
Submitted 23 March 2023
Accepted 28 August 2023
Published 15 September 2023

Corresponding author
Fei Ma, mafeixa@chd.edu.cn

Academic editor
Daniele D’Agostino

Additional Information and
Declarations can be found on
page 28

DOI 10.7717/peerj-cs.1597

Copyright
2023 Shang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A double-decomposition based parallel
exact algorithm for the feedback length
minimization problem
Zhen Shang1, Jin-Kao Hao2 and Fei Ma1

1 School of Economics and Management, Chang’an University, Xi’an, China
2 LERIA, Université d’Angers, Angers, France

ABSTRACT
Product development projects usually containmany interrelated activitieswith complex
information dependences, which induce activity rework, project delay and cost overrun.
To reduce negative impacts, scheduling interrelated activities in an appropriate
sequence is an important issue for project managers. This study develops a double-
decomposition based parallel branch-and-prune algorithm, to determine the optimal
activity sequence that minimizes the total feedback length (FLMP). This algorithm
decomposes FLMP from two perspectives, which enables the use of all available
computing resources to solve subproblems concurrently. In addition, we propose a
result-compression strategy and a hash-address strategy to enhance this algorithm.
Experimental results indicate that our algorithm can find the optimal sequence for
FLMP up to 27 activities within 1 h, and outperforms state of the art exact algorithms.

Subjects Algorithms and Analysis of Algorithms, Distributed and Parallel Computing,
Optimization Theory and Computation
Keywords Product development, Design structure matrix, Parallel exact algorithm,
Branch-and-prune algorithm

INTRODUCTION
Enterprises face more and more competition, which requires the competitors to develop
new products in a short time. However, product development projects often involve many
interrelated activities with complex information dependences (Lin et al., 2012; Bashir
et al., 2022). Such activities usually follow uncertain processes and rework frequently,
which makes it difficult for managers to control the project durations, costs and
risks (Mohammadi, Sajadi & Tavakoli, 2014; Lin et al., 2018). Therefore, how to sequence
interrelated activities to reduce negative impacts has drawn considerable attention (Attari-
Shendi, Saidi-Mehrabad & Gheidar-Kheljani, 2019; Wen et al., 2021).

The design structure matrix (DSM) can clearly describe interrelated activities and
interdependence, which is considered an effective tool in scheduling development
projects (Browning, 2015;Wen et al., 2021). Figure 1A presents a typical DSM of a balancing
machine project (Abdelsalam & Bao, 2007), where activities are listed on the left column
and the top row following the same order; di,j(0≤ di,j ≤ 1,i 6= j) denotes the degree of
information dependence of activity i on j(marked in red). Since activity i precedes j, di,j
represents the backward information flow from downstream to upstream in the activity

How to cite this article Shang Z, Hao J-K, Ma F. 2023. A double-decomposition based parallel exact algorithm for the feedback length
minimization problem. PeerJ Comput. Sci. 9:e1597 http://doi.org/10.7717/peerj-cs.1597

https://peerj.com/computer-science
mailto:mafeixa@chd.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1597
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1597

Activities 1 2 … 𝒊 … 𝒋 … 𝒏

Simulation analysis motion and cycle time 1 0.1 𝑑1,𝑗 𝑑1,𝑛

Rotary drive component design 2 𝑑2,𝑛

… …

Lift drive component design 𝒊 𝑑𝑖,2 𝑑𝑖,𝑗 𝑑𝑖,𝑛

… …

Optimal component design of correcting indexing unit 𝒋 𝑑𝑗,1 𝑑𝑗,𝑖

… …

Component design of high intensity correction spindle 𝒏 𝑑𝑛,2 𝑑𝑛,𝑖 𝑑𝑛,𝑗

(a)

Activities 1 2 … 𝒋 … 𝒊 … 𝒏

Simulation analysis motion and cycle time 1 0.1 𝑑1,𝑗 𝑑1,𝑛

Rotary drive component design 2 𝑑2,𝑛

… … Feedback

Optimal component design of correcting indexing unit 𝒋 𝑑𝑗,1 𝑑𝑗,𝑖

… …

Lift drive component design 𝒊 𝑑𝑖,2 𝑑𝑖,𝑗 𝑑𝑖,𝑛

… … Feedforward

Component design of high intensity correction spindle 𝒏 𝑑𝑛,2 𝑑𝑛,𝑗 𝑑𝑛,𝑖

(b)

Figure 1 Illustrations of DSM.
Full-size DOI: 10.7717/peerjcs.1597/fig-1

sequence, which is above the diagonal and called feedback; dj,i is the information flow in
opposite direction, which is under the diagonal and called feedforward. In Fig. 1B, if the
order of activities i and j is reversed, then di,j and dj,i become a feedforward and a feedback,
respectively. The information flows from other activities to i and j are also affected (marked
in yellow), which means that adjusting the activity sequence can significantly affect the
overall information flows in DSM (Lin et al., 2015;Meier et al., 2016).

Figure 1 indicates that due to the existence of feedbacks, upstream activities often execute
in the absence of information. Once the downstream activities complete, feedbacks may
cause upstream activities to rework. In fact, feedbacks usually involve suggestions, errors
and modifications, which are the main reason for project delay and cost overrun (Haller
et al., 2015; Lin et al., 2015; Wynn & Eckert, 2017). Therefore, some researches suggest
minimizing the total feedback values of activity sequence to reduce negative effects (Qian
et al., 2011; Nonsiri et al., 2014). However, these studies do not consider the influence
of feedback length, i.e., long feedbacks across more activities may cause more upstream
activities to rework than short ones. Hence, the objective of minimizing the total feedback
length is proposed, which has been widely applied in DSM-based scheduling problems. For

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 2/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1597/fig-1
http://dx.doi.org/10.7717/peerj-cs.1597

instance, Qian & Yang (2014) demonstrated the effectiveness of optimizing the feedback
length to reduce the overall reworks through a case study of a pressure reducer project.
Benkhider & Kherbachi (2020) used a composite objective that considers the feedback
length to reduce the duration of Huawei P30 pro project; Gheidar-kheljani (2022) studied
a two-objectives scheduling model that considers the feedback length and the cost of
decreasing dependence among activities.

For a development project, let I = {1,2,...,i,...,n} be an activity set, D= (di,j)(n×n)
be a DSM, and decision variable xi,j = 1 if activity i precedes j, otherwise xi,j = 0. Then,
the feedback length minimization problem (FLMP) can be formulated as a 0-1 quadratic
programming problem (Qian & Lin, 2013):

Min
n∑

i=1

n∑
j=1,j 6=i

di,jxi,j(
n∑

k=1,k 6=j

xk,j−
n∑

k=1,k 6=i

xk,i) (1)

s.t .xi,j+xj,i= 1,for 1≤ i< j ≤ n (2)

xi,j+xj,k+xk,i≤ 2,for i 6= j 6= k (3)

xi,j ∈ {0,1},for 1≤ i,j ≤ n,i 6= j. (4)

where 0–1 vector X = (x1,2,...,xi,j,...,xn,n−1) denotes an activity sequence; objective
function Eq. (1) minimizes the total feedback length, if xi,j = 1, then feedback di,j and its
length (

∑n
k=1,k 6=jxk,j−

∑n
k=1,k 6=ixk,i) are counted into the objective value; constraint Eq.

(2) guarantees that there is only one execution order for activity i and j; constraint Eq. (3)
ensures that the execution order is transitive; constraint Eq. (4) guarantees that decision
variables are binary.

Further, the original model can be simplified to a sequence-based model (Lancaster
& Cheng, 2008; Shang et al., 2019). Let integer vector S= (s1,s2,...,sh,...,sk,...,sn) be an
activity sequence, where decision variable sh is the activity at position h of the sequence,
for example, s3= 5 means that activity 5 is assigned to position 3. Since position h is set
before position k(h< k), dsh,sk is the feedback from position k to h, and the sequence-based
model can be formulated as follows:

Min
n−1∑
h=1

n∑
k=h+1

dsh,sk (k−h) (5)

s.t . sh,sk ∈ I ,sh 6= sk,dsh,sk ∈D,for1≤ h< k ≤ n (6)

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 3/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

where objective function Eq. (5) minimizes the total feedback length, (k−h) is the length
of feedback dsh,sk ; constraint Eq. (6) limits the values of the decision variables (sh,sk ∈ I)
and prohibits an activity from appearing in multiple positions (sh 6= sk). Due to the concise
expression of FLMP, we mainly analyze the sequence-based model in the rest of this article.

Researchers have proved that FLMP is NP-hard and extremely difficult to solve (Meier,
Yassine & Browning, 2007). Therefore, many studies proposed heuristic approaches to
obtain near-optimal activity sequences. These algorithms usually follow the classic heuristic
framework, such as genetic algorithm, local search, which can obtain a reasonable solution
within a short time, but cannot guarantee the global optimum. On the other hand, studies
on exact approach are quite limited, and the existing algorithms are not practical due to the
weak computational capability. Nevertheless, the research on specialized exact algorithms
has promoted the exploration FLMP properties. Shang et al. (2019) found that FLMP has
optimal sub-structure, which allows the original problem to be decomposed into multiple
subproblems. Based on this property, they developed a parallel exact algorithm, which can
solve FLMP with 25 activities in 1 h and is the state of the art exact approach in current
literature (see the detailed review in ‘Literature review’).

