
DAFuzz: data-aware fuzzing of in-memory data stores
Yingpei Zeng Corresp., 1 , Fengming Zhu 1 , Siyi Zhang 1 , Yu Yang 1 , Siyu Yi 1 , Yufan Pan 1 , Guojie Xie 2 , Ting Wu 3

1 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China
2 Zhejiang Key Laboratory of Open Data, Hangzhou, China
3 Hangzhou Innovation Institute, Beihang University, Hangzhou, China

Corresponding Author: Yingpei Zeng
Email address: yzeng@hdu.edu.cn

Fuzzing has become an important method for finding vulnerabilities in software. For
fuzzing programs expecting structural inputs, syntactic- and semantic-aware fuzzing
approaches have been particularly proposed. However, they still cannot fuzz in-memory
data stores sufficiently, since some code paths are only executed when the required data
are available. In this paper, we propose a Data-Aware Fuzzing method, DAFuzz, which is
designed by considering the data used during fuzzing. Specifically, to ensure different
data-sensitive code paths are exercised, DAFuzz first loads different kinds of data into the
stores before feeding fuzzing inputs. Then, when generating inputs, DAFuzz ensures the
generated inputs are not only syntactically and semantically valid but also use the data
correctly. We implement a prototype of DAFuzz based on Superion and use it to fuzz Redis
and Memcached. Experiments show that DAFuzz covers 13%~95% more edges than AFL,
Superion, AFL++, and AFLNet, and discovers vulnerabilities over 2.7x faster. In total, we
discovered 4 new vulnerabilities in Redis and Memcached. All the vulnerabilities were
reported to developers and have been acknowledged and fixed.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

DAFuzz: Data-aware Fuzzing of In-Memory1

Data Stores2

Yingpei Zeng1, Fengming Zhu1, Siyi Zhang1, Yu Yang1, Siyu Yi1, Yufan3

Pan1, Guojie Xie2, and Ting Wu3
4

1School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China5

2Zhejiang Key Laboratory of Open Data, Hangzhou, China6

3Hangzhou Innovation Institute, Beihang University, Hangzhou, China7

Corresponding author:8

Yingpei Zeng1
9

Email address: yzeng@hdu.edu.cn10

ABSTRACT11

Fuzzing has become an important method for finding vulnerabilities in software. For fuzzing programs

expecting structural inputs, syntactic- and semantic-aware fuzzing approaches have been particularly

proposed. However, they still cannot fuzz in-memory data stores sufficiently, since some code paths are

only executed when the required data are available. In this paper, we propose a Data-Aware Fuzzing

method, DAFuzz, which is designed by considering the data used during fuzzing. Specifically, to ensure

different data-sensitive code paths are exercised, DAFuzz first loads different kinds of data into the stores

before feeding fuzzing inputs. Then, when generating inputs, DAFuzz ensures the generated inputs are

not only syntactically and semantically valid but also use the data correctly. We implement a prototype of

DAFuzz based on Superion and use it to fuzz Redis and Memcached. Experiments show that DAFuzz

covers 13%∼95% more edges than AFL, Superion, AFL++, and AFLNET, and discovers vulnerabilities

over 2.7× faster. In total, we discovered four new vulnerabilities in Redis and Memcached. All the

vulnerabilities were reported to developers and have been acknowledged and fixed.

12

13

14

15

16

17

18

19

20

21

22

23

INTRODUCTION24

Fuzzing has become an important way to find vulnerabilities in software (Manes et al., 2019; Zhu et al.,25

2022), and coverage-guided fuzzing (CGF) (Zalewski, 2017; Böhme et al., 2016) is one of the most26

popular fuzzing technologies, since it could gradually explore the state space of the program under test27

(PUT) even if only several initial seeds are given. This is because when it mutates seeds to create new28

inputs, it traces the coverage information of the new inputs, and adds the inputs into the seed pool as29

new seeds if the inputs have new code coverage. CGF fuzzers (e.g., AFL (Zalewski, 2017), honggfuzz30

(Hon, 2023), libFuzzer (lib, 2023), and AFL++ (Fioraldi et al., 2020)) are the main fuzzers used in the31

famous OSS-Fuzz project (Google Security Team, 2018), which has discovered over 8,900 vulnerabilities32

and 28,000 bugs across 850 open-source projects by February 2023 1. CGF fuzzers have also been used33

to discover vulnerabilities in other fields including operation systems (Google, 2015; Pan et al., 2021),34

network protocols (Pham et al., 2020; Ba et al., 2022), as well as Internet of Things (IoT) (Zheng et al.,35

2019; Zeng et al., 2020).36

It is known to be difficult for CGF fuzzers to fuzz programs expecting structural inputs because it is37

hard to get syntactically and semantically valid inputs through seed mutation (Wang et al., 2019). For38

instance, common mutation operations like bit flipping and byte modification (Zalewski, 2017; Fioraldi39

et al., 2020) can often corrupt the original format of an input. To tackle the problem, grammar-aware CGF40

fuzzers that understand the grammar (syntax and semantics) of inputs have been proposed recently (Wang41

et al., 2019; Han et al., 2019; Padhye et al., 2019; Park et al., 2020; He et al., 2021; Liang et al., 2022).42

They usually consider syntactic and semantic constraints when creating new inputs, and then the created43

new inputs could pass the corresponding syntax and semantics checks in the code. For instance, when44

1https://github.com/google/oss-fuzz

PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Syntax aware

Semantics aware

Data aware

e.g., correct
formats

e.g., defined
variables

e.g., with
required data

Figure 1. DAFuzz considers the syntax, semantics, and data (which is a newly proposed factor) at the

same time in fuzzing.

fuzzing JavaScript engines, Superion (Wang et al., 2019) guarantees the generation of syntactically valid45

JavaScript inputs, such as ensuring that brackets always exist in pairs. Additionally, SoFi (He et al., 2021)46

can further ensure the creation of semantically valid JavaScript inputs, such as ensuring variables are47

defined before they are used.48

In-memory data stores like Redis are widely used in thousands of companies like Twitter and49

Snapchat 2, since they provide very efficient and convenient access to data. It is crucial to uncover any50

vulnerabilities in them in a timely manner. However, when applying CGF fuzzers to fuzz in-memory data51

stores, merely considering the syntactic and semantic validity of the inputs is insufficient. In-memory data52

stores usually use different commands with defined parameter formats to access the data, and may use53

serialization protocols for communicating between their clients and servers. However, even if commands54

are sent in syntactically and semantically format, some code paths may not be executed when the required55

data are not available. This is because the statuses of the data directly control how commands are56

processed and which code paths are executed. For example, the processing of command “RPOP key” in57

Redis may execute a quick-exit code path and return an empty array when the list key is empty, and may58

execute a popping data code path and return the last element of the list only when the list key is not empty.59

In this paper, we propose DAFuzz, a data-aware fuzzing method for in-memory data stores that60

considers data requirements in addition to syntactic and semantic validity in fuzzing, as shown in Figure 1.61

We also compare DAFuzz with other typical CGF fuzzers in Table 1. Although general CGF fuzzers like62

AFL (Zalewski, 2017) and AFL++ (Fioraldi et al., 2020) can be applied to fuzz in-memory data stores,63

they are not grammar-aware. AFLNET (Pham et al., 2020) and Superion (Wang et al., 2019) are partially64

or fully syntax-aware but not semantics-aware. Other fuzzers like SoFi (He et al., 2021), Squirrel (Zhong65

et al., 2020), and SQLRight (Liang et al., 2022) are both syntax-aware and semantics-aware, but they66

are specifically designed for and limited to fuzzing JavaScript engines or SQL databases. Also, all these67

fuzzers are not data-ware. In contrast, DAFuzz proposed in this paper is syntax-aware, semantics-aware,68

and data-aware, and is designed for fuzzing in-memory data stores. Specifically, firstly, DAFuzz designs69

a data construction algorithm to generate a special data set that is used to satisfy the requirements of70

different code paths. Then, DAFuzz generates inputs according to the data set, as well as the grammar71

of commands. Finally, DAFuzz also uses syntax-aware mutation to improve mutation efficiency. We72

implement a prototype of DAFuzz based on Superion and test DAFuzz with two popular in-memory data73

stores Redis and Memcached. The experiments show that DAFuzz could find 13%∼95% more edges74

than AFL, Superion, AFL++, and AFLNET in 24 hours, and discover the same number of edges at least75

