
Improved transfer learning using textural
features conflation and dynamically fine-
tuned layers
Raphael Ngigi Wanjiku1, Lawrence Nderu2 and Michael Kimwele2

1 Nexford University, Washington DC, United States
2 Computing, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

ABSTRACT
Transfer learning involves using previously learnt knowledge of a model task in
addressing another task. However, this process works well when the tasks are closely
related. It is, therefore, important to select data points that are closely relevant to the
previous task and fine-tune the suitable pre-trained model’s layers for effective
transfer. This work utilises the least divergent textural features of the target datasets
and pre-trained model’s layers, minimising the lost knowledge during the transfer
learning process. This study extends previous works on selecting data points with
good textural features and dynamically selected layers using divergence measures by
combining them into one model pipeline. Five pre-trained models are used:
ResNet50, DenseNet169, InceptionV3, VGG16 and MobileNetV2 on nine datasets:
CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, Stanford Dogs, Caltech 256, ISIC
2016, ChestX-ray8 and MIT Indoor Scenes. Experimental results show that data
points with lower textural feature divergence and layers with more positive weights
give better accuracy than other data points and layers. The data points with lower
divergence give an average improvement of 3.54% to 6.75%, while the layers improve
by 2.42% to 13.04% for the CIFAR-100 dataset. Combining the two methods gives an
extra accuracy improvement of 1.56%. This combined approach shows that data
points with lower divergence from the source dataset samples can lead to a better
adaptation for the target task. The results also demonstrate that selecting layers with
more positive weights reduces instances of trial and error in selecting fine-tuning
layers for pre-trained models.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Transfer learning, Feature extraction, Deep learning, Fine-tuning layers, Layer selection,
Target task, Source task, Domain adaptation, Pre-trained models

INTRODUCTION
Transfer learning has made deep learning implementation easier and adaptable in many
industries. The process involves reusing knowledge from a previous pre-trained model’s
task in another domain’s task and dataset. Studies suggest this process works well in closely
related tasks. For example, using a pre-trained model with learnt knowledge of car images
to classify lorry images instead of using it to classify flowers. This example results in
positive transfer learning due to sharable features from both domains: cars and lorries.

How to cite this article Wanjiku RN, Nderu L, Kimwele M. 2023. Improved transfer learning using textural features conflation and
dynamically fine-tuned layers. PeerJ Comput. Sci. 9:e1601 DOI 10.7717/peerj-cs.1601

Submitted 1 February 2023
Accepted 29 August 2023
Published 28 September 2023

Corresponding author
Raphael Ngigi Wanjiku,
phaelgi@gmail.com

Academic editor
Natalia Kryvinska

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.1601

Copyright
2023 Wanjiku et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1601
mailto:phaelgi@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1601
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

However, if the target dataset were different, for example, flowers, it could lead to negative
transfer learning due to differences in the sharable features.

Transfer learning is broadly classified based on labels and feature spaces. The label
classification is categorised into transductive (where the label information comes from the
source domain and the tasks are in similar domains), inductive (where the label information
comes from the target domain) and unsupervised transfer learning, where neither of the
domains is labelled. The feature space classification is categorised into homogeneous (where
both tasks belong to the same domain, although they may have different marginal
distributions) and heterogeneous (where the source and target tasks are from different
domains). These two classifications can further be explored based on instances, features,
parameters and relationships between the domains as outlined by Zhuang et al. (2021) and
Zhang & Gao (2022). Furthermore, recent views look into the combinations of data, data
properties and models. These views include instance-based, network-based, mapping-based
and adversarial-based (Liang, Fu & Yi, 2019). Other views of transfer learning include
instances (semi-supervised), multi-view, multitask learning with lifelong learning, transitive
learning and reinforcement learning, which are promising for future transfer learning
approaches (Choi et al., 2018; Zhang & Gao, 2022; Lu et al., 2020).

The transfer learning uses several methods: fine-tuning last-k layers (Mingsheng et al.,
2017; Xuhong, Grandvalet & Davoine, 2020), freezing initial layers, and feature extraction.
However, the selection of data points and regularisation has recently been introduced (Li
et al., 2020). This study combines a selection of data points and fine-tuning of selected
layers for positive transfer.

Deep learning involves the use of many hidden layers in neural networks. Convolutional
neural networks (CNN) are among the neural networks that have accelerated the adoption
of deep learning. Most pre-trained models using CNNs have been trained on the ImageNet
dataset—with over fourteen million images (ImageNet, 2021). The hidden layers in deep
neural networks can learn complex patterns and behaviours supporting supervised and
unsupervised learning. This learning support has allowed model developers to develop
many transfer learning models, such as those hosted on TensorFlow Hub (TensorFlow
Hub, 2023). These pre-trained models can then be adopted on a need basis; for most
transfer learning involving image data, ImageNet pre-trained models provide a better
solution to training from scratch (Sun et al., 2022). However, reusing these models requires
careful consideration to avoid negative knowledge transfer (Wu et al., 2021).

Research contributions
This study proposes an alternative method for improving the pre-trained model’s
performance in two stages: selecting relevant target data points and dynamic layer
selection using Kullback–Leibler divergence (DKLÞ. The method combines the pre-trained
models’ performance improvement at the two stages giving an overall model performance.

The contributions of this study are:

� The pre-trained model on the target tasks achieves better transfer learning adaptation by
selecting higher-quality data points in the target dataset through textural divergence

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 2/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

measurements. The selected data points can be used in other model improvement tasks
like augmentation. The data points selection builds better performance confidence in
their application in machine learning algorithms.

� By selecting layers with higher positive weights, the pre-trained model can fine-tune
much better, which improves its performance. These positive weights can give faster
convergence, improving the adaptability of the target tasks.

� Pre-trained models can improve performance and user confidence in the target tasks
during transfer learning processes by preparing the modelling pipeline using quality
target dataset samples and adaptable-fine-tuned layers. This approach results in an
effective and efficient pre-trained model selection procedure; from the previous trial and
error selection of pre-trained models and fine-tuning layers.

Textural features of image data
In image processing, texture refers to an objective function representing the brightness and
intensity variation of an image’s pixels (Tuceryan & Jain, 1993). Texture explains images’
smoothness, roughness, regularity and coarseness, as noted by Laleh & Shervan (2019).
Texture gives the sequential illumination patterns of the pixels in an image and the image
grey tones in the pixel’s neighbourhood (Dixit & Hegde, 2013). Textural features in an
image can be classified into three: low-level, mid-level and high-level. The classification is
based on pixel levels, image descriptors and image data representation (Bolón-Canedo &
Remeseiro, 2019). The features in an image are analysed to understand the spatial
arrangement of the pixels’ grey tones after their extraction. The extraction process can be
categorised according to transformation, structure, model, graphical, statistical, entropy
and learning views. The low-level image features are heavily used in image classification,
utilising colour, texture and shape attributes. These attributes are passed through filters,
quantified using statistical descriptors such as entropy and correlation, and ranked
through relevance indices.

The two commonly used methods in textural analysis are the grey-level co-occurrence
matrix (GLCM) and the local binary pattern (LBP) (Ershad, 2012). The GLCM was
introduced by Haralick, Shanmugam & Dinstein (1973) to represent the pixels’ brightness
levels using a matrix that combines the grey levels intervals, direction and amplitude
change. The GLCM descriptor has 14 features, with interval distance and orientation being
the most important (Andrearczyk & Whelan, 2016). This study evaluates three features:
correlation, homogeneity and energy. The LBP uses the local textural patterns in an image
and compares the pixel’s neighbouring grey levels. The comparison of the neighbours uses
representative binary numbers described using histograms. The LBP is a robust textural
descriptor used in edge detection and textural description (Zeebaree et al., 2020).

Textural features conflation of image data
Conflation refers to a merge of two or more probability distributions. The concept was
introduced by Hill (2011). Given probability P1,…, Pn, the conflation(&) of 1 to n is
expressed in Eq. (1) below, with Eqs. (2) and (3) giving the conflation for discrete

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 3/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

distributions. Equation (4) shows the conflation of continuous distributions for textural
features in the source and target domain data points.

Q ¼ &ðP1; . . . ;PnÞ (1)

where Q is the merged probability distribution.

&ðP1; . . . ;PnÞ ¼ f1 xð Þf2 xð Þ; . . . ; fn xð ÞP
y f1 yð Þf2 yð Þ; . . . ; fn yð Þ (2)

where f1; . . . ; fn refers to probability density functions of the textural features. This
equation can be rewritten as;

&ðSP1; . . . ; SPnÞ ¼ Sf1 xð ÞSf2 xð Þ; . . . ; Sfn xð ÞP
y Sf1 yð ÞSf2 yð Þ; . . . ; Sfn yð Þ (3)

&ðTP1; . . . ;TPnÞ ¼ Tf1 xð ÞTf2 xð Þ; . . . ;Tfn xð ÞR1
�1 Tf1 yð ÞTf2 yð Þ; . . . ;Tfn yð Þ (4)

where SP1,…, SPn refers to the probability distributions of the source domain samples. The
probability distributions of the target domain samples can be represented using Eq. (4) by
substituting S with T.

The conflation of features removes redundant features resulting in a balanced
probability distribution (Hill, 2011).

Model layer fine-tuning in transfer learning
Fine-tuning is one of the methods of transfer learning. The process involves selecting
training layers and freezing the weights of the pre-trained model on a target task. In most
cases, the first layers of a model are chosen due to their ability to extract features as
opposed to the last layers, which are mainly used for classification purposes (Coskun et al.,
2017). Fine-tuning has been a manual process involving selecting the first or the initial
layers (in most cases, the last three layers of the network), as reported in the literature
(Deniz et al., 2018; Fan, Lee & Lee, 2021). Vrbančič & Podgorelec (2020) noted that models
have specific architectures that sometimes make their layer selection inefficient and fine-
tuning a trial-and-error process.

RELATED WORK
This proposed work builds on two previous works by Wanjiku, Nderu & Kimwele (2022).
The first work looks into selecting relevant data points using textural features. The authors
use three datasets: Caltech 256, Stanford Dogs 120 and MIT Indoor Scenes on two pre-
trained models—VGG16 and MobileNetV2. The proposed approach adds datasets and
models, extending the process by dynamically selecting fine-tunable layers in the transfer
learning process. The authors use four datasets in the second study: CIFAR-10, CIFAR-
100, MNIST, and Fashion-MNIST on six pre-trained models. In the second study, the
authors evaluate the selection of pre-trained models’ layers based on weights. They use
cosine similarity and later DKL on the cosine similarity. The proposed work only looks at
the DKL divergence and further utilises the data points previously identified in the

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 4/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

processing pipeline. In this study, two smaller datasets are added to validate the model: one
of the use cases of transfer learning is in cases of limited datasets.

