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ABSTRACT
Missing data presents a challenge to clustering algorithms, as traditional methods tend
to pad incomplete data first before clustering. To combine the two processes of padding
and clustering and improve the clustering accuracy, a generalized fuzzy clustering
framework is proposed based on optimal completion strategy (OCS) and nearest
prototype strategy (NPS) with four improved algorithms developed. Feature weights
are introduced to reduce outliers’ influence on the cluster centers, and kernel functions
are used to solve the linear indistinguishability problem. The proposed algorithms are
evaluated regarding correct clustering rate, iteration number, and external evaluation
indexes with nine datasets from the UCI (University of California, Irvine) Machine
Learning Repository. The results of the experiment indicate that the clustering accuracy
of the feature weighted kernel fuzzy C-means algorithm with NPS (NPS-WKFCM) and
feature weighted kernel fuzzy C-means algorithm with OCS (OCS-WKFCM) under
varying missing rates is superior to that of seven conventional algorithms. Experiments
demonstrate that the enhanced algorithm proposed for clustering incomplete data is
superior.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning
Keywords Incomplete data, Fuzzy C-Means, Kernel function, Feature weights, OCS, NPS

INTRODUCTION
All areas are flooded with massive amounts of data with complex trends. Clustering
analysis (Sinaga & Yang, 2020) is an unsupervised learning technique, which can
autonomously classify data without a priori knowledge. Additionally, it is one of the
effective tools to fully exploit the value present in the data. The traditional hard clustering
approach considers that data objects can be grouped entirely into a certain category.
However, in real life, there are no clear boundaries for many things. Bezdek (1981)
introduced the fuzzy set theory (Zadeh, Klir & Yuan, 1996) into the clustering algorithm
and proposed the FCM algorithm. The algorithm represents the relationship between
data and clusters with an affiliation value of 0-1, which is more suitable for practical
clustering problems. Nevertheless, the FCM algorithm cannot directly cluster incomplete
datasets. However, missing datasets aremore prevalent in real-world fields such as industry,
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medicine, business and scientific research (Ma et al., 2021; Babaee Khobdeh, Yamaghani
& Khodaparast Sareshkeh, 2021; Ma et al., 2020a). Nearly 45% of the datasets in the UCI
Machine Learning Repository are missing relevant data. Not only do missing data result in
the loss of a substantial quantity of valuable information, but they also present difficulties
for cluster analysis. Therefore, it is of great practical importance to investigate fuzzy
clustering algorithms for incomplete data.

Numerous researchers have proposed enhanced algorithms to address the issue of
FCM clustering of insufficient data. The most classic of these are the four improved fuzzy
clustering algorithms for incomplete data proposed by Hathaway & Bezdek (2001). Based
on the Whole Data Strategy (WDS), Partial Distance Strategy (PDS), Optimized Complete
Strategy (OCS), and Nearest Prototype Strategy (NPS), four algorithms are preposed. The
WDS-FCM algorithm is a rounding method that discards missing values. The PDS-FCM
algorithm improves the formulation of the FCM clustering algorithm by introducing
the local distance introduced by Dixon (1979) without considering missing values in the
calculation to fulfill incomplete data clustering. The OCS-FCM algorithm continuously
interpolates absent values as updateable variables. In addition, the NPS-FCM algorithm
replaces absent values with attribute values corresponding to clustering centers closest to
the incomplete data. The four algorithms provide effective ideas for the interpolation of
incomplete data.

Among the four strategies, the OCS and the NPS are more widely adopted and
continuously improved by researchers. Li et al. (2017) proposed an interval kernel fuzzy
C-means clustering method for incomplete data by converting the incomplete data set
into an interval data set and introducing the NPS-based kernel method. Najib et al. (2020)
modified the NPS-FCM algorithm based on the continuous mechanism so that it can
be used to aggregate incomplete data streams with high error rates. Yenny et al. (2021)
presented a cluster intelligence-based framework for clustering incomplete data using a
swarm intelligence algorithm to determine cluster centers and hyperparameters. Shi &
Wang (2022) proposed a clustering algorithm based on the relationship between attributes,
which combines support vector machines with the four clustering strategies mentioned
above.

In addition, another solution for clustering incomplete data is to first interpose the
missing values by evaluation and then cluster the completed dataset. Due to the few
parameters and straightforward principle of the K-nearest neighbor (KNN) algorithm,
it is gaining popularity for interpolating incomplete data (Xiuqin et al., 2023). Ma et al.
(2020b) constructed models based on genetic programming (GP) using other available
features to predict missing values for incomplete features and used a weighted K-nearest
neighbors (KNN) for the selection of instances. Al-Helali et al. (2021) proposed a new
incomplete pattern belief classification (PBC) method by combining multiple estimates of
nearest neighbors (KNN). Qi, Guo & Wang (2021) proposed a reliable k-nearest neighbor
method (RKNN) for incomplete interval-valued data (IIDD). Gao, Yuan & Tang (2022)
improved the K-nearest neighbor (KNN) algorithm with the help of Patial Distance
Strategy (PDS) by applying it to incomplete datasets. Baligh et al. (2021) presented a novel
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genetic programming and weighted KNN-based interpolation method for incomplete data
regression.

Based on the idea of expectation-maximization (EM), the corresponding incomplete data
processing and clustering methods are proposed. Ruggieri et al. (2020) improved the EM
algorithm based on BayesianNetworks (BN) to enable the algorithm to estimate incomplete
data. Maghsoodi et al. (2023) estimated incomplete data using Expectation Maximization
(EM) algorithm and extracted core criteria using Recursive Feature Elimination (RFE)
with Least Square Support Vector (LS-SVM). Wang et al. (2020) retained the information
hidden in the missing data based on the expectation maximization (EM) algorithm and
Bayesian network (BN) approach for attribution of missing data, i.e., EM-BN approach.

With intensive research and development, neural networks are also used to process
incomplete data. Sovilj et al. (2016) introduced a multiple valuation algorithm for
incomplete data based on the Gaussian mixture model and extreme learning machine.
Truong et al. (2020) proposed an effective deep feedforward neural networks (DFNN)
method for damage identification of truss structures based on noisy incomplete modal
data. Dai, Bu & Long (2023) proposed multiple imputation (MI) methods based on neural
network Gaussian process (NNGP) for estimation of incomplete data. Xu et al. (2022)
proposed a practical method based on Physical Information Neural Network (PINN) to
combine known data with physical principles to reconstruct the flow field with imperfect
data.

After filling the incomplete dataset with various interpolation methods, the second
step is to perform clustering. Several experts have improved the clustering algorithm
from the perspective of dataset attributes (Tran et al., 2018). Li & Wei (2020) proposed a
feature-weighted K-means clustering method based on two distance measures, dynamic
time warping (DTW) and shape-based distance (SDB). Paul & Das (2020) proposed a
Gibbs sampling-based algorithm for the Dirichlet process mixture model that determines
the number of clusters and also incorporates near-optimal feature weighting.Ghodratnama
& Abrishami (2021) clusters the data iteratively by using a supervised C-means method
and weights the features in each cluster using a local feature weighting method. Yang &
Benjamin (2021) proposed a feature-weighted reduced PCM algorithm (FW-R-PCM) that
can be used to identify important features by calculating feature weights.