26×, 21×, 19×, and 288× faster than AFL, Superion, AFL++, and AFLNET, respectively. In addition,76

DAFuzz discovers the same vulnerabilities as other fuzzers but discovers them at least 2.7× faster. All77

four discovered vulnerabilities (three in Redis and one in Memcached), including three segmentation78

violations and one stack buffer overflow (more details in the “Vulnerabilities Discovered” section), were79

reported to the developers and have been acknowledged and addressed in new releases.80

In summary, this paper contains the following contributions.81

• We propose the first data-aware fuzzing method for reaching code paths that are executed only82

when the required data are available.83

• We design an algorithm to construct a data set to load for fuzzing, and an algorithm to generate84

fuzzing inputs that use the required data and are syntactically and semantically valid as well.85

• We implement a prototype of DAFuzz based on Superion, and compare DAFuzz with other86

state-of-the-art fuzzers including AFL, Superion, AFL++, and AFLNET using two popular in-87

2https://redis.io/docs/about/users/

2/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Table 1. Conceptual comparison of typical CGF fuzzers.

Fuzzer Syntax-aware Semantics-aware Data-aware Applied to in-memory

data stores

AFL (Zalewski, 2017), AFL++

(Fioraldi et al., 2020)

No No No Yes

AFLNET (Pham et al., 2020) Partial No No Yes

Superion (Wang et al., 2019) Yes No No Yes

SoFi (He et al., 2021) Yes Yes No No (JavaScript engine only)

Squirrel (Zhong et al., 2020),

SQLRight (Liang et al., 2022)

Yes Yes No No (SQL database only)

DAFuzz (this paper) Yes Yes Yes Yes

memory data stores Redis and Memcached. We discover four new vulnerabilities and report88

them to the developers. We share the DAFuzz prototype as Free and Open Source Software at89

https://github.com/hdusoftsec/DAFuzz (release after publication).90

BACKGROUND AND MOTIVATING EXAMPLE91

Background92

In-memory data store. In-memory data stores like Redis and Memcached are widely used in web93

and mobile application servers. They are popular because they store data in memory and provide very94

efficient and convenient access to the data, which makes them quite suitable for tasks like caching and95

session management. In-memory data stores may support different kinds of data types, for example,96

Redis supports string, list, set, sorted set, hash, etc 3. They usually use different commands with defined97

parameter formats to access data. For example, in Redis “SET key value” is for storing value to key,98

and both value and key could be arbitrary strings. They may also use some serialization protocols (i.e.,99

application layer network protocols) for client-server communication (i.e., for sending and receiving100

commands and data). For example, Redis mainly uses RESP (REdis Serialization Protocol) protocol101

4 for client-server communication. It is important to eliminate any vulnerabilities in such widely used102

programs, especially since they usually run on servers that have rich computation and network resources.103

Fuzzing. Fuzzing, a technique used for vulnerability discovery, has a history of over thirty years104

(Miller et al., 1990). It has been widely recognized as an effective method and can complement other105

techniques such as manual code inspection and static program analysis (Godefroid, 2020). Coverage-106

guided fuzzing (CGF) now probably is the most popular fuzzing technology (Manes et al., 2019; Zhu107

et al., 2022). CGF fuzzer usually first instruments the PUT to trace coverage information when running108

each input, and starts a fuzzing loop with some initial seeds. The fuzzing loop of AFL is also shown in109

Algorithm 1 (without the grey part). In the fuzzing loop, it keeps selecting seeds and mutating them to110

create new inputs and runs the inputs with the PUT. The mutation of a seed may include a deterministic111

stage in which the seed is sequentially changed by predefined steps like one-by-one bit flipping, and an112

indeterministic (havoc/splicing) stage in which the seed is applied with stacking changes (i.e., applying113

multiple changes to produce one input) and may be spliced with another randomly selected seed first. If114

any new inputs have new code coverage, they are added to the seed pool as new seeds. Thus, the fuzzer115

could gradually explore more state space of the PUT, compared to traditional unit testing and mutation116

testing.117

Mutation-based CGF fuzzers do not perform well for programs expecting structural inputs, such118

as JavaScript engines, XML parsers, etc., because it is hard for the fuzzers to get syntactically and119

semantically valid inputs during random seed mutation (Wang et al., 2019). Programs expecting structural120

inputs usually have syntax and semantics checks early in the program execution, and inputs that are either121

not syntactically or semantically valid could not pass such checks to execute deep program code paths.122

Syntax-aware (Wang et al., 2019; Padhye et al., 2019) and semantics-aware fuzzers (Han et al., 2019; He123

et al., 2021) have been proposed to solve the problem. They understand the grammar of inputs and could124

3https://redis.io/docs/data-types/tutorial/
4https://redis.io/docs/reference/protocol-spec/

3/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Algorithm 1 The DAFuzz fuzzing loop. The differences between DAFUZZ and AFL are highlighted in grey .

Input: Initial seed set s, grammar G, data set D

1: repeat

2: generate inputs with G and D, and fuzz them

3: s = ChooseNext(s)
4: deterministically fuzz with s if needed

5: mutate s in havoc/splicing style and fuzz the mutated inputs

6: mutate s in syntax-aware style with G and fuzz the mutated inputs

7: until timeout reached or user aborts

Output: Crash inputs sc

obtain new inputs that are syntactically and even semantically valid. For example, they may convert seeds125

into abstract syntax trees (ASTs) and mutate at the AST tree node level instead of the byte level of seeds126

(Wang et al., 2019).127

Motivating Example128

Only syntax-aware and semantics-aware fuzzing is not enough for efficiently fuzzing in-memory data129

stores like Redis, since some code paths could only be executed when the required data are available.130

Take the processing of RPOP key command in Redis for example. The command is to remove and return131

the last element of the key list, and its corresponding code snippet in t list.c is shown in Figure 2a.132

An input “RPOP list1” is both syntactically valid (i.e., command format) and semantically valid (i.e.,133

using list1 without declaration first is correct in Redis), however, if list1 is empty, the execution exits134

at line 5 and the left code lines in the function are not executed. Another example is the processing of135

SINTER key [key ...] command. The command is to return the intersection of all the given sets, and its136

code snippet in t set.c is shown in Figure 2b. The execution would end early at line 6 if any set is137

empty, and even if they are all not empty, the code lines represented between line 16 and line 18 are not138

executed if the intersection of the sets is empty.139

DAFUZZ APPROACH140

Overview141

DAFuzz incorporates data-aware fuzzing, in addition to syntax-aware and semantics-aware fuzzing.142

The architecture of DAFuzz is shown in Figure 3, and its differences from other fuzzers like AFL are143

highlighted. First, DAFuzz uses a data construction module to produce the data that would be used later144

in program execution and input generation in the fuzzing loop (the “Data Construction” section). Second,145

in the fuzzing loop, DAFuzz uses a data-aware and semantics-aware generation module for generating146

inputs that are syntactically and semantically valid, as well as referring to valid data (the “Data-aware and147

Semantics-aware Input Generation” section). Last but not least, DAFuzz uses syntax-aware mutation in148

the fuzzing loop for creating syntactically valid inputs (the “Syntax-aware Mutation” section).149

The fuzzing loop of DAFuzz is shown in Algorithm 1, and its differences from AFL are highlighted150

as well. DAFuzz is still a CGF fuzzer like AFL, i.e., with a fuzzing loop that keeps choosing a seed,151

mutating it to get inputs, and fuzzing inputs by feeding them to the PUT. However, in the fuzzing loop, it152

uses input generation as well for using the grammar and the data constructed. Using input generation153

together with seed mutation to create inputs is similar to some CGF fuzzers like syzkaller (Google, 2015).154

In addition to the havoc/splicing stage, DAFuzz contains a syntax-aware mutation stage like Superion155