The selection of data points in transfer learning has been documented in various
literature. In a study by Weifeng & Yizhou (2017), data points with similar low-level
features are identified and selected in the target domain to address the insufficient data
using Gabor filters. The feature selection in this proposed study uses pre-trained CNN
layer filters, while Ge & Yu (2017) used Gabor filters. Their work describes the features
using histograms, while the proposed study uses conflated probability distributions. The
two studies also differ through their datasets and pre-trained models: the researchers used
three pre-trained models (AlexNet, VGG-19 and GoogleNet) and three datasets (Caltech
256, MIT Indoor Scenes and Stanford Dogs 120), while the proposed uses five pre-trained
models (ResNet50, DenseNet169, VGG-16, InceptionV3 and MobileNetV2) and six
additional datasets.

Zhuang et al. (2015) compare the features between the source and target domains from a
generative adversarial network (GAN) using Kullback–Leibler divergence on the features’
probability distributions. The distributions formation utilises a temperature-softmax
function which controls the samples used in the source domain. The use of the Kullback–
Leibler divergence and temperature softmax function is also done in this research. The two
studies differ in the pre-trained models and datasets used, where the researchers utilise the
ResNet architecture and one dataset. In contrast, the proposed uses four additional
architectures and nine datasets to validate the conflation method.

Luo et al. (2018) utilise an optimal similarity graph to select low-level features in video
semantic recognition. The researchers use semi-supervised learning to address the curse of
dimensionality preventing information loss between video pairs while acquiring the
features of the local structure. This approach differs from the proposed method in feature
extraction (the proposed uses convolution layers and conflates the features) and dynamic
fine-tuning. In contrast, the researchers use an optimal similarity graph. However, the two
methods use divergence measures in comparing the low-level features.

Gan, Singh & Joshi (2017) address the conflation of probability distributions intending
to understand the semantics in the text strings utilising long short-term memory recurrent
neural network (LSTM-RNN) in business analytics for entity profiles. The conflation
method has also been used in geographic information systems (GIS) in merging geospatial
datasets (De Smith, Goodchild & Longley, 2018), in the detection of robotic activities
(Rahman et al., 2021), and in features dimensionality reduction involving large datasets as
researched by Mitra, Saha & Hasanuzzaman (2020).

Royer & Lampert (2020) introduce the flex-tuning method. The method proposes fine-
tuning a single layer while freezing the rest of the model. This process is iterated until a
group of best unit layers is selected for use in the final transfer learning process. The
researchers’ approach differs from the proposed method based on the layers’ selection
criteria. The researchers select the weights based on the layer that performs better, while
the proposed method selects the layer based on its positive weights. However, both
methods consider the weights in the layer selection process. Furthermore, the proposed
method integrates the selection of quality data points aiding overall network performance.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 5/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Yunhui et al. (2019) introduce the SpotTune method that uses Gumbel-Softmax
sampling on two ResNet architectures. In the method, a decision policy determines the
best layers to be selected through a lightweight network that evaluates each instance. This
approach differs from the proposed approach: the researchers use a lightweight network in
layer selection using two ResNets and five datasets, while the proposed uses weights in
layer selection, five pre-trained models, and nine datasets.

Other layer selection studies have considered evolution algorithms. Satsuki, Shin &
Hajime (2020) utilise the genetic algorithm where genotypes (representing the layer
weight) with the highest accuracy are selected for fine-tuning. The researchers improve the
algorithm by using the tournament selection algorithm, experimenting with three datasets:
SVHN21, Food-101 and CIFAR-100. Vrbančič & Podgorelec (2020) introduce the
differential evolution algorithm that selects and represents the pre-trained model’s layers
using binary values. All the selected layers are assigned a binary value of 1.

All these documented layer selection methods have been evaluated on one pre-trained
model and one or two datasets, which is insufficient and needs more evaluation. However,
the proposed method uses more models and datasets. Furthermore, the feature extraction
in the first phase of the model is done using the convolutional layers of the same pre-
trained model to be used in the transfer learning process.

Apart from selecting features, transfer learning is used in various industries, including
biomedical, manufacturing, and deep learning model security. In medical imaging,
numerous issues affect the data used in deep learning, including legal and ethical issues
which limit the data size and the acquisition expense.Matsoukas et al. (2022) demonstrate
the effectiveness of feature reuse in the early layers and weight statistics when using
transfer learning. The researchers demonstrate that it is advantageous when using vision
transformers (ViTs) through the feature reuse gain in transfer learning since they do not
have the available inducted bias in CNNs. The adaptation noted in medical datasets flows
from weights learned from the ImageNet and the extracted low-level features in the pre-
trained models. The researchers use four datasets: APTOS2019, CBIS-DDSM, ISIC 2019,
and CHEXPERT on four models: two ViT models (DEIT and SWIN) and two CNN
models (RESNETs and INCEPTION). They conclude that feature reuse plays a critical role
in effective transfer learning, with the early layers showing a strong feature reuse
dependence. Their work differs from the proposed method on the number of pre-trained
models and datasets.

Mabrouk et al. (2022) use transfer learning on three medical datasets—ISIC-2016, PH2,
and Blood-Cell datasets to improve the Internet of Medical Things (IoMT) performance in
melanoma and leukemia. Transfer learning extracts the image features while the chaos
game optimisation selects the good features. In a skin classification task by Rodrigues et al.
(2020), transfer learning is used on skin lesions, typical nevi and Melanoma using IoT
systems. The researchers use VGG, Inception, ResNets, Inception-ResNet, Xception,
MobileNet and NASNet as pre-trained models, applying SVM, Bayes, RF, KNN, and MLP
classifiers. The researchers experiment with the method on two datasets: ISIC and PH2.
Their classification study aimed to address issues faced by medical teams during lesion
classification. These issues include using various sizes and lesions shapes, the patient’s skin

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 6/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

colour, personnel experience, and fatigue on the classification day. The work by these
researchers uses more datasets and pre-trained models but differs from the proposed
method on feature conflation and dynamic layer selection.

Duggani et al. (2023) develop a hybrid transfer learning model from two pre-trained
CNN models to improve classification for melanoma. In the study, they predict the fine-
grained differences in skin lesions on the skin surface. The features extracted from the two
models are concatenated, and an SVM classifier is added at the end of the model. The
concatenation improves the accuracy performance values of the traditional CNN models
on the ISBI 2016 dataset. The researchers used AlexNet, GoogleNet, VGG16, VGG19,
ResNet 18, ResNet50, ResNet101, ShuffleNet, MobileNet, and DenseNet201 as the pre-
trained models. Nguyen et al. (2022) have also documented skin lesions classification using
the Task Agnostic Transfer Learning (TATL). The researchers concatenated the extracted
features while this work conflates them, selecting the ones to evaluate the target task
samples.

Transfer learning has been used further in medical imaging to classify other diseases.
Chouhan et al. (2020) utilise five pre-trained models to classify pneumonia images. Niu
et al. (2021) classify COVID-19 lung CT images using the distant domain transfer learning
(DDTL) model on three source domain datasets (unlabeled Office-31, Caltech-256, and
chest X-ray) and one target domain dataset (labelled COVID-19 lung CT). Their study
aims to reduce the distribution shift between the domain data. Zoetmulder et al. (2022) use
CNN pre-trained models on three brain T1 brain segmentation tasks: MS lesions, brain
anatomy, and stroke lesions using natural images and T1 brain MRI images. Raza et al.
(2023) use transfer learning to classify and segment Alzheimer’s disease on the brain’s grey
matter images. Holderrieth, Smith & Peng (2022) use transfer learning to address the
technical variability of MRI scanners and the differences in subject populations on the UK
Biobank MRI data (three datasets) focusing on age and sex attributes. In all these medical
imaging cases, Kim, Cosa-Linan & Santhanam (2022) note that the most common transfer
learning models in medical scenarios include—AlexNet, ResNet, VGGNet and GoogleNet
since they can be easily customised.

In fault-tolerant systems, Li et al. (2020) use transfer learning to address the limited data
available in these systems. The researchers use simulation data on convolutional neural
network architecture integrating domain adaptation techniques. The developed model is
deployed on a pulp mill plant and a continuously stirred tank reactor. Nawar et al. (2023)
use transfer learning to optimise power generation planning and bill savings potential.
Their Building-to-building transfer learning model uses the deep learning—transformer
model in forecasting power savings. The researchers evaluated the algorithm on a large
commercial building using LSTM and RNN and concluded that the transformer model
performed better than the LSTM and RNN architectures. In satellite data applications,
researchers tap into massive-dataset-trained foundation models such as ImageNet and
GPT-3 to improve the performance of downstream tasks in different satellite application
domains.

In their work, Simumba & Tatsubori (2023) use foundation models by allowing pre-
trained model weights in cases of various input channels. Using weights helps the

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 7/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

downstream applications address the difference between satellite data and computer vision
models. The researchers test the approach on precipitation data-trained models. Transfer
learning has also been used in human activity recognition (HAR) systems: An et al. (2023)
use pre-trained models trained with offline HAR classifiers on new users. The researchers
introduce representation analysis for transferring specific features from the offline users
while maintaining a good complexity analysis in the target setting. Sharma et al. (2023)
attempt to recognise human behaviour from real-time video. The researchers classify the
behaviour as suspicious or usual using data from the real-time video frames on the Novel
2D CNN, VGG16, and ResNet50 pre-trained models.

In a recent study byMehta & Krichene (2023), transfer learning enhances deep learning
model security. The security of private models is paramount to protecting deep learning
models that are plausible for bad actors to attack, revealing information from the training
examples (differential privacy). The researchers propose using transfer learning as a
promising technique for improving the accuracy of private models. The process involves
training a model on a dataset with no privacy concerns and then privately fine-tuning it on
a more sensitive dataset. The researchers simulate the adjustments on the ImageNet-1k,
CIFAR-100, and CIFAR-10 datasets.

METHODOLOGY
Proposed study’s approach
The proposed method comprises two parts: the selection of quality dataset samples and the
dynamic selection of the pre-trained model’s fine-tunable layers, as shown in Fig. 1.

As shown in Fig. 1, the target and source domain data samples are compared based on
their textural features resulting in a final target dataset as expressed in Eqs. (5) to (8). The
pre-trained model layers are then selected for transfer learning to accomplish a target CNN
task as shown in Eqs. (9) to (13).

