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ABSTRACT
Background. Alzheimer’s disease (AD) is a disease that manifests itself with a deteriora-
tion in all mental activities, daily activities, and behaviors, especiallymemory, due to the
constantly increasing damage to some parts of the brain as people age. Detecting AD at
an early stage is a significant challenge. Various diagnostic devices are used to diagnose
AD. Magnetic Resonance Images (MRI) devices are widely used to analyze and classify
the stages of AD. However, the time-consuming process of recording the affected areas
of the brain in the images obtained from these devices is another challenge. Therefore,
conventional techniques cannot detect the early stage of AD.
Methods. In this study, we proposed a deep learning model supported by a fusion
loss model that includes fully connected layers and residual blocks to solve the above-
mentioned challenges. The proposed model has been trained and tested on the publicly
available T1-weighted MRI-based KAGGLE dataset. Data augmentation techniques
were used after various preliminary operations were applied to the data set.
Results. The proposed model effectively classified four AD classes in the KAGGLE
dataset. The proposed model reached the test accuracy of 0.973 in binary classification
and 0.982 in multi-class classification thanks to experimental studies and provided a
superior classification performance than other studies in the literature. The proposed
method can be used online to detect AD and has the feature of a system that will help
doctors in the decision-making process.

Subjects Bioinformatics, Computational Biology, Artificial Intelligence, Data Mining and
Machine Learning, Data Science
Keywords Alzheimer’s disease, Categorical generalized focal dice loss, Deep learning, New hybrid
models, Classification

INTRODUCTION
The brain is a vital organ that containsmemory andmanages thoughts and decision-making
(Armstrong et al., 2009). Alzheimer’s disease (AD) is one of the causes of dementia. In AD,
beta-amyloid and phosphorylated tau proteins accumulate excessively, which causes brain
cell degeneration (Anonymous, 2022). AD is an irreversible disease that causes progressive
brain deterioration. Memory cells gradually die, causing an increasing shrinkage in the
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brain (Alberdi et al., 2018). AD is a fatal neurological disease with a life expectancy of
4–8 years after diagnosis (Babalola et al., 2009). This disease, which can be seen at any age,
is more common in people over 65 (Coppola et al., 2013; Chandra, Dervenoulas & Politis,
2019).

According to official figures in the United States, 121,499 people died from AD in 2019.
AD was ranked sixth among the causes of death in 2019 when COVID-19 was among the
top 10 reasons. In addition, In 2020 and 2021, it was shown as the seventh leading cause of
death. Total payments made in 2022 for health care, long-term care, and hospice services
for people aged 65 and over with dementia are estimated at $321 billion (Anonymous,
2022).

Several different computer-assisted neuroimaging methods can diagnose AD. In light
of clinical experience, MRI has become almost standardized in these imaging modalities.
Although AD is incurable, its progression can be slowed with early diagnosis and treatment
(Gopinadhan, Angeline Prasanna & Anbarasu, 2022).

In the last decades, many machine learning-based and specifically deep learning-based
approaches to diagnosing AD have been presented. If we summarize the previous studies
in the literature, classification based on segmentation of brain images was used for early
diagnosis of AD by Mehmood et al. (2021) For the AD classification, the VGG network
was used for transfer learning. Lahmiri (2023) used deep convolutional neural networks
(DCNN) to increase the diagnostic sensitivity of AD. Besides, the KNN approach was used
to filter the number of features. Shanmugam et al. (2022) analyzed the success of three
pre-trained networks, GoogLeNet, AlexNet, and ResNet-18, in classifying AD’s stages.
Frizzell et al. (2022) conducted a systematic literature review covering studies conducted
between 2009 and 2020 for the diagnosis of AI-based AD using the PubMed database. In
the review, images consisting of 3 different classes, including normal aging, mild cognitive
impairment, and AD, obtained fromMRI, were examined and comparatively analyzed with
the proposed artificial intelligence algorithms. Sathish Kumar et al. (2022) have proposed a
classification model that uses the AlexNet framework to diagnose AD at an early stage from
MR images. Jung, Luna & Park (2023) proposed a new conditional generative adversarial
network (cGAN) capable of synthesizing high-quality 3D MR images. The proposed
model consists of an attention-based 2D generator, a 2D parser, and a 3D splitter that
can synthesize 2D slices from 3D MR images. Liu et al. (2023) proposed the Monte Carlo
aggregated neural network model combining ResNet50 and Monte Carlo sampling for
early AD detection. The proposed model is trained on 2D slices obtained from 3D MR
images. Sharma et al. (2022) proposed an artificial neural network model using the VGG16
deep learning network as a feature extractor for the classification of four different stages
of AD. Alorf & Khan (2022) proposed a multi-label spoofing model using the Stacked
Sparse Autoencoder and Brain Connectivity Graph convolutional network models for the
six stages of AD obtained from the rs-fMR imaging device. Raghavaiah & Varadarajan
(2021) trained a DCNN-based model on fMRI and MRI to diagnose AD from specific
sound control information. It is fed to the proposed model via an image converter with
decomposed parameters from fMRI andMRI. Loddo, Buttau & Di Ruberto (2022) proposed
a deep learning model combining AlexNet, ResNet101, and Inception-ResNet-V2 for AD
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classification. Studies in the literature achieved test success of up to 99% in ADNI and
OASIS data sets with deep learning models. As far as we know in the literature, only Loddo,
Buttau & Di Ruberto (2022) and Sharma et al. (2022) tested their models on the Kaggle
dataset. The Kaggle dataset is a dataset that challenges models due to both its small size
and difficulties in distinguishing between classes.

