this article’s algorithm is better than ACO-ABC and ACO-PSO,
and is slightly worse than IGSAA in terms of the average error rate, but the IGSAA can
only be used in small-scale TSP instances and does not apply to large-scale TSP instances.

APPLICATION OF THE ACO-DSA ON LOGISTICS

Figure 12 below illustrates a map containing 44 cities that a company needs to travel to for
transporting supplies. The journey starts and ends in Guizhou, forming a closed-loop
route. The primary objective of the solution is to determine the optimized route and the
corresponding distance to be traveled, encompassing all 44 cities. In the actual distribution
process, there are the following situations: (1) the geographic locations of the distributing
center and customer points are known; (2) the shortest path between each customer point
and the distributing center is known; (3) the path of distribution starts from the
distributing center and needs to return to the distributing center after completing all
deliveries, forming a closed-loop distribution route; (4) each customer points can only be
reached once; (5) the effect of road factors on the vehicle is not considered. The following
Fig. 12 shows the customer points that a logistics company needs to distribute and the
optimal path obtained by using the ACO-DSA (The white car represents the distributing
center).

Results of the simulation

The path planning for this company’s problem is carried out by the ACO, EACO, AEACO,
SA, MSA, and this article’s algorithm based on the customer points indicated above.
Table 9 records the minimum, maximum, and average values of this outcome. In the
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Figure 11 Comparison results ACO-DSA with other methods in the literature in terms of solution
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Table 9 Results of the company’s logistics transportation path solution.

Algorithm Time Min/km Max/km Mean/km
ACO 30.89 14,464.58 15,154.65 14,819.02
EACO 28.66 14,293.87 14,573.39 14,480.73
AEACO 12.01 14,007.93 14,840.03 14,522.12
SA 14.31 14,483.91 14,789.76 14,590.89
MSA 24.57 13,524.50 13,657.97 13,559.09
This article 12.57 13,524.50 13,623.39 13,553.25
17500 — ACO
1 m—— EACO
17000 - = AEACO
1 = This Paper
16500
16000
15500
15000
14500 - u—\
‘ _
14000
13500
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Figure 13 Iteration results of the ACO, EACO, AEACO and ACO-DSA.
Full-size K&] DOT: 10.7717/peerj-cs.1609/fig-13

simulation results, both MSA and this article’s algorithm find the minimum optimized
path length of 13,524.50 km for this company, but this article’s algorithm has the shortest
solution time and the highest solution quality. Meanwhile, from the average value, the
solution effect of this algorithm is the most stable.

The approximate iterative trajectories of the SA, MSA, and the algorithm in this article
are shown for better comparison. Figure 13 shows the iterative results of the ACO, EACO,
AEACO and this article’s algorithm for solving the path planning of this company.
Compared with the ACO, EACO and AEACO, this article’s algorithm converges faster, has
better initialization results and takes less time to solve. Figure 14 shows the comparison of
the optimization effect of SA, MSA and the algorithm in this article. From the results, the
convergence speed and optimization effect of this article’s algorithm are much better than
SA and MSA.
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CONCLUSION

The ACO-DSA can achieve good results in solving TSP instances. All of them can converge
to good accuracy and have some robustness when facing small to medium TSP instance
sizes. The ACO-DSA can give a good result when faced with large scales, but the time
consumed can be exceptionally long. In addition, both the algorithm in this article and the
traditional algorithm are applied to logistics, and the algorithm in this article performs
optimally.