Selection of quality image dataset
The selection of quality images involves extracting textural features from a target domain
image, conflating its textural features’ probability distributions, and comparing the
resultant distribution with the conflated distributions in the source domain images.

Definition 1. The conflation of a target image’s textural features. Given a target image
Ti1, its textural features Tif 1; . . . ;Tifn, the conflated probability distribution can be

expressed in Eq. (5) as;

&ðTif 1; . . . ;TifnÞ ¼
Tif 1 xð ÞTif 2 xð Þ; . . . ;Tifn xð ÞR1

�1 Tif 1 yð ÞTif 2 yð Þ; . . . ;Tifn yð Þ (5)

where Tif represents a target image’s feature. We can proceed and equate the conflated
value to &Tif as expressed in Eq. (6);

ð&Tif Þ ¼ &ðTif 1; . . . ;TifnÞ (6)

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 8/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Definition 2. The conflation of a source image’s textural features. Given a source image
Si1, its textural feature vectors Sif 1; . . . ; Sifn distributions can be conflated into &Sif as

expressed in Eq. (7) below;

&ðSif Þ ¼ Sif 1ðxÞSif 2ðxÞ; . . . ; SifnðxÞR1
�1 Sif 1ðyÞSif 2ðyÞ; . . . ; SifnðyÞ

(7)

where Sif 1 represents a probability distribution of the first feature in a selected source
image feature.

Once the source conflated distributions are identified, a vector of the source image
conflated probability distribution is used to check its divergence from the target image
conflated distribution, as shown in Eq. (8).

DKL &Tif
� � k Sif

� �� � ¼
Z þ1

�1
&Tif
� �

xð Þlog &Tif
� �

xð Þ
& &Sif
� �

xð Þ dx (8)

where DKL represents Kullback–Leibler divergence.
Finally, we select images whose DKL is lower than the average DKL of the source image

distributions.

Selection of fine-tunable layers in pre-trained models
The fine-tunable layers selection involves identifying convolutional layers in a pre-trained
model, their positive and negative weights and selecting fine-tunable layers by utilising the
weights’ divergence.

Definition 3. Identification of a convolutional layer. Given a pre-trained model M, a
convolutional layer Cl is expressed as follows;

Cl ¼ Ml; if Mln ¼ “conv”
otherwise

�
(9)

Source Domain
Data

Target Domain
Data

Search subset
(textural features)

Dynamic layer
selection

Transfer
Learning

CNN
Classifier

Target Labels

Figure 1 Study’s conceptual framework. Full-size DOI: 10.7717/peerj-cs.1601/fig-1

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 9/33

http://dx.doi.org/10.7717/peerj-cs.1601/fig-1
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

where Ml is the model’s layer, Mln represents the model’s layer name which identifies a
convolutional layer if its name contains the keyword “conv”; otherwise, the layer is skipped.

Definition 4. Identification of positive and negative weights. Given a convolutional
layer Cl, a weighting filter Clw is a vector of n� n kernel size. Given two filters, x and y, we
can reshape the tensors from Cx

lw 2 Rn�n and Cy
lw 2 Rn�n into Cx0

lw and Cy0

lw, respectively. We
can express the positive and negative weight units as Cx0þve

lw and Cx0�ve
lw . Therefore each

weight filter becomes a single tensor of positive and negative weights, as expressed in
Eq. (10).

Cx0
lw ¼ Tensor Cx0þve

lw1 ; . . . ;Cx0�ve
lwn

� �
(10)

where Cx0þve
lw1 represents the first positive weight unit of filter x for the convolutional layer

Cl.
Definition 5. Divergence measure between layers. Given two single-dimensional layers

Cx0
lw and Cy0

lw, we can calculate their differences by converting the vectors into probability

distributions based on their positive or negative weights vectors. Utilising DKL, the
divergence of the positive weight vectors is expressed in Eq. (11).

DKL pðCx0þve
lw Þ k pðCy0þve

lw Þ
� �

¼
Z þ1

�1
p Cx0þve

lw

� �
xð Þlog p Cx0þve

lw

� �
xð Þ

p
�
Cy0þve
lw

�
xð Þ

dx (11)

where p refers to a probability distribution.
We can simplify this further by substituting pðCx0þve

lw Þ with p xð Þ and pðCy0þve
lw Þ with p yð Þ,

as shown in Eq. (12).

DKL p xð Þ k p yð Þð Þ ¼
Z þ1

�1
p xð Þ xð Þlog p xð Þ xð Þ

p yð Þ xð Þ dx (12)

The layers with the lower divergence measures are then selected for use in the fine-
tuning process.

Algorithm
The following steps summarise the proposed approach:

i) Select an image Ti1 from a target dataset.

ii) Extract Ti1 textural features using a pre-trained model M, giving vectors of features
Tif 1; . . . ;Tifn.

iii) Convert the vectors of features into probability distributions pðTif 1Þ; . . . ; pðTifnÞ
iv) Conflate the probability distributions ð&Tif Þ in (iii) into one probability distribution

pðTif Þ.
v) Repeat the procedure for the source images.

vi) Calculate the average Kullback–Leibler divergence (DKLÞ of the source images.

vii) Compare the DKL of Ti1; . . . ;Tin to the average of the source selecting data points
whose DKL is lower. These images form the final target dataset.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 10/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

viii) Identify the convolution layers in pre-trained model M using the keyword “conv”.

ix) Identify the positive and negative weights in each convolutional layer Cl.

x) Create probability distributions of the positive and negative weight filter units.

xi) Calculate the DKL between positive or negative probability distributions between any
two layers.

xii) Repeat the procedure in (xi).

xiii) Select the layers with the lowest DKL as candidates for fine-tuning.

xiv) Perform transfer learning on the target task utilising the target dataset in step (vii)
and the selected layers in step (xiii).

Divergence measures
Divergence is a measure of the difference between any two probability distributions. This
proposed approach uses DKL and compares it to four other divergence measures: Jensen–
Shannon, Bhattacharya, Hellinger and Wasserstein.

Kullback–Leibler: Theodoridis (2015) presents it as a measure between two probability
distributions, as expressed in Eq. (12). The divergence gives a zero measure when the two
distributions are equal. Adding the zero measure, we can rewrite Eqs. (12) to (13).

DKL p xð Þ k p yð Þð Þ ¼
Z þ1

�1
p xð Þ xð Þlog p xð Þ xð Þ

p yð Þ xð Þ dx (13)

where DKL p xð Þ k p yð Þð Þ if and only if x ¼ y.
Jensen–Shannon: A symmetrised version of the DKL that measures the distance between

two probability distributions. Unlike the DKL, it has high computational costs in search
operations (Nielsen & Nock, 2021).

Hellinger distance: A measure of the difference between any two probability
distributions in a shared space. Also known as Jeffrey’s distance but has a higher
computational complexity than the DKL, as noted by Greegar & Manohar (2015).

Wasserstein distance: A measure of the difference between any two probability
distributions. It uses the concept of moving an amount of earth and the distance involved.
The divergence has been used in optimal transportation theory, as Villani (2003) noted.

Bhattacharya: A measure between two probability distributions that gives the cosine
angle to interpret the overlapping angle between them. Like the other mentioned
divergence measures, it is highly complex despite its good performance.

The Kullback–Leibler divergence has been used to model the physical microstructure
properties of steel (Lee et al., 2020), separation of multi-source speech sources (Togami
et al., 2020), and extracting features in the development of an impulse-noise resistant LBP.
Yuhong et al. (2019) have used DKL to develop a scale filter bank in a CNNmodel to create
a down-sampled spectrum from two distributions.

Datasets
This study uses nine publicly available image datasets: CIFAR-10, CIFAR-100 (Krizhevsky,
Nair & Hinton, 2014a, 2014b), MNIST (LeCun, Cortes & Burges, 1998), Fashion-MNIST

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 11/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

(Xiao, Rasul & Vollgraf, 2017), Caltech 256 (Griffin, Holub & Perona, 2022), Stanford Dogs
120 (Aditya et al., 2011), MIT Indoor Scenes (Ariadna & Antonio, 2009), ISIC 2016
(Gutman et al., 2016) and ChestX-ray8 (Xiaosong et al., 2017) to examine the proposed
approach. Other studies have used these datasets, making them suitable for performance
comparison. The data from the ChestX-ray8 dataset is a subset of over 108,000 images. The
smaller ChestX-ray8 and ISIC 2016 sets have been used to show the advantages of transfer
learning in cases of inadequate data. Table 1 below shows the dataset sizes and sets.

Data preparation
Since the approach utilises selected images from the larger datasets, the images are input
into the pre-trained models with 224 × 224 pixel dimensions. The images are converted
into grayscale, and their features are extracted using the first convolutional layer of the
selected model. The pre-trained model is the feature extractor since it is also used in the
final transfer learning process. This attribute makes it ideal for preparing the final transfer
learning environment. Once the feature selection is made through the proposed approach,
the dataset is categorised as a training or test dataset.

Experimental setup and settings
This study uses five pre-trained models: ResNet50, DenseNet169, InceptionV3, VGG16,
and MobileNetV2 (used to show the proposed approach performance on small networks).
The inputs to the models have been scaled to 224 × 224 pixels with the InceptionV3 model
using an upsampling layer and VGG16 taking 4,096 neurons in the last layer before
classification. These pre-trained models have been trained on the ImageNet dataset. The
pre-trained models and their parameters are listed in Table 2, with InceptionV3 having the
most layers (Team, 2023). The study also uses a custom CNN model to show the proposed
methods’ effects on a non-pre-trained model.

The experiments have been conducted using the TensorFlow framework using the
Keras library on the PaperSpace platform (A4000, 45 GB RAM, 8 CPU with 16 GB GPU).
The training of the models involved the selected datasets without data augmentation.
However, during training, fine-tuned model regularisation was performed using Dropout
and Batch normalisation.

Proposed approach methods
The proposed approach introduces four methods from image textural features and pre-
trained model layer selection views.

Textural features view in image data
This view utilises two methods: Above average DKL and below-average DKL.

Above average DKL: The method uses data points whose DKL is higher than the average
for all the data points in their category.

Below averageDKL: The method uses data points whose DKL is lower than the average of
other samples in their class.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 12/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Layer selection view in pre-trained models
This view uses two methods: Positive weights DKL and negative weights DKL.

Positive weight DKL: The method evaluates divergence between two distributions
formed from positive weights of filters of a pre-trained model’s convolutional layers.

Negative weight DKL: The method compares two distributions formed from negative
weight filters in the pre-trained model’s convolutional layers.

DKL is used and compared to four divergence measures in both views to determine the
reasons behind its selection.