(Wang et al., 2019) for improving the ratio of valid inputs obtained from seed mutation.156

Data Construction157

The data construction module is to construct a data set containing different types of data, which is later158

provided to program execution and input generation. The algorithm is shown in Algorithm 2. Users could159

specify the set of data types T to generate (e.g., list and hash), the number of data items N to create160

for each type, and the maximum number of values N f to store in each data item (e.g., the number of161

members in list). In the algorithm, a small set of predefined values V is prepared first. Then, for each162

data type, N data items would be generated. For generating each data item, its number of members n f163

is randomly obtained by UniformRandom(1,N f) (uniformly selected in [1, N f]). After that, both the164

4/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

1. void popGenericCommand(client *c, int where) {

2. …
3. robj *o = lookupKeyWriteOrReply(c, c->argv[1],

shared.null[c->resp]);

4. if (o == NULL || checkType(c, o, OBJ_LIST))

5. return; // return if no data in list

6. …

7. if (!count) {

8. value = listTypePop(o,where);

9. serverAssert(value != NULL);

10. addReplyBulk(c,value);

11. decrRefCount(value);
12. listElementsRemoved(c,c-

>argv[1],where,o,1,NULL);
13. }

14. …

15. }

(a) The RPOP command.

1. void sinterGenericCommand(client *c, robj **setkeys, …) {

2. /* Check empty set */

3. …

4. if (empty > 0) {

5. …

6. return;

7. }

8. /* Compute the intersection set */

9. …

10. if (cardinality_only) {

11. addReplyLongLong(c,cardinality);

12. } else if (dstkey) {

13. /* Store the resulting set into the target, if the

14. * intersection is not an empty set. */
15. if (setTypeSize(dstset) > 0) {

16. setKey(c,c->db,dstkey,dstset,0);

17. addReplyLongLong(c,setTypeSize(dstset));

18. …

19. } else {

20. …

21. }

22. …

23. }

24. …

25. }

(b) The SINTER command.

Figure 2. Code snippets for processing two commands in Redis.

Data‐aware and
Semantics‐aware

Generation

Syntax‐aware
Mutation

Seeds

Data ConstructionGrammar

Program
Execution

Fuzzing Loop

Crashes

Figure 3. The DAFuzz architecture, with differences from AFL highlighted.

5/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Algorithm 2 Data construction for fuzzing.

Input: a set of data types T , number of data to create for each type N, maximum number of values inside each data

N f

1: D = φ ▷ The data to output

2: V = φ

3: add predefined different values to V

4: for each data type t in T do

5: for i from 1 to N do

6: create data item d of type t

7: n f = UniformRandom(1,N f)
8: for j from 1 to |V | do

9: add the corresponding value of V to d

10: end for

11: for j from |V |+1 to n f do

12: add a random string value to d

13: end for

14: add d to D

15: end for

16: end for

Output: data set D

predefined values V and some randomly generated strings are added to the data item, according to n f .165

The predefined value set V is useful since it makes sure that the data items have common values, which166

makes the calculations (e.g., the intersection) among them may not empty.167

To run the algorithm, users should know the supported data types of the data store (PUT), and they168

usually should add all supported data types into T to construct different types of data, unless users just169

want to focus on fuzzing part of data types like in directed fuzzing (Böhme et al., 2017). In addition,170

however, it is better to specify moderate values for N and N f , which define how much data to generate,171

because loading too much data when starting the server would slow down the fuzzing execution speed.172

Data-aware and Semantics-aware Input Generation173

The data-aware and semantics-aware input generation module is used to generate inputs according to174

the grammar of inputs and the data constructed in the previous section, and its algorithm is shown in175

Algorithm 3. For in-memory data stores, the grammar of inputs is mainly the grammar of commands,176

which consists of the name, options, and parameters of each command. In addition to the grammar and177

data set, DAFuzz also prepares a command list C containing all commands and an optional command-to-178

related-commands map R. The map R is a map that maps each command to a command list containing179

all its related commands, e.g., the related commands of SINTER command (set intersection command)180

including all commands about set calculations. The normal distribution N(µ,σ2) is to define how many181

commands to put inside a single input. DAFuzz does not use uniform distribution here for having a small182

probability to generate extraordinarily big inputs.183

In the input generation algorithm, the number of commands nc in the input is first calculated. After184

that, the first command type is randomly selected from the command list C. Then, DAFuzz creates a185

command c of the given command type, with options of the command randomly enabled. The creation186

method is introduced later with examples. DAFuzz fills all fields of the command c before appending it to187

the seed. When filling a field of a data type, DAFuzz first tries to randomly select a data item from all the188

data items with the same data type in data set D. If no such data items exist in the data set, it randomly189

generates a data item with the given type. When selecting the next command type, if the current command190

has related commands in the map R, it obtains all related commands with R[next cmd] and randomly191

selects the next command. Otherwise, it still randomly selects a command type from the whole command192

list as the next command. Now the algorithm does not try to ensure the “normal” order of generated193

commands, because it is hard to define the “normal” order (e.g., hard to know which list command,194

LPOP or LPUSH, is normally executed first), and randomly executing commands may help to expose195

vulnerabilities in data stores.196

We use examples to illustrate the aforementioned command creation, mainly about how options are197

enabled. Suppose the LPOP key [count] command is selected for creation (where “[]” means inner content198

is optional). DAFuzz randomly selects one from the two possible commands to create, LPOP key and199

6/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Algorithm 3 Data-aware and semantics-aware input generation.

Input: command grammar G, command list C, command-to-related-commands map R, data set D, a normal

distribution N(µ,σ2) deciding the number of commands in an input.

1: s = φ ▷ The seed to output

2: nc = N(µ,σ2)
3: next cmd = SelectRandomCommand(C)
4: for i from 1 to nc do

5: create command c of type next cmd according to G

6: for each field f of data type t in c do

7: if t exists in D then

8: select a random data item in D of type t and fill the field f

9: else

10: generate random data item and fill the field f

11: end if

12: end for

13: append c to s

14: if R[next cmd] is not empty then

15: next cmd = SelectRandomCommand(R[next cmd])
16: else

17: next cmd = SelectRandomCommand(C)
18: end if

19: end for

Output: seed s

LPOP key count, which means there are two possible values for the component “[count]”: “count” or “ ”200

(i.e., blank). Considering another ZADD command is selected and it has the grammar ZADD key [NX201

| XX] [GT | LT] [CH] [INCR] score member [score member] (where “|” means any one of the listed202

elements is allowed). We can see that there are three possible values for the component “[NX | XX]”:203

“NX”, “XX”, or “ ” (i.e., blank). Thus, for the ZADD command, DAFuzz randomly selects one from the204

3×3×2×2×2 = 72 possible commands to create. The creation method is implemented by processing205

“[]” and “|” symbols in multiple rounds until all of them are parsed, which could easily deal with the case206

that options are nested (e.g., “[[. . .]. . .]”).207

Syntax-aware Mutation208

DAFuzz uses the tree-based mutation method proposed in Superion (Wang et al., 2019) to mutate seeds,209

which could keep the syntax of test inputs correct. The tree-based mutation method generally works as210

follows. It parses two seeds tar and pro into two abstract syntax trees first and collects all the subtrees211

into a set S. Then, it iterates all the subtrees of the AST of tar one by one, and for each subtree obtains212

a batch of new inputs, by replacing the subtree with each subtree in S once and serializing the mutated213

AST to an input. DAFuzz follows the same method to mutate seeds, however, it uses the grammar of214

in-memory data stores instead (e.g., the grammar of commands and the RESP protocol for Redis).215

DAFuzz also adopts the enhanced dictionary-based mutation method proposed in (Wang et al., 2019),216

which could cleverly mutate seeds by considering token boundaries (e.g., not partially overwriting tokens).217

We add the names of commands and the names of data items in the constructed data set into the fuzzing218

dictionary to better support the method.219

Note that DAFuzz still would mutate seeds to produce inputs that are not syntactically or semantically220

valid, since it still has the havoc/splicing stage as we mentioned in Algorithm 1. This is helpful to cover221

exception handling code during fuzzing, and we do observe a higher code coverage in our testing.222