This study focus on improving the computational capability of exact approach for FLMP,
through fully utilizing the structural properties. We develop a double-decomposition based
parallel branch-and-prune algorithm (DDPBP), to obtain the optimal activity sequence.
The proposed algorithm first divides FLMP into forward and backward scheduling
subproblems, then decomposes subproblems into several scheduling tasks and solving
them concurrently. The resulting optimal subsequences are connected to be the global
optimum. Furthermore, we propose an effective result-compression strategy to reduce
communication costs in parallel process, and a novel hash-address strategy to boost the
efficiency of sequence comparisons. Computational experiments on 480 FLMP instances
show that DDPBP significantly reduces the time consumption for obtaining the optimal
solution, and increases the problem scale that exact algorithms can solve to 27 activities
within 1 h.

The rest of this article is organized as follows. ‘Literature review’ presents a literature
review on exact and heuristic approaches for FLMP. In ‘FLMP analysis’, we recall the
properties of FLMP, which is the foundation of the proposed algorithm. ‘Double-
decomposition based algorithm’ introduces the main scheme and key phases of DDPBP,
including the result-compression strategy. ‘Hash strategy’ provides the hash-address
strategy applied in DDPBP. ‘Computational experiments’ conducts the comparisons
between DDPBP and state of the art algorithms. ‘Analysis’ provides systematic analyses of
parameters and key strategies. ‘Conclusions’ draws conclusions.

LITERATURE REVIEW
This section presents a literature review about FLMP and the existing solution approaches,
while some closely related problems are also mentioned. Table 1 summarizes the
optimization objectives and the proposed algorithms discussed in the literature.

The high uncertainty of the development process makes it difficult to estimate the
project duration, costs and risks. Therefore, many studies usually introduce alternative

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 4/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Table 1 Literature summary.

Representative literature Optimization objectives Proposed algorithm

Exact approach
Qian & Lin (2013) Total feedback length minimization CPLEX MILP solver
Shang et al. (2019) Total feedback length minimization A hash-address based parallel

branch-and-prune algorithm
Gheidar-kheljani (2022) Multi-objective: feedback length,

cost of decreasing dependence
CPLEX solver for small
and medium problems

Heuristic approach
Altus, Kroo & Gage (1995) Total feedback length minimization A genetic algorithm
Todd (1997) Total feedback length minimization A multiple criteria genetic

algorithm
Meier, Yassine & Browning (2007) Total feedback length minimization A genetic algorithm
Lancaster & Cheng (2008) Total feedback length minimization A parameter adaptive evolutionar

y algorithm
Qian et al. (2011) Total feedback value minimization A hybrid Algorithm based on

local search and LIP-solver
Qian & Yang (2014) Total feedback length minimization An exchange-based local search

heuristic
Lin et al. (2015) Total feedback time minimization A hybrid Algorithm based on

local search and BLP-solver
Lin et al. (2018) Total feedback length minimization A hybrid Algorithm based on

insertion-based heuristic and
simulated annealing

Attari-Shendi, Saidi-Mehrabad & Gheidar-Kheljani (2019) Multi-objective: feedback value,
technology risk and financial status

A fuzzy interactive method

Khanmirza, Haghbeigi & Yazdanjue (2021) Total feedback length minimization An enhanced imperialist
competitive algorithm

Wen et al. (2021) First and second order rework time
minimization

An insertion-based heuristic
algorithm

Peykani et al. (2023) Multi-objective:feedback length,
project duration

A hybrid approach based on
genetic algorithm

optimization objectives to reschedule the development process. One fundamental objective
is to minimize the total feedback value, i.e., the overall strength of the information flows
above the diagonal of DSM. Qian et al. (2011) simplified this scheduling problem by
treating a group of activities as one abstract activity, then developed a hybrid heuristic
approach to reduce the total feedback value of development projects; Lin et al. (2015)
proposed an objective of minimizing the total feedback time based on the feedback
value, and developed a local search based heuristic to optimize the project of a balancing
machine; Attari-Shendi, Saidi-Mehrabad & Gheidar-Kheljani (2019) presented a multi-
objective model that considers the total feedback value, technology risk and financial status
to schedule the process of development projects. These researches have offered useful
guidance in optimizing development process with interrelated activities. However, none of
them considers the influence of the feedback length on the development process.

Altus, Kroo & Gage (1995) and Todd (1997) and many other studies have pointed that
the feedback spanning across more activities usually leads to more reworks, which indicates

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 5/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

that the length of feedback may significantly affect the development progress. Therefore, a
more reasonable objective of finding the activity sequence with theminimum total feedback
length is proposed. Over the years, many practical applications have confirmed that the
feedback length minimization (FLMP) is an appropriate approximation of minimizing the
project duration, costs and risks (see, e.g., Meier, Yassine & Browning, 2007; Lancaster &
Cheng, 2008; Qian & Yang, 2014).

Due to the NP-hard nature of FLMP, it is extremely difficult to find the optimal
activity sequence, even for small-scale problems. Thus, researchers turned to develop
heuristic approaches to obtain near-optimal solutions. In particular, Lin et al. (2018)
proposed an effective hybrid algorithm by integrating an insertion-based heuristic with
simulated annealing. Khanmirza, Haghbeigi & Yazdanjue (2021) introduced the imperialist
competitive algorithm to solve large-scale FLMP, which is enhanced by adaptively applying
operators and tuning parameters.Wen et al. (2021) introduced an insertion-based heuristic
algorithm (IBH) to solve a closely related problem thatminimizes the total rework time. This
algorithm follows the sequential improvement strategy to select operators, and experiments
showed that IBH was competitive in scheduling interrelated activities. Most recently,
Peykani et al. (2023) successively optimized the feedback length and project duration by
a genetic algorithm based hybrid approach, in order to reschedule development project
in resource constrained scenarios. These algorithms can obtain a reasonable solution in a
short time, but cannot guarantee the global optimum.

As for exact approaches, only three studies focus on scheduling interrelated activities
optimally. Qian & Lin (2013) reformulated FLMP as two equivalent linear programming
models, then adopted the CPLEX MILP solver to optimally solve them. However, the
largest FLMP that can be solved within 1 h is limited to 14 activities, and the performance
of this approach is strongly affected by the density of DSM. Gheidar-kheljani (2022)
proposed multi-objective model that minimizes the total feedback length and the cost
of decreasing activity dependence. They applied CPLEX to solve small scale problems
and designed a genetic algorithm for large problems. Shang et al. (2019) have proven that
FLMP has optimal sub-structures, which allows the original problem to be divided into
multiple subproblems. Based on this, they developed a hash-address based parallel branch-
and-prune algorithm (HAPBP), which is the state of the art specialized exact approach in
current literature. HAPBP divides FLMP into two subproblems, and concurrently schedules
activities in forward and backward directions. This algorithm also employs a hash strategy
to improve the efficiency of sequence comparison, by mapping activity sequences into hash
values. Experiments confirm that HAPBP can solve FLMP up to 25 activities within 1 h. The
shortcomings of this study are that the proposed parallel framework limits the algorithm
to only use two cores of CPU, and the hash strategy is extremely space-consuming, which
prevents HAPBP from fully utilizing available computing resources.

In summary, the studies on heuristic approach did not fully explore the structural
properties of FLMP, and the existing heuristic algorithms are usually designed by using the
classic heuristic frameworks. On the other hand, studies on specialized exact approaches
for FLMP are quite limited, and there is clearly an urgent need for such dedicated
exact algorithms capable of solving problem instances that cannot be solved by existing

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 6/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

approaches. Decomposing FLMP into subproblems to reduce the problem complexity,
then solving them concurrently, is highly appealing approach to obtain the optimal activity
sequence. However, the existing parallel framework and applied strategies do not take
advantage of FLMP properties and available computing resources, which strongly limits
the computational capability. To fulfill these research gaps, we propose in this work an
novel parallel exact algorithm to solve FLMP. The main contributions are summarized as
follows.

• We develop a double-decomposition based parallel branch-and-prune algorithm
(DDPBP), which can employ all available computing resources to solve FLMP
optimally. The proposed algorithm first divides FLMP into forward and backward
scheduling subproblems, then decomposes subproblems into several scheduling tasks,
and applies multiple CPU cores to prune unpromising subsequences. The resulting
optimal subsequences are connected to be the global optimum.
• We propose two strategies to further enhance the DDPBP algorithm. The result-
compression strategy is designed to reduce communication costs among parallel
processes, by extracting and sending key information from numerous intermediate
results. Furthermore, a novel hash-address strategy is developed to quickly compare and
locate subsequences with lower space costs, which significantly accelerates the process
of subsequence pruning.
• Computational experiments confirm the competitiveness of the DDPBP algorithm
on 480 random FLMP instances, compared to the state-of-the-art exact approaches.
In particular, the proposed algorithm increases the problem scale that can be solved
exactly to 27 activities within 1 h, and significantly reduces the solving time for problems
with less than 27 activities. In addition, further analyses shed light on the significant
contributions of the result-compression and hash-address strategies to the performance
of DDPBP.

FLMP ANALYSIS
Decomposing the original problem into smaller subproblems is an effective way to solve
complex problems (Chen & Li, 2005; Shobaki & Jamal, 2015; Mitchell, Frank & Holmes,
2022). In this section, we briefly introduce the properties of FLMP and the resulting
prune criterion (Shang et al., 2019), which allows the algorithm to divide FLMP into two
independent subproblems, and discard unpromising sequences effectively. All properties
are mathematically proved in Appendix.