Commonly used transfer learning methods
Since the introduced methods in the proposed approach aim to improve the transfer
learning process, they are compared with these four commonly used methods in transfer
learning:

Standard fine-tuning: The method replaces the classification layer with a classification
layer for the target task’s classes.

Last-k layer fine-tuning: It involves replacing the last-k layers in the network with other
layers suitable for the target task. These layers can be 1, 2 or 3 in the pre-trained model.

Table 1 Study datasets.

Dataset Training Validation Classes

CIFAR-10 50,000 10,000 10

CIFAR-100 50,000 10,000 100

MNIST 60,000 10,000 10

Fashion-MNIST 60,000 10,000 10

Caltech 256 21,425 9,182 257

Stanford Dogs 120 12,000 8,580 120

MIT Indoor 5,360 1,340 67

ISIC Melanoma 900 379 2

ChestX-ray8 3,200 800 4

Table 2 ResNet50 textural features accuracy performance.

Model Parameters (millions) Layers

ResNet50 25,636,712 50 layers

DenseNet169 14,307,880 169 layers

InceptionV3 23,885,392 42 layers

VGG16 138,357,544 16 layers

MobileNetV2 3,500,000 53 layers

Custom CNN 106,082 12 layers

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 13/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

RESULTS
This section looks at the results of the four methods. It is presented as follows: results on
the textural features methods, the dynamic selection, and the commonly used methods and
complexities. The results indicate the performance measures using accuracy.

Results on conflated textural features methods
The two textural methods: GLCM and LBP accuracy performance, are shown in Tables 3–
7 for the various datasets and models.

GLCM’s energy and homogeneity give the best accuracy performance compared to the
LBP and GLCM’s correlation. LBP gives the lowest performance compared to the GLCM
properties, while ResNet50 performs lowest on CIFAR-100 among the datasets.

In the VGG16 model, correlation and energy perform best among the GLCM
properties. The CIFAR-10 give the highest performance across all the properties, while
CIFAR-100 still gives the least accuracy.

GLCM’s Energy and LBP perform better than the other properties on the InceptionV3
model. GLCM’s correlation and homogeneity give the least performance for the
InceptionV3, and the CIFAR-10 dataset gives the best accuracy performance across the
four textural properties among the datasets. Figure 2A shows the conflated performance of
CIFAR-10 samples on the VGG16 pre-trained model.

Figure 2 shows that samples below the average DKL perform better, illustrating the
importance of selecting quality data points in a dataset.

GLCM’s energy and LBP give better results than the other properties on the
DenseNet169 model. GLCM’s correlation gives most of the least accuracy performance
values, and the CIFAR-100 dataset still gives the least performance.

GLCM’s energy and homogeneity give the best accuracies for the MobileNetV2 pre-
trained model, while the GLCM’s correlation gives the least accuracy. GLCM’s energy gives
more than half the best results of all four properties, followed by GLCM’s homogeneity,
LBP and correlation. Figure 3 shows the energy property performance of Fashion-MNIST
and MNIST on the MobileNetV2.

The dataset samples with below-average DKL give high accuracy when using both
MNIST and Fashion-MNIST, showing the divergence between the data points and their
effect in adapting the pre-trained model in the target task. The relevance of these target
data points to the source samples is essential to the adaptation.

Results on dynamically selected layer methods
The dynamic layer selection methods form the second part of the model. The results of the
selected layers for the pre-trained model are presented in Tables 8–12.

Before using the selected conflated DKL, MNIST performs best when utilising selected
dynamic layers, with the CIFAR-100 dataset giving the least performance. However, using
conflated DKL samples of the CIFAR-100 dataset and the positive DKL dynamically
selected layers improves the ResNet50 pre-trained model’s performance, as seen in Table 8.
The negative DKL dynamically selected layers also result in minimal improvement due to
the conflated dataset samples.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 14/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Using dynamically selected layers performs well compared to the standard methods
(compared in Results on Methods against commonly used measures). However, an
improvement is noted when employing samples with below-average DKL, as seen in
Table 9. The CIFAR-100 dataset gives the least accuracy, while the MNIST dataset
performs best. Figure 4 shows the performance of the ISIC 2016 dataset on the VGG16
pre-trained model, with and without conflated selected images and dynamic layers.

The dataset with data points below average DKL performs better on VGG16 pre-trained
model than those with above-average DKL. The performance improves as the dynamically
selected layers fine-tune the pre-trained model. In Fig. 5, the selected layer (layer 1) with

Table 3 VGG16 textural features accuracy performance.

Dataset ResNet50

GLCM LBP

Correlation Homogeneity Energy

L H L H L H L H

Caltech 256 91.02 90.68 92.14 90.68 93.14 91.68 91.36 90.84

MIT Indoor 93.42 93.06 94.19 94.21 93.87 93.16 93.24 92.56

Stanford Dogs 98.24 97.34 99.12 98.85 99.42 98.59 99.34 99.02

CIFAR10 95.12 95.11 95.32 91.42 96.34 92.12 95.14 95.10

CIFAR100 35.12 32.14 32.25 31.89 32.47 32.14 33.45 32.04

MNIST 90.48 89.02 89.24 88.34 91.53 90.52 92.04 89.36

Fashion MNIST 82.47 82.19 83.47 83.44 83.09 82.13 82.24 82.22

CRX8 84.01 82.02 84.34 83.97 82.64 81.01 82.74 82.64

Melanoma 81.34 76.50 79.63 83.47 80.23 79.25 79.36 78.96

Table 4 InceptionV3 textural features accuracy performance.

Dataset VGG16

GLCM LBP

Correlation Homogeneity Energy

L H L H L H L H

Caltech 256 93.41 93.19 91.15 90.63 92.69 89.58 97.98 96.15

MIT Indoor 97.21 95.28 90.71 88.87 90.69 89.03 90.58 90.24

Stanford Dogs 98.59 98.05 94.18 91.11 94.24 89.89 93.21 92.08

CIFAR10 96.67 92.57 97.35 95.21 96.64 95.83 96.84 96.72

CIFAR100 32.04 31.59 31.97 30.99 33.28 32.87 33.24 33.17

MNIST 93.47 92.64 92.17 89.59 91.67 91.10 90.21 90.14

Fashion MNIST 88.54 87.76 89.47 89.34 88.64 88.14 89.24 88.35

CRX8 72.67 69.37 72.14 68.90 79.75 69.12 74.18 72.58

Melanoma 83.69 81.69 82.47 80.34 83.40 77.85 80.14 79.68

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 15/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

lower DKL is seen to have more excitatory weights (light ones) in the first channel of the
layer than layer 9 of the VGG16 model. Its selection coincides with the first layers being
able to extract features better.

A similar trend of improvement in fine-tuned dynamically selected layers’ model is
noted in the InceptionV3 pre-trained model, as seen in Table 10. The MNIST datasets still
perform well, probably owing to their size of data points and classes compared to the
poorly performing CIFAR-100 dataset. The two smaller datasets: ChestX-ray8 and ISIC
2016, also perform well.

Table 5 DenseNet169 textural features accuracy performance.

Dataset InceptionV3

GLCM LBP

Correlation Homogeneity Energy

L H L H L H L H

Caltech 256 91.25 91.69 91.89 90.48 98.24 95.18 90.08 90.02

MIT Indoor 94.05 93.68 93.41 92.99 92.45 92.14 94.36 93.79

Stanford Dogs 89.47 86.32 90.24 90.04 89.36 88.98 91.24 90.57

CIFAR10 93.47 92.11 94.78 94.68 96.71 92.94 91.84 90.14

CIFAR100 31.24 31.08 32.57 32.18 32.59 31.06 32.04 31.82

MNIST 91.43 90.12 90.47 90.38 93.67 87.98 92.57 92.01

Fashion MNIST 88.96 87.45 89.10 88.64 91.47 89.46 90.57 90.12

CRX8 83.20 79.78 84.15 81.20 82.45 82.40 84.69 82.58

Melanoma 83.14 82.69 82.67 81.67 84.69 83.57 80.45 79.95

Table 6 MobileNetV2 textural features accuracy performance.

Dataset DenseNet169

GLCM LBP

Correlation Homogeneity Energy

L H L H L H L H

Caltech 256 91.31 89.63 94.14 93.24 96.12 95.12 97.14 96.12

MIT Indoor 93.42 93.18 93.17 93.09 94.74 92.54 94.27 93.82

Stanford Dogs 95.24 95.29 94.36 94.02 94.14 93.45 92.43 92.37

CIFAR10 94.29 92.48 95.25 94.06 94.28 93.67 92.67 91.36

CIFAR100 33.14 32.64 32.89 32.46 34.27 31.96 32.48 31.24

MNIST 78.36 77.32 79.05 78.36 79.51 79.24 79.39 78.49

Fashion MNIST 90.36 89.14 90.39 90.06 91.47 90.78 91.36 90.47

CRX8 83.01 72.15 81.26 78.50 84.58 82.26 85.65 84.15

Melanoma 82.47 75.92 88.69 87.13 89.56 77.62 88.24 87.01

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 16/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

The trend of low performance continues with the CIFAR-100 dataset for the
DenseNet169 pre-trained model, as seen in Table 11. The MNIST datasets continue to
perform best by utilising below-average selected samples, improving the adaptation
process’s performance in the target task.

The MobileNetV2 pre-trained model gives similar results to the other four pre-trained
models, as shown in Table 12. The MNIST dataset gives the best accuracy among the
datasets, and a performance improvement is noted when data points of below-average DKL

are used together with the positive DKL dynamically selected layers in the transfer learning
process. The excellent performance of the positive DKL when using the selected samples is
seen in the precision shown in Table 13.

Table 7 ResNet50 accuracy performance using the selected DKL methods.