IMPLEMENTATION223

Preparing the Grammars. The grammars mainly include the grammars of commands and serialization224

protocols and are obtained from corresponding official websites. For example, Redis has more than 300225

commands in 6.x, and we retrieve its command grammar (including command name, options, parameters)226

from https://redis.io/commands/ with a web crawler written in Python. In the document for227

each command, there is also a column for “Related commands”, which is used to build the command-to-228

related-commands map. Redis may use both RESP and inline commands as its serialization protocol,229

and DAFuzz supports both of them in its syntax-aware mutation. The grammars are stored in JSON files230

and are provided to the fuzzer at runtime.231

7/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Data Construction. The data constructed for Redis are stored into a rdb file, which is loaded when232

starting the Redis server with the --dbfilename option. However, Memcached does not have a233

mechanism to load data into the data store when starting the server, and the constructed data are loaded234

by using commands that are inserted in the front of the initial seeds. The more data are constructed for235

fuzzing, the higher probability that different data conditions would be satisfied during fuzzing. However,236

the more data are loaded when starting the server, the slower the fuzzing execution speed would become.237

For Redis, the rdb file we use for fuzzing is about 3.8KB, and we have tested that it does not slow238

down the fuzzing execution speed too much, and also supports good code coverage.239

The Fuzzer. DAFuzz is implemented based on Superion (Wang et al., 2019), which is further based240

on AFL (Zalewski, 2017). We implement the data-aware and semantics-aware input generation methods241

using C++. We also use ANTLR (ANother Tool for Language Recognition) 4 (v4.9.3) for recognizing242

the ASTs of seeds and making syntax-aware seed mutations, though with new grammars. The mutation243

and generation methods are implemented using a predefined function interface, which follows the same244

framework utilized by Superion. AFL++ (Fioraldi et al., 2020) also adopts similar frameworks for custom245

mutations. As a result, switching implementations becomes effortless by loading different dynamic246

libraries (i.e., different .so files). Superion disables the havoc/splice stage by default during fuzzing,247

but we find such a stage is useful for in-memory data stores and we re-enable it. We also implement a248

mode for testing multi-dimensional fuzzing as we will explain in a later “The Effect of Multi-dimensional249

Fuzzing” section.250

EVALUATION251

In this section, we evaluate our DAFuzz prototype, aiming to answer the following research questions.252

• Does DAFuzz improve the code coverage when fuzzing in-memory data stores?253

• Can DAFuzz find more vulnerabilities or find vulnerabilities more quickly?254

Experiment Setup255

Programs. We use the two most popular in-memory data stores, Redis and Memcached, for exper-256

iments. For performance comparison, we use Redis unstable (master) branch with the last commit257

#5460c10 (2022/1/3), and Memcached 1.6.13.258

Baseline Fuzzers. We select several state-of-the-art fuzzers for comparisons, including AFL (Zalewski,259

2017), Superion (Wang et al., 2019), AFLNET (Pham et al., 2020), and AFL++ (Fioraldi et al., 2020).260

The first one is the latest AFL (v2.52b) (Zalewski, 2017). Superion (Wang et al., 2019) is a fuzzer that261

supports grammar-aware (mainly syntax-aware) mutation. We update it with the grammar of commands262

and network protocols of the two data stores. AFLNET (Pham et al., 2020) is selected because it is263

specially designed for fuzzing network protocols, and we update it with the network protocols of the264

two data stores as well. AFL++ (Fioraldi et al., 2020) (v4.00c) is the successor of AFL and has many265

improvements like better seed scheduling, more mutators, and faster instrumentation. For all the fuzzers266

we use their default parameters. All fuzzers are explicitly configured to skip the deterministic stage (i.e.,267

with “-d” option), except AFLNET and AFL++, which have disabled the stage by default (Pham et al.,268

2020; Fioraldi et al., 2020). However, since Superion needs deterministic fuzzing for grammar-aware269

trimming and enhanced dictionary-based mutation (Wang et al., 2019), we still do deterministic fuzzing270

for seeds with a probability, even the “-d” option is set. We enable the probability for AFL, Superion, and271

DAFuzz for a fair comparison, but do not enable it for AFLNET and AFL++, which have disabled the272

deterministic stage by default. We set the probability to be 0.05 since we find it makes a good balance on273

different stages.274

Fuzzing Parameters. For a fair comparison, we provide all the fuzzers with the same dictionary,275

the same initial seeds, and the same constructed data set (i.e., constructed as described in the “Data276

Contruction” section). The dictionary contains the names of data store commands and the names of data277

items in the data set. The program parameter of Redis is like ./redis-server --dbfilename278

data.rdb --bind 127.0.0.1 --protected-mode no, where data.rdb is the file con-279

tains the constructed data set, and the program parameter of Memcached is like ./memcached, and280

the constructed data are stored in initial seeds. We use a faster de-socketing tool, desockmulti (Zeng281

et al., 2020), for fuzzing both programs, since they communicate with their clients through sockets but282

not files or stdin, except for AFLNET which directly communicates with the PUTs through ordinary283

sockets.284

8/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

0 5 10 15 20
Time (hour)

8000

10000

12000

14000

N
um

be
r o

f E
dg

es AFL
AFLNet
AFL++
Superion
DAFuzz

Figure 4. The edge coverage growth discovered by different fuzzers for Redis

Platform. The experiments are conducted on a server with 2 Intel(R) Xeon(R) CPU E5-2640 v4285

@ 2.40GHz processors, 64GB RAM memory, and with 64-bit Ubuntu 20.04 LTS as server operating286

system. Each case lasts for 24 hours on a single core and is repeated five times if not explicitly stated, for287

reducing the randomness of fuzzing (Klees et al., 2018). It is worth noting that the use of a 24-hour run is288

a popular setting for fuzz testing, particularly after the publication of Klees et al.’s paper (Klees et al.,289

2018). This is because some fuzzers may start slow and bugs often reside in certain parts of the program290

(Klees et al., 2018). Therefore, longer fuzzing runs are considered fairer and can provide a more accurate291

representation of performance trends in real-world scenarios (Klees et al., 2018).292

The Comparison of Code Coverage293

Edge Coverage. Edge coverage (i.e., branch coverage) is used here since it is one of the most widely294

used coverage metrics now (Lemieux and Sen, 2018; Fioraldi et al., 2020; Wang et al., 2021a; Metzman295

et al., 2021; Fioraldi et al., 2022), and the edge coverage growth of different fuzzers is shown in Figure 4296

and Figure 5, for Redis and Memcached respectively. We can see that DAFuzz outperforms all other297

fuzzers in both programs. AFL, Superion, and AFL++ perform similarly and are in the second tier, while298

AFLNET performs considerably worse. This is mainly because the execution speed of AFLNET is slow299

(e.g., less than 20 execs/s vs. over 100 execs/s for other fuzzers), which is a known problem (Zeng et al.,300

2020; Schumilo et al., 2022) since it feeds inputs to PUT through ordinary INET sockets but not faster301

UNIX sockets (Zeng et al., 2020). Superion outperforms its base fuzzer AFL in Redis while performs302

similarly in Memcached, which suggests that syntax-aware mutation (the “Syntax-aware Mutation”) may303

be only useful in some cases. In addition, DAFuzz performs much better than its base fuzzer Superion304

in both programs, which suggests that data-aware and semantics-aware input generation module (the305

“Data-aware and Semantics-aware Input Generation” section) could further boost the capability of the306

fuzzer, since the input generation module is the only difference between them in the experiment.307

The final numbers of edges discovered by different fuzzers in 24 hours are shown in Table 2 for308

quantitative comparison. DAFuzz discovers 17424 edges in total in the two programs, which are 17%,309

95%, 16%, and 13% more than AFL, AFLNET, AFL++, and Superion, respectively. We further calculate310

the time DAFuzz needs to discover the same number of edges other fuzzers discover in 24 hours and list311

the time and improvements of DAFuzz over others in Table 3. The number of edges is collected every312

5 minutes. We can see that DAFuzz needs at most 1 hour and 15 minutes to discover the same number313

of edges any other fuzzer discovers in 24 hours, which means DAFuzz is at least 19× faster in edge314

discovery.315

Statistical Analysis. We also use the p value of Mann Whitney U-test to decide whether there is a316

statistically significant difference between two sets of results, as suggested in (Klees et al., 2018). The p317

values are shown in Table 4, where p1, p2, p3, p4, and p5 represent the differences between DAFuzz318

and the other four fuzzers, AFL, AFLNET, AFL++, and Superion respectively. p value is less than 0.05319

means the difference is statistically significant. Here all the p values are less than 0.01, which means the320

9/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

0 5 10 15 20
Time (hour)

1000

1200

1400

1600

1800

2000

2200

N
um

be
r o

f E
dg

es AFL
AFLNet
AFL++
Superion
DAFuzz

Figure 5. The edge coverage growth discovered by different fuzzers for Memcached

Table 2. Average numbers of edges discovered after 24 hours, with the ratios in brackets representing

how many more edges DAFuzz discovers than them.