Manual classification of AD on brain images obtained from MRI devices is time-
consuming. At the same time, AD is very similar to what happens in the brain with aging.
Therefore, it is a challenging task to diagnose AD by clinicians. Thus, deep learning-based
computer-aided systems, which often achieve higher success than clinicians, gain more
significant importance for AD classification.

In summary, the main contributions of this paper to the literature are given as follows:

• In this study, we divided an inspired by the encoder layer of the U-shaped segmentation
algorithm and connected the model we designed to the fully connected layer. Therefore,
we have fused theGeneralizedDice Loss (GDL) functionused inmulti-class segmentation
with the Focal Loss (FL) function in such a network.
• Non-Local Means and Estimate sigma algorithms are first fused to eliminate noise in
MR images by us.
• Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm used for
histogram equalization to enhance MR images.
• A fully connected deep convolutional neural network with residual blocks is proposed
to classify AD.
• A fusion loss function increased the network’s test accuracy in classifying AD from MR
images.

The second section, consisting of the material and method section, gives detailed
information about the pre-processing stages of the data set and the proposed model.
The practical applications of the model and the test results obtained from the proposed
model are evaluated and discussed in the discussion section. Finally, the work done in the
Conclusions section is summarized, and suggestions for future studies are shared.

MATERIALS & METHODS
MRI dataset
The KAGGLE online community obtained the dataset (Dubey, 2023). The dataset obtained
from KAGGLE consists of 5,121 axial images collected from different websites. The images
in the dataset were collected and labeled into four different classes. These are no dementia,
verymild dementia, mild dementia, andmoderate dementia. There is no information about
the age of the patients in the MR images obtained from the patients. The training dataset
consists of MR images of 2,560 healthy (ND), 1,792 very mild dementia (vmD), 717 mild
dementia (miD), and 52 moderate dementia (mD) individuals. The test dataset consists
of MR images of 640 healthy (NC), 448 very mild dementia (vmD), 179 mild dementia
(miD), and 12 moderate dementia (mD) individuals. The resolution of the images is 176
× 208. Samples are shown in Fig. 1. No other circumstances of the MR images obtained
were specified.
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Figure 1 Samples of axial images in the Kaggle data set. (A) No dementia, (B) very mild dementia, (C)
mild dementia, (D) moderate dementia.

Full-size DOI: 10.7717/peerjcs.1599/fig-1

Dataset pre-processing
Various image restoration techniques are used in the Kaggle AD dataset to increase the
model’s training and test accuracy. First, the Non-Local Means (NLM) algorithm was
applied to the images. Then, the image noise was de-noised using the weighted average of
the pixel neighborhoods with similarity. Also, to improve performance when calculating the
similarity of each pixel, instead of considering just one pixel, a small area of pixels is chosen
around it, given by the small_window parameter. Patch_Size = 2 and Patch_Distance =
1 were selected to increase the noise removal performance of the NLM algorithm. Finally,
Estimate_sigma is fused with the NLM algorithm to improve the performance of the
proposed model.

The resulting images were passed through the CLAHE algorithm. Contrast-limited
histogram equalization is performed by dividing images into small blocks called tiles in
CLAHE in the OpenCV library. As a result of the experimental studies, the clipping level
in CLAHE was chosen as 2.6. Samples of four different classes are shown in Fig. 2, showing
the MR images in the Kaggle dataset before and after the noise removal and CLAHE. In
Fig. 2, the pictures in the top line are the MR images before the image pre-processing
techniques, and the images in the bottom line are the MR images obtained after the image
pre-processing methods. The pre-processed training data set was doubled by applying
random shifting, random rotation, random rescaling, and random horizontal and vertical
flip methods.