Dataset MobileNetV2

GLCM LBP

Correlation Homogeneity Energy

L H L H L H L H

Caltech 256 98.59 91.52 93.99 86.58 98.55 97.54 98.72 93.95

MIT Indoor 94.58 92.68 97.35 89.87 95.45 93.34 95.38 92.96

Stanford Dogs 98.38 98.22 99.29 96.57 99.15 96.95 98.76 96.34

CIFAR10 65.34 62.39 64.12 64.58 65.47 64.38 61.89 62.34

CIFAR100 31.67 30.54 32.27 31.53 33.68 32.47 33.57 32.14

MNIST 79.25 78.64 78.36 77.21 78.49 77.98 79.52 79.01

Fashion MNIST 91.25 90.87 90.25 88.39 91.36 90.28 91.24 90.35

CRX8 72.98 66.89 77.25 72.45 76.10 70.54 73.69 73.50

Melanoma 92.80 88.70 91.90 90.52 91.56 89.90 93.56 88.80

0 10 20 30 40 50
Epochs

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
c

c
u

r
a

c
y

Ab ove Sa m p le s

All Sa m p le s

Be low Sa m p le s

a) CIFAR10 (correlation) on VGG16 b) Caltech256 (LBP) on InceptionV3

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

A
c

c
u

r
a

c
y Above Samples

Below Samples

All Samples

Figure 2 CIFAR10 (correlation) and Caltech256 (LBP) on VGG16 and InceptionV3 pre-trained models.
Full-size DOI: 10.7717/peerj-cs.1601/fig-2

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 17/33

http://dx.doi.org/10.7717/peerj-cs.1601/fig-2
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

The precision determines the repeatability of obtaining the models’ good performance,
indicating how well the model can predict the correct class. Table 14 looks at the recall
performance of using the positive samples to determine the model’s performance in
correctly identifying the positives. Figure 6 shows a confusion matrix of the ISIC 2016
testing dataset on MobileNetV2, where the number of false negatives and false positives is
lower in classifying benign or malignant conditions.

In Table 14, the recall values are lower than the accuracy and the precision by a slight
margin. However, it proves that the model can identify a good proportion of the positives
during classification.

0 10 20 30 40 50
Epochs

0.65

0.70

0.75

0.80

0.85

0.90

A
cc

u
ra

cy Above Sam ples
Below Sam ples

a) FashionMNIST (energy) on MobileNetV2 b) MNIST (energy) on MobileNetV2

0 10 20 30 40 50
Epochs

0.3

0.4

0.5

0.6

0.7

0.8

A
c
c
u

ra
c
y

Above Sam ples
Below Sam ples

Figure 3 MNIST (energy) and Fashion MNIST (energy) on MobileNetV2. Full-size DOI: 10.7717/peerj-cs.1601/fig-3

Table 8 VGG16 accuracy performance using the selected DKL methods.

Dataset ResNet50

Kullback–Leibler methods

Positive Negative

Before samples After samples Before samples After samples

Caltech 256 97.04 98.15 96.23 96.25

MIT Indoor 96.64 97.24 95.98 96.12

Stanford Dogs 92.16 93.01 91.06 91.77

CIFAR10 54.18 55.29 53.58 53.89

CIFAR100 19.10 31.24 19.01 32.05

MNIST 98.20 99.27 98.25 98.69

Fashion MNIST 88.12 89.06 88.14 88.42

CRX8 82.96 83.46 80.20 81.11

Melanoma 78.68 79.36 77.23 77.85

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 18/33

http://dx.doi.org/10.7717/peerj-cs.1601/fig-3
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Results of proposed methods against commonly used transfer
learning methods
The introduced methods of the proposed approach have been compared to the three
commonly used methods of the k-1, k-2 and k-3. Table 15 shows that the introduced
methods outperform these regular methods.

The combination of the positive DKL in dynamic selected layers and the use of data
points below conflated average DKL give an average improvement of 0.87% across all the
five pre-trained models, with the DenseNet169 model giving the best improvement of
1.57% and the VGG16 model giving the slightest improvement of 0.06% in comparison to

Table 9 InceptionV3 accuracy performance using the selected DKL methods.

Dataset VGG16

Kullback–Leibler methods

Positive Negative

Before samples After samples Before samples After samples

Caltech 256 96.41 97.53 95.86 96.08

MIT Indoor 91.05 91.29 90.36 90.58

Stanford Dogs 90.54 92.87 91.57 92.01

CIFAR10 73.14 75.24 73.08 74.56

CIFAR100 37.62 45.24 34.72 41.05

MNIST 99.52 99.81 99.27 99.54

Fashion MNIST 88.21 91.24 87.96 90.14

CRX8 85.38 86.44 82.30 84.50

Melanoma 84.63 85.27 82.24 82.45

Table 10 DenseNet169 accuracy performance using the selected DKL methods.

Dataset InceptionV3

Kullback–Leibler methods

Positive Negative

Before samples After samples Before samples After samples

Caltech 256 93.24 94.02 92.14 92.34

MIT Indoor 89.42 90.23 87.24 88.34

Stanford Dogs 88.36 91.05 88.09 89.02

CIFAR10 77.58 78.29 78.47 79.11

CIFAR100 30.59 34.12 28.98 32.21

MNIST 98.09 99.08 98.01 98.78

Fashion MNIST 87.53 88.24 87.45 88.03

CRX8 80.48 81.45 78.32 79.38

Melanoma 85.36 85.98 81.39 82.35

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 19/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

the standard fine-tuning as seen in Table 15 for the ChestX-ray8 dataset. Among the last-k
methods, the combination dramatically improves on the k-3. A similar performance is
shown in Fig. 7.

Combining data points below the average DKL and dynamically selected layers gives
better accuracy than the commonly used and individually introduced methods. Utilising
above-average DKL samples without dynamically selected layers gives the least
performance, as shown in Fig. 7. Using below-average samples gives the second-best
method. Figure 8 shows the ISIC 2016 dataset sample with and without transfer learning in

Table 11 MobileNetV2 accuracy performance using the selected DKL methods.

Dataset DenseNet169

Kullback–Leibler methods

Positive Negative

Before samples After samples Before samples After samples

Caltech 256 91.54 92.69 90.47 90.65

MIT Indoor 87.28 88.90 86.88 86.82

Stanford Dogs 86.65 87.35 84.07 84.98

CIFAR10 69.18 72.49 69.05 71.56

CIFAR100 34.58 42.15 32.15 41.49

MNIST 99.02 99.52 98.89 98.94

Fashion MNIST 87.69 88.14 87.12 88.01

CRX8 78.24 79.61 77.36 77.58

Melanoma 81.36 82.35 79.35 81.44

Table 12 Accuracy performance on the approach methods and the standard baselines–CRX8
(homogeneity).

Dataset MobileNetV2

Kullback–Leibler methods

Positive Negative

Before samples After samples Before samples After samples

Caltech 256 91.45 92.34 93.65 94.04

MIT Indoor 86.24 87.95 86.02 86.39

Stanford Dogs 88.56 88.96 87.34 87.58

CIFAR10 64.21 66.20 64.11 65.14

CIFAR100 29.99 32.41 29.38 30.04

MNIST 97.98 98.56 97.90 97.87

Fashion MNIST 87.35 88.69 87.04 88.96

CRX8 77.53 79.34 67.08 70.12

Melanoma 76.40 78.15 73.24 73.69

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 20/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

0 10 20 30 40 50
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

ur
ac

y Above-conflat ion
Below-conflat ion
Above-conflat ion-Layer
Below-conflat ion-Layer

Figure 4 A plot of the Melanoma dataset on VGG16 with conflated dataset and dynamically selected
layers. Full-size DOI: 10.7717/peerj-cs.1601/fig-4

− 0.5 0.0 0.5 1.0 1.5 2.0 2.5

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5
− 0.5 0.0 0.5 1.0 1.5 2.0 2.5

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5
− 0.5 0.0 0.5 1.0 1.5 2.0 2.5

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5

− 0.5 0.0 0.5 1.0 1.5 2.0 2.5

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5
− 0.5 0.0 0.5 1.0 1.5 2.0 2.5

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5
− 0.5 0.0 0.5 1.0 1.5 2.0 2.5

− 0.5

0.0

0.5

1.0

1.5

2.0

2.5

a) VGG16 - Layer 1, channel 1 weights

b) VGG16 - Layer 9, channel 1 weights

Figure 5 Proposed methods and baseline curves using the Melanoma dataset on VGG16. Full-size DOI: 10.7717/peerj-cs.1601/fig-5

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 21/33

http://dx.doi.org/10.7717/peerj-cs.1601/fig-4
http://dx.doi.org/10.7717/peerj-cs.1601/fig-5
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

the VGG16 pre-trained model. When the same samples are used in transfer learning, it is
noted that below-average DKL performs better and takes less time than a typical
convolutional neural network (a 12-layer CNN listed in Table 2). The typical CNN takes
50 s longer to train the ISIC 2016 samples.

Results on computational complexities in proposed methods
The proposed approach complexity is evaluated against four divergence measures:
Wasserstein, Hellinger, Jensen–Shannon and Bhattacharya. The results in Table 16 show
that the DKL has a good balance of memory and time complexities.

Table 13 Computational complexity of divergence measure on Caltech256.

Dataset MobileNetV2

Kullback–Leibler methods

Positive Negative

Before samples After samples Before samples After samples

Caltech 256 90.34 91.85 93.15 93.88

MIT Indoor 86.02 87.36 85.85 85.74

Stanford Dogs 89.01 90.37 86.48 86.95

CIFAR10 65.23 67.92 64.06 66.24

CIFAR100 30.08 33.74 29.04 29.51

MNIST 98.36 98.87 96.47 96.94

Fashion MNIST 88.41 90.21 88.14 89.38

CRX8 78.10 80.39 66.47 69.54

Melanoma 77.63 79.54 73.12 74.85

Table 14 MobileNetV2 Recall performance using the selected DKL methods.

Dataset MobileNetV2

Kullback–Leibler methods

Positive Negative

Before samples After samples Before samples After samples

Caltech 256 87.41 89.18 86.13 88.20

MIT Indoor 84.38 85.47 83.69 84.37

Stanford Dogs 87.82 89.30 83.54 85.25

CIFAR10 64.29 66.85 61.24 64.97

CIFAR100 29.58 31.84 28.23 28.78

MNIST 96.49 97.63 93.16 94.08

Fashion MNIST 86.76 88.89 87.07 88.92

CRX8 76.81 78.14 63.45 67.83

Melanoma 75.24 76.86 71.98 72.23

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 22/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Table 15 Accuracy performance on the approach methods and the standard baselines–CRX8
(homogeneity).