Problem properties
Assume that a development project consists of activities I = {1,2,...,i,...,n}, the
activity sequence is S= (s1,s2,...,sp,sp+1,...,sn), and the total feedback length fl =∑n−1

h=1
∑n

k=h+1dsh,sk (k−h). We set position p(1< p< n) as a split point, define that region
Ap={s1,s2,...,sp} contains activities fromposition 1 to p, and regionBp={sp+1,sp+2,...,sn}
contains activities after position p. Then we have feedback values fvap and fvbp that are
produced by the subsequences of regions Ap and Bp, respectively.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 7/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Property 1: The total feedback length fl = fvap+ fv
b
p, and:

fvap=
p−1∑
h=1

p∑
k=h+1

dshsk (k−h)+
p∑

h=1

n∑
k=p+1

dshsk (p+1−h) (7)

fvbp=
n−1∑

h=p+1

n∑
k=h+1

dshsk (k−h)+
p∑

h=1

n∑
k=p+1

dshsk (k−p−1) (8)

Property 1 shows the compositions of total feedback length fl , when the original sequence
is split into two regions. Further, if we set the split point as position p+1 or p−1, then
fvap+1 and fvbp−1 can be derived from the following equations.

fvap+1= fvap+
p+1∑
h=1

n∑
k=p+2

dshsk (9)

fvbp−1= fvbp+
p∑

h=1

n∑
k=p+1

dshsk (10)

Property 2: Changing the subsequence of region Ap(Bp) does not affect the value of
fvbp(fv

a
p).

Due to split point p, FLMP is divided into two subproblems, which minimize feedback
values fvap and fvbp, and are related to regions Ap and Bp, respectively. Property 2 indicates
that although there exist feedbacks from region Bp to Ap, the two subproblems are totally
independent with each other.

Prune criterion
We define that any two sequences are ‘‘similar’’, if they consist of the same activities, such as
sequences (1,2,3) and (3,1,2); otherwise, they are ‘‘dissimilar’’, such as sequences (1,2,3)
and (1,2,5). Based on the preceding properties, a prune criterion is proposed as follows:

Prune criterion: In region Ap(Bp), for a subsequence SAp(SBp), if its feedback value
fvap (fv

b
p) is not the lowest among similar subsequences, then any sequence S starting (ending)

with SAp(SBp) is not the global optimum, and SAp(SBp) should be pruned.
For a certain pair of regions Ap and Bp, assuming the optimal SB∗p of Bp is found, then all

high-quality sequences S should end with SB∗p . Therefore, the quality of S depends on the
quality of SAp, or vice versa. In other words, the prune criterion holds. In addition, for each
group of similar SAp, only the one with lowest fvap is kept, the rest (p!−1) subsequences
are pruned. The same is true for SBp. We present an example to illustrate how the prune
criterion works.

In Fig. 2, for a project with I = {1,2,3,4,5,6,7,8}, set p = 4, A4 = {1,2,4,5}
and B4 = {3,6,7,8}, assume that the optimal SB∗4 of B4 is found. Since fva4 = 6.2 of
SA4 = (2,4,1,5) is higher than fva4 = 5 of SA4 = (1,5,4,2), it can be concluded that

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 8/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

6.2 … …
5 … …

5.9 … …

Figure 2 An example of the prune criterion.
Full-size DOI: 10.7717/peerjcs.1597/fig-2

sequence S1 is not the global optimum. However, the prune criterion does not work on S1
and S3, because SA4= (1,5,4,2) and SA4= (2,1,3,4) are dissimilar.

DOUBLE-DECOMPOSITION BASED ALGORITHM
This section presents the details of the proposed Double-Decomposition based Parallel
Branch-and-Prune (DDPBP) algorithm for solving FLMP, including the general concept,
the main scheme, and key phases including task distribution and result combination.

General concept
Double-decompositionmeans thatDDPBP can decompose thewhole sorting problem from
two perspectives. Based on the properties of FLMP, the original problem is divided into two
independent subproblems that are related to regions Ap and Bp respectively. By introducing
the parallel framework, DDPBP can construct active sequences in forward (from head to
tail, Ap) and backward (from tail to head, Bp) directions concurrently. Figure 3 shows the
search trees applied in DDPBP. In the forward tree, each node represents a subsequence
from position 1 to pwithin a complete sequence, for example, node (7,6,5) is the first three
activities of one complete sequence, and child node (7,6,5,4) is built by adding activity 4 to
the end of node (7,6,5). The backward tree follows the same structure, but represents the
opposite direction. DDPBP traverses two trees in a breadth-first way, along with pruning
unpromising nodes (marked by red line). When the exploration finishes, the remaining
partial sequences (leaf nodes) are connected as complete sequences (marked by blue line),
from which we can find the optimal solution.

These two exploring processes are totally independent without any information
exchange, which can be distributed to two cores of CPU. However, this framework
limits the full use of available computing resources. As multi-core computers are common
nowadays, a more flexible framework that supports any number of cores, is necessary.
Figure 4 presents a further decomposition in the forward and backward processes. For a
FLMP with seven activities, assume that six cores are available, then we can assign half of
cores to each process. For the forward process, in row 3, nodes are divided into three groups
and sent to three cores for node pruning. Since each core only handles partial nodes, after
all tasks are finished, DDPBP gathers the results and proceeds further node pruning. After

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 9/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1597/fig-2
http://dx.doi.org/10.7717/peerj-cs.1597

Connect

()()

(2 1) (6 7) (7 6)(1 2)

(1 2 3) (1 2 4) (1 2 7) (5 6 7) (7 6 5)

(1 2 3 4) (1 2 4 3) (1 3 2 5) (5 6 7 4) (7 6 5 4)

Row 1

Row 2

Row 3

Row 4

(6 7)(2 1)(1 2) (7 6)

(5 7 6)(4 7 6)(1 7 6)(2 5 7)(3 1 2)

Forward Tree Backward TreeCore 1 Core 2

Complete sequences (1 3 2 5 4 7 6), (7 6 5 4 3 1 2)...
Sequence (1 3 2 5 4 7 6) with the minimum total feedback length is the global optimum

First Decomposition

Figure 3 Forward and backward trees for a FLMPwith seven activities.
Full-size DOI: 10.7717/peerjcs.1597/fig-3

(1 2 3) (1 2 4) (3 4 5) (3 4 6) Row 3

Forward Tree

Core 1

First Decomposition

(5 6 7) (5 6 1)

Core 2 Core 3
(3 1 2)

Core 4
(5 3 4)

Core 5
(7 5 6)

Core 6

Backward Tree

Optimal nodes gathered from Row 2 Optimal nodes gathered from Row 2

Multi-thread
pruning

Gather results and proceed
further node pruning

Core 1

Optimal nodes sent to Row 4

Gather results and proceed
further node pruning

Core 4

Optimal nodes waiting for connection

Traversal of backward tree ends

Single-thread
pruning

Second Decomposition

Figure 4 Double-decomposition for a FLMPwith seven activities.
Full-size DOI: 10.7717/peerjcs.1597/fig-4

all unpromising nodes are discarded, the remaining nodes are used to generate child nodes
for the next row. The decomposition in the backward process follows the same way.

The second decomposition makes it possible to take full advantage of multiple cores
to share the workloads. Although forward and backward processes do not communicate
with each other, multiple threads within two processes still exchange data frequently.
Researches show that the communication cost in parallel frameworks cannot be ignored

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 10/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1597/fig-3
https://doi.org/10.7717/peerjcs.1597/fig-4
http://dx.doi.org/10.7717/peerj-cs.1597

(Tsai et al., 2021;Wang & Joshi, 2021). Therefore, how to reduce the impact ofmulti-thread
communication is an important issue in this study.

Algorithm 1: Main scheme.
Input: D= (dij)n×n, cn, na;
/* Design structure matrix, core number, workloads of forward process */
Output: fl∗, S∗;
Task distribution phase:
/* Traverse the forward tree */ /* Traverse the backward tree */
1 For row p= 2 : 1 : na 1 For row p= (n−3) : −1 : na

1.1 If (Backward process finishes) 1.1 If (Forward process finishes)
cna= cn; cnb= cn;
Else Else
cna= cn/2; cnb= cn/2;

1.2 SetAp← Forward-process 1.2 SetBp← Backward-process
(D,SetAp−1,cna); (D,SetBp+1,cnb);

1 End for 1 End for

Result combination phase:
/* Switches to the single thread */
2 Connect all SAna in SetAna with corresponding SBna in SetBna,

and set fl = fvana+ fv
b
na;

3 Return the optimal sequence S∗ with the lowest feedback length F∗.

Main scheme
Algorithm 1 presents the main scheme of DDPBP. The whole procedure consists of a task
distribution phase (‘Task distribution phase’) and a result combination phase (‘Result
combination phase’). For a FLMP problem with n activities, assume that there are cn cores
available. Starting with a given parameter na, the algorithm sets the number of rows that
the forward process needs to explore as na, and sets the number of rows explored by the
backward process as (n−na). Then, the task distribution phase concurrently traverses the
forward and backward trees row by row, and applies the forward and backward process
to discard unpromising nodes (Step 1). Since na and (n−na) may be not equal, if both
processes are running, the algorithm distributes cores equally to two processes (cn/2 for
each); if one process ends earlier, the remaining process adaptively takes all the cores to
make a full use of computing resources (Step 1.1). After tree explorations finish, in the
result combination phase, each partial sequence SAna contained in SetAna is connected to
its corresponding sequence SBna in SetBna to construct the complete sequence. Finally,
the one with the minimum feedback length among all complete sequences is the global
optimum (Step 2–3).

Task distribution phase
The task distribution phase realizes the double decomposition of the FLMP problem.
The first decomposition is to concurrently schedule activities in forward and backward

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 11/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Cores

Cores 1 2 cna

Task
distribution

Node
pruning

Node
pruning

Node
pruning

1 2 cna

Result
compression

Result
compression

Result
compression

Result
restoration

Optimal results
from Row 1

Optimal results
in Row

Forward
process

Row p = na ?