The three interpolation methods mentioned above all present different disadvantages.
KNN filling-based clustering methods can achieve better results only in large-scale sparse
data with few values of missing attributes. The EM-based clustering methods often fail
to obtain the desired filling effect when there is a large amount of missing data, or a
certain large class of values is missing. The neural network-based clustering methods
require a large amount of model training to estimate the missing values of individual
missing instances, which greatly increases the computational cost. Although the clustering
improvement methods that introduce feature weighting and kernel functions (Vo, Nguyen
& Vo, 2016) are effective, methods that split the interpolation and clustering ultimately
lead to a secondary reduction of computational accuracy.

So far, it is still an open issue how to effectively solve the clustering task for incomplete
data. To enhance the performance of incomplete data clustering tasks, we therefore propose
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a generalized fuzzy clustering framework integrating feature weights and kernel learning.
Currently, a number of experiments conducted on public data sets demonstrate the efficacy
and superiority of the proposed method. The following are the primary contributions of
this work:

On the basis of OCS and NPS in literature (Hathaway & Bezdek, 2001), we unify
imputation, feature learning, and clustering as one optimization objective, and propose
OCS-WFCM and NPS-WFCM, respectively.

In order to better adapt to incomplete data clustering in complex cases (e.g., non-linear
data), we further propose kernel-based OCS-WKFCM and NPS-WKFCM methods.

An alternate optimization method is used to solve the objective functions of the above
methods, and the optimal solutions are obtained by iterative updating of variables.

The research is structured as follows. In Section ‘Analysis of incomplete data clustering
algorithm’, the FCM algorithm theory and four strategies for incomplete data are analyzed
in detail. In Section ‘Feature weighted kernel function FCM of incomplete data’, four
improved algorithms based on the established framework are introduced. In Section
‘Experimental evaluation’, comparing the four algorithms proposed in this research to
other fragmentary data clustering algorithms verifies the framework’s efficacy. Finally, the
summaries and optimizations are given in Section ‘Conclusion’.

ANALYSIS OF INCOMPLETE DATA CLUSTERING ALGORITHM
Fuzzy C-means algorithm
FCM algorithm’s fundamental concept is to minimize objective function to solve clustering
center and membership matrix. The primary implementation process is to establish the
objective function formula based on the data sample’s proximity to the clustering centroid.
Iteratively updating the membership moment clustering center matrix, the algorithm
determines the objective function’s extreme point. Finally, the category of the data sample
is determined according to the size of the membership value (Askari, 2021).

Let U (c×n) represent the membership matrix, and V represent the cluster center matrix.
Suppose a dataset X = {x1,x2,...,xn} exists in s dimensions and n samples. The dataset
can be represented as xk = [x1k,x2k,...,xsk]T , and the samples can be defined as x ik . The
number of sample clusters in the dataset is set to c, the membership value of data x j to
category i is expressed as uij ∈U (c×n). The sample xk is characterized by different affiliation
values for different clusters, and the sum of c categories’ membership values is 1. That is,
uij is shown in the constraint formula (Eq. 2.1).∑c

i=1uk = 1, k= 1,2,...,n and
∑c

i=1µik = 1
0< uik < 1, ∀i= 1,,2,...,c

(2.1)

The objective function formula established by FCM is shown in (Eq. 2.2).

min
∑c

i=1

∑n

k=1
umik‖xk−vi‖

2
2 (2.2)

Where, m is the fuzzy weighting coefficient, ‖·‖2 is normal form, cluster center
V = {v1,v2,...,vc}, and the membership matrix U (c×n), J (U, V ) equals the sum of
the sample cluster squares and the cluster center.
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Lagrange multiplier method is used to solve the multivariate function’s extreme value,
which is used to solve membership function matrix and clustering center function matrix
of FCM algorithm. The membership updating formula is shown in (Eq. 2.3).

uik =

∑c

t=1

(
‖xk−vi‖22
‖xk−vt‖22

) 1
m−1
−1,i= 1,2,...,c;k= 1,2,...,n (2.3)

The cluster center update formula is shown in (Eq. 2.4).

vi=
∑n

k=1u
m
ikxk∑n

k=1u
m
ik
,i= 1,2,...,c (2.4)

Improved FCM algorithm for incomplete data
Hathaway & Bezdek (2001) have proposed four classical fuzzy clustering algorithms for
incomplete data. The data set information is described as follows:

X̄ = {x̄1,x̄2,...,x̄n} is an incomplete data set, the single sample data in the data set is
expressed as x̄i= [x̄1i,x̄2i,...,x̄si]T (1≤ k ≤ n), and the number of attribute values is s.

X̄ will be divided into two types of data sample sets: complete data set XW ={
xk ∈X

∣∣xk is the complete data sample
}
and incomplete data sample set X̃N ={

x̃k ∈ X̃
∣∣x̃k is an incomplete data sample

}
. The attribute information set is divided into two

categories: 1 ≤ j ≤ s, 1 ≤ k ≤ n, complete data set XP =
{
xjk
∣∣xjk is the complete attribute

}
,

and missing attribute set XM =
{
xjk =

∣∣xjk is the missing attribute
}
.

FCM algorithm with whole data strategy
In the WDS-FCM algorithm, a simple method is used to directly discard the
samples with missing attributes. Then, the data samples in the sample set XP ={
xjk
∣∣xjk is the complete attribute

}
are directly clustered by FCM.

The dealing strategy of WDS-FCM algorithm will cause data samples with missing
attributes to discard other complete attributes. This can result in a large amount of wasted
data information.When themissing rate in the dataset is low, it has little effect on the overall
dataset. With the remaining complete sample for fuzzy clustering, the calculated clustering
center is not much different from the original data clustering center. Due to the absence
of a large number of attributes, the clustering accuracy will be significantly impacted by an
increase in the missing rate. Therefore,Hathaway & Bezdek (2001) suggest that WDS-FCM
algorithm is more suitable for clustering analysis of datasets, as the proportion of missing
attribute information in incomplete datasets is less than 0.25.

The WDS-FCM algorithm proceeds as follows:
(1) Split data X : the incomplete data set is separated into two sections: the complete

part XP , the missing part XM , and X = XP ∪ XM . In the experiment, XP instead of X, XM

in FCM algorithm does not participate in the calculation.
(2) Initialization: iterative convergence threshold ε, fuzzy parameter m, cluster number

c
(
2≤ c ≤

√
n
)
, maximum number of iterations G, initial membership matrix U (0).
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(3) Updating the cluster center: when the algorithm performs L (L= 1, 2, . . . ) iterations,
cluster centerV (l) is updated according toU (l−1) and the cluster center calculation formula
(Eq. 2.4).

(4) Calculation ofmembershipmatrix: according toV (l) and (Eq. 2.3), solvemembership
matrix U (l).