Method Model

ResNet50 VGG16 InceptionV3 DenseNet169 MobileNetV2

Below DKL 84.34 72.14 84.15 81.26 77.25

Above DKL 83.97 68.90 81.20 78.50 72.45

Positive DKL 82.96 85.38 80.48 78.24 77.53

Negative DKL 80.20 82.30 78.32 77.36 67.08

Positive DKL+Above DKL 83.46 86.44 81.45 79.61 79.34

Standard fine-tuning 83.08 86.38 80.05 78.04 78.40

Last k-1 80.14 82.54 78.98 77.39 78.18

Last k-2 82.26 84.03 79.59 77.65 79.04

Last k-3 82.98 84.84 79.56 77.84 79.12

0 1
Expected

0
1

P
re

d
ic

te
d

124 30

11 31

20

40

60

80

100

120

0 : Malignant, 1: benign

Figure 6 Divergences validation loss curves on CIFAR10 on ResNet50. Full-size DOI: 10.7717/peerj-cs.1601/fig-6

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 23/33

http://dx.doi.org/10.7717/peerj-cs.1601/fig-6
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

The Wasserstein and the Jensen–Shannon have better time complexities but consume
more computing resources than the DKL. Tables 16 and 17 show that it takes about 70.37
milliseconds (ms) to select a sample and pass it through a selected layer in ResNet50. The
complexities of the DKL are better than Hellinger’s and Bhattacharyya’s, which take 99.63
and 239.14 ms, respectively. According to Yossi, Carlo & Leonidas (2000), the Wasserstein
is reported to be more complex than Bhattacharyya, forming a reasonable basis for
selecting DKL in this study. Further evaluation of the divergence measures is shown in
Fig. 9.

The models’ accuracy performance when using DKL conflated dataset samples is closest
to Hellinger’s conflated dataset samples, as seen in Fig. 9, outranking the other divergences.
However, as reported in Tables 16 and 17, Hellinger has a higher computational
complexity.

DISCUSSION
From the results, the performance of the pre-trained models is improved at two levels:
selecting the relevant data points and utilising dynamically selected layers. In selecting the
relevant data points, GLCM’s energy and homogeneity properties have been noted to
perform well compared to the other properties: GLCM’s correlation and LBP. The
contribution of these two to good performance can be attributed to the excellent
neighbouring of pixels with similar grey levels. The GLCM’s homogeneity causes the low
density of the pixels’ edges. Chaves (2021) andMathworks (2023) note that pixels along the
diagonal change smoothly to the ones distant from the main diagonal. The samples with
below-average DKL contain values closer to each other, with many adjacent pixels having
similar values. Pixels of lower values are far from the diagonal.

The performance of the GLCM’s properties is better than the LBP textural descriptor in
many instances. This performance can be attributed to better uniformity and simplicity in

0 10 20 30 40 50
Epochs

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

A
cc

u
ra

cy

Above-conflat ion
Below-conflat ion
Above-conflat ion-Layer
Below-conflat ion-Layer
Standard
k-1
k-2
k-3

Figure 7 Proposed methods and baseline curves using the Melanoma dataset on VGG16.
Full-size DOI: 10.7717/peerj-cs.1601/fig-7

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 24/33

http://dx.doi.org/10.7717/peerj-cs.1601/fig-7
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

the texture, as noted by Park et al. (2011), who describes that energy and homogeneity give
better performance, a similar trend noted in this work. The performance of GLCM
properties to LBP has been cited in the literature to outperform LBP due to its less grey-
level feature discrimination, as noted by Changwei et al. (2020) and Nurhaida, Manurung
& Arymurthy (2012). Its performance in CNNs is also reported by Tan et al. (2020),
indicating that the use of GLCM properties can aid in improving CNNs’ performance,
especially in cases of inadequate data—a use case for transfer learning. In using below-
average DKL samples, the selected data points utilise their lower informational differences
to the source samples adapting the target task.

At the dynamic selection of layers, it is noted that layers with lower positively signed
weights to each other give higher performance than the negative ones. The positive weights
in a layer are considered excitatory, as Najafi et al. (2020) noted, with the ability to select
stimulating features during the model’s training. As noted in Fig. 5, the weights of the first
channel of the first layer would start the convolutional process with a higher magnitude

0 10 20 30 40 50
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

1.1

A
cc

u
ra

cy

Without -TL-BW
With-TL-BW
Without -TL-ABV
With-TL-ABV

Figure 8 Melanoma dataset on the VGG16 model with and without transfer learning.
Full-size DOI: 10.7717/peerj-cs.1601/fig-8

Table 16 Computational complexity of divergence measure on Caltech256—sample selection.

Model Divergence measures

Kullback–Leibler Wasserstein Hellinger Jensen–Shannon Bhattacharya

Time Mem Time Mem Time Mem Time Mem Time Mem

ResNet50 37.48 104,137 13.96 30,297 51.16 376,325 6.51 238,501 118.78 1,159,044

InceptionV3 36.83 28,151 18.35 44,451 67.74 672,025 7.10 414,769 164.84 1,639,686

MobileNetV2 14.57 40,900 3.654 39,695 4.67 40,527 4.12 40,475 3.668 37,805

VGG16 5.34 25,315 3.75 269,011 3.98 384,880 3.66 187,836 3.887 187,836

DenseNet169 908.15 320,543 1,174.06 632,111 1,768.06 1,262,959 78.93 787,334 1,836.14 1,862,471

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 25/33

http://dx.doi.org/10.7717/peerj-cs.1601/fig-8
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

(the RGB values of colours closer to white would be near 255) towards the divergence than
the counterpart filter in the first channel of layer 9. This property leads to better
convergence and faster training, as Delaurentis & Dickey (1994) noted. In the case of using
negative weights, the model cannot descend well hence the use of positive weights, as noted
by Shamsuddin, Ibrahim & Ramadhena (2013). The use of weights is essential to the
model’s training, where the convergence happens despite the use of the other parameters
since its change has an effect in reaching the global minima. The change in weight sign
affects the magnitude change and consequent change in the direction of the descent.

Sidani gives more intuitive reasoning on the effects of positive weights on the training
process by noting that an increase in the weight of the previous and the current derivative
stabilises the network more, leading to quicker descent. Therefore the positive weights in
the training process can correct the back-propagation errors leading to a better path to the
global minima. The negative weights DKL method is also noted to improve the use of
better samples. This improvement by the negative weights (inhibitory) is because they still

Table 17 Complexity comparison to other divergence measures—layer selection.

Model Measure

Kullback–Leibler Wasserstein Hellinger Jensen–Shannon Bhattacharya

Time Mem Time Mem Time Mem Time Mem Time Mem

ResNet50 32.89 85,444 15.86 1,811,638 48.47 370,086 5.25 232,424 120.36 1,450,276

InceptionV3 33.84 90,332 17.89 3,224,079 66.91 656,161 5.35 406,236 194.11 1,627,010

MobileNetV2 1.92 40,323 0.84 916,694 2.68 193,214 0.51 129,121 6.20 716,486

VGG16 0.11 13,106 0.08 255,810 0.18 51,806 0.05 32,183 0.22 176,199

DenseNet169 56.25 125,025 508.47 6,202,006 96.24 4,212,014 110.69 797,576 219.56 3,501,420

0 10 20 30 40 50
Epochs

1

2

3

4

5

6

7

8

9

Lo
ss

Jensen
Wasserstein
Bhat tacharya
DKL
Hellinger

Figure 9 Divergences validation loss curves on CIFAR10 on ResNet50.
Full-size DOI: 10.7717/peerj-cs.1601/fig-9

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 26/33

http://dx.doi.org/10.7717/peerj-cs.1601/fig-9
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

stabilise the training process, especially in cases of exploding gradient. This process slows
the learning process but ensures the model can capture the features well enough. However,
the positive weights have the upper hand in directing the model to the global minima.

It is also noted that heavy pre-trained models like DenseNet169 with many layers (as
shown in Table 2) and datasets with many classes like CIFAR-100 give a lower
performance. These could be a result of parameter complexity requiring more training.
This behaviour has been reported by Vrbančič & Podgorelec (2020) in the DEFT method.
The heavy DenseNet169 model also gives higher complexity, as Tables 16 and 17 note.

The selected DKL methods have low-medium time complexity compared to the other
divergences despite the lower time complexity by Jensen and Wasserstein and Hellinger’s
better training loss curve to the DKL. However, comparing the DKL memory complexity
and the combined complexities of the other divergences, as seen in Tables 16 and 17, can
unfold into an extensive complexity which guided its selection for use in this study.

CONCLUSION
This article introduces the conflation of features in selecting quality data points in a target
domain dataset and using weights in the dynamic selection of fine-tuning layers to
improve the transfer learning process. The enhanced model demonstrates that using the
correct data points and suitable layers can improve the performance of a pre-trained model
to the commonly used transfer learning methods. The model has been evaluated on five
pre-trained models and nine datasets. The results demonstrate the divergence between
data points and layers, showing how transfer learning adaptation is affected by information
divergence at the data and layer levels. However, the approach has a higher time
complexity than the commonly used methods due to adding the extra step in dynamic
layer selection. The approach gives a better method in cases of inadequate data reducing
cases of trial and error in selecting the right data points and layers for fine-tuning.

Future work can be extended into other architectures apart from CNNs to understand
further the importance of divergence in data samples and the models’ layers.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Raphael Ngigi Wanjiku conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the article, and approved the final draft.

� Lawrence Nderu conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
article, and approved the final draft.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 27/33

http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

� Michael Kimwele conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The public datasets are available at:
1. CIFAR10—https://www.cs.toronto.edu/~kriz/cifar.html
A zipped repository is available at Kaggle: https://www.kaggle.com/datasets/oxcdcd/

cifar10
2. CIFAR100—https://www.cs.toronto.edu/~kriz/cifar.html
A zipped repository is available at Kaggle: https://www.kaggle.com/datasets/

aymenboulila2/cifar100
3. MNIST—https://www.kaggle.com/datasets/jidhumohan/mnist-png
4. Fashion Mnist—https://github.com/zalandoresearch/fashion-mnist/blob/master/

LICENSE
A zipped repository is available at Kaggle: https://www.kaggle.com/datasets/zalando-

research/fashionmnist
5. Caltech 256—https://data.caltech.edu/records/nyy15-4j048
6. Stanford Dogs 120—http://vision.stanford.edu/aditya86/ImageNetDogs/main.html
7. MIT Indoor—https://web.mit.edu/torralba/www/indoor.html
8. ISIC Melanoma—https://challenge2020.isic-archive.com/
9. Chest Xray8—https://www.kaggle.com/datasets/nih-chest-xrays/data
The code for the proposed work is available at GitHub and Zenodo:
- https://github.com/geekhack/conflation_dynamic_layers_TL/tree/v1.0.0
- Rafael Wanjiku. (2023). geekhack/conflation_dynamic_layers_TL: v1.0.0 (v1.0.0).

Zenodo. https://doi.org/10.5281/zenodo.8048467

REFERENCES
Aditya K, Nityananda J, Bangpeng Y, Fei-Fei L. 2011. Novel dataset for Fine-Grained Image

Categorisation. In: First Workshop on Fine-Grained Visual Categorisation (FGVC), IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE.