Optimal results
from forward process

Process the next row
of the forward tree

Yes
No

SetAp-1{1} SetAp-1{2} SetAp-1{cna}

SetAp-1

SetT{1} SetT{2} SetT{cna}

SetAp

 Remaining nodes
Feedback values
Hash addresses

Figure 5 Forward process.
Full-size DOI: 10.7717/peerjcs.1597/fig-5

directions. The second decomposition is to distribute pruning tasks of each row to given
cores within forward and backward processes. We use the forward process as an example to
illustrate this idea, and the backward process follows the same procedure except exploring
the backward tree.

As shown in Fig. 5, the forward process consists of four components, including task
distribution, node pruning, result compression and result restoration. These components
work sequentially on each row until reaching row p= na.

Task distribution: Suppose that cna cores are available. The algorithm receives np−1
nodes stored in SetAp−1 from row p−1, and is about to explore row p. Then these nodes
are divided into cna equal parts, i.e., SetAp−1{i}(1≤ i≤ cna) with np−1/cna nodes, and
sends them to cna cores respectively. This procedure is single thread.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 12/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1597/fig-5
http://dx.doi.org/10.7717/peerj-cs.1597

Node pruning: As shown in Algorithm 2, in the forward process, assume that core i is
exploring row p and receives partial nodes stored in SetAp−1{i}. Step 1 adds a new activity to
the end of node SAp−1 to build child node SAp, and calculates fvap using recursive Eq. (9) (if
row p= 2, use Eq. (7) instead); Steps 3.1–3.2 locate the similar node of SAp at SetT {i}(ha)
and only save the node with lower fvap at this position, where SetT {i} is a temporary result
set for core i and ha is a unique hash address for each group of similar nodes (see in ‘Hash
strategy’). These steps repeat, until all the child nodes SAp are checked.

Result compression: The hash-address strategy is introduced to boost the efficiency of
searching similar nodes in SetT {i}. In ‘Hash strategy’, we propose hash functions to map
each group of similar nodes into a unique hash address ha. In order to support all possible
addresses, the size of SetT {i} is set as Cp

n , which equals to the total number of similar
node groups in row p. However, since a core only handles a partial task, it does not need
to use all the space of SetT {i}. In fact, the hash addresses appearing in a core are usually
discrete and irregular, such as {1,3,...,20,26}, which causes the final SetT {i} to be sparse.
Hence, in order to reduce communication cost, after node pruning finishes, the algorithm
extracts remaining nodes, corresponding fvap and hash addresses from SetT {i}, and sends
them to the next component, instead of transmitting the entire SetT {i} (detailed analysis
in ‘Effectiveness of result-compression strategy’).

Algorithm 2: Node pruning.
Input: D= (dij)n×n, SetAp−1{i};
/* Design structure matrix, Partial results from row p−1 */
Output: SetT {i};
1 Based on SetAp−1{i}, construct child nodes SAp for parent nodes SAp−1;
2 If (p= 2)

Calculate fvap for each SAp using Eq. 7;
Else
Calculate fvap for each SAp using Eq. 9;

3 While (There exists an unchecked SAp)
3.1 Select an unchecked SAp, and calculate hash address ha using Eq. 11;
3.2 If SetT {i}(ha) is empty

Save SAp and fvap at SetT {i}(ha);
Else
Compare fvap , and save the one with lower fvap at SetT {i}(ha);

3 End while
4 Return SetT {i}

Result restoration: After receiving nodes, fvap and hash addresses from multiple cores,
the whole process switches from multi threads to single thread. For the results from core
i, according to hash addresses ha, the algorithm assigns nodes and fvap to SetAp(ha), where
SetAp with the size of Cp

n , contains the optimal node among each group of similar nodes
in row p. If SetAp(ha) is not empty, the algorithm keeps the one with lower fvap in this

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 13/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

position, to further prune unpromising nodes. This procedure repeats until all results from
different cores are checked. Then, the algorithm is ready to explore row p+1.

Result combination phase
After the task distribution phase finishes, the algorithm connects the nodes SAna in SetAna

with the corresponding nodes SBna in SetBna to construct the complete activity sequences,
and calculate the total feedback length by fl = fvana+ fvbna, from which the sequence with
minimum total feedback length is the global optimum.

In addition, since identifying and searching the right SBna in SetBna for each SAna are
time-consuming, we introduce a hash strategy to improve the efficiency of the combination
phase. In ‘Hash strategy’, we propose a function Eq. (15) that can derive the hash address
of SBna from the hash address of SAna. Hence, when the algorithm receives a node SAna

with hash address haa from SetAna, the corresponding node SBna can be easily located at
position SetBna(hab).

Computational complexity
We first consider the task distribution phase. For a FLMP with n activities, we assign na and
n−na rows to forward and backward processes, respectively. Due to the parallel nature
of DDPBP, the computational complexity of the process that explores more rows can
represent the whole algorithm. Without loss of generality, we set na> n−na and take the
forward process as an example. For any row p(1< p≤ na), the number of nodes needed
to be processed is Cp−1

n ∗ (n−p+1). Hence, the complexity of exploring the forward tree
is O(

∑na
p=2C

p−1
n ∗ (n−p+1)), where Cp

n = n!/(p!∗ (n−p)!).
We now consider the result combination phase. At the beginning, there are Cna

n pairs
of nodes needed to be connected. With the help of hash address, DDPBP can locate and
connect right nodes directly. Hence the complexity of this phase is O(Cna

n).
In addition, due to the similar structure of search trees, the overall complexity

of DDPBP is quite close to the complexity of HAPBP (Shang et al., 2019), which is
O(

∑bn/2c
p=2 Cp−1

n ∗ (n− p+ 1)). However, double-decomposition framework allows the
proposed algorithm to applied more computational resources in the search process.

HASH STRATEGY
During the forward and backward processes, the algorithm needs to find the similar nodes
in SetT for each node of row p; however, the time complexity of determining whether two
nodes are similar is O(n2), and locating the similar nodes in SetT is O(|SetT |∗n2), in the
worst case. Hence, it is necessary to convert nodes into hash values, and perform hash value
comparison instead of node comparison to boost the efficiency.

Shang et al. (2019) applied the hash-address strategy in the HAPBP algorithm, which
transforms each group of similar nodes into a unique hash address in a result Set , by
using hash function ha=

∑
i∈SAp(SBp)2

i−1. HAPBP can find the similar nodes for any node
at Set (ha) directly. However, as shown in Fig. 6, this function allocates hash address for
all groups of similar nodes in the search tree, no matter which rows these nodes belong
to. In fact, the space complexity of this strategy is O(

∑bn/2c
p=2 Cp

n), which causes Set to

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 14/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

3

23

39

55

Figure 6 HAPBP’s hash strategy.
Full-size DOI: 10.7717/peerjcs.1597/fig-6

support all addresses along with corresponding storage spaces, and become extremely
space-consuming. It is difficult to maintain and transmit such a huge array in a parallel
framework.

This study presents a new hash strategy that only maps similar nodes within a row to a
consecutive hash address ha (1≤ ha≤Cp

n), which has a space complexity of O(Cbn/2cn) in
the worst case, and can significantly reduce space costs of SetT . For any node in row p:

SAp= (s1,s2,...,si,...,sj,...,sp)

We first reorder SAp as si < sj(1≤ i< j ≤ p), then encode it as a hash address by the
following hash functions:

ha= h(s1)+
p−1∑
i=2

h(si)+h(sp) (11)

h(s1)=


s1−1∑
t=1

Cp−1
n−t ,s1 6= 1

0, s1= 1

(12)

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 15/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1597/fig-6
http://dx.doi.org/10.7717/peerj-cs.1597

Figure 7 Numerical illustrations for the hash strategy.
Full-size DOI: 10.7717/peerjcs.1597/fig-7

h(si)=


si−1∑

t=si−1+1

Cp−i
n−t ,si−1+1 6= si

0, si−1+1= si

(13)

h(sp)= sp− sp−1 (14)

where ha is unique for each group of similar nodes in row p. Therefore, when reaching any
node SAp in row p, we can find its similar nodes at SetT (ha) and compare them directly.
We present an example {1,2,3,4,5} with n= 5,p= 3 to illustrate this idea.

As shown in Fig. 7, each group of similar nodes in row 3 is mapped to a unique
ha(1≤ ha≤ 10), and SetT only contains the information of row 3, which is quite space-
saving and easy to split among different cores. Similar nodes (marked in red) are first
reordered as (2,4,5), then Eq. (11) converts SA3 = (s1,s2,s3)= (2,4,5) into ha= 9 as
follows:

ha(2,4,5)= h(s1)+h(s2)+h(s3)=
2−1∑
t=1

C3−1
5−t +

4−1∑
t=2+1

C3−2
5−t +1=C2

4 +C
1
2 +1= 9

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 16/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1597/fig-7
http://dx.doi.org/10.7717/peerj-cs.1597

For SA3= (1,4,5), SA3= (1,2,4), we can achieve their ha as follows:

ha(1,4,5)= h(s1)+h(s2)+h(s3)= 0+
3∑

t=2

C1
5−t +1= 0+C1

3 +C
1
2 +1= 6

ha(1,2,4)= h(s1)+h(s2)+h(s3)= 0+0+ (4−2)= 2

Since Eq. (11) is performed frequently during the search process, we can calculate
combination number Cm

n before the search process starts. The algorithm just selects
appropriate values from a predefined array according to (m,n), instead of recalculating
Cm
n .
The hash strategy is also applied to accelerate the combination phase. For any node SAna

in SetAna with a hash address haa, the algorithm can use the following function to derive
the hash address hab of the corresponding node SBna in SetBna:

hab=Cna
n +1−haa (15)

For instance, suppose that n= 6,na= 3,SA3= (4,2,1) and SB3= (5,3,6). After resorted
two nodes, we can apply Eq. (11) to obtain ha(4,2,1)= 2 and ha(5,3,6)= 19. Based on Eq. (15),
we achieve that ha(5,3,6)=C3

6 +1−ha(4,2,1)= 21−2= 19. In other words, Eq. (15) holds.