(5) Iteration termination: when the iteration count approaches L = G, or ∀i, k,
max

∣∣∣u(l)ik −u(l−1)ik

∣∣∣< ε, WDS-FCM algorithm iteration stops, the algorithm ends, the
output membership U and cluster center V ; or else L = L + 1, return (3) to continue.

FCM algorithm with partial distance strategy
On the basis of WDS-FCM, PDS-FCM in terms of attributes, the attributes participate in
calculating local distances as long as they exist. When the attribute is missing, the complete
attribute participation is converted. The distance between missing data sample xk and
cluster center v i is determined according to attribute ratio.

Dik =
s∑s

j=1Ijk

∑s

j=1

(
xjk−vji

)2Ijk (2.12)

Among them,

Ijk =

{
0, if xjk ∈ X̃M

1, if xjk ∈ X̃P
,1≤ j ≤ s,1≤ k ≤ n (2.13)

The clustering center at the extremum point is as follows.

vji=
∑n

k=1µ
m
ikIjkxjk∑n

k=1µ
m
ikIjk

,1≤ j ≤ s,1≤ i≤ c (2.14)

The membership formula is shown as (Eq. 2.15).

uik =

∑c

t=1

(
‖xk−vi‖22
‖xk−vt‖22

) 1
m−1
−1,i= 1,2,...,c;k= 1,2,...,n (2.15)

The PDS-FCM algorithm proceeds as follows:
(1) Initialization: iterative convergence threshold ε, fuzzy parameter m, cluster number

c
(
2≤ c ≤

√
n
)
, maximum number of iterations G, initial membership matrix U (0).

(2) Updating the cluster center: when the algorithm performs L (L= 1, 2, . . . ) iterations,
the cluster center V (l) is updated according to U (l−1) and (Eq. 2.14).

(3) Calculating the membership matrix: according to V ()l () and (Eq. 2.15), solving
membership matrix U (l).

(4) Iteration termination: when the iteration count approaches L = G, or ∀i, k,
max

∣∣∣u(l)ik −u(l−1)ik

∣∣∣<ε, PDS-FCM algorithm iteration stops, the algorithm ends, the output
membership U and cluster center V ; or else L = L + 1, return (3) to continue.
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FCM algorithm with optimal completion strategy
The OCS-FCM algorithm assigns the lacking attributes as variables and incorporates
variables into the objective function calculation of the FCM algorithm. Iterative clustering
is performed with variables instead of missing attributes.

The variable membership U and the cluster center V are iteratively updated in the
clustering iteration process to find the optimal value. The objective function formula
established by OCS-FCM is (Eq. 2.16).

min
∑c

i=1

∑n

k=1
umik‖x̃k−vi‖

2
2. (2.16)

Using the Lagrange multiplier method to locate the extremum of objective function (Eq.
2.16), the missing attribute update formula (Eq. 2.17) is obtained.

xjk =
∑c

i=1u
m
ikvji∑c

i=1u
m
ik
. (2.17)

The main steps of OCS-FCM algorithm are:
(1) Initialization: Set the fuzzy parameter m, number of clusters c

(
2≤ c ≤

√
n
)
, utmost

allowed iterations G, iterative convergence threshold ε, the missing attribute matrix X̃ (0)M ,
and the membership matrix U (0) combined with the constraint conditions.

(2) Updating the cluster center matrix: when the algorithm performs L (L= 1, 2, . . . )
iterations, the cluster center V (l) is updated according to U (l−1) and (Eq. 2.3).

(3) Calculate the membership matrix: according to V (l), and (Eq. 2.4) solving
membership matrix U (l).

(4) Update the missing value: calculate the missing value X̃ (l)M according to the
membership partition matrix U (l) and cluster center matrix V (l) and (Eq. 2.17).

(5) Iteration termination: when the iteration count approaches L = G, or ∀i, k,
max

∣∣∣u(l)ik −u(l−1)ik

∣∣∣< ε, OCS-FCM algorithm iteration stops, and the program outputs
membership U and cluster center V ; or else L = L + 1, return (3) to continue.

FCM algorithm with the nearest prototype strategy
The NPS-FCM algorithm is an estimation method. In the NPS-FCM algorithm, the
missing data attributes in the NPS-FCM algorithm participate in clustering with the nearest
neighbor center instead. The missing data no longer remain constant after pre-population.
During the iterative process, the corresponding attribute values of the clustering centers are
continuously followed and adjusted. The filling method for missing attributes is as follows.

x(l)jk = vji,Dik =min{D1k,D2k,...,Dck}. (2.18)

The NPS-FCM algorithm is based on the OCS-FCM algorithm. In the process of
iteration, the missing data attribute is replaced by (Eq. 2.18), and then the clustering
analysis is performed according to the implementation steps of the OCS-FCM algorithm.

The main steps of NPS-FCM algorithm are:
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(1) Initialization: Set the fuzzy parameter m, the number of clusters c
(
2≤ c ≤

√
n
)
,

the maximum number of iterations G, the iterative convergence threshold ε, the missing
attribute matrix X̃ (0)M , and the membership matrix U (0) combined with the constraint
conditions.

(2) Updating the cluster center matrix: when the algorithm performs L (L= 1, 2, . . . )
iterations, the cluster center V (l) is updated according to U (l−1) and (Eq. 2.3).

(3) Calculate the membership matrix: according to V (l), and (Eq. 2.4) solving
membership matrix U (l).

(4) Update the missing value: calculate the missing value X̃ (l)M according to the
membership partition matrix U (l) and cluster center matrix V (l) and (Eq. 2.18).

(5) Iteration termination: when the iteration count approaches L = G, or ∀i, k,
max

∣∣∣u(l)ik −u(l−1)ik

∣∣∣< ε, NPS-FCM algorithm iteration stops, and the program outputs
membership U and cluster center V ; or else L = L + 1, return (3) to continue.

FEATURE WEIGHTED KERNEL FUNCTION FCM OF
INCOMPLETE DATA
Feature weighted FCM of incomplete data
Feature weighted FCM algorithm with OCS
In order to solve the defects of FCM in practical application, the different contributions
of FCM and sample attribute vectors to classification are considered. The sample attribute
weight is introduced into the objective function, which can obtain more effective clustering
analysis results. This method is called the feature weighted FCM algorithm (WFCM).