Program AFL AFLNET AFL++ Superion DAFuzz

Redis 12913 (+18%) 7555 (+102%) 13043 (+17%) 13398 (+14%) 15257

Memcached 1989 (+9%) 1396 (+55%) 2037 (+6%) 1973 (+10%) 2167

Total 14902 (+17%) 8951 (+95%) 15080 (+16%) 15371 (+13%) 17424

Table 3. The time needed by DAFuzz to discover the same numbers of edges discovered by other fuzzers

in 24 hours (measured every 5 minutes), with the improvements DAFuzz over them placed in brackets.

Program AFL AFLNET AFL++ Superion

Redis 40 mins (36×) <5 mins (288×) 45 mins (32×) 1 hour 10 mins (21×)

Memcached 55 mins (26×) <5 mins (288×) 1 hour 15 mins (19×) 50 mins (29×)

10/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Table 4. The p values on the numbers of edges discovered by DAFuzz and other fuzzers.

Program p1 p2 p3 p4

Redis 0.008 0.008 0.008 0.008

Memcached 0.008 0.008 0.008 0.008

Table 5. Average time needed for the vulnerability discovery, with the improvements of DAFuzz over

them in brackets.

Unique Vulnerability AFL AFLNET AFL++ Superion DAFuzz

redis issue #10070 (seg-

mentation violation)

12 mins >24 hours 8 mins 16 mins 19 mins

redis issue #10076 (stack

buffer overflow)

3 hours 43 mins >24 hours 3 hours 29 mins 59 mins 9 mins

Total 3 hours 55 mins

(8.4×)

>24 hours

(>51.4×)

3 hours 37 mins

(7.8×)

1 hour 15 mins

(2.7×)

28 mins

code coverage of DAFuzz is different from the code coverage of other fuzzers significantly.321

The Comparison of Unique Vulnerability Discovery322

All the fuzzers only discover crashes in Redis during performance comparison. We use AddressSani-323

tizer (Serebryany et al., 2012) to rebuild the program, run it against the inputs that cause crashes, and324

manually remove duplicated vulnerabilities. Eventually, we confirm that two unique vulnerabilities (one325

segmentation violation and one stack buffer overflow) are discovered by all fuzzers except AFLNET,326

which does not discover any vulnerabilities. We report the two vulnerabilities to developers in Github327

issue #10070 5 and issue #10076 6 respectively. Both of them have been confirmed and fixed by the328

developers. We will describe their details later in the“Vulnerabilities Discovered” section, and focus on329

the comparison of vulnerability discovery speed here. Table 5 shows the average time needed for each330

fuzzer to discover the two vulnerabilities. DAFuzz only needs 28 minutes on average to find both of them,331

which is 2.7 × faster than Superion (1 hour 15 mins), 7.8× faster than AFL++ (3 hours 37 mins), and332

8.4× faster than AFL (3 hours 55 mins).333

The Effect of Using Constructed Data Only334

In this subsection, we check the effect of the data construction module alone. In the “The Comparison of335

Code Coverage” section, since all fuzzers are provided with the constructed data as mentioned before, the336

comparison between Superion and AFL illustrates the effect of syntax-aware mutation module (Superion337

is based on AFL but with this extra mutation module), and the comparison between DAFuzz and Superion338

illustrate the effect of data-aware and semantics-aware input generation module (DAFuzz is based on339

Superion but with this extra generation module). It may be interesting to know the effect of using the340

data constructed alone, and we use the base fuzzer AFL as an example. Here, one AFL fuzzer uses the341

data constructed (marked as AFL), another AFL fuzzer has no data provided (marked as AFLNoData),342

and the result is shown in Figure 6 and Figure 7. The code coverage of AFL and AFLNoData is close343

in the figures. We confirm that by also using the p value of Mann Whitney U-test, and showing the p344

values in Table 6. Both p values are larger than 0.05, which means that there are no statistically significant345

differences between the two fuzzers. We think this may have several reasons. First, although code lines346

executed only when the constructed data are available are usually critical, they may be only a small347

portion of the whole code base. Second, code coverage may not reflect program state changes caused348

by satisfying different data conditions, since code coverage only cares about code paths newly being349

discovered but not variables getting new values (Aschermann et al., 2020; Fioraldi et al., 2021). Third,350

loading extra data when starting the PUT consumes more time. For example, the average executions351

per second of AFL and AFLNoData are 134 exec/s and 137 exec/s for Redis, respectively. Thus, we352

can know that only using the constructed data may not improve the overall fuzzing efficiency, and other353

modules of DAFuzz are needed as well.354

5https://github.com/redis/redis/issues/10070
6https://github.com/redis/redis/issues/10076

11/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

0 5 10 15 20
Time (hour)

8000

9000

10000

11000

12000

13000

N
um

be
r o

f E
dg

es

AFL
AFLNoData

Figure 6. Fuzzing Redis with or without constructed data.

0 5 10 15 20
Time (hour)

1400

1500

1600

1700

1800

1900

2000

N
um

be
r o

f E
dg

es

AFL
AFLNoData

Figure 7. Fuzzing Memcached with or without constructed data.

Table 6. The p values on with or without constructed data.

Program p1

Redis 0.310

Memcached 1.000

12/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

0 5 10 15 20
Time (hour)

11000

12000

13000

14000

15000

N
um

be
r o

f E
dg

es

DAFuzz
DAFuzz-M

Figure 8. Fuzzing Redis using or not using multi-dimensional fuzzing.

355

The Effect of Multi-dimensional Fuzzing356

Recently multi-dimensional fuzzing (Xu et al., 2019; Schumilo et al., 2020; Zou et al., 2021; Xie357

et al., 2022) is proposed for fuzzing programs expecting two or more types of inputs at the same time. For358

example, two types of inputs, disk-image input and system-call input, are used for fuzzing file systems359

(Xu et al., 2019). In DAFuzz, the constructed data file provided for fuzzing may be considered as another360

type of input in addition to the command type input. Thus, we also test the effect of multi-dimensional361

fuzzing in DAFuzz, with a special mode we named DAFuzz-M. In DAFuzz-M mode, a seed contains two362

parts: the command input part and the data input part (although for simple implementation only the index363

of the data input part is actually stored in the seed, and the content of data input is stored in a queue similar364

to the original seed queue). During fuzzing, we follow the method in (Xu et al., 2019) by first mutating365

the data input part and using the original command input part of the seed to fuzz, and then mutating the366

command input part and using the original data input part to fuzz. We only test multi-dimensional fuzzing367

with Redis, since Memcached actually is fuzzed using one type of inputs (the constructed data for368

Memcached are also loaded by using commands inserted in the front of seeds as we explained before).369

The result is shown in Figure 8. However, DAFuzz-M has a lower code coverage than DAFuzz. We find it370

is mainly because the rdb file used as data input has a highly structured format 7, and mutating such file371

could easily fail the checks during parsing (e.g., inserting a single byte may cause a later length field to372

read at a wrong position and get an invalidly large value). In addition, the command inputs of DAFuzz373

may also modify the data of the data store since the commands operate on the data as well, which makes374

the advantage of introducing the data inputs in another dimension not apparent.375