COMPUTATIONAL EXPERIMENTS
This section reports computational experiments to evaluate the effectiveness of the DDPBP
algorithm. Specifically, we first describe the benchmark instances and the experimental
protocol. Then, we make comparisons between the proposed algorithm and state of the art
algorithms in literature.

Benchmark instances and experimental protocol
We use random DSM with various sizes and densities as benchmark instances. For each
DSM, the degree of information dependence (di,j) follows uniform distribution, and
the density level is the ratio of non zero elements. A DSM generator is introduced to
produce random instances (Qian & Lin, 2013), where the number of activities (n) is set as
{15,17,19,21,23,25,26,27}, and the density of DSM (den) is set as {0.1,0.2,0.4,0.6,0.8,1}.
For each pair of n and den, 10 instances are generated, leading to a total number of 480
instances used in the experiments.

The DDPBP algorithm is coded in MATLAB 2018 (MathWorks, Natick, MA, USA)
with the Parallel Computing Toolbox and runs under the recommended setting of
{cn= 8,na= 5} (‘Parameter analysis’). The algorithms for comparisons include: the
HAPBP algorithm from Shang et al. (2019), the branch and cut algorithm and the branch
and bound algorithm of the CPLEX and Gurobi solvers. All experiments are conducted on
a Lenovo laptop with a 2.90 GHz AMD Ryzen 7 processor (8 cores) and a 64 GB RAM.

Two kinds of experiments are conducted. The first one is the comparison between
DDPBP and state of the art exact algorithms (‘Comparisons of DDPBP with exact
algorithms’). We report the average times of obtaining the optimal solutions, and the

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 17/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

gap information of objective values. The two-tailed sign test is introduced to determine if
there exists statistical differences between the performances of two algorithms (Demšar,
2006; Shang et al., 2023). For each pairwise comparison with N tests, if one algorithm wins
at least CVN

0.05=N/2+1.96
√
N/2 times, then this algorithm performs significantly better

than the other one at the level of 0.05.
The second experiment compares DDPBP with two heuristic algorithms (‘Comparisons

of DDPBP with heuristic algorithms’), which aims to know whether these heuristic
algorithms can reach the global optimum compared to the optimal objective values
obtained by our DDPBP algorithm.

Comparisons of DDPBP with exact algorithms
This section presents detailed comparisons between the proposed DDPBP algorithm and
three representative exact algorithms, including: the HAPBP algorithm that is the best
dedicated algorithm for FLMP in the literature; the branch and cut based CPLEX 12.6
MILP solver and the branch and bound based Gurobi 10.1 MILP solver, which have been
widely applied in solving NP-hard problems, and have an exponential complexity. In
this experiment, the two general solvers are set to parallel mode to allow them to use
all available cores of the computer. For each pair of activity number n and density level
den, four compared algorithms solve 10 random instances. The average solving times and
objective value gaps are reported in Tables 2 and 3, respectively.

Table 2 presents the average solving times over these 10 instances for each FLMP setting,
where the mark ‘‘–’’ means that the algorithm can not obtain the optimal solutions for
this kind of instances within 1 h. The results indicate that DDPBP outperforms the other
three algorithms. Compared to HAPBP, the proposed algorithm spends less times for all
types of instances, and increases the scale of FLMP that the dedicated exact algorithm
can solve within 1 h from 25 activities to 27 activities. It confirms the effectiveness of
double-decomposition strategy, result-compression strategy and hash-address strategy. In
terms of general solvers, DDPBP performs significantly better than CPLEX and Gurobi
MILP solvers with 42 and 47 better results respectively, according to two-tailed sign test
(42,47>CV 48

0.05≈ 31). We observe that the general solvers usually perform better when
the density levels of DSM are very low. However, as the density level increases, the time
consumptions for problem solving increase rapidly. For example, for instances with 17
activities and {0.2,0.4,0.6} density levels, the average solving times of Gurobi are 23.43 s,
219.74 s and 2406.03 s, respectively. Meanwhile, the solving times of DDPBP are 0.62 s,
0.79 s and 0.55 s. This experiment demonstrates that the prune criterion are not affected
by density level, which makes DDPBP more stable and applicable for FLMP.

Table 3 shows the average gaps of objective values over 10 instances for each FLMP
setting. In this table, ‘‘opt ’’ represents the average optimal objective value obtained by
DDPBP, ‘‘o_gap’’ describes the average gap between the optimal objective value (opt) and
the objective value (obj) obtained by other algorithms ((obj−opt)/opt ∗ 100). ‘‘b_gap’’
represents the average gap between the objective value (obj) and the best bound (bou),
which is reported by the two general solvers ((obj− bou)/obj ∗ 100) and indicates the
convergence status when solvers stop. In addition, since DDPBP and HAPBP apply the

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 18/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Table 2 Comparison of average solving times (seconds).

n den DDPBP HAPBP CPLEX Gurobi n den DDPBP HAPBP CPLEX Gurobi

0.1 0.35 0.74 0.17 0.33 0.1 0.71 2.85 0.52 1.14
0.2 0.46 0.7 0.51 6.79 0.2 0.62 2.87 5.47 23.43
0.4 0.42 0.7 11.03 31.08 0.4 0.79 2.86 243.57 219.74
0.6 0.33 0.7 43.61 72.7 0.6 0.55 2.86 891.85 2406.03
0.8 0.45 0.69 264.59 498.71 0.8 0.61 2.85 – –

15

1 0.41 0.69 – 1620.88

17

1 0.8 2.85 – –
0.1 1.83 12.62 1.06 3.51 0.1 7.2 63.47 3.34 23.35
0.2 1.78 12.53 32.43 100.44 0.2 7.24 61.32 434.69 879.57
0.4 1.83 12.56 – 1711.97 0.4 7.26 60.14 – –
0.6 1.95 13.84 – – 0.6 7.68 58.47 – –
0.8 1.8 13.54 – – 0.8 8.34 61.29 – –

19

1 1.82 14.07 – –

21

1 9.25 61.49 – –
0.1 38.23 269.09 22.28 56.88 0.1 170.3 1142.31 378.89 213.19
0.2 33.05 270.1 – 1960.3 0.2 170.62 1128.52 – –
0.4 32.96 263.24 – – 0.4 164.91 1165.72 – –
0.6 38.28 267.82 – – 0.6 165.05 1181.56 – –
0.8 38.29 262.25 – – 0.8 143.71 1148.83 – –

23

1 38.27 264.77 – –

25

1 142.47 1150.88 – –
0.1 325.47 2135.33 492.75 1146.93 0.1 774.7 – 737.47 1856.91
0.2 303.63 2109.73 – – 0.2 716.97 – – –
0.4 297.27 2350.52 – – 0.4 785.23 – – –
0.6 298.39 2344.28 – – 0.6 682.64 – – –
0.8 296.15 2108.32 – – 0.8 713.73 – – –

26

1 338.44 2290.08 – –

27

1 683.88 – – –

Notes.
Best results are shown in bold.

breadth first strategy to traverse search trees, they cannot achieve feasible solutions until
the search finishes. Thus, in Table 3, DDPBP and HAPBP do not have column ‘‘ b_gap’’
and the resulting solution is the global optimum.

As shown in Table 3, HAPBP cannot achieve the optimal solution of FLMP with
27 activities in 1 h (marked by ‘‘–’’). As for the general solvers, CPLEX can obtain the
optimal solutions for 17 out of 48 kinds of instances (o_gap= 0), most of which have a
low activity number and low density. For example, for FLMP with 27 activities and 0.1
density level, CPLEX achieves the global optimum within 1 h. However, when the density
level increases to 0.2, the average gap between a feasible solution and the global optimum
is o_gap= 13.02%, and the average bound gap is b_gap= 58.40%, which is quite large.
On the other hand, the quality of feasible solutions obtained by Gurobi are much better.
In fact, some of them are actually the global optimum (o_gap= 0,b_gap 6= 0, 10 kinds
of instances), compared to the optimal results from DDPBP. However, it is difficult for
Gurobi to prove the global optimumwithin 1 h, since the corresponding bound gaps b_gap
are still very high.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 19/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Table 3 Comparison of average objective values.

n den DDPBP HAPBP CPLEX Gurobi n den DDPBP HAPBP CPLEX Gurobi

opt o_gap o_gap b_gap o_gap b_gap opt o_gap o_gap b_gap o_gap b_gap

0.1 1.40 0 0 0 0 0 0.1 3.00 0 0 0 0 0
0.2 12.75 0 0 0 0 0 0.2 21.45 0 0 0 0 0
0.4 50.99 0 0 0 0 0 0.4 77.23 0 0 0 0 0
0.6 99.37 0 0 0 0 0 0.6 145.63 0 0 0 0 0
0.8 147.61 0 0 0 0 0 0.8 232.24 0 0.34 25.45 0 38.58

15

1 210.82 0 3.07 22.43 0 0

17

1 317.70 0 7.68 46.10 0 47.83
0.1 3.41 0 0 0 0 0 0.1 6.30 0 0 0 0 0
0.2 32.86 0 0 0 0 0 0.2 42.47 0 0 0 0 0
0.4 117.96 0 2.60 35.37 0 0 0.4 151.13 0 3.22 35.33 0 56.56
0.6 214.97 0 5.53 43.13 0 50.63 0.6 290.55 0 7.46 45.63 0 70.96
0.8 321.96 0 13.49 43.03 0 64.85 0.8 450.37 0 9.07 55.25 8.03 76.21