As shown in Tables 4 and 5, The deficiency in the article is that it requires more
parameters to be adjusted, and the main parameters are determined to be taken within a
certain range after several experiments, which also increases the uncertainty of operation
to a certain extent and there is room for improvement. At the same time, it takes more time
to solve the TSP in the face of an ultra-large scale. In summary, the algorithm of this article
will be improved in the future to further reduce its solve time. In the future, our focus will
be on enhancing the AEACO, primarily by introducing changes that accommodate
increased solution time as the size of the TSP instances increases. Secondly, the main
improvement is to improve the number of iterations of the ACO-DSA, which leads to long
solving time of the ACO-DSA due to the high number of iterations.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the Classified Development Project of Beijing Universities
(Grant No. 71R2211001). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Hao et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1609 27/31


http://dx.doi.org/10.7717/peerj-cs.1609/fig-14
http://dx.doi.org/10.7717/peerj-cs.1609
https://peerj.com/computer-science/

PeerJ Computer Science

Grant Disclosures
The following grant information was disclosed by the authors:
Classified Development Project of Beijing Universities: 71R2211001.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Tan Hao conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

e Wu Yingnian conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

e Zhang Jiaxing conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.

e Zhang Jing conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The raw data and code is available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1609#supplemental-information.

REFERENCES

Al-Gaphari GH, Al-Amry R, Al-Nuzaili AS. 2021. Discrete crow-inspired algorithms for traveling
salesman problem. Engineering Applications of Artificial Intelligence 97:104006
DOI 10.1016/j.engappai.2020.104006.

Allwright JR, Carpenter D. 1989. A distributed implementation of simulated annealing for the
travelling salesman problem. Parallel Computing 10(3):335-338
DOI 10.1016/0167-8191(89)90106-3.

Colorni A, Dorigo M, Maniezzo V. 1991. Distributed optimization by ant colonies. In: Proceedings
of the First European Conference on Artificial Life, Vol. 142. Paris, France, 134-142.

Crisan GC, Pintea C-M, Palade V. 2017. Emergency management using geographic information
systems: application to the first Romanian traveling salesman problem instance. Knowledge and
Information Systems 50(1):265-285 DOI 10.1007/s10115-016-0938-8.

Dell’Amico M, Montemanni R, Novellani S. 2021. Algorithms based on branch and bound for the
flying sidekick traveling salesman problem. Omega 104(4):102493
DOI 10.1016/j.omega.2021.102493.

Deng Y, Xiong J, Wang Q. 2021. A hybrid cellular genetic algorithm for the traveling salesman
problem. Mathematical Problems in Engineering 2021(12):1-16 DOI 10.1155/2021/6697598.

Hao et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1609 28/31


http://dx.doi.org/10.7717/peerj-cs.1609#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1609#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1609#supplemental-information
http://dx.doi.org/10.1016/j.engappai.2020.104006
http://dx.doi.org/10.1016/0167-8191(89)90106-3
http://dx.doi.org/10.1007/s10115-016-0938-8
http://dx.doi.org/10.1016/j.omega.2021.102493
http://dx.doi.org/10.1155/2021/6697598
http://dx.doi.org/10.7717/peerj-cs.1609
https://peerj.com/computer-science/

PeerJ Computer Science

Di Placido A, Archetti C, Cerrone C. 2022. A genetic algorithm for the close-enough traveling
salesman problem with application to solar panels diagnostic reconnaissance. Computers &
Operations Research 145(3):105831 DOI 10.1016/j.cor.2022.105831.

Dong G, Guo WW, Tickle K. 2012. Solving the traveling salesman problem using cooperative
genetic ant systems. Expert Systems with Applications 39(5):5006-5011
DOI 10.1016/j.eswa.2011.10.012.

Dorigo M, Maniezzo V, Colorni A. 1996. Ant system: optimization by a colony of cooperating
agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 26(1):29-41
DOI 10.1109/3477.484436.

Du X, Bai R, Cui T, Qu R, Li J. 2022. An improved ant colony approach for the competitive
traveling salesmen problem. In: 2022 IEEE Congress on Evolutionary Computation (CEC).
Piscataway: IEEE, 1-5.

Ezugwu AES, Adewumi AO, Frincu ME. 2017. Simulated annealing based symbiotic organisms
search optimization algorithm for traveling salesman problem. Expert Systems with Applications
77(1):189-210 DOI 10.1016/j.eswa.2017.01.053.

Gao W. 2020. New ant colony optimization algorithm for the traveling salesman problem.
International Journal of Computational Intelligence Systems 13(1):44-55
DOI 10.2991/ijcis.d.200117.001.