Vulnerabilities Discovered376

In the following, we briefly introduce the two vulnerabilities discovered during the performance com-377

parison experiments, and another two vulnerabilities we discovered previously with DAFuzz (we used378

DAFuzz to fuzz Redis 6.2.1 and Memcached 1.6.9 for finding bugs only and did not compare with379

other fuzzers). These vulnerabilities may be used for exploitation or DoS (Denial-of-Service) attack. They380

are shown in Table 7 and further explained below.381

Wrongly processing commands containing “|” (redis issue #10070). Redis plans to treat sub-382

commands as commands in v7.0, which would allow having different ACL (access control list) cat-383

egories for subcommands. For example, “CONFIG GET” is allowed but not “CONFIG SET”, and384

users may send commands like “ACL SETUSER test +CONFIG|GET” to configure that. However,385

the processing codes added for splitting the command with “|” make some commands that contain “|”386

(e.g., “scard|set1”) wrongly pass the built-in “ERR unknown command” check, and crash in the func-387

7https://github.com/sripathikrishnan/redis-rdb-tools/blob/master/docs/RDB_File_

Format.textile

13/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Table 7. The vulnerabilities newly found by us.

Program Version Vulnerability Type Github Issue No. Status

Redis unstable branch segmentation violation redis issue #10070 Fixed in 7.0

Redis unstable branch stack buffer overflow redis issue #10076 Fixed in 7.0

Redis 6.2.1 segmentation violation redis issue #8712 Fixed in 6.2.3

Memcached 1.6.9 segmentation violation memcached issue #779 Fixed in 1.6.10

tion addReplySubcommandSyntaxError. The developers fix the problem by introducing a new388

function isContainerCommandBySds in server.c to check whether a command is a container389

command (e.g., having subcommands) and reject the command early if it is not.390

Unexpected commands sent from replicas are not filtered (redis issue #8712 8, and #10076). Redis391

supports high availability and failover with replication, and it only allows replicas to send limited392

commands like REPLCONF and PING to the master. We find in Redis 6.2.1 that after a replica393

sends a PSYNC and a FAILOVER command (meaning starting partial synchronization and coordinated394

failover between the replica and the master), the replica sends other commands like SET would cause395

segmentation violation in the master. Developers fix the issue by rejecting commands from replicas that396

interact with the keyspace of the master in function processCommand of server.c. However, the fix397

is incomplete unfortunately. In the unstable branch, we later find a stack buffer overflow that is triggered398

by a PSYNC command with a following SLOWLOG command. The developers further add code in the399

function addReplyDeferredLen of networking.c to disconnect replicas that send commands400

on the replication link that cause replies to be generated.401

External storage is not checked for stats command (memcached issue #779 9). Extstore in Memcached402

is to reduce memory footprint by leaving the hash table and keys in memory and moving values to external403

storage (usually flash). However, in Memcached 1.6.9, a segmentation violation would be triggered when404

“stats extstore” command is executed. This is because extstore is on by default but the server needs to be405

started with -o option like -o ext path=/path/to/a/ datafile:5G. Otherwise, an extstore406

value is null but would be used if that “stats extstore” command is executed. Developers fix it simply by407

adding a null check when processing the “stats” command in the function process extstore stats408

of storage.c.409

RELATED WORK410

Coverage-guided Fuzzing411

Starting with the invention of AFL in 2007 (Zalewski, 2017), coverage-guided fuzzing (CGF) is one of the412

most popular fuzzing technologies (Manes et al., 2019; Li et al., 2021; Zhu et al., 2022). CGF fuzzers are413

typical grey-box fuzzers, since they only collect lightweight coverage information of inputs, and use that414

to guide the fuzzers to gradually explore the state space of the PUT (Zalewski, 2017; Hon, 2023; lib, 2023;415

Fioraldi et al., 2020, 2022). In contrast, black-box fuzzers do not know any internal execution information416

of the PUT (though they may know the grammar of inputs like Boofuzz (Boo, 2023)), and white-box417

fuzzers know the most detailed information of the PUT (e.g., through symbolic execution) (Manes et al.,418

2019). Moreover, CGF fuzzers usually are mutation-based since they mutate seeds to get new inputs,419

but there are CGF fuzzers that are generation-based as well, which generate new inputs from scratch by420

using the grammar (or say, model) information (Manes et al., 2019; Li et al., 2021; Zhu et al., 2022). For421

example, syzkaller (Google, 2015) could mutate existing sequences of syscalls (i.e., seeds) and generate422

new sequences of syscalls at the same time during fuzzing. DAFuzz follows the same approach. CGF423

fuzzers have successfully been used to discover many vulnerabilities (Zalewski, 2017; Google Security424

Team, 2018), and become popular in both the security industry (Zalewski, 2017; Hon, 2023; lib, 2023;425

Fioraldi et al., 2020; Google Security Team, 2018) and academia (Böhme et al., 2016; Lemieux and Sen,426

2018; Gan et al., 2018; Lyu et al., 2019; Pham et al., 2020; Aschermann et al., 2020; Yue et al., 2020;427

Wang et al., 2021a; Lin et al., 2022; Fioraldi et al., 2022).428

There are two kinds of fuzzing techniques that are related to the data-aware fuzzing technique proposed429

here, but are actually different. One is fuzzing with the aid of data-flow information (Wang et al., 2010;430

8https://github.com/redis/redis/issues/8712
9https://github.com/memcached/memcached/issues/779

14/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Rawat et al., 2017; Chen and Chen, 2018; Aschermann et al., 2019b; Gan et al., 2020; Mantovani et al.,431

2022). CGF fuzzing usually uses control-flow information only, e.g., coverage based on the edges of432

the control flow graph (CFG). However, by using techniques like dynamic taint analysis, fuzzers could433

know information like which bytes of the inputs are used in branch instructions. Such information could434

further guide the fuzzer to bypass magic-byte and checksum checks (Wang et al., 2010; Rawat et al.,435

2017; Aschermann et al., 2019b), mutate seeds more efficiently (Chen and Chen, 2018; Gan et al., 2020;436

Mantovani et al., 2022), or use as another interest feedback besides coverage feedback (Mantovani et al.,437

2022). Generally, such data-flow information extra collected is about the data in the input, while in438

DAFuzz the data concerned are stored in the in-memory data store (i.e., the PUT).439

Another related technique is the recently proposed state-aware fuzzing (Aschermann et al., 2020;440

Fioraldi et al., 2021; Ba et al., 2022). It usually considers the whole program state space to be divided441

into different regions by different values of some important variables. Such important variables could442

be variables representing the states of protocols (Aschermann et al., 2020; Ba et al., 2022), or variables443

that stay the same values for most inputs but change to other values for some inputs (Fioraldi et al.,444

2021). The CGF fuzzers detect the important variables either manually (Aschermann et al., 2020) or445

automatically (Fioraldi et al., 2021; Ba et al., 2022) and use them together to guide the exploration of state446

space during fuzzing. Different from DAFuzz, state-aware fuzzing also usually concerns the important447

variables related to the input but not the data stored in the program. In addition, the important variables448

usually are variables related to the switching of execution paths, but DAFuzz directly concerns the data449

and may work even if no such variables are explicitly defined.450

Grammar-aware Fuzzing451

There are black-box (Peach Tech, 2020; Boo, 2023), grey-box (Pham et al., 2021), and white-box452

(Godefroid et al., 2008) fuzzers that support grammar-aware fuzzing. For example, black-box fuzzers like453

Peach (Peach Tech, 2020) and Boofuzz (Boo, 2023) use XML configuration files or code to define the454

format of inputs to generate inputs, and white-box fuzzers like (Godefroid et al., 2008) may generate extra455

constraints using the grammar of inputs. For grey-box fuzzers, researchers have found that CGF fuzzers456

do not perform well for programs expecting structural inputs, such as JavaScript engines, XML parsers,457

etc., because when mutating seeds to get new inputs, it is easy to get invalid inputs (Wang et al., 2019),458

which cannot pass the syntax and semantics checks early in the program execution. Thus, grammar-aware459