19

1 450.20 0 2.32 39.79 0.36 65.52

21

1 615.38 0 12.56 59.77 0 76.20
0.1 10.59 0 0 0 0 0 0.1 12.88 0 0 0 0 0
0.2 58.11 0 9.03 28.45 0 0 0.2 80.89 0 37.81 49.02 8.83 65.86
0.4 204.75 0 5.13 50.25 1.21 70.61 0.4 290.13 0 1.75 68.20 3.23 74.35
0.6 407.99 0 2.00 61.89 0 86.51 0.6 522.72 0 0.05 62.12 2.88 79.74
0.8 577.35 0 3.92 66.72 0 79.52 0.8 773.15 0 1.97 70.43 1.72 80.28

23

1 817.92 0 4.82 76.28 0 80.56

25

1 1074.76 0 6.46 80.41 9.93 90.48
0.1 18.68 0 0 0 0 0 0.1 25.52 – 0 0 0 0
0.2 101.98 0 1.83 45.92 1.27 57.90 0.2 121.95 – 13.02 58.40 12.71 65.56
0.4 323.20 0 19.32 68.24 15.34 76.95 0.4 365.00 – 16.11 79.07 4.53 82.03
0.6 594.95 0 0.41 61.88 0.79 76.82 0.6 665.93 – 13.76 79.94 2.52 83.60
0.8 920.61 0 4.28 71.67 2.31 86.49 0.8 1011.61 – 3.46 80.40 1.18 86.82

26

1 1195.72 0 5.68 76.53 3.57 89.11

27

1 1327.83 – 1.25 72.58 11.98 90.71

Notes.
Best results are shown in bold.

Shang
etal.(2023),PeerJ

C
om

put.Sci.,D
O

I10.7717/peerj-cs.1597
20/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Comparisons of DDPBP with heuristic algorithms
Since DDPBP can provide the optimal solutions of FLMP with up to 27 activities, it
is worthwhile to use DDPBP as a benchmark to evaluate the performance of heuristic
approaches, especially to see if heuristic algorithms can obtain the global optimum. In this
section, we introduce two state-of-the art algorithms to solve the instances from Section
‘Benchmark instances and experimental protocol’. The first one is the insertion-based
heuristic algorithm(IBH) (Wen et al., 2021), which follows the local search framework
and apply multiple operators including activity insertion and activity block insertion.
The second algorithm is the multi-wave tabu search (MWTS) algorithm (Shang et al.,
2023), which alternates between a tabu-search based intensification phase and a hybrid
perturbation phase. The computational complexity of both algorithms is O(n2), which is
much lower thanO(

∑na
p=2C

p−1
n ∗(n−p+1)) of DDPBP.We implemented these algorithms

on the Matlab platform, and set the time limits as 6 min.
Table 4 reports the average gaps of the objective values obtained by these heuristic

algorithms and the optimal values from DDPBP. We observe that IBH actually reaches the
global optimum for 15 out of 48 kinds of instances (o_gap= 0), compared to the existing
optimal objective values (opt). However, as the number of activities in FLMP increases, it
is more difficult for IBH to achieve the optimal solutions. For example, for FLMP with 25
activities and 0.2 density level, the average gap between feasible solutions and the global
optimum is o_gap= 3.91%. For MWTS, it performs significantly better for obtaining the
optimal solutions of all instances, which confirms the strong intensification ability of tabu
search, and the necessity of applying a perturbation strategy for diversification in solving
FLMP. This experiment inspires us to apply tabu-search in the parallel exact algorithm to
efficiently generate good bound and cut search branches. On the other hand, decomposing
a complex problem into subproblems, then apply tabu search to solve them concurrently,
may lead to an effective heuristic framework for solving complex problems with large
scale.

ANALYSIS
This section provides systematic analyses for parameters and strategies applied in the
algorithm. We first conduct a sensitivity analysis to see if there exist significant differences
among different parameter settings. Then, to confirm the effectiveness of double-
decomposition strategy, result-compression strategy and hash-address strategy, DDPBP is
compared with three variants whose related components are removed.

Parameter analysis
The proposed algorithm is controlled by parameters cn and na. Parameter cn represents
the number of cores that are utilized by the algorithm, and the default value is 8 which is
the maximum number of available cores in our computer. Parameter na is the number of
rows explored by the forward process, and the recommended setting is 5, which is used to
adjust workloads of two processes.

The instances are set as {18,20,22,24} activities and {0.1,0.5,0.9} density level. The
ranges of cn and na are {2,4,6,8} and {3,5,7,9,11,13,15} respectively. For each parameter,

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 21/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Table 4 Comparison of DDPBP and heuristic algorithms.

n den DDPBP IBH MWTS n den DDPBP IBH MWTS

opt o_gap o_gap opt o_gap o_gap

0.1 1.40 0 0 0.1 3.00 0 0
0.2 12.75 0 0 0.2 21.45 6.20 0
0.4 50.99 0 0 0.4 77.23 2.59 0
0.6 99.37 0 0 0.6 145.63 0 0
0.8 147.61 0 0 0.8 232.24 0 0

15

1 210.82 0 0

17

1 317.70 0.32 0
0.1 3.41 34.83 0 0.1 6.30 16.62 0
0.2 32.86 0 0 0.2 42.47 0 0
0.4 117.96 0 0 0.4 151.13 0.80 0
0.6 214.97 0.41 0 0.6 290.55 1.40 0
0.8 321.96 0.62 0 0.8 450.37 0.14 0

19

1 450.20 0.25 0

21

1 615.38 0.28 0
0.1 10.59 12.57 0 0.1 12.88 11.45 0
0.2 58.11 2.06 0 0.2 80.89 3.91 0
0.4 204.75 2.04 0 0.4 290.13 3.45 0
0.6 407.99 0 0 0.6 522.72 0 0
0.8 577.35 0.98 0 0.8 773.15 0.38 0

23

1 817.92 0 0

25

1 1074.76 0.45 0
0.1 18.68 13.22 0 0.1 25.52 11.41 0
0.2 101.98 2.88 0 0.2 121.95 1.83 0
0.4 323.20 1.18 0 0.4 365.00 0.75 0
0.6 594.95 1.88 0 0.6 665.93 0.89 0
0.8 920.61 0.37 0 0.8 1011.61 0.37 0

26

1 1195.72 0.35 0

27

1 1327.83 0.28 0

Notes.
Best results are shown in bold.

we change the value within a range, while keeping the other parameter constant, and
perform DDPBP to solve one random instance for each FLMP setting. In addition, we
use the Friedman test to determine if there exist statistical differences among different
parameter settings.

Table 5 indicates that the setting of cn= 8 leads to less time consumptions for all
instances. For example, for FLMP with 24 activities and 0.9 density level, the solving times
under 2 and 8 cores are 151 s and 68.39 s, respectively. In addition, the Friedman test shows
that changing the number of applied cores leads to significant differences on algorithm
performances with p-value of 2.29e−07, which confirms the necessity of utilizing all the
computing resources for solving FLMP. Meanwhile, from Table 6, we observe that DDPBP
performs marginally better when na= 5, and the p-values of varying na is 0.92, which
means that changing the workloads of forward and backward processes does not impact
much the performance of the algorithm.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 22/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Table 5 Solving time (seconds) under different cn.

n den cn n den cn

2 4 6 8 2 4 6 8

0.1 1.98 1.2 1.06 1 0.1 33.83 20.47 17.15 16.04
0.5 1.8 1.12 1.38 0.93 0.5 33.82 20.12 17.45 16.0718

0.9 1.8 1.12 1.07 1

22

0.9 33.83 20.4 16.93 15.32
0.1 7.73 4.56 3.82 3.57 0.1 152.67 92.68 76.53 72.34
0.5 7.6 4.86 4.08 4.19 0.5 152.13 91.55 76.28 69.320

0.9 7.56 4.99 3.95 3.66

24

0.9 151 90.99 75.7 68.39

Notes.
Best results are shown in bold.

Table 6 Solving time (seconds) under different na.

n den na

3 5 7 9 11 13 15

0.1 1.27 1.18 1.3 1.67 1.22 1.44 1.75
0.5 1.29 1.45 1.21 1.23 1.83 1.46 1.5318

0.9 1.52 1.8 1.59 1.35 1.36 1.4 1.91
0.1 5.62 5.54 5.57 5.87 4.87 4.75 4.8
0.5 4.86 4.8 4.85 4.9 4.77 4.92 5.0720

0.9 4.95 4.89 4.93 5.51 5.6 5.52 5.51
0.1 22.35 21.77 23.94 22.16 21.94 21.77 21.79
0.5 21.76 21.63 21.54 21.91 22 22.28 21.822

0.9 21.87 21.66 22.34 21.78 21.79 22.11 22.02
0.1 100.87 102.68 102.44 101.59 103.44 101.08 100.32
0.5 102.16 99.11 98.81 99.9 98.54 98.46 99.2224

0.9 99.35 98.78 99.13 99.15 98.47 100.28 101.59

Notes.
Best results are shown in bold.

Strategy analysis
In order to confirm the validity of important strategies employed by the proposed algorithm,
we produce three variants for comparisons, including: DDPBP-DDS that only uses the
first decomposition, DDPBP-RCS without result-compression and DDPBP-HAS whose
hash-address strategy related components have been removed. The addition experiments
follow the same experimental protocol as Section ‘Benchmark instances and experimental
protocol’.

Effectiveness of double-decomposition strategy
The double-decomposition strategy allows DDPBP to make full use of available computing
resources. To evaluate the rationality, we create a variant DDPBP-DDS, where the second
decomposition has been disabled. Hence, this variant only deploys the forward and
backward processes on two cores to explore the search tree.

Table 7 presents the solving times obtain by two algorithms. The results show that
DDPBP performs significantly better than its variant for all instances (12>CV 12

0.05≈ 9).