Gelareh S, Gendron B, Hanafi S, Neamatian Monemi R, Todosijevi¢ R. 2020. The selective
traveling salesman problem with draft limits. Journal of Heuristics 26(3):339-352
DOI 10.1007/s10732-019-09406-z.

Geng X, Chen Z, Yang W, Shi D, Zhao K. 2011. Solving the traveling salesman problem based on
an adaptive simulated annealing algorithm with greedy search. Applied Soft Computing
11(4):3680-3689 DOI 10.1016/j.as0c.2011.01.039.

Gong X, Rong Z, Wang J, Zhang K, Yang S. 2022. A hybrid algorithm based on state-adaptive
slime mold model and fractional-order ant system for the travelling salesman problem. Complex
& Intelligent Systems 9:3951-3970 DOI 10.1007/s40747-022-00932-1.

Gulcu S, Mahi M, Baykan OK, Kodaz H. 2018. A parallel cooperative hybrid method based on ant
colony optimization and 3-opt algorithm for solving traveling salesman problem. Soft
Computing 22(5):1669-1685 DOI 10.1007/s00500-016-2432-3.

Giilcii S, Mahi M, Baykan OK, Kodaz H. 2018. A parallel cooperative hybrid method based on ant
colony optimization and 3-opt algorithm for solving traveling salesman problem. Soft
Computing 22(5):1669-1685 DOI 10.1007/s00500-016-2432-3.

Gunduz M, Kiran MS, Ozceylan E. 2015. A hierarchic approach based on swarm intelligence to
solve the traveling salesman problem. Turkish Journal of Electrical Engineering and Computer
Sciences 23(1):103-117 DOI 10.3906/elk-1210-147.

He Q, Wu YL, Xu TW. 2018. Application of improved genetic simulated annealing algorithm in
TSP optimization. Control and Decision 33(2):219-225 DOI 10.13195/j.kzyjc.2016.1666.

Ilhan I, Gokmen G. 2022. A list-based simulated annealing algorithm with crossover operator for
the traveling salesman problem. Neural Computing and Applications 34(10):7627-7652
DOI 10.1007/s00521-021-06883-x.

Ilin V, Simic D, Simic SD, Simic S, Saulic N, Luis Calvo-Rolle J. 2022. A hybrid genetic
algorithm, list-based simulated annealing algorithm, and different heuristic algorithms for
travelling salesman problem. Logic Journal of the IGPL 31(4):602-617
DOI 10.1093/jigpal/jzac028.

Hao et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1609 29/31


http://dx.doi.org/10.1016/j.cor.2022.105831
http://dx.doi.org/10.1016/j.eswa.2011.10.012
http://dx.doi.org/10.1109/3477.484436
http://dx.doi.org/10.1016/j.eswa.2017.01.053
http://dx.doi.org/10.2991/ijcis.d.200117.001
http://dx.doi.org/10.1007/s10732-019-09406-z
http://dx.doi.org/10.1016/j.asoc.2011.01.039
http://dx.doi.org/10.1007/s40747-022-00932-1
http://dx.doi.org/10.1007/s00500-016-2432-3
http://dx.doi.org/10.1007/s00500-016-2432-3
http://dx.doi.org/10.3906/elk-1210-147
http://dx.doi.org/10.13195/j.kzyjc.2016.1666
http://dx.doi.org/10.1007/s00521-021-06883-x
http://dx.doi.org/10.1093/jigpal/jzac028
http://dx.doi.org/10.7717/peerj-cs.1609
https://peerj.com/computer-science/

PeerJ Computer Science

Khan I, Maiti MK. 2019. A swap sequence based artificial bee colony algorithm for traveling
salesman problem. Swarm and Evolutionary Computation 44(2):428-438
DOI 10.1016/j.swevo.2018.05.006.

Kirkpatrick S, Gelatt CD Jr, Vecchi MP. 1983. Optimization by simulated annealing. Science
220(4598):671-680 DOI 10.1126/science.220.4598.671.