In the optimization of the complete strategy, the sample data x jk is composed of two
segments, the complete attribute part x jk (ojk), and the missing attribute part x jk (mjk).
Then x jk (ojk) ∪ x jk (mjk) = x jk , x jk (ojk) remain unchanged in the clustering process.
Assuming that uij represents the degree of the j sample data x j belonging to the i cluster
(the cluster center is v i), v ik represents the i feature of the k cluster center, w ik represents
the weight of the i feature of the k cluster center, the objective function that OCS-WFCM
needs to minimize is:

min
∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik

∥∥xjk−vik∥∥2
s.t .
∑c

i=1
uij = 1,uij ∈ [0,1],∑l

k=1
wik = 1,wik ∈ [0,1],

i= 1,2,...,c
j = 1,2,...,n
k= 1,2,...,l
β > 1

(3.1)

Furthermore, because of xjk =
[
xjk
(
ojk
)
,xjk

(
mjk
)]
, (Eq. 3.1) is equivalent to

min
∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik

(∥∥xjk (ojk)−vik∥∥2+∥∥xjk (mjk
)
−vik

∥∥2) (3.2)
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Because the complete attribute x jk (ojk) remains unchanged during the clustering process
and is a fixed constant, the minimum value of (Eq. 3.2) can be simplified as

min
∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik

∥∥xjk (mjk
)
−vik

∥∥2 (3.3)

The optimal solution of (Eq. 3.3) can be further analyzed as

xjk
(
mjk
)
=

∑c
i=1u

m
ij ω

β
ikvik∑c

i=1u
m
ij ω

β
ik

(3.4)

In order to obtain themembership degree, cluster center andweightmatrix, the Lagrange
method is used to solve (Eq. 3.3).

If x is known, then

∑n

j=1
λj

(∑c

i=1
uij−1

)
= 0, (3.5)

where λj is the Lagrange multiplier, and λj is a vector composed of the Lagrange multiplier
λ1,λ2,...λn.

Combining (Eq. 3.3) and (Eq. 3.5), we can get

∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik

∥∥xjk (mjk
)
−vik

∥∥2
=

∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik

∥∥xjk (mjk
)
−vik

∥∥2−∑n

j=1
λj

(∑c

i=1
uij−1

). (3.6)

Let Qij =
∑l

k=1ω
β
ik

∥∥xjk (mjk
)
−vik

∥∥2, further obtain
JOCS−WFCM =

∑c

i=1

∑n

j=1
umij Qij−

∑n

j=1
λj

(∑c

i=1
uij−1

)
. (3.7)

Get the partial derivative of uij and get

∂JOCS−WFCM

∂uij
=mum−1ij Qij−λj = 0. (3.8)

Therefore,

uij =
(
λj

mQij

) 1
m−1

. (3.9)

And
∑c

i=1uij = 1 is known, combined with (Eq. 3.9), we get

λj
1

m−1
=

∑c

i=1

(
1

mQij

) −1
m−1

. (3.10)

Further obtained
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uij =

∑c
r=1

(
1

mQrj

) −1
m−1

mQ
1

m−1
ij

=

(∑c

i=1

Qij

Qrj

) 1
1−m

=

(∑c

i=1

∑l
k=1ω

β
ik

∥∥xjk (mjk
)
−vik

∥∥2∑l
k=1ω

β
rk

∥∥xjk (mjk
)
−vik

∥∥2
) 1

1−m

r = 1,2,...,c

. (3.11)

Similarly, one can obtain

ωik =

∑l

t=1

∑n
j=1u

m
ij ·
∥∥xjk (mjk

)
−vik

∥∥2∑n
j=1u

m
ij ·
∥∥xjt (mjt

)
−vik

∥∥2
 1

1−β

. (3.12)

Next, take the partial derivative of vik in Eq. 3.3 to get

∂JOCS−WFCM

∂vik
=−2

∑n

j=1
umij ω

β
ik ·
(
xjk
(
mjk
)
−vik

)
= 0. (3.13)

Further obtained

vik =

∑n
j=1u

m
ij ω

β
ikxjk

(
mjk
)∑n

j=1u
m
ij ω

β
ik

. (3.14)

It is observed by (Eq. 3.14) that when ωβik = 0, there is vik = 0. The formula for vik is

vik =


0, if ω

β
ik = 0∑n

j=1u
m
ij xjk

(
mjk
)∑n

j=1u
m
ij

,if ωβik 6= 0
(3.15)

The main steps of OCS-WFCM algorithm are:
(1) Initialization: Set the fuzzy parameter m, number of clusters c

(
2≤ c ≤

√
n
)
, utmost

allowed iterations G, iterative convergence threshold ε, the missing attribute matrix X̃ (0)M ,
and the membership matrix U (0) combined with the constraint conditions.

(2) Updating the cluster center matrix: when the algorithm performs L (L= 1, 2, . . . )
iterations, cluster center V (l) is updated according to U (l−1) and (Eq. 3.15).

(3) Calculate the membership matrix: according to V (l), and (Eq. 3.11) solving
membership matrix U (l).

(4) Calculate the weight matrix: according to V (l), and (Eq. 3.12) to solve the weight
matrix.

(5) Update the missing value: calculate the missing value X̃ (l)M according to the
membership partition matrix U (l) and cluster center matrix V (l) and (Eq. 3.4).

(6) Iteration termination: when the iteration count approaches L = G, or ∀i, k,
max

∣∣∣u(l)ik −u(l−1)ik

∣∣∣<ε, OCS-WFCM algorithm iteration stops, and the program outputs
membership U and cluster center V ; or else L = L + 1, return (3) to continue.
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Feature weighted FCM algorithm with NPS
In the interpolation of NPS-WFCM, the sample data x jk is also divided into two parts, the
complete attribute part x jk (ojk), and the missing attribute part x jk (mjk). Then, x jk (ojk) ∪
x jk (mjk)= x jk , x jk (ojk) remain unchanged in the clustering process. The filling method of
missing attributes in NPS-WFCM is as follows.

xjk
(
ojk
)
= vik =


0, if ω

β
ik = 0∑n

j=1u
m
ij xjk∑n

j=1u
m
ij
,if ωβik 6= 0

,Dij =min
{
D1j,D2j,...,Dcj

}
. (3.16)

Similar to OCS-WFCM, only (Eq. 3.15) needs to be replaced with (Eq. 3.16) when
updating the missing attributes.

The main steps of NPS-WFCM algorithm are:
(1) Initialization: Set the fuzzy parameter m, number of clusters c

(
2≤ c ≤

√
n
)
, utmost

allowed iterations G, iterative convergence threshold ε, the missing attribute matrix X̃ (0)M ,
and the membership matrix U (0) combined with the constraint conditions.

(2) Updating the cluster center matrix: when the algorithm performs L (L= 1, 2, . . . )
iterations, cluster center V (l) is updated according to U (l−1) and (Eq. 3.15).

(3) Calculate the membership matrix: according to V (l), and (Eq. 3.11) solving
membership matrix U (l).

(4) Calculate the weight matrix: according to V l , and (Eq. 3.12) to solve the weight
matrix.

(5) Update the missing value attribute: calculate the missing value X̃ (l)M according to the
membership partition matrix U (l) and cluster center matrix V (l) and (Eq. 3.16).

(6) Iteration termination: when the iteration count approaches L = G, or ∀i, k,
max

∣∣∣u(l)ik −u(l−1)ik

∣∣∣< ε, NPS-WFCM algorithm iteration stops, and the program outputs
membership U and cluster center V ; or else L = L + 1, return (3) to continue.