An S, Bhat G, Gumussoy S, Ogras U. 2023. Transfer learning for human activity recognition using
representational analysis of neural networks. ACM Transactions on Computer Healthcare
4(1):1–21 DOI 10.1145/3563948.

Andrearczyk V, Whelan PF. 2016. Using filter banks in Convolutional Neural Networks for
texture classification. Pattern Recognition Letters 84(C):63–69
DOI 10.1016/j.patrec.2016.08.016.

Ariadna Q, Antonio T. 2009. Recognising indoor scenes. In: IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Piscataway: IEEE.

Bolón-Canedo V, Remeseiro B. 2019. Feature selection in image analysis: a survey. Artificial
Intelligence Review 53:2905–2931 DOI 10.1007/s10462-019-09750-3.

Changwei Z, Lili Z, Xiaojun Z, Yuanbo W, Di W, Zhi T. 2020. Classification of normal and
pathological voices using convolutional neural network. In: 2020 International Conference on

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 28/33

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/datasets/oxcdcd/cifar10
https://www.kaggle.com/datasets/oxcdcd/cifar10
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/datasets/aymenboulila2/cifar100
https://www.kaggle.com/datasets/aymenboulila2/cifar100
https://www.kaggle.com/datasets/jidhumohan/mnist-png
https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE
https://github.com/zalandoresearch/fashion-mnist/blob/master/LICENSE
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://www.kaggle.com/datasets/zalando-research/fashionmnist
https://data.caltech.edu/records/nyy15-4j048
http://vision.stanford.edu/aditya86/ImageNetDogs/main.html
https://web.mit.edu/torralba/www/indoor.html
https://challenge2020.isic-archive.com/
https://www.kaggle.com/datasets/nih-chest-xrays/data
https://github.com/geekhack/conflation_dynamic_layers_TL/tree/v1.0.0
https://doi.org/10.5281/zenodo.8048467
http://dx.doi.org/10.1145/3563948
http://dx.doi.org/10.1016/j.patrec.2016.08.016
http://dx.doi.org/10.1007/s10462-019-09750-3
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). Xi’an,
China.

Chaves M. 2021. GLCMs—a great tool for your ML arsenal. towardsdatascience.com. January 21,
2021. Available at https://towardsdatascience.com/glcms-a-great-tool-for-your-ml-arsenal-
7a59f1e45b65 (accessed 25 July 2022).

Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J. 2018. StarGAN: unified generative adversarial
networks for multi-domain image-to-image translation. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Salt Lake City.

Chouhan V, Singh S, Khamparia A, Gupta D, Tiwari P, Moreira C, Damaševičius R. 2020. A
novel transfer learning based approach for pneumonia detection in chest X-ray images. Applied
Sciences 10(2):559 DOI 10.3390/app10020559.

Coskun M, Yildirim Ö, Uçar A, Demir Y. 2017. An overview of popular deep learning methods.
European Journal of Technic 7(2):165–176.

De Smith MJ, Goodchild MF, Longley A. 2018. Geospatial analysis: a comprehensive guide to
principles, techniques and software tools. Sixth Edition. Goudhurst: Drumlin Security.

Delaurentis JM, Dickey FM. 1994. A convexity-based analysis of neural networks. Neural
Networks 7(1):141–146 DOI 10.1016/0893-6080(94)90062-0.

Deniz E, Sengur A, Kadiroglu Z, Ashour A, Bajaj V, Budak U. 2018. Transfer learning based
histopathologic image classification for breast cancer detection. Health Information Science and
Systems 6(1):1 DOI 10.1007/s13755-018-0057-x.

Dixit A, Hegde NP. 2013. Image texture analysis—survey. In: 2013 Third International Conference
on Advanced Computing and Communication Technologies (ACCT). Rohtak.

Duggani K, Venugopal V, Nath M, Mishra M. 2023. Hybrid convolutional neural networks with
SVM classifier for classification of skin cancer. Biomedical Engineering Advances 5(72):100069
DOI 10.1016/j.bea.2022.100069.

Ershad SF. 2012. Texture classification approach based on energy variation. International Journal
of Multimedia Technology 2(2):52–55.

Fan J, Lee J, Lee Y. 2021. A transfer learning architecture based on a support vector machine for
histopathology image classification. Applied Sciences 11(14):6380 MDPI AG
DOI 10.3390/app11146380.

Gan Z, Singh PD, Joshi A. 2017. Character-level deep conflation for business data analytics. In:
2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Piscataway: IEEE.

Greegar G, Manohar CS. 2015. Global response sensitivity analysis using probability distance
measures and generalisation of Sobol’s analysis. Probabilistic Engineering Mechanics 41(5):21–
33 DOI 10.1016/j.probengmech.2015.04.003.

Griffin G, Holub A, Perona P. 2022. Caltech 256 (1.0) [Data set]. CaltechDATA. Available at
https://doi.org/10.22002/D1.20087.

Gutman D, Codella N, Celebi E, Helba B, Marchetti M, Mishra N, Halpern A. 2016. Skin lesion
analysis toward melanoma detection: a challenge at the International Symposium on Biomedical
Imaging (ISBI) 2016, hosted by the International Skin Imaging Collaboration (ISIC). ArXiv
preprint DOI 10.48550/arXiv.1605.01397.

Haralick RM, Shanmugam K, Dinstein I. 1973. Textural features for image classification. IEEE
Transactions on Systems, Man, and Cybernetics SMC-3(6):610–621
DOI 10.1109/TSMC.1973.4309314.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 29/33

https://towardsdatascience.com/glcms-a-great-tool-for-your-ml-arsenal-7a59f1e45b65
https://towardsdatascience.com/glcms-a-great-tool-for-your-ml-arsenal-7a59f1e45b65
http://dx.doi.org/10.3390/app10020559
http://dx.doi.org/10.1016/0893-6080(94)90062-0
http://dx.doi.org/10.1007/s13755-018-0057-x
http://dx.doi.org/10.1016/j.bea.2022.100069
http://dx.doi.org/10.3390/app11146380
http://dx.doi.org/10.1016/j.probengmech.2015.04.003
https://doi.org/10.22002/D1.20087
http://dx.doi.org/10.48550/arXiv.1605.01397
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Hill TP. 2011. Conflations of probability distributions. Transactions of the American Mathematical
Society 363(6):3351–3372 DOI 10.1090/S0002-9947-2011-05340-7.

Holderrieth P, Smith S, Peng H. 2022. Transfer learning for neuroimaging via reuse of deep
neural network features. medRxiv DOI 10.1101/2022.12.11.22283324.

ImageNet. 2021. ImageNet. Retrieved June 5, 2023. Available at https://www.image-net.org/index.
php.

Kim H, Cosa-Linan A, Santhanam N. 2022. Transfer learning for medical image classification: a
literature review. BMC Medical Imaging 22(1):69 DOI 10.1186/s12880-022-00793-7.

Krizhevsky A, Nair V, Hinton G. 2014a. The CIFAR-10 dataset. Available at https://www.cs.
toronto.edu/~kriz/cifar.html.

Krizhevsky A, Nair V, Hinton G. 2014b. The CIFAR-100 dataset. Available at https://www.cs.
toronto.edu/~kriz/cifar.html.

Laleh A, Shervan F. 2019. Texture image analysis and texture classification methods—a review.
ArXiv. abs/1904.06554.

LeCun Y, Cortes C, Burges C. 1998. The MNIST database of handwritten digits. New York,
USA. Available at https://www.kaggle.com/datasets/jidhumohan/mnist-png.

Lee JW, ParkWB, Pyo M, Sohn KS. 2020.Virtual microstructure design for steels using generative
adversarial networks. Engineering Reports 3(1):1–14 DOI 10.1002/eng2.12274.

Li W, Gu S, Zhang X, Chen T. 2020. Transfer learning for process fault diagnosis: knowledge
transfer from simulation to physical processes. Computers & Chemical Engineering 139:106904
DOI 10.1016/j.compchemeng.2020.106904.

Liang H, Fu W, Yi F. 2019. A survey of recent advances in transfer learning. In: 2019 IEEE 19th
International Conference on Communication Technology (ICCT). Xi’an, China: 1516–1523
DOI 10.1109/ICCT46805.2019.8947072.

Lu Z, Yang Y, Zhu X, Liu C, Song YZ, Xiang T. 2020. Stochastic classifiers for unsupervised
domain adaptation. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). Virtual.

Luo M, Chang X, Nie L, Yang Y, Hauptmann AG, Zheng Q. 2018. An adaptive semisupervised
feature analysis for video semantic recognition. IEEE Transactions on Cybernetics 48(2):648–660
DOI 10.1109/TCYB.2017.2647904.

Mabrouk A, Dahou A, Elaziz M, Redondo R, Kayed M. 2022. Medical image classification using
transfer learning and chaos game optimization on the internet of medical things. Computational
Intelligence and Neuroscience 2022(2):22 DOI 10.1155/2022/9112634.

Mathworks. 2023. Texture analysis using the gray-level co-occurrence matrix (GLCM). MATLAB
& simulink. Available at https://www.mathworks.com/help/images/texture-analysis-using-the-
gray-level-co-occurrence-matrix-glcm.html (accessed 10 June 2023).

Matsoukas C, Haslum J, Sorkhei M, Soderberg M, Smith K. 2022.What makes transfer learning
work for medical images: feature reuse & other factors. In: 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 9215–9224.

Mehta H, Krichene W. 2023. Leveraging transfer learning for large scale differentially private
image classification. Google AI Blog. Available at https://ai.googleblog.com/2023/03/leveraging-
transfer-learning-for-large.html.

Mingsheng L, Han Z, Jianmin W, Michael IJ. 2017. Deep transfer learning with joint adaptation
networks. In: Proceedings of the 34th International Conference on Machine Learning, Vol. 70.
Norfolk: JMLR, 2208–2217.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 30/33

http://dx.doi.org/10.1090/S0002-9947-2011-05340-7
http://dx.doi.org/10.1101/2022.12.11.22283324
https://www.image-net.org/index.php
https://www.image-net.org/index.php
http://dx.doi.org/10.1186/s12880-022-00793-7
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.kaggle.com/datasets/jidhumohan/mnist-png
http://dx.doi.org/10.1002/eng2.12274
http://dx.doi.org/10.1016/j.compchemeng.2020.106904
http://dx.doi.org/10.1109/ICCT46805.2019.8947072
http://dx.doi.org/10.1109/TCYB.2017.2647904
http://dx.doi.org/10.1155/2022/9112634
https://www.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://www.mathworks.com/help/images/texture-analysis-using-the-gray-level-co-occurrence-matrix-glcm.html
https://ai.googleblog.com/2023/03/leveraging-transfer-learning-for-large.html
https://ai.googleblog.com/2023/03/leveraging-transfer-learning-for-large.html
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Mitra S, Saha S, HasanuzzamanM. 2020.Multi-view clustering for multi-omics data using unified
embedding. Scientific Reports 10(1):13654 DOI 10.1038/s41598-020-70229-1.