The proposed categorical generalized focal dice loss function
The proposed Hybrid Loss function is a fused model of the Generalized Dice Loss (GDL)
and Focal Loss (FL) (Sudre et al., 2017; Lin et al., 2020). The FL function formula is shown
in Eq. (1).

FL=−αt (1−pt )γ log
(
pt
)

(1)

As seen in Eq. (1), contrary to Cross-entropy (CE), Loss of Focus prevents suppression
of CE Loss in large class imbalances. Thus, the negatives that make up most of the loss are
reduced. Adding α to Focal Loss in Balanced Cross Entropy balances positive and negative
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Figure 2 Samples of image pre-processing techniques in the Kaggle data set. (A) No dementia, (B) very
mild dementia, (C) mild dementia, (D) moderate dementia.

Full-size DOI: 10.7717/peerjcs.1599/fig-2

samples. In addition, the adjustable focusing parameter γ ≥ 0 and the cross-entropy loss
modulating factor (1−pt ) was added to reduce the weight of easy-to-learn samples and
to enable the deep-learning model to focus on difficult-to-train samples. As a result of the
experimental studies performed in this study, we chose γ = 2 and α = 4, where p is the
model’s predicted probability for the class (Lin et al., 2020).

The most significant disadvantage of Dice Loss is that although it has a good training
score, its test score is low due to its poor response to class imbalances. As a solution to this,
Sudre et al. (2017) transformed the Generalized Dice Score (GDS) function proposed by
Crum, Camara & Hill (2006) to score multi-class segmentation into a loss function named
Generalized Dice Loss (GDL). The GDL function formula is shown in Eq. (2).

GDL= 1−2
∑2

l=1wl
∑

nrlnpln+∈∑2
l=1wl

∑
nrln+pln+∈

(2)

where rl is the ground truth, and pl is the predicted value. ∈ is a smoothing value for
fine-tuning.

Here wl isused to provide immutability to different labeled sets where wl is formulated
as shown in Eq. (3).

wl =
1

(
∑

n=1rln)2
(3)

where rl is the ground truth. In this study, FL and GD, seen as robust models in multi-class
segmentation, were fused to predict four different classes of AD, as shown in Eq. (4).

Fusion_Loss= (1− lamda)∗GDL+ lamda∗FL (4)
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Figure 3 End-to-end automatically DCNN-based AD classifier block diagram.
Full-size DOI: 10.7717/peerjcs.1599/fig-3

The lambda value was chosen as 0.5 because of experimental studies.

Performance metrics
Accuracy, Sensitivity, and Specificity metrics were used to measure the performance of
the proposed deep learning-based classification model. Accuracy is the ratio of correctly
predicted samples to the sum of all correct and incorrectly guessed samples; Sensitivity, or
recall, is the ratio of positively correctly predicted samples to the sum of negative incorrectly
predicted samples and correctly predicted positive samples. Specificity (Spec) represents
the ratio of correctly predicted negative samples to the sum of correctly predicted negative
and incorrectly predicted positive samples.

The proposed methodology
The end-to-end automatically AD classifier block diagram is shown in Fig. 3. The section
including CLAHE covers the pre-processing stage of the dataset, and the section after
CLAHE covers the training and testing of the model.

The proposed deep learning model
In the proposed deep learning architecture, 2xConvolutional2D blocks with 3 × 3
filters are used in all layers before the fully connected layer. In addition, the Xavier
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Figure 4 Detailed representation of the proposed architecture.
Full-size DOI: 10.7717/peerjcs.1599/fig-4

was used as the weight initializer function (Glorot & Bengio, 2010; Sharma et al., 2023;
Nour, Senturk & Polat, 2023). Group Normalization (GN) is the normalizer, and ReLU
is the activation function of the proposed model (Wu & He, 2020). Wu & He (2020)
demonstrated with various experiments how superior the group normalization technique
is to other normalization methods.