Feature weighted kernel FCM of incomplete data
Feature weighted kernel FCM clustering with OCS
This section introduces the kernel function into the OCS-WFCM of the previous section.
Clustering is performed in the kernel space, and the observed data is mapped to a higher
dimensional feature space in a nonlinear way to achieve nonlinear classification techniques.
It is assumed that ϕ is a nonlinear mapping function, ϕ : x→ ϕ(x) ∈ maps the high
characteristic space, where x ∈X ={x1,x2,...,xn}.ϕ

(
xjk
)
is the mapping of the j th sample

data point to the k th feature in the feature space. The optimization objective function of
feature weighted kernel FCM (WKFCM) with OCS is as follows.

min
∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik

∥∥φ(xjk (mjk
))
−φ(vik)

∥∥2 (3.17)

Expanding
∥∥φ(xjk (mjk

))
−φ(vik)

∥∥2 in (Eq. 3.17), we can get
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∥∥φ(xjk (mjk
))
−φ(vik)

∥∥2
=φ

(
xjk
(
mjk
))
·φ
(
xjk
(
mjk
))
−2φ

(
xjk
(
mjk
))
·φ(vik)+φ(vik) ·φ(vik)

=K
(
xjk
(
mjk
)
,xjk

(
mjk
))
−2K

(
xjk
(
mjk
)
,vik

)
+K (vik,vik)

(3.18)

Where, K
(
x,y

)
= φ(x) ·φ

(
y
)
represents the kernel function, which can be used to

represent the dot product in the high-dimensional feature space. The kernel function

used in this work is the Gaussian kernel function, that is, K
(
x,y

)
= exp

(
−‖x−y‖

2

σ 2

)
, then

K (x,x)= 1.
Simplifying (Eq. 3.17) relative to (Eq. 3.18) yields

∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik

∥∥φ(xjk (mjk
))
−φ(vik)

∥∥2
= 2

∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik
(
1−K

(
xjk
(
mjk
)
,vik

))
= 2

∑c

i=1

∑n

j=1

∑l

k=1
umij ω

β
ik

(
1−exp

(
−
∥∥xjk (mjk

)
−vik

∥∥2
σ 2

)). (3.19)

The optimal solution of (Eq. 3.19) can be further analyzed as

xjk
(
mjk
)
=

∑c
i=1u

m
ij ω

β
ik exp

(
−‖xjk(mjk)−vik‖

2

σ 2

)
vik∑c

i=1u
m
ij ω

β
ik exp

(
−‖xjk(mjk)−vik‖

2

σ 2

) . (3.20)

Through the Lagrange multiplier method, on the basic of on the objective function (Eq.
3.19), the updating formulas of membership degree, clustering center and weight matrix
are as follows.

uij =

∑c

i=1

∑l
k=1ω

β
ik

(
1−exp

(
−‖xjk(mjk)−vik‖

2

σ 2

))
∑l

k=1ω
β
rk

(
1−exp

(
−‖xjk(mjk)−vrk‖

2

σ 2

))


1
1−m

, (3.21)

ω
β
ik =

∑l

t=1

∑n
j=1u

m
ij ·

(
1−exp

(
−‖xjk(mjk)−vik‖

2

σ 2

))
∑n

j=1u
m
ij ·

(
1−exp

(
−‖xjt(mjt)−vrt‖

2

σ 2

))


1
1−β

, (3.22)

vik =



0, if ωβik = 0∑n
j=1u

m
ij exp

(
−‖xjk(mjk)−vik‖

2

σ 2

)
·xjk∑n

j=1u
m
ij exp

(
−‖xjk(mjk)−vik‖

2

σ 2

) , if ω
β
ik 6= 0

(3.23)
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The main steps of OCS-WKFCM algorithm are:
(1) Initialization: Set the fuzzy parameter m, number of clusters c

(
2≤ c ≤

√
n
)
, utmost

allowed iterations G, iterative convergence threshold ε, missing attribute matrix X̃ (0)M ,
membership matrix U (0) combined with the constraint conditions.

(2) Updating the cluster center matrix: when the algorithm performs L (L= 1, 2, . . . )
iterations, cluster center V (l) is updated according to U (l−1) and (Eq. 3.23).

(3) Calculate the membership matrix: according to V (l), and (Eq. 3.21) solving
membership matrix U (l).

(4) Calculate the weight matrix: according to V (l), and (Eq. 3.22) to solve the weight
matrix.

(5) Update the missing value: calculate the missing value X̃ (l)M according to the cluster
center matrix V (l) and membership partition matrix U (l) and (Eq. 3.20).

(6) Iteration termination: when the iteration count approaches L = G, or ∀i, k,
max

∣∣∣u(l)ik −u(l−1)ik

∣∣∣<ε, OCS-WKFCM algorithm iteration stops, and the program outputs
membership U and cluster center V; or else L = L + 1, return (3) to continue.

Feature weighted kernel FCM clustering with NPS
NPS-WKFCM divides the sample data x jk into two parts, the complete attribute part x jk
(ojk) and the missing attribute part x jk (mjk), then x jk (ojk) ∪x jk (mjk) = x jk and x jk (ojk)
remain unchanged in the clustering process. The filling method of missing attributes in
NPS-WKFCM is as follows.

xjk
(
mjk
)
= vik =


0, if ω

β
ik = 0∑n

j=1u
m
ij xjk∑n

j=1u
m
ij
,if ωβik 6= 0

, Dij =min
{
D1j,D2j,...,Dcj

}
. (3.24)

Similar to OCS-WFCM, only (Eq. 3.20) needs to be replaced with (Eq. 3.24) when
updating the missing attributes.

The main steps of NPS-WFCM algorithm are:
(1) Initialization: Set the fuzzy parameter m, number of clusters c

(
2≤ c ≤

√
n
)
, utmost

allowed iterations G, iterative convergence threshold ε, missing attribute matrix X̃ (0)M ,
membership matrix U (0) combined with the constraint conditions.

(2) Updating the cluster center matrix: when the algorithm performs L (L= 1, 2, . . . )
iterations, cluster center V (l) is updated according to U (l−1) and (Eq. 3.23).

(3) Calculate the membership matrix: according to V (l), and (Eq. 3.21) solving
membership matrix U (l).

(4) Calculate the weight matrix: according to V l , and (Eq. 3.22) to solve the weight
matrix.

(5) Update the missing value: calculate the missing value X̃ (l)M according to cluster center
matrix V l andmembership partition matrix U (l) and (Eq. 3.24).

(6) Iteration termination: when the iteration count approaches L = G, or ∀i, k,
max

∣∣∣u(l)ik −u(l−1)ik

∣∣∣<ε, NPS-WKFCM algorithm iteration stops, and the program outputs
membership U and cluster center V; or else L = L + 1, return (3) to continue.
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The complexity of WKFCM
An algorithm requires analysis of time complexity and space complexity. The complexity
of OCS-WKFCM and NPS-WKFCM is mainly generated by clustering. In the clustering
process, the number of iterations t, the number of clusters c, the dimension of sample
data l, the number of data samples n will affect the time complexity of the algorithm.
Considering the worst case, the time complexity of FCM clustering algorithm is O (Tcnl).
In the actual calculation process, a certain amount of storage space is needed to store
data needed for clustering center matrix, weight matrix, the distance between sample data
points, etc. Therefore, in order to store sample data, clustering center, weight matrix, and
membership matrix, the space complexity is O(nc + nl + 2cl).