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 23/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Table 7 Solving time (seconds) obtained by DDPBP and DDPBP-DDS.

n den Solving time n den Solving time

DDPBP DDPBP-DDS DDPBP DDPBP-DDS

0.1 1.25 2.84 0.1 3.79 12.98
0.5 1.11 3.08 0.5 3.65 13.6918

0.9 1.03 2.95

20

0.9 3.68 12.55
0.1 16.83 61.77 0.1 87.16 316.72
0.5 16.6 62.77 0.5 78.1 260.1522

0.9 20.46 66.83

24

0.9 68.04 227.57

Notes.
Best results are shown in bold.

Specifically, the average gap of solving time (avg (Variant−DDPBP)/Variant) is 69.02%.
To conclude, this experiment confirms that the proposed DDPBP algorithm is enhanced
by the double-decomposition strategy.

Effectiveness of result-compression strategy
The result-compression strategy is designed for reduce the communication cost when each
core finishes tasks and transmits results. To assess the role of this strategy, we produce
a variant DDPBP-RCS, where the cores send the resulting SetT {i} directly, instead of
transmitting extracted information. In Table 8, column ‘‘Row 3–9’’ shows the total amount
of data transmission when two algorithms are about to end the explorations for rows 3, 7
and 9 of the search trees, and column ‘‘Time’’ presents the corresponding solving time for
each instance. It should be noted that the density level does not affect the size of SetT {i}
or the amount of extracted information, hence the amount of data transmission maintains
for instances with the same number of activities.

From Table 8, we observe that for all instances, DDPBP obtain the optimal solution with
less time and transmission costs (12>CV 12

0.05≈ 9). For example, for the instance with 22
activities and 0.5 density level, DDPBP spends 16.17 s to reach the optimum, and transfers
70.99MB data when finishing the exploration of Row 7, while the experimental results of
the variant are 23.19 s and 239.46 MB. In general, the average gap of data amount and
solving time are 62.46% and 22.18%, respectively. One reason for this result is that the
result-compression strategy only delivers the key information of a sparse SetT {i} within
each core, which reduces the amount of data transmission, and thus improves the efficiency
of the parallel framework.

Effectiveness of hash-address strategy
The hash-address strategy is introduced to accelerate the process of locating similar nodes
in SetT {i} during the forward and backward processes. To evaluate the impact of this
strategy, we create a variant DDPBP-HAS, which identifies whether two nodes are similar
by comparing activities within nodes. Hence, in order to find similar nodes, the variant
must check all the nodes stored in SetT {i}.

Table 9 shows that DDPBP significantly outperforms its variant for spending much less
time on all instances (12>CV 12

0.05≈ 9). For example, for the instance with 17 activities

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 24/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Table 8 Data transmission amount (MB) and solving time (seconds) obtained by DDPBP and
DDPBP-RCS.

n den DDPBP n den DDPBP-RCS

Row 5 Row 7 Row 9 Time Row 5 Row 7 Row 9 Time

0.1 1.3 0.1 1.35
0.5 1.02 0.5 1.2918

0.9

0.49 12.04 20.42

1.06

18

0.9

0.98 36.95 56.42

1.2
0.1 3.54 0.1 4.91
0.5 3.98 0.5 5.3720

0.9

0.74 31.65 72.56

3.88

20

0.9

1.49 99.41 215.33

4.91
0.1 16.16 0.1 22.16
0.5 16.17 0.5 23.1922

0.9

1.05 70.99 218.53

16.83

22

0.9

2.19 239.46 698.33

22.85
0.1 71.72 0.1 96.5
0.5 77.95 0.5 94.2624

0.9

1.47 153.86 627.04

68.16

24

0.9

3.12 528.16 1995.14

95.25

Notes.
Best results are shown in bold.

Table 9 Solving time (seconds) obtained by DDPBP and DDPBP-HAS.

n den Solving time n den Solving time

DDPBP DDPBP-HAS DDPBP DDPBP-HAS

0.1 0.38 11.77 0.1 0.48 34.5
0.5 0.32 11.24 0.5 0.39 33.8914

0.9 0.57 11.24

15

0.9 0.32 32.8
0.1 0.47 118.24 0.1 0.71 460.71
0.5 0.82 123.97 0.5 0.72 476.3316

0.9 0.46 116.05

17

0.9 0.91 464.87

Notes.
Best results are shown in bold.

and 0.5 density level, the solving times of DDPBP and its variant are 0.72 s and 476.33 s
respectively. In general, the average gap of solving time is 98.61%, and as the number of
activities increases, the solving times of the variant increase rapidly. This experiment proves
the necessity of hash-address strategy for the proposed algorithm.

CONCLUSIONS
Minimizing the total feedback length is an effective objective to optimize development
projects. In this study, we presented an efficient double-decomposition based parallel
branch-and-prune algorithm, to obtain the optimal activity sequence of FLMP. The
proposed algorithm divides FLMP into several subproblems through an original double-
decomposition strategy, then employs multiple CPU cores to solve them concurrently. In
addition, we proposed a result-compression strategy to reduce communication costs
in parallel process, and a hash-address strategy to boost the efficiency of sequence
comparisons.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 25/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

Figure A1 Three feedback types.
Full-size DOI: 10.7717/peerjcs.1597/fig-8

Computational experiments indicate that the proposed algorithm is able to increase
the scale of FLMP that exact algorithms can solve within 1 h to 27 activities, and clearly
outperforms the best exact algorithms in literature. Furthermore, additional experiments
show the effects of two parameters on algorithm performances, and confirm the advantage
of the double-decomposition strategy, the importance of the result-compression strategy
and the hash-address strategy.

Some strategies applied in this study are general and could be introduced to solve other
sorting problems. For example, the double-decomposition strategy first divides a sorting
problem into forward and backward subproblems, then further decomposes them into
several sorting tasks, which can significantly reduce the complexity of sorting problems.
Furthermore, the hash-address strategy maps similar sequences into a unique value, which
can be used to compare and search sequences.

ACKNOWLEDGEMENTS
We are grateful to the PeerJ editors and anonymous reviewers for their helpful comments
and suggestions.

APPENDIX
As shown in Fig. A1, when sequence S= (s1,s2,...,sp,sp+1,...,sn) is split by position p, all
feedbacks are divided into three types.
Type A: Feedbacks between activities in region Ap, such as the feedback from activity sp to
s1. The total feedback length flap is as follows:

flap=
p−1∑
h=1

p∑
k=h+1

dshsk (k−h) (16)

Equation(16) is the first item of Eq. (7), which means that flap is a part of feedback value
fvap in Ap. Since flap is only related to Ap, changing the subsequence in Bp can not affect its
value.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 26/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1597/fig-8
http://dx.doi.org/10.7717/peerj-cs.1597

Figure A2 Further decomposition of type C feedbacks.
Full-size DOI: 10.7717/peerjcs.1597/fig-9

Type B: Feedbacks between activities in region Bp, such as the feedback from activity sn
to sp+1. The total feedback length flbp is as follows:

flbp=
n−1∑

h=p+1

n∑
k=h+1

dshsk (k−h) (17)

Equation (17) is the first item of Eq. (8), which means that flbp is a part of feedback value
fvbp in Bp. Since flbp is only related to Bp, changing the subsequence in Ap can not affect its
value.

Type C: Feedbacks from region Bp to Ap, such as the feedback from activity sn−1 to s2.
The total feedback length flcp is as follows:

flcp=
p∑

h=1

n∑
k=p+1

dshsk (k−h) (18)

Since type C feedback spans two regions, changing subsequences in Ap or Bp can
affect flcp , which means that this type of feedback is not independent of any regions.
Apparently, the total feedback length of FLMP consists of three types of feedback length,
i.e., fl = flap+ fl

b
p+ fl

c
p .

In Fig. A2, assume that subsequences SAp and SBp are fixed. Without loss of any
generality, set activities sh= i and sk = j, hence the feedback between activities i and j is
type C, and its length l = k−h. Further, we divide l into la= (p+1)−h and lb= k−(p+1).

If we fix activity i at position h, and move activity j to any position in region Bp, la
remains unchanged, which means that la is not affected by the subsequence in Bp. The
same is true for lb. Then, we divide flcp into feedback values fvcap and fvcbp , which are only
related to Ap and Bp, respectively.

fvcap =
p∑

h=1

n∑
k=p+1

dshsk (p+1−h) (19)

fvcbp =
p∑

h=1

n∑
k=p+1

dshsk (k−p−1) (20)

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 27/31

https://peerj.com
https://doi.org/10.7717/peerjcs.1597/fig-9
http://dx.doi.org/10.7717/peerj-cs.1597

Eqs. (19) and (20) are the second items of Eqs. (7) and (8). We have flcp = fvcap + fv
cb
p , and

the following equation:

fl = flap+ fl
b
p+ fl

c
p= (flap+ fv

ca
p)+ (fl

b
p+ fv

cb
p)= fvap+ fv

b
p (21)

According to Eq. (21), fvap = flap+ fv
ca
p and fvbp = flbp+ fv

cb
p are only related to Ap and Bp,

respectively. In other words, Property 1 and 2 hold.

ADDITIONAL INFORMATION AND DECLARATIONS
Funding
This work was supported by the Natural Science Basic Research Program of Shaanxi
(No. 2023-JC-QN-0793, 2022JM-423), the Special Foundation for Philosophy and Social
Science Research of Shaanxi (No. 2023QN0036), Scientific Research Plan Project of Shaanxi
Provincial Department of Education (21JP007), the Fundamental Research Funds for the
Central Universities (No. 300102231656, No. 300102233612). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Natural Science Basic Research Program of Shaanxi: No. 2023-JC-QN-0793, 2022JM-
423.
The Special Foundation for Philosophy and Social Science Research of Shaanxi: No.
2023QN0036.
Scientific Research Plan Project of Shaanxi Provincial Department of Education: 21JP007.
The Fundamental Research Funds for the Central Universities: No. 300102231656, No.
300102233612.