Besides, ADAMwas used as the optimizer to optimize the weights of the proposedmodel
(Ba & Kingma, 2015). In the last layer, Softmax was used as an activation function to find
out which class the MR image belongs to the AD class. If we pay attention to the proposed
model, it is seen that the U-shaped network is formed by taking the deconvolution part
and adding the Fully connected network. Deep Neural networks are profound networks
due to the multitude of layers. Therefore, the information learned in the first layers can
be forgotten. The residual blocks (ResNet Block) ensure that the convolutional layers do
not forget the information they learned in the first layers of the network. In the proposed
model, residual blocks are followed by 2× 2 maximum pooling (max-pool), in which the
feature maps’ spatial dimensions (height and width) are reduced by half. Max-pool reduces
the computational cost by reducing the number of trainable parameters. The layers of the
proposed deep learning architecture are shown in Fig. 4. in detail.

Proposed model’s experimental studies
This section explains the experimental studies of the proposed deep learning architecture
on the KAGGLE dataset in detail.

Employed hardware materials
Experimental studies of the proposed architecture were conducted with a computer
equipped with Intel(R) Core(TM) i5-8300H @ 2.30 GHz CPU, 32 GB RAM, and NVIDIA
GTX1050 4 GB GPU. In addition, the deep learning ecosystem consists of artificial
intelligence libraries with Python 3.7 programming language based on Anaconda. Libraries
and ecosystems are entirely open source. The dataset consists of training, validation, and
test datasets. A total of 20% of the training dataset was used as a validation dataset using the
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Table 1 Comparison of parameters and their computational efficiency.

Architectures Parameter (M)

VGG16 (Sharma et al., 2022) 134.27
Alexnet (Loddo, Buttau & Di Ruberto,2022) 62.38
Resnet 101 (Loddo, Buttau & Di Ruberto,2022) 44.5
Inception ResNetv2 (Loddo, Buttau & Di Ruberto,2022) 54.5
Proposed Architecture 5.45

Table 2 Effects of different loss functions on the proposed architecture.

Methods Performance metrics

Accu Sens Spec

Cross-entropy 0.966 0.966 0.982
MAE (Loddo, Buttau & Di Ruberto,2022) 0.932 0.932 0.934
RMS (Loddo, Buttau & Di Ruberto,2022) 0.956 0.959 0.957
FL (Loddo, Buttau & Di Ruberto,2022) 0.927 0.930 0.928
GDL 0.965 0.968 0.966
Our fusion loss 0.982 0.982 0.989

scikit-learn library. We performed 5-fold cross-validation to measure the training dataset’s
heterogeneity and the model’s fit.

Comparison of parameters
The model used in the proposed study and the models used in the other literature were
analyzed comparatively regarding the number of parameters. As can be seen from the
comparisons in Table 1, the proposed model is the one with the smallest parameter. It
can be seen from Table 1 that the model with the smallest parameter is the recommended
model.

Comparison of loss functions
The proposed fusion loss function has been analyzed in comparison with the most used
mean absolute error (MAE), root mean squared error (RMSE), cross-entropy, FL, and GDL
loss function for classification in the literature. As can be seen from Table 2, the proposed
fusion loss function is the most suitable loss function for the proposed architecture.

Settings and studies on the KAGGLE dataset
Using our deep learning architecture, we performed binary classification, i.e., distinguishing
NC and AD, and multi-class classification (NC, very mild AD, mild AD, moderate AD)
experimental studies on the KAGGLE dataset. The deep learning network was trained for
15 thousand epochs for these two studies. After 15.000 epochs, the validation accuracy of
the network remained constant at around 0.99. The minibatch size is 32, and ADAM is
chosen as the optimizer. Numerical information about the data set used in training the
proposed model is listed in Table 3. As can be seen from Table 3, there is a significant
imbalance between classes. In this case, the benefits of data augmentation methods will be
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Table 3 Slice-basedMR image counts used for train, validation, and testing of the KAGGLE data set on
which the proposed model is trained and tested.

Data set name NC vmiD miD mD

Training data set 2,050 1,075 573 42
Train+Data Augmented 7,170 4,659 2,007 146
Validation data set 510 717 287 10
Test data set 640 448 179 12

limited. Therefore, GDL and FL, which are successful and robust loss functions in class
imbalances, are proposed as a solution to the class imbalance of the data set.