Najafi F, Elsayed GF, Cao R, Pnevmatikakis E, Latham PE, Cunningham JP, Churchland AK.
2020. Excitatory and inhibitory subnetworks are equally selective during decision-making and
emerge simultaneously during learning. Neuron 105(1):165–179
DOI 10.1016/j.neuron.2019.09.045.

Nawar M, Shomer M, Faddel S, Gong H. 2023. Transfer learning in deep learning models for
building load forecasting: case of limited data. In: SoutheastCon 2023. Orlando, FL, USA: IEEE,
532–538.

Nguyen D, Nguyen T, Vu H, Pham Q, Nguyen M, Nguyen B, Sonntag D. 2022. TATL: task
agnostic transfer learning for skin attributes detection. Medical Image Analysis 78(13):102359
DOI 10.1016/j.media.2022.102359.

Nielsen F, Nock R. 2021. On w-mixtures: finite convex combinations of prescribed component
distributions. ArXiv preprint DOI 10.48550/arXiv.1708.00568.

Niu S, Liu M, Liu Y, Wang J, Song H. 2021.Distant domain transfer learning for medical imaging.
IEEE Journal of Biomedical and Health Informatics 25(10):3784–3793
DOI 10.1109/JBHI.2021.3051470.

Nurhaida I, Manurung R, Arymurthy AM. 2012. Performance comparison analysis features
extraction methods for Batik recognition. In: 2012 International Conference on Advanced
Computer Science and Information Systems (ICACSIS).

Park U, Jillela RR, Ross A, Jain AK. 2011. Periocular biometrics in the visible spectrum. IEEE
Transactions on Information Forensics and Security 6(1):96–106
DOI 10.1109/TIFS.2010.2096810.

Rahman MM, Voyles R, Wachs J, Xue Y. 2021. Sequential prediction with logic constraints for
surgical robotic activity recognition. In: 2021 30th IEEE International Conference on Robot &
Human Interactive Communication (RO-MAN). Piscataway: IEEE.

Raza N, Naseer A, Tamoor M, Zafar K. 2023. Alzheimer disease classification through transfer
learning approach. Diagnostics 13(4):801 DOI 10.3390/diagnostics13040801.

Rodrigues D, Ivo R, Satapathy C, Wang S, Hemanth J, Rebouças Filho P. 2020. A new approach
for classification skin lesion based on transfer learning, deep learning, and IoT system. Pattern
Recognition Letters 136(2):8–15 DOI 10.1016/j.patrec.2020.05.019.

Royer A, Lampert C. 2020. A flexible selection scheme for minimum-effort transfer learning. In:
2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE.

Satsuki N, Shin K, Hajime N. 2020. Transfer learning layer selection using genetic algorithm. In:
2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE.

Shamsuddin SM, Ibrahim AO, Ramadhena C. 2013.Weight changes for learning mechanisms in
two-term back-propagation network. In: Suzuki K, ed. Artificial Neural Networks. IntechOpen.
DOI 10.5772/51776.

Sharma V, Gupta M, Pandey A, Mishra D, Kumar A. 2023. A review of deep learning-based
human activity recognition on benchmark video datasets. Applied Artificial Intelligence 36(1):
e2093705–2856 DOI 10.1080/08839514.2022.2093705.

Simumba N, Tatsubori M. 2023. Adapting transfer learning for multiple channels in satellite data
applications. EGU General Assembly 2023, Vienna, Austria, 24–28 April 2023, EGU23-1502
DOI 10.5194/egusphere-egu23-1502.

Sun S, Ren W, Wang T, Cao X. 2022. Rethinking image restoration for object detection. In:
Koyejo S, Mohamed S, Agarwal A, Belgrave D, Cho K, Oh A, eds. Advances in Neural
Information Processing Systems, Vol. 35, 4461–4474.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 31/33

http://dx.doi.org/10.1038/s41598-020-70229-1
http://dx.doi.org/10.1016/j.neuron.2019.09.045
http://dx.doi.org/10.1016/j.media.2022.102359
http://dx.doi.org/10.48550/arXiv.1708.00568
http://dx.doi.org/10.1109/JBHI.2021.3051470
http://dx.doi.org/10.1109/TIFS.2010.2096810
http://dx.doi.org/10.3390/diagnostics13040801
http://dx.doi.org/10.1016/j.patrec.2020.05.019
http://dx.doi.org/10.5772/51776
http://dx.doi.org/10.1080/08839514.2022.2093705
http://dx.doi.org/10.5194/egusphere-egu23-1502
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Tan J, Gao Y, Cao W, Pomeroy M, Zhang S, Huo Y, Li L, Liang Z. 2020. 3D-GLCM CNN: a 3-
dimensional gray-level co-occurrence matrix-based CNN model for polyp classification via CT
colonography. IEEE Transactions on Medical Imaging 39(6):2013–2024
DOI 10.1109/TMI.2019.2963177.

Team K. 2023. Keras documentation: keras applications. Keras. Retrieved June 5, 2023. Available at
https://keras.io/api/applications/.

TensorFlow Hub. 2023. TensorFlow Hub. Retrieved June 5, 2023. Available at https://tfhub.dev/.

Theodoridis S. 2015. Probability and stochastic processes. In: Probability and Stochastic Processes,
Machine Learning. Cambridge: Academic Press.

Togami M, Masuyama Y, Komatsu T, Nakagome Y. 2020. Unsupervised training for deep speech
source separation with kullback-leibler divergence based probabilistic loss function. In: ICASSP,
2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Barcelona, Spain, 2020: 56–60 DOI 10.1109/ICASSP40776.2020.9054171.

Tuceryan M, Jain AK. 1993. Texture analysis. In: Handbook of Pattern Recognition and Computer
Vision, 235–276 World Scientific DOI 10.1142/9789814343138_0010.

Villani C. 2003. Topics in optimal transportation. In: Graduate Studies in Mathematics. Boston:
AMS.

Vrbančič G, Podgorelec V. 2020. Transfer learning with adaptive fine-tuning. IEEE Access
8:196197–196211 DOI 10.1109/ACCESS.2020.3034343.

Wanjiku RN, Nderu L, Kimwele M. 2022. Dynamic fine-tuning layer selection using Kullback–
Leibler divergence. Engineering Reports 5(5):e12595 DOI 10.1002/eng2.12595.

Weifeng G, Yizhou Y. 2017. Borrowing treasures from the wealthy: deep transfer learning through
selective joint fine-tuning. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Piscataway: IEEE.

Wu X, Manton J, Aickelin U, Zhu J. 2021. Online transfer learning: negative transfer and effect of
prior knowledge. In: 2021 IEEE International Symposium on Information Theory (ISIT), 1540–
1545.

Xiao H, Rasul K, Vollgraf R. 2017. Fashion-MNIST: a novel image dataset for benchmarking
machine learning algorithms DOI 10.48550/arXiv.1708.07747.

Xiaosong W, Yifan P, Le L, Zhiyong L, Mohammadhadi B, Ronald S. 2017. ChestX-Ray8:
hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and
localisation of common thorax diseases. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Piscataway: IEEE, 3462–3471.

Xuhong L, Grandvalet Y, Davoine F. 2020. A baseline regularisation scheme for transfer learning
with convolutional neural networks. Pattern Recognition 28:107049
DOI 10.1016/j.patcog.2019.107049.

Yossi R, Carlo T, Leonidas GJ. 2000. The earth mover’s distance as a metric for image retrieval.
International Journal of Computer Vision 40:99–121 DOI 10.1023/A:1026543900054.

Yuhong Y, Huiyu Z, Weiping T, Haojun A, Linjun C, Ruimin H, Fei X. 2019. Kullback–Leibler
divergence frequency warping scale for acoustic scene classification using convolutional neural
network. In: ICASSP, 2019—2019 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). Piscataway: IEEE.

Yunhui G, Honghui S, Abhishek K, Kristen G, Tajana R, Rogerio F. 2019. SpotTune: transfer
learning through adaptive fine-tuning. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). Long Beach, California.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 32/33

http://dx.doi.org/10.1109/TMI.2019.2963177
https://keras.io/api/applications/
https://tfhub.dev/
http://dx.doi.org/10.1109/ICASSP40776.2020.9054171
http://dx.doi.org/10.1142/9789814343138_0010
http://dx.doi.org/10.1109/ACCESS.2020.3034343
http://dx.doi.org/10.1002/eng2.12595
http://dx.doi.org/10.48550/arXiv.1708.07747
http://dx.doi.org/10.1016/j.patcog.2019.107049
http://dx.doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

Zeebaree DQ, Abdulazeez AM, Zebari DA, Haron H, Hamed HNA. 2020. Multi-level fusion in
ultrasound for cancer detection based on uniform LBP features. Computers, Materials and
Continua—Tech Science Press 66(3):3363–3382 DOI 10.32604/cmc.2021.013314.

Zhang L, Gao X. 2022. Transfer adaptation learning: a decade survey. IEEE Transactions on Neural
Networks and Learning Systems 1–22 DOI 10.1109/TNNLS.2022.3183326.

Zhuang F, Cheng X, Luo P, Pan SJ, He Q. 2015. Supervised representation learning: transfer
learning with deep autoencoders. In: Proceedings of the 24th International Conference on
Artificial Intelligence. Buenos Aires, Argentina: AAAI Press, 4119–4125.

Zhuang F, Qi Z, Duan K, Xi D, Zhu Y, Zhu H, Xiong H, He Q. 2021. A comprehensive survey on
transfer learning. Proceedings of the IEEE 109(1):43–76 DOI 10.1109/JPROC.2020.3004555.

Zoetmulder R, Gavves E, Caan M, Marquering H. 2022. Domain- and task-specific transfer
learning for medical segmentation tasks. Computer Methods and Programs in Biomedicine
214(4):106539 DOI 10.1016/j.cmpb.2021.106539.

Wanjiku et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1601 33/33

http://dx.doi.org/10.32604/cmc.2021.013314
http://dx.doi.org/10.1109/TNNLS.2022.3183326
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1016/j.cmpb.2021.106539
http://dx.doi.org/10.7717/peerj-cs.1601
https://peerj.com/computer-science/

	Improved transfer learning using textural features conflation and dynamically fine-tuned layers
	Introduction
	Related work
	Methodology
	Results
	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