Li Q-K, Lin H, Tan X, Du S. 2018. Heo consensus for multiagent-based supply chain systems
under switching topology and uncertain demands. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 50(12):4905-4918.

Lim WCE, Kanagaraj G, Ponnambalam S. 2014. PCB drill path optimization by combinatorial
cuckoo search algorithm. The Scientific World Journal 2014(2):1-11 DOI 10.1155/2014/264518.

Lin Y, Bian Z, Liu X. 2016. Developing a dynamic neighborhood structure for an adaptive hybrid
simulated annealing-tabu search algorithm to solve the symmetrical traveling salesman
problem. Applied Soft Computing 49(3):937-952 DOI 10.1016/j.as0c.2016.08.036.

Lin F-T, Kao C-Y, Hsu C-C. 1993. Applying the genetic approach to simulated annealing in
solving some NP-hard problems. IEEE Transactions on Systems, Man, and Cybernetics
23(6):1752-1767 DOI 10.1109/21.257766.

Lu Y, Benlic U, Wu Q. 2018. A hybrid dynamic programming and memetic algorithm to the
traveling salesman problem with hotel selection. Computers & Operations Research 90(2):193-
207 DOI 10.1016/j.cor.2017.09.008.

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. 1953. Equation of state
calculations by fast computing machines. The Journal of Chemical Physics 21(6):1087-1092
DOI 10.1063/1.1699114.

Ning J, Zhang Q, Zhang C, Zhang B. 2018. A best-path-updating information-guided ant colony
optimization algorithm. Information Sciences 433(7):142-162 DOI 10.1016/j.ins.2017.12.047.

Ning J, Zhao Q, Sun P, Feng Y. 2021. A multi-objective decomposition-based ant colony
optimisation algorithm with negative pheromone. Journal of Experimental & Theoretical
Artificial Intelligence 33(5):827-845 DOI 10.1080/0952813X.2020.1789753.

Qian H, Su T. 2018. Hybrid algorithm based on max and min ant system and particle swarm
optimization for solving TSP problem. In: IEEE Syst, Man ¢ Cybernetics Soc; CAA. Proceedings
2018 33rd Youth Academic Annual Conference of Chinese Association of Automation (YAC),
Nanjing, Peoples R China, May 18-20, 2018. Piscataway: IEEE, 683-687.

Ratanavilisagul C. 2017. Modified ant colony optimization with pheromone mutation for
travelling salesman problem. In: IEEE Thailand Sect; ECTI Assoc; Staubli. 2017 14th
International Conference on Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology (ECTI-CON), Phuket, Thailand, Jun 27-30, 2017. Piscataway: IEEE,
411-414.

Rokbani N, Kumar R, Abraham A, Alimi AM, Long HV, Priyadarshini I, Son LH. 2021. Bi-
heuristic ant colony optimization-based approaches for traveling salesman problem. Soft
Computing 25(5):3775-3794 DOI 10.1007/s00500-020-05406-5.

Stutzle T, Hoos HH. 2000. Max-min ant system. Future Generation Computer Systems 16(8):889-
914 DOI 10.1016/S0167-739X(00)00043-1.

Wang L, Cai R, Lin M, Zhong Y. 2019. Enhanced list-based simulated annealing algorithm for
large-scale traveling salesman problem. IEEE Access 7:144366-144380
DOI 10.1109/ACCESS.2019.2945570.

Wang Y, Han Z. 2021. Ant colony optimization for traveling salesman problem based on
parameters optimization. Applied Soft Computing 107(2):107439
DOI 10.1016/j.as0¢.2021.107439.