Competing Interests
Jin-Kao Hao is an Academic Editor for PeerJ.

Author Contributions
• Zhen Shang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Jin-Kao Hao conceived and designed the experiments, performed the computation
work, authored or reviewed drafts of the article, and approved the final draft.
• Fei Ma conceived and designed the experiments, performed the experiments, analyzed
the data, authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The FLMP instances and the corresponding optimal solutions, and the DDPBP source
code are available on GitHub and Zenodo:

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 28/31

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1597

- https://github.com/SZ-CHD/DDPBP-code-and-FLMP-instances/tree/v1.0.0.
- SZ-CHD. (2023). SZ-CHD/DDPBP-code-and-FLMP-instances: The source code of

DDPBP algorithm and FLMP instances. (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.
8299828.

REFERENCES
AbdelsalamHM, Bao HP. 2007. Re-sequencing of design processes with activity stochas-

tic time and cost: an optimization-simulation approach. Journal of Mechanical Design
129(2):150–157 DOI 10.1115/1.2216730.

Altus SS, Kroo IM, Gage PJ. 1995. A genetic algorithm for scheduling and decomposition
of multidisciplinary design problems. In: International design engineering technical
conferences and computers and information in engineering conference, vol. 17162. New
York: American Society of Mechanical Engineers, 157–164.

Attari-Shendi M, Saidi-MehrabadM, Gheidar-Kheljani J. 2019. A comprehensive
mathematical model for sequencing interrelated activities in complex product de-
velopment projects. IEEE Transactions on Engineering Management 69(6):2619–2633.

Bashir H, Ojiako U, Marshall A, ChipuluM, Yousif AA. 2022. The analysis of infor-
mation flow interdependencies within projects. Production Planning & Control
33(1):20–36 DOI 10.1080/09537287.2020.1821115.

Benkhider N, Kherbachi S. 2020.Modeling agile organization under scrum approach
and coordination. In: DS 103: proceedings of the 22nd international DSM conference
(DSM 2020), MIT, Cambridge, Massachusetts, October 13th–15th 2020. 1–9.

Browning TR. 2015. Design structure matrix extensions and innovations: a survey and
new opportunities. IEEE Transactions on Engineering Management 63(1):27–52.

Chen L, Li S. 2005. Analysis of decomposability and complexity for design problems
in the context of decomposition. Journal of Mechanical Design 127(4):545–557
DOI 10.1115/1.1897405.

Demšar J. 2006. Statistical comparisons of classifiers over multiple data sets. The Journal
of Machine Learning Research 7:1–30.

Gheidar-kheljani J. 2022. A model for minimizing feedback-length between activities of
a project. Journal of Engineering Research 10(2A):230–241.

Haller M, LuW, Stehn L, Jansson G. 2015. An indicator for superfluous iteration in
offsite building design processes. Architectural Engineering and Design Management
11(5):360–375 DOI 10.1080/17452007.2014.937793.

Khanmirza E, Haghbeigi M, Yazdanjue N. 2021. Enhanced genetic and imperialist
competitive based algorithms for reducing design feedbacks in the design structure
matrix. IEEE Transactions on Engineering Management 1–15.

Lancaster J, Cheng K. 2008. A fitness differential adaptive parameter controlled evo-
lutionary algorithm with application to the design structure matrix. International
Journal of Production Research 46(18):5043–5057 DOI 10.1080/00207540701324176.

Lin J, HuangW, Qian Y, Zhao X. 2018. Scheduling interrelated activities using insertion-
based heuristics. IEEE Transactions on Engineering Management 65(1):113–127.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 29/31

https://peerj.com
https://github.com/SZ-CHD/DDPBP-code-and-FLMP-instances/tree/v1.0.0
https://doi.org/10.5281/zenodo.8299828
https://doi.org/10.5281/zenodo.8299828
http://dx.doi.org/10.1115/1.2216730
http://dx.doi.org/10.1080/09537287.2020.1821115
http://dx.doi.org/10.1115/1.1897405
http://dx.doi.org/10.1080/17452007.2014.937793
http://dx.doi.org/10.1080/00207540701324176
http://dx.doi.org/10.7717/peerj-cs.1597

Lin J, Qian Y, CuiW, Goh TN. 2015. An effective approach for scheduling coupled
activities in development projects. European Journal of Operational Research
243(1):97–108 DOI 10.1016/j.ejor.2014.11.019.

Lin J, Qian Y, Yassine AA, CuiW. 2012. A fuzzy approach for sequencing interrelated
activities in a DSM. International Journal of Production Research 50(23):7012–7025
DOI 10.1080/00207543.2011.648779.

Meier C, Yassine AA, Browning TR. 2007. Design process sequencing with com-
petent genetic algorithms. Journal of Mechanical Design 129(6):566–585
DOI 10.1115/1.2717224.

Meier C, Yassine AA, Browning TR,Walter U. 2016. Optimizing time—cost trade-offs
in product development projects with a multi-objective evolutionary algorithm.
Research in Engineering Design 27:347–366 DOI 10.1007/s00163-016-0222-7.

Mitchell R, Frank E, Holmes G. 2022. GPUTreeShap: massively parallel exact cal-
culation of SHAP scores for tree ensembles. PeerJ Computer Science 8:e880
DOI 10.7717/peerj-cs.880.

Mohammadi M, Sajadi SM, Tavakoli MM. 2014. Scheduling new product de-
velopment projects using simulation-based dependency structure matrix.
International Journal of Logistics Systems and Management 19(3):311–328
DOI 10.1504/IJLSM.2014.065499.

Nonsiri S, Christophe F, Coataneé E, Mokammel F. 2014. A combined design structure
matrix (DSM) and discrete differential evolution (DDE) approach for scheduling
and organizing system development tasks modelled using SysML. Journal of
Integrated Design and Process Science 18(3):19–40 DOI 10.3233/jid-2014-0013.

Peykani P, Gheidar-Kheljani J, Shahabadi S, Ghodsypour SH, Nouri M. 2023.
A two-phase resource-constrained project scheduling approach for design
and development of complex product systems. Operational Research 23(1):17
DOI 10.1007/s12351-023-00750-4.

Qian Y, Lin J. 2013. Organizing interrelated activities in complex product development.
IEEE Transactions on Engineering Management 61(2):298–309.

Qian Y, Lin J, Goh TN, Xie M. 2011. A novel approach to DSM-based activity se-
quencing problem. IEEE Transactions on Engineering Management 58(4):688–705
DOI 10.1109/TEM.2011.2107558.

Qian Y, Yang D. 2014. Applying the DSM to design project scheduling: a case study.
In: Proceedings of the 18th international symposium on advancement of construction
management and real estate. Springer, 433–439.

Shang Z, Hao J-K, Zhao S,Wang Y, Ma F. 2023.Multi-wave tabu search for the boolean
quadratic programming problem with generalized upper bound constraints.
Computers & Operations Research 150:106077 DOI 10.1016/j.cor.2022.106077.

Shang Z, Zhao S, Qian Y, Lin J. 2019. Exact algorithms for the feedback length min-
imisation problem. International Journal of Production Research 57(2):544–559
DOI 10.1080/00207543.2018.1456697.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 30/31

https://peerj.com
http://dx.doi.org/10.1016/j.ejor.2014.11.019
http://dx.doi.org/10.1080/00207543.2011.648779
http://dx.doi.org/10.1115/1.2717224
http://dx.doi.org/10.1007/s00163-016-0222-7
http://dx.doi.org/10.7717/peerj-cs.880
http://dx.doi.org/10.1504/IJLSM.2014.065499
http://dx.doi.org/10.3233/jid-2014-0013
http://dx.doi.org/10.1007/s12351-023-00750-4
http://dx.doi.org/10.1109/TEM.2011.2107558
http://dx.doi.org/10.1016/j.cor.2022.106077
http://dx.doi.org/10.1080/00207543.2018.1456697
http://dx.doi.org/10.7717/peerj-cs.1597

Shobaki G, Jamal J. 2015. An exact algorithm for the sequential ordering problem
and its application to switching energy minimization in compilers. Computational
Optimization and Applications 61:343–372 DOI 10.1007/s10589-015-9725-9.

Todd DS. 1997.Multiple criteria genetic algorithms in engineering design and operation.
PhD thesis, University of Newcastle Upon Tyne, Newcastle Upon Tyne, UK.

Tsai C-W, Chen Y-P, Tang T-C, Luo Y-C. 2021. An efficient parallel machine learning-
based blockchain framework. Ict Express 7(3):300–307 DOI 10.1016/j.icte.2021.08.014.

Wang J, Joshi G. 2021. Cooperative sgd: a unified framework for the design and
analysis of local-update sgd algorithms. The Journal of Machine Learning Research
22(1):9709–9758.

WenM, Lin J, Qian Y, HuangW. 2021. Scheduling interrelated activities in complex
projects under high-order rework: a DSM-based approach. Computers & Operations
Research 130:105246 DOI 10.1016/j.cor.2021.105246.

WynnDC, Eckert CM. 2017. Perspectives on iteration in design and development.
Research in Engineering Design 28:153–184 DOI 10.1007/s00163-016-0226-3.

Shang et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1597 31/31

https://peerj.com
http://dx.doi.org/10.1007/s10589-015-9725-9
http://dx.doi.org/10.1016/j.icte.2021.08.014
http://dx.doi.org/10.1016/j.cor.2021.105246
http://dx.doi.org/10.1007/s00163-016-0226-3
http://dx.doi.org/10.7717/peerj-cs.1597