CGF is proposed recently.460

Grammar-aware CGF could roughly be divided into syntax-aware (Pham et al., 2021; Wang et al.,461

2019; Padhye et al., 2019; Aschermann et al., 2019a; Pham et al., 2020; Salls et al., 2021), and semantics-462

aware fuzzing (Han et al., 2019; Park et al., 2020; He et al., 2021). Syntax-aware fuzzing tries to ensure463

the inputs mutated from seeds are still in the correct format. For example, they may convert seeds464

into abstract syntax trees (ASTs) and mutate at the tree node level (i.e., tree-based mutation) to ensure465

the inputs serialized from mutated ASTs still have correct JavaScript statements (Wang et al., 2019).466

Semantics-aware fuzzing tries to further ensure the inputs mutated from seeds have valid semantics.467

For example, they may inspect the JavaScript code or runtime errors to ensure the variables are defined468

before use (Han et al., 2019; Park et al., 2020; He et al., 2021). DAFuzz adopts the same tree-based469

syntax-aware mutation (Wang et al., 2019), which is enough since in-memory data stores usually could470

use data variables without defining them first. However, different from the existing work, DAFuzz also471

generates data-aware and semantics-aware new inputs, which is to ensure that different data items are472

correctly referred to in the inputs.473

Data-related Program Fuzzing474

There are researchers focusing on fuzzing data-related programs. For in-memory data store, Google475

security researchers fuzzed Redis but only used existing ordinary fuzzers like AFL (Google Information476

Security Engineering Team, 2020). Another kind of data-related program is SQL database, and different477

special black-box fuzzers (Seltenreich et al., 2022; Guo, 2017; Rigger, 2023; Rigger and Su, 2020) and478

grey-box fuzzers (Zhong et al., 2020; Wang et al., 2021b; Liang et al., 2022) have been developed. At first,479

fuzzers mainly focus on keeping the generated or mutated SQL statements syntactically valid (Seltenreich480

et al., 2022; Guo, 2017). Recently, fuzzers also try to ensure the statements are semantically valid (Rigger,481

2023; Rigger and Su, 2020; Zhong et al., 2020; Wang et al., 2021b; Liang et al., 2022). For example, they482

ensure that the used tables are created first and the mentioned columns still exist (Zhong et al., 2020; Liang483

et al., 2022). Several recent pieces of research focus on detecting logic bugs but not traditional crashes or484

15/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

assert failures (Rigger, 2023; Rigger and Su, 2020; Liang et al., 2022). However, all these previous works485

do not intentionally create different kinds of data as DAFuzz does for providing the required data, and all486

these fuzzers are tightly bound to the SQL language and cannot work with in-memory data stores that use487

other languages.488

CONCLUSION489

To exercise the code paths of in-memory data stores that require different data, we presented a new fuzzing490

approach DAFuzz. DAFuzz could not only generate inputs that are syntactically and semantically valid491

but also use different data correctly. In addition, DAFuzz adopts the state-of-the-art tree-based mutation492

method as well. The comparisons with other state-of-the-art fuzzers like AFL, AFL++, Superion, and493

AFLNET in two popular in-memory data stores Redis and Memcached showed that DAFuzz could494

discover 13%∼95% more edges, or discover the same number of edges at least 19× faster. Furthermore,495

DAFuzz found the same vulnerabilities but over 2.7× faster. We newly found 3 vulnerabilities in Redis496

and 1 vulnerability in Memcached, and reported them to developers. All vulnerabilities have been497

acknowledged and fixed. We also believe that the concept of data-aware fuzzing can be applied to other498

in-memory data stores, such as Dragonfly. Furthermore, it has the potential to be employed in fuzzing499

other software systems that exhibit behavior dependent on different data conditions.500

ADDITIONAL INFORMATION AND DECLARATIONS501

Funding502

This work was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.503

LY22F020022, the National Natural Science Foundation of China under Grant No. 61902098, the Key504

Research Project of Zhejiang Province, China under Grant No. 2023C01025, and the “Pioneer” and505

“Leading Goose” R&D Program of Zhejiang under Grant No. 2023C03203. The funders had no role in506

study design, data collection and analysis, decision to publish, or preparation of the manuscript.507

Grant Disclosures508

The following grant information was disclosed by the authors:509

Zhejiang Provincial Natural Science Foundation of China: LY22F020022510

Natural Science Foundation of China: 61902098511

Key Research Project of Zhejiang Province: 2023C01025512

“Pioneer” and “Leading Goose” R&D Program of Zhejiang: 2023C03203513

Competing Interests514

The authors declare that they have no competing interests.515

Author Contributions516

• Yingpei Zeng conceived and designed the experiments, performed the experiments, analyzed the517

data, performed the computation work, authored or reviewed drafts of the article, and approved the518

final draft.519

• Fengming Zhu performed the experiments, analyzed the data, performed the computation work,520

authored or reviewed drafts of the article, and approved the final draft.521

• Siyi Zhang performed the experiments, analyzed the data, performed the computation work, and522

approved the final draft.523

• Yu Yang performed the experiments, analyzed the data, and approved the final draft.524

• Siyu Yi performed the experiments, analyzed the data, and approved the final draft.525

• Yufan Pan performed the experiments, analyzed the data, and approved the final draft.526

• Guojie Xie authored or reviewed drafts of the article, and approved the final draft.527

• Ting Wu authored or reviewed drafts of the article, and approved the final draft.528

Data Availability529

The following information was supplied regarding data availability:530

The code is available in the Supplemental File.531

16/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

REFERENCES532

(2023). Boofuzz: Network Protocol Fuzzing for Humans. https://github.com/jtpereyda/533

boofuzz. Accessed on 2023-3-20.534

(2023). Honggfuzz. https://github.com/google/honggfuzz. Accessed on 2023-3-20.535

(2023). libFuzzer - a library for coverage-guided fuzz testing. http://llvm.org/docs/536

LibFuzzer.html. Accessed on 2023-3-20.537

Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.-R., and Teuchert, D. (2019a). NAU-538

TILUS: Fishing for Deep Bugs with Grammars. In 26th Annual Network and Distributed System539

Security Symposium (NDSS).540

Aschermann, C., Schumilo, S., Abbasi, A., and Holz, T. (2020). IJON: Exploring Deep State Spaces via541

Fuzzing. In IEEE Symposium on Security and Privacy (S&P), pages 1–16.542

Aschermann, C., Schumilo, S., Blazytko, T., Gawlik, R., and Holz, T. (2019b). REDQUEEN: Fuzzing with543

Input-to-State Correspondence. In 26th Annual Network and Distributed System Security Symposium544

(NDSS).545

Ba, J., Böhme, M., Mirzamomen, Z., and Roychoudhury, A. (2022). Stateful Greybox Fuzzing. In546

Proceedings of the 31st USENIX Security Symposium.547

Böhme, M., Pham, V.-T., Nguyen, M.-D., and Roychoudhury, A. (2017). Directed greybox fuzzing. In548

Proceedings of the 24th ACM SIGSAC Conference on Computer and Communications Security (CCS),549

pages 2329–2344.550

Böhme, M., Pham, V.-T., and Roychoudhury, A. (2016). Coverage-based Greybox Fuzzing as Markov551

Chain. In Proceedings of the ACM SIGSAC Conference on Computer and Communications Security552

(CCS), pages 1032–1043, Vienna. ACM.553

Chen, P. and Chen, H. (2018). Angora: Efficient Fuzzing by Principled Search. In IEEE Symposium on554

Security and Privacy (S&P), pages 711–725.555

Fioraldi, A., Elia, D. C. D., and Balzarotti, D. (2021). The Use of Likely Invariants as Feedback for556

Fuzzers. Proceedings of the 30th USENIX Security Symposium.557

Fioraldi, A., Maier, D., and Balzarotti, D. (2022). LibAFL: A Framework to Build Modular and Reusable558

Fuzzers. In Proceedings of the ACM Conference on Computer and Communications Security (CCS).559