Hao et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1609 30/31


http://dx.doi.org/10.1016/j.swevo.2018.05.006
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1155/2014/264518
http://dx.doi.org/10.1016/j.asoc.2016.08.036
http://dx.doi.org/10.1109/21.257766
http://dx.doi.org/10.1016/j.cor.2017.09.008
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1016/j.ins.2017.12.047
http://dx.doi.org/10.1080/0952813X.2020.1789753
http://dx.doi.org/10.1007/s00500-020-05406-5
http://dx.doi.org/10.1016/S0167-739X(00)00043-1
http://dx.doi.org/10.1109/ACCESS.2019.2945570
http://dx.doi.org/10.1016/j.asoc.2021.107439
http://dx.doi.org/10.7717/peerj-cs.1609
https://peerj.com/computer-science/

PeerJ Computer Science

Wang C, Lin M, Zhong Y, Zhang H. 2015. Solving travelling salesman problem using multiagent
simulated annealing algorithm with instance-based sampling. International Journal of
Computing Science and Mathematics 6(4):336-353 DOI 10.1504/IJCSM.2015.071818.

Wang X, Shi Y, Ding D, Gu X. 2016. Double global optimum genetic algorithm—particle swarm
optimization-based welding robot path planning. Engineering Optimization 48(2):299-316
DOI 10.1080/0305215X.2015.1005084.

Wei X, Han L, Hong L. 2014. A modified ant colony algorithm for traveling salesman problem.
International Journal of Computers Communications ¢ Control 9(5):633-643
DOI 10.15837/ijccc.2014.5.1280.

Yang K, You X, Liu S, Pan H. 2020. A novel ant colony optimization based on game for traveling
salesman problem. Applied Intelligence 50(12):4529-4542 DOI 10.1007/s10489-020-01799-w.

Yu Y, Lian F, Yang Z. 2021. Pricing of parcel locker service in urban logistics by a TSP model of
last-mile delivery. Transport Policy 114(2):206-214 DOI 10.1016/j.tranpol.2021.10.002.

Zhan S-H, Lin J, Zhang Z-J, Zhong Y-W. 2016. List-based simulated annealing algorithm for
traveling salesman problem. Computational Intelligence and Neuroscience 2016(5):1-12
DOI 10.1155/2016/1712630.

Zhao D, Xiong W, Shu Z. 2015. Simulated annealing with a hybrid local search for solving the
traveling salesman problem. Journal of Computational and Theoretical Nanoscience 12(7):1165-
1169 DOI 10.1166/jctn.2015.3868.

Zheng R-z, Zhang Y, Yang K. 2022. A transfer learning-based particle swarm optimization
algorithm for travelling salesman problem. Journal of Computational Design and Engineering
9(3):933-948 DOI 10.1093/jcde/qwac039.

Zheng J, Zhong J, Chen M, He K. 2023. A reinforced hybrid genetic algorithm for the traveling
salesman problem. Computers & Operations Research 157:106249
DOI 10.1016/j.cor.2023.106249.

Zhong Y, Lin J, Wang L, Zhang H. 2018. Discrete comprehensive learning particle swarm
optimization algorithm with metropolis acceptance criterion for traveling salesman problem.
Swarm and Evolutionary Computation 42(5):77-88 DOI 10.1016/j.swevo0.2018.02.017.

Hao et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1609 31/31


http://dx.doi.org/10.1504/IJCSM.2015.071818
http://dx.doi.org/10.1080/0305215X.2015.1005084
http://dx.doi.org/10.15837/ijccc.2014.5.1280
http://dx.doi.org/10.1007/s10489-020-01799-w
http://dx.doi.org/10.1016/j.tranpol.2021.10.002
http://dx.doi.org/10.1155/2016/1712630
http://dx.doi.org/10.1166/jctn.2015.3868
http://dx.doi.org/10.1093/jcde/qwac039
http://dx.doi.org/10.1016/j.cor.2023.106249
http://dx.doi.org/10.1016/j.swevo.2018.02.017
http://dx.doi.org/10.7717/peerj-cs.1609
https://peerj.com/computer-science/

	Study on a hybrid algorithm combining enhanced ant colony optimization and double improved simulated annealing via clustering in the Traveling Salesman Problem (TSP) ...
	Introduction
	Basic introduction and improvement of basic algorithm
	Experiment and result analysis
	Application of the aco-dsa on logistics
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