The storage space required for clustering centers is O(nc), where nc represents the
number of clustering centers. The storage space required for sample data is O(nl), where
nl represents the number of sample data points. The storage space required for the weight
matrix and membership matrix is O(cl), where cl denotes the number of relationships
between the clustering centers and sample data. By summing up these storage requirements,
we obtain a total space complexity of O(nc + nl + 2cl).

This space complexity analysis helps us understand the storage space required during
the execution of the algorithm. Through such analysis, we can evaluate the storage
resource requirements of the algorithm on datasets of different scales, thus gaining a
better understanding of the algorithm’s utilization of space.

EXPERIMENTAL EVALUATION
In order to verify the superiority of the proposed OCS-WFCM, NPS-WFCM, OCS-
WKFCM, and NPS-WKFCM algorithms in clustering incomplete data, experiments are
conducted in this section to validate them in several datasets, respectively. The dataset
description and experimental steps design are described in the following subsections.

Dataset
The UCI database is a proposed database for machine learning by the University of
California Irvine (UCI) (Bache & Lichman, 2013). The UCI dataset is a commonly used
standard test dataset. Nine real datasets are selected from them as experimental datasets,
and their details are shown in Table 1.

Experimental settings
For different datasets, the number of categories for clustering of WFCM and WKFCM
models is different and needs to be determined according to the relevant attributes in
different datasets. The parameters of the clustering algorithm are set uniformly. The
maximum number of iterations is 200, the termination threshold is 0.0001, and the fuzzy
index is 2.

To make the incomplete data generated in the experiments closer to reality, the data are
processed by the random discard method, which uses different proportions set manually
for the complete data to be lost randomly. Thus, an incomplete data set is generated. In
this research, the missing proportions are taken as 5%, 10%, 15% and 20%. The rules for
generating missing data attributes for incomplete datasets are as follows,
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Table 1 Datasets used in our experiments.

Dataset Instance Features Classes

Iris 150 4 3
Wine 178 13 3
Breast 277 9 2
Bupa 345 6 2
Haber Man 306 3 2
Jain 373 2 2
Cmc 1,473 9 3
Waveform3 5,000 21 3
Robotnavigation 5,456 24 4

(1) In an incomplete dataset, the attribute values of sample data cannot all be lost. If the
dataset is n-dimensional, then at most n − 1 attributes are lost from the incomplete data,
and at least one attribute must be present in the incomplete data.

(2) In an incomplete dataset, at least one complete attribute value exists for any one-
dimensional attribute, i.e., the attribute column of the dataset cannot be empty to ensure
the reliability of the valuation.

Each clustering algorithm performs 100 simulation experiments in each dataset with
different missing proportions, and the obtained experimental results are averaged, thus
reducing the chance of the experiments and the experimental errors.

Evaluation criteria
Currently, there is no uniform evaluation index for the degree of merit of clustering
algorithms. Therefore, in this work, the experimental algorithm is chosen to be evaluated
from three perspectives: accuracy (Acc), iteration number, and external evaluation
indexes concerning relevant literature. Among them, the external evaluation indexes
are Normalized Mutual information (NMI) (Kumar & Diwakar, 2022), Rand Index
(RI) (Kalinichev et al., 2022) and F1-score (Brito, Nagasharath & Wunsch, 2022). The
formulas are as follows.:

NMI (C,T )= 2

∑C
i=1
∑T

j=1pij log
(

pij
pi×pj

)
√∑C

i=1pilog pi ×
∑T

j=1pj log pj
(4.1)

RI =
TP+TN

N (N −1)/2
(4.2)

F1=
2TP

2TP+FP+FN
. (4.3)

In the formulas,matrixG represents the actual classification of the samples andT represents
the fuzzy division of the clustering algorithm. MI (G,T ) is the mutual information of
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matrices G and T , H (G) and H (T ) are the information entropy of matrices G and T ,
respectively. The set of sample pairs in G that are in the same cluster is denoted by X , and
the set of sample pairs in G that are not in the same cluster is denoted by Z . The fuzzy set of
sample pairs in T that are in the same cluster is denoted by Y , and the fuzzy set of sample
pairs in T that are not in the same cluster is denoted by V . Then, in the above equation,
a= |X |Y |, b= |X |V |, c = |Z |Y |,d = |Z |V |.

Experimental analysis
The missing treatment is performed on the nine datasets mentioned in Section ‘Dataset’,
and the four optimized improvement algorithms proposed in this research are run.
The results are experimentally compared with seven classical incomplete data clustering
algorithms (Shi et al., 2020) and analyzed and described based on evaluation criteria.

To evaluate the advantages and disadvantages of the algorithms from an overall
perspective, the mean values of the evaluation indexes of the 11 algorithms under the
four missing ratios are taken, and the results are shown in Tables 2, 3, 4, 5 and 6.

The average ACC of the 11 algorithms with different missing rates in different datasets
is reflected in Table 2. The table shows that the OCS-WFCM and NPS-WFCM algorithms
proposed in this work based on feature weighting improvement have higher accuracy than
the seven classical clustering algorithms under different missing rates in each dataset. The
proposed OCS-WKFCM and NPS-WKFCM algorithms based on feature weighting and
kernel function improvement have the highest accuracy in all datasets. The accuracy of the
clustering algorithms is the most direct representation of the accuracy. This result shows
that the incorporation of feature weighting and kernel methods can improve the clustering
performance of the FCM algorithm for incomplete data and make it have higher clustering
accuracy.

Tables 3, 4 and 5 show the calculation of three external evaluationmetrics, NMI, F-score,
and RI. The F-score of the proposed four optimization algorithms achieves optimality in all
sevendatasets except Iris andCmc,RI achieves optimality in all eight datasets except Iris, and
NMI achieves optimality in all datasets. Among them, the OCS-WFCM and NPS-WFCM
algorithms are only slightly worse than the others in Bupa and Haberman datasets, and
the OCS-WKFCM and NPS-WKFCM are better than the OCS-WFCM and NPS-WFCM
algorithms in all datasets. Due to the random nature of missing processing, it may make
too many missing features of a certain attribute, which is not conducive to updating the
feature weights of OCS-WFCM and NPS-WFCM algorithms. Therefore, on the whole,
the clustering accuracy of OCS-WFCM and NPS-WFCM algorithms is still better than
that of the seven classical algorithms. Meanwhile, the introduction of the kernel method
will alleviate the influence of feature attributes on the clustering accuracy and improve
the prediction accuracy, which makes the external evaluation indexes of OCS-WFCM and
NPS-WFCM algorithms better than those of OCS-WFCM and NPS-WFCM algorithms.

Table 6 shows the average number of iterations of 11 algorithms. This index mainly
reflects the convergence speed of the algorithms. From the table, it can be obtained that all
algorithms can reach a stable convergence state. However, in about 2/3 of the datasets, the
iterations of OCS-WFCM and NPS-WFCM is significantly higher than that of the seven
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Table 2 ACC averages of different algorithms in nine datasets with different missing rates.