Experimental results and analysis
In this section, experimental results are shared, and comparative analyzes are made with
other studies in the literature. In addition, information is given about the deep learning
models used for detecting AD and how they train the dataset on the performance criteria
they use. A slice-based data set was used in this study. The Kaggle dataset is a low-resolution
and slice-based dataset collected on different websites. In addition, class imbalances are
also very high in the dataset. Also, the Kaggle dataset’s having axial views is another
challenge. For these reasons, the Kaggle dataset is very challenging. The most significant
difficulty of all the literature and proposed research studies is distinguishing AD from
NC in the MCI stage. If AD is successfully detected in the MCI stage, the effects of this
neurodegenerative and irreversible disease can be slowed down. In addition, one of the
most critical challenges is to detect NCs (very MCI) that may have AD. This study focused
on two different experimental studies: (i) distinguishing NC from AD at the MCI stage;
(ii) To successfully classifying MR images with NC, vMCI, MCI, and MC. For this reason,
articles in the literature that made these two different experimental studies and analyzed
their results were examined. Validation accuracy and validation loss values obtained using
the categorical generalized focal membrane loss function of the proposed model are shown
graphically in Figs. 5 and 6.

The comparative performance results of our proposed fusion loss-based deep learning
architecture are shown in Tables 4 and 5. The proposed deep learning architecture achieved
accuracy values of 0.973 in binary classification and 0.982 in multi-class classification. At
the same time, it obtained high sensitivity and specificity values compared to other studies
in the literature.

DISCUSSION
This study proposes a deep learning-based model with fusion loss for diagnosing and
classifying AD. The Kaggle dataset, the most challenging AD dataset, was used to compare
the proposed architecture with other studies in the literature. High accuracy values of up
to 0.99 were obtained in other publicly available datasets (OASIS and ADNI) used in the
literature. The Kaggle dataset has four classes: vmiD, miD, mD, and NC. The proposed
fusion loss deep learning model showed a higher performance than other studies in the
literature. In addition, Ensemble-based deep learning algorithms are generally emphasized
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Figure 5 ResBlock fully connected CNN validation loss and validation accuracy results.
Full-size DOI: 10.7717/peerjcs.1599/fig-5
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Figure 6 ResBlock fully connected CNN validation loss and validation accuracy results.
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Table 4 Experimental results for NC and AD binary classification.

Methods Performance metrics

Accu Sens Spec

Deep-Ensemble (Loddo, Buttau & Di Ruberto,2022) 0.966 0.966 0.982
AlexNet (Loddo, Buttau & Di Ruberto,2022) 0.897 0.898 0.897
ResNet-101 (Loddo, Buttau & Di Ruberto,2022) 0.961 0.961 0.961
Inception-ResNet-v2 (Loddo, Buttau & Di Ruberto,2022) 0.912 0.914 0.912
(OurMethodology) 0.973 0.975 0.988

Table 5 Experimental results for multi-class classification(NC, vmiD, miD, mD).

Methods Performance metrics

Accu Sens Spec

Deep-Ensemble (Loddo, Buttau & Di Ruberto,2022) 0.971 0.967 0.982
Neural Nets with VGG16 (Sharma et al., 2022) 0.904 0.905 0.904
AlexNet (Loddo, Buttau & Di Ruberto,2022) 0.893 0.906 0.817
ResNet-101 (Loddo, Buttau & Di Ruberto,2022) 0.965 0.978 0.961
Inception-ResNet-v2 (Loddo, Buttau & Di Ruberto,2022) 0.897 0.901 0.856
(OurMethodology) 0.982 0.982 0.989

in the literature. The deep learning architecture proposed in this paper also dramatically
reduces computation. However, the minibatch could not be increased enough due to
hardware limitations. In addition, resizing was not done because the resolution of the data
line was low. Therefore, the number of epochs determined for training the proposed model
may be higher than those used by other models. However, the parameter number of the
proposed architecture is considerably smaller than the parameter numbers of different
architectures in the literature.

CONCLUSIONS
This study proposes a fusion loss deep learning model using the group normalization
technique with residual blocks to detect three different AD disease classes (vmiD, miD,
mD). The proposed model is trained on the KAGGLE dataset, a very challenging dataset
that includes three other dementia classes (vmiD, miD, mD) and normal cognitive status.
We tried to solve the large class imbalance in the Kaggle dataset using the Categorical
Generalised Focal Dice Loss function proposed in this study. In the proposed model, FL
and GDL loss functions are used successfully in multi-class segmentation by fusing them.
FL and GDL were used separately in the proposed model, and 84% to 88% accuracy
was achieved, while an accuracy value of 0.982 was obtained in the model with the fused
loss function. Compared to the latest technology studies in the literature, the proposed
model has achieved very high success in binary classification (NC and AD) and multi-class
classification (vmiD, miD, mD, NC). Although the proposed architecture showed high
performance on a challenging dataset, it must be tested on an MR device in real-time.
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