Dataset
Methods

ACC

Iris Wine Breast Bupa Haber
man

Jain Cmc Wave
form3

Robot
navigation

ZERO 0.574 0.390 0.517 0.523 0.498 0.734 0.358 0.431 0.458
AVER 0.789 0.598 0.538 0.514 0.519 0.773 0.385 0.444 0.499
KNN 0.813 0.631 0.567 0.507 0.540 0.774 0.402 0.452 0.494
WDS 0.830 0.618 0.580 0.474 0.510 0.767 0.375 0.513 0.491
PDS 0.832 0.615 0.592 0.473 0.514 0.744 0.390 0.483 0.472
OCS 0.827 0.617 0.596 0.484 0.532 0.753 0.385 0.490 0.480
NPS 0.832 0.613 0.606 0.486 0.548 0.769 0.393 0.498 0.487
OCS-WFCM 0.832 0.646 0.618 0.545 0.711 0.790 0.415 0.532 0.519
NPS-WFCM 0.846 0.648 0.625 0.549 0.719 0.792 0.430 0.541 0.518
OCS-WKFCM 0.851 0.655 0.635 0.584 0.750 0.807 0.469 0.626 0.529
NPS-WKFCM 0.855 0.656 0.639 0.587 0.760 0.807 0.477 0.625 0.533

Table 3 NMI averages of different algorithms in nine datasets with different missing rates.

Dataset
Methods

NMI

Iris Wine Breast Bupa Haber
man

Jain Cmc Wave
form3

Robot
navigation

ZERO 0.491 0.337 0.298 0.250 0.271 0.226 0.367 0.303 0.169
AVER 0.662 0.369 0.362 0.234 0.311 0.314 0.431 0.308 0.190
KNN 0.709 0.426 0.368 0.221 0.346 0.326 0.462 0.311 0.180
WDS 0.752 0.384 0.388 0.154 0.294 0.318 0.399 0.317 0.179
PDS 0.753 0.383 0.385 0.148 0.298 0.246 0.437 0.314 0.172
OCS 0.749 0.379 0.385 0.173 0.340 0.308 0.423 0.314 0.174
NPS 0.753 0.380 0.386 0.177 0.359 0.300 0.442 0.315 0.174
OCS-WFCM 0.761 0.458 0.410 0.336 0.513 0.344 0.495 0.320 0.228
NPS-WFCM 0.766 0.461 0.411 0.343 0.521 0.346 0.510 0.324 0.234
OCS-WKFCM 0.777 0.502 0.414 0.424 0.571 0.372 0.559 0.337 0.242
NPS-WKFCM 0.775 0.502 0.417 0.430 0.594 0.368 0.567 0.341 0.245

classical algorithms. In all the datasets, the iterations of OCS-WKFCM and NPS-WKFCM
are lower than that of OCS-WFCM and NPS-WFCM. The results show that the feature
weights will increase the number of iterations in some datasets, while the kernel method
will significantly reduce the number of iterations. The kernel method will significantly
reduce the number of iterations and improve the solving speed of the algorithm.

Compared with AVER-FCM, ZERO-FCM, and KNN-FCM algorithms, the four
algorithms proposed in this research are superior. AVER-FCM, ZERO-FCM, and KNN-
FCM fill the missing attributes with 0 values, sample mean values, and mean values of K
neighboring samples, respectively, and then run the FCM algorithm. 0-value interpolation
and mean interpolation will make the samples lose a large amount of data information,
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Table 4 F-score averages of different algorithms in nine datasets with different missing rates.

Dataset
Methods

F-score

Iris Wine Breast Bupa Haber
man

Jain Cmc Wave
form3

Robot
navigation

ZERO 0.740 0.528 0.603 0.583 0.536 0.750 0.305 0.509 0.462
AVER 0.858 0.630 0.610 0.573 0.574 0.787 0.346 0.539 0.493
KNN 0.873 0.693 0.612 0.562 0.615 0.800 0.395 0.546 0.491
WDS 0.888 0.648 0.616 0.506 0.555 0.783 0.330 0.567 0.491
PDS 0.886 0.649 0.618 0.503 0.558 0.760 0.351 0.550 0.485
OCS 0.886 0.661 0.618 0.524 0.603 0.783 0.348 0.552 0.488
NPS 0.890 0.653 0.619 0.528 0.624 0.768 0.357 0.557 0.489
OCS-WFCM 0.885 0.716 0.623 0.630 0.769 0.853 0.391 0.610 0.509
NPS-WFCM 0.897 0.718 0.624 0.637 0.781 0.851 0.408 0.624 0.514
OCS-WKFCM 0.893 0.763 0.630 0.668 0.822 0.854 0.463 0.636 0.519
NPS-WKFCM 0.903 0.764 0.632 0.677 0.817 0.860 0.472 0.638 0.521

Table 5 RI averages of different algorithms in nine datasets with different missing rates.

Dataset
Methods

RI

Iris Wine Breast Bupa Haber
man

Jain Cmc Wave
form3

Robot
navigation

ZERO 0.737 0.589 0.659 0.428 0.371 0.609 0.390 0.640 0.525
AVER 0.843 0.662 0.666 0.413 0.410 0.648 0.434 0.647 0.559
KNN 0.862 0.703 0.667 0.416 0.523 0.654 0.456 0.652 0.542
WDS 0.873 0.677 0.673 0.355 0.394 0.644 0.413 0.658 0.536
PDS 0.875 0.672 0.675 0.346 0.398 0.620 0.438 0.654 0.529
OCS 0.873 0.689 0.676 0.381 0.430 0.644 0.431 0.657 0.531
NPS 0.880 0.677 0.680 0.389 0.454 0.627 0.444 0.658 0.533
OCS-WFCM 0.878 0.727 0.699 0.469 0.571 0.676 0.483 0.662 0.566
NPS-WFCM 0.885 0.729 0.700 0.475 0.581 0.674 0.501 0.667 0.569
OCS-WKFCM 0.883 0.737 0.714 0.526 0.638 0.693 0.551 0.676 0.589
NPS-WKFCM 0.890 0.741 0.716 0.525 0.656 0.695 0.564 0.678 0.591

which is the most basic interpolation strategy. The KNN algorithm is extremely data-
dependent, and individual data anomalies will affect the effect of the whole clustering.
The traversal mechanism of the KNN algorithm is prone to dimensional disasters on large
datasets. At the same time, the above algorithms fill in the missing data in the sample
and then perform clustering. The data filling algorithm will have certain errors in filling
accuracy and cannot accurately represent the missing data, and then clustering on the filled
data set will have even lower clustering accuracy. The four improved algorithms are based
on OCS-FCM and NPS-FCM algorithms, which dynamically update the incomplete data
during the clustering iterations and organically combine clustering and interpolation. This
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Table 6 Iterations averages of different algorithms in nine datasets with different missing rates.

Dataset
Methods

Iterations

Iris Wine Breast Bupa Haber
man

Jain Cmc Wave
form3

Robot
navigation

ZERO 60.20 68.90 27.94 51.45 57.48 31.47 37.49 28.96 27.97
AVER 33.05 43.02 28.67 36.38 24.41 25.24 24.54 27.15 27.06
KNN 41.33 43.70 28.63 36.64 37.79 29.54 35.51 25.37 29.24
WDS 26.40 47.39 33.13 37.48 25.65 19.72 23.48 26.99 25.88
PDS 26.75 41.49 28.04 38.30 26.24 29.94 24.40 31.40 24.79
OCS 33.63 55.56 25.09 43.85 27.20 29.14 26.38 34.98 27.37
NPS 28.75 52.67 27.32 39.65 26.66 27.98 25.74 35.63 25.37
OCS-WFCM 36.23 46.18 30.90 35.43 37.34 22.05 28.05 30.37 30.69
NPS-WFCM 31.20 42.75 29.10 34.35 36.93 19.02 27.33 26.61 28.00
OCS-WKFCM 34.85 42.30 29.23 34.00 30.64 18.94 26.85 28.59 27.05
NPS-WKFCM 29.25 41.13 27.08 32.25 26.99 17.74 25.31 24.49 24.45

avoids the secondary accuracy reduction caused by the algorithms to some extent and has
better robustness.

Compared with the WDS-FCM, PDS-FCM, OCS-FCM, and NPS-FCM algorithms,
the OCS-WFCM and NPS-WFCM algorithms are superior. The WDS-FCM algorithm
discards incomplete data samples, which will have a greater impact on the clustering
results in the case of high missing data samples and reduce the overall sample size. The
PDS-FCM algorithm is an improvement of the WDS-FCM algorithm but does not deal
with missing attributes. Both algorithms do not treat missing attributes, and the data
information is wasted. Its information value is not maximized, and the clustering results
are unsatisfactory. The traditional OCS-FCM and NPS-FCM do not consider the role
played by different features in the clustering process and treat all features equally. In
contrast, the OCS-WFCM and NPS-WFCM algorithms assign weights to different features
on this basis. At the same time, dynamic adjustments are made during the iterative process
to minimize the influence of outlier points in the sample on the clustering center. This
results in a better clustering effect in most of the datasets.

Based on the OCS-WFCM and NPS-WFCM algorithms, a greater improvement is made
in this work. The OCS-WKFCM and NPS-WKFCM algorithms are proposed. The above
modification introduces the kernel method into the FCM algorithm for incomplete data
and solves the nonlinear separable problem between clusters and clusters in complex data.
The number of iterations of the algorithm is substantially reduced based on the improved
clustering, which makes the algorithm perform better.

Figures 1, 2, 3 and 4 show the specific performance of the evaluation criteria, ACC,
NMI, F-score, and RI, respectively, in different datasets and missing proportions. Among
them, ZERO-FCM, AVER-FCM, KNN-FCM, WDS-FCM, and PDS-FCM only have good
accuracy in partial datasets and fluctuate greatly in some missing proportions. Compared
with the above five algorithms, OCS-FCM and NPS-FCM algorithms are not optimal
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Figure 1 Histogram of ACC averages in nine datasets with different missing values.
Full-size DOI: 10.7717/peerjcs.1600/fig-1

in all cases, but the clustering accuracy starts to maintain stability. Compared with the
OCS-FCM and NPS-FCM algorithms, the proposed four algorithms all showed significant
improvement in clustering accuracy. This indicates that the optimization algorithms
continue the advantages of the original algorithms and still have better robustness.
Meanwhile, the histogramdistribution in the figure shows that theOCS-WKFCMalgorithm
possesses higher evaluation criteria values and better clustering accuracy for low missing
rates of only 5%–10%. The NPS-WKFCM algorithm provides higher accuracy for high
missing rates of 15–20%.

Considered from the perspective of interpolationmethods, the OCS-WKFCM algorithm
takes into account the information of missing data attributes. It can still maintain the
excellent performance of the FCM algorithm as the missing rate increases and keep
the clustering accuracy stable. However, the OCS-WKFCM algorithm requires repeated
iterations to update the missing attribute values, which can make the number of iterations
of the algorithm increase significantly. The NPS-WKFCM algorithm updates the missing
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Figure 2 Histogram of NMI averages in nine datasets with different missing values.
Full-size DOI: 10.7717/peerjcs.1600/fig-2

values by comparing them with the clustering centers derived from the current iteration. It
no longer requires repeated iterations and reduces the difficulty of solving. The experimental
comparison reveals that its accuracy is better with a high missing rate.

CONCLUSION
For incomplete data clustering, a new generalized fuzzy clustering framework incorporating
featureweights and kernelmethods is developed in this work. The four improved algorithms
specifically involved are WFCM-OCS, WFCM-NPS, WKFCM-OCS, and WKFCM-NPS.
The experimental results validate the effectiveness of the proposed framework and show
that the optimized algorithms are superior in the clustering of incomplete data. Meanwhile,
the following conclusions are drawn:

(1) The improvement based on feature weights can improve the clustering precision of
the FCM algorithm in most incomplete datasets. However, it also dramatically raises the
iteration number and increase the complexity of the algorithm.
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Figure 3 Histogram of F-score averages in nine datasets with different missing values.
Full-size DOI: 10.7717/peerjcs.1600/fig-3

(2) On the basis of the OCS-WFCM and NPS-WFCM algorithms, the data are mapped
by the kernel method for high latitude mapping can effectively improve the clustering
accuracy, and does not influence iteration number significantly.

(3) The OCS-WKFCM algorithm has higher clustering precision at low missing rate of
5%–10%, while the NPS-WKFCM performs better at high missing rate of 15–20%.

The mathematical model in this study has significant generalization ability and
interpretability, which are crucial for practical applications. The model performs
consistently and reliably on different datasets and adapts to multiple domains and
application scenarios. Meanwhile, the interpretability of the model enables decision
makers to understand and accept the results of the model. These properties drive the
success of real-world applications.

The OCS-WKFCM algorithm and NPS-WKFCM algorithm proposed in this paper
combine two different techniques and provide new ideas and methods for data analysis
and processing. They can effectively regulate the distribution of feature weights through
fuzzy indices, and can significantly reduce the impact of feature weighting on performance
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Figure 4 Histogram of RI averages in nine datasets with different missing rates.
Full-size DOI: 10.7717/peerjcs.1600/fig-4

when the product approach is used. However, the performance of the model is highly
dependent on the data quality and features.

Further research can be pursued in the following directions:
(1) Further improvement of the optimization strategies for NPS and OCS to effectively

handle fuzziness and strike a balance in optimizing clustering results.
(2) Exploration of the possibilities of integrating these strategies with other clustering

algorithms and data processing techniques, such as feature selection and dimensionality
reduction, to enhance cluster performance and efficiency.

(3) Dedicated efforts to advance the field of clustering, addressing practical challenges
encountered in real-world applications, and enhancing the accuracy and reliability of
clustering results.
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