Fioraldi, A., Maier, D., Eißfeldt, H., and Heuse, M. (2020). AFL++: Combining incremental steps of560

fuzzing research. WOOT 2020 - 14th USENIX Workshop on Offensive Technologies, co-located with561

USENIX Security 2020.562

Gan, S., Zhang, C., Chen, P., Zhao, B., Qin, X., Wu, D., and Chen, Z. (2020). Greyone: Data Flow563

Sensitive Fuzzing. Proceedings of the 29th USENIX Security Symposium, pages 2577–2594.564

Gan, S., Zhang, C., Qin, X., Tu, X., Li, K., Pei, Z., and Chen, Z. (2018). CollAFL: Path Sensitive Fuzzing.565

In IEEE Symposium on Security and Privacy (S&P), pages 679–696, San Francisco. IEEE.566

Godefroid, P. (2020). Fuzzing: Hack, art, and science. Communications of the ACM, 63(2):70–76.567

Godefroid, P., Kiezun, A., and Levin, M. Y. (2008). Grammar-based whitebox fuzzing. In Proceedings of568

the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages569

206–215.570

Google (2015). syzkaller - kernel fuzzer. https://github.com/google/syzkaller. Accessed571

on 2023-3-20.572

Google Information Security Engineering Team (2020). Improving open source security during573

the Google summer internship program. https://security.googleblog.com/2020/12/574

improving-open-source-security-during.html. Accessed on 2023-3-20.575

Google Security Team (2018). A New Chapter for OSS-Fuzz. https://security.googleblog.576

com/2018/11/a-new-chapter-for-oss-fuzz.html. Accessed on 2023-3-20.577

Guo, R. (2017). MongoDB’s JavaScript Fuzzer. Communications of the ACM, 60(5):43–47.578

Han, H., Oh, D., and Cha, S. K. (2019). CodeAlchemist: Semantics-Aware Code Generation to Find579

Vulnerabilities in JavaScript Engines. (February).580

He, X., Xie, X., Li, Y., Sun, J., Li, F., Zou, W., Liu, Y., Yu, L., Zhou, J., Shi, W., and Huo, W. (2021).581

SoFi: Reflection-Augmented Fuzzing for JavaScript Engines. Proceedings of the ACM Conference on582

Computer and Communications Security (CCS), pages 2229–2242.583

Klees, G., Ruef, A., Cooper, B., Wei, S., and Hicks, M. (2018). Evaluating fuzz testing. In Proceedings of584

the ACM Conference on Computer and Communications Security (CCS), pages 2123–2138, Toronto.585

ACM Press.586

17/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Lemieux, C. and Sen, K. (2018). Fairfuzz: A targeted mutation strategy for increasing Greybox fuzz testing587

coverage. ASE 2018 - Proceedings of the 33rd ACM/IEEE International Conference on Automated588

Software Engineering, pages 475–485.589

Li, Y., Ji, S., Chen, Y., Liang, S., Lee, W. H., Chen, Y., Lyu, C., Wu, C., Beyah, R., Cheng, P., Lu, K., and590

Wang, T. (2021). UNIFUZZ: A holistic and pragmatic metrics-driven platform for evaluating fuzzers.591

In Proceedings of the 30th USENIX Security Symposium.592

Liang, Y., Liu, S., and Hu, H. (2022). Detecting Logical Bugs of DBMS with Coverage-based Guidance.593

In Proceedings of the 31st USENIX Security Symposium.594

Lin, M., Zeng, Y., Wu, T., Wang, Q., Fang, L., and Guo, S. (2022). GSA-Fuzz: Optimize Seed Mutation595

with Gravitational Search Algorithm. Security and Communication Networks, 2022.596

Lyu, C., Ji, S., Zhang, C., Li, Y., Lee, W.-H., Song, Y., and Beyah, R. (2019). MOPT: Optimize Mutation597

Scheduling for Fuzzers. In 28th USENIX Security Symposium, page 1.598

Manes, V. J. M., Han, H. S., Han, C., sang kil Cha, Egele, M., Schwartz, E. J., and Woo, M. (2019). The599

Art, Science, and Engineering of Fuzzing: A Survey. IEEE Transactions on Software Engineering,600

pages 1–21.601

Mantovani, A., Fioraldi, A., and Balzarotti, D. (2022). Fuzzing with Data Dependency Information. In602

Proceedings of the 7th IEEE European Symposium on Security and Privacy (EuroS&P’22), pages603

286–302.604

Metzman, J., Szekeres, L., Simon, L., Sprabery, R., and Arya, A. (2021). FuzzBench: an open fuzzer605

benchmarking platform and service. In Proceedings of the 29th ACM Joint Meeting on European606

Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages607

1393–1403.608

Miller, B. P., Fredriksen, L., and So, B. (1990). An Empirical Study of the Reliability of UNIX Utilities.609

Communications of the ACM, 33(12):32–44.610

Padhye, R., Lemieux, C., Sen, K., Papadakis, M., and Le Traon, Y. (2019). Semantic Fuzzing with611

Zest. In Proceedings of the ACM SIGSOFT International Symposium on Software Testing and Analysis612

(ISSTA), pages 329–340, Beijing. ACM.613

Pan, G., Lin, X., Zhang, X., Jia, Y., Ji, S., Wu, C., Ying, X., Wang, J., and Wu, Y. (2021). V-Shuttle:614

Scalable and Semantics-Aware Hypervisor Virtual Device Fuzzing. Proceedings of the ACM Conference615

on Computer and Communications Security (CCS), pages 2197–2213.616

Park, S., Xu, W., Yun, I., Jang, D., and Kim, T. (2020). Fuzzing JavaScript engines with aspect-preserving617

mutation. In IEEE Symposium on Security and Privacy (S&P), pages 1629–1642.618

Peach Tech (2020). Peach Fuzzer. https://gitlab.com/peachtech/619

peach-fuzzer-community. Accessed on 2023-3-20.620

Pham, V.-t., Böhme, M., and Roychoudhury, A. (2020). AFLNet: A Greybox Fuzzer for Network621

Protocols. In Proceedings of the 13rd IEEE International Conference on Software Testing, Verification622

and Validation : Testing Tools Track, pages 460–465.623

Pham, V. T., Bohme, M., Santosa, A. E., Caciulescu, A. R., and Roychoudhury, A. (2021). Smart greybox624

fuzzing. IEEE Transactions on Software Engineering, 47(9):1980–1997.625

Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., and Bos, H. (2017). VUzzer: Application-aware626

Evolutionary Fuzzing. In 24th Annual Network and Distributed System Security Symposium (NDSS).627

Rigger, M. (2023). SQLancer. https://github.com/sqlancer/sqlancer. Accessed on 2023-628

3-20.629

Rigger, M. and Su, Z. (2020). Testing Database Engines via Pivoted Query Synthesis. In Proceedings of630

the 14th USENIX Symposium on Operating Systems Design and Implementation.631

Salls, C., Jindal, C., Corina, J., Kruegel, C., and Vigna, G. (2021). Token-level fuzzing. Proceedings of632

the 30th USENIX Security Symposium, pages 2795–2809.633

Schumilo, S., Aschermann, C., Abbasi, A., Worner, S., and Holz, T. (2020). HYPER-CUBE: High-634

Dimensional Hypervisor Fuzzing. In 27th Annual Network and Distributed System Security Symposium635

(NDSS), number February.636

Schumilo, S., Aschermann, C., Jemmett, A., Abbasi, A., and Holz, T. (2022). Nyx-Net: Network Fuzzing637

with Incremental Snapshots. In Proceedings of the 17th European Conference on Computer Systems638

(EuroSys), volume 1, pages 166–180. Association for Computing Machinery.639

Seltenreich, A., Tang, B., and Mullender, S. (2022). SQLsmith. https://github.com/anse1/640

sqlsmith. Accessed on 2023-3-20.641

18/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

Serebryany, K., Bruening, D., Potapenko, A., and Vyukov, D. (2012). AddressSanitizer: A fast address642

sanity checker. In USENIX Annual Technical Conference (ATC), pages 309–318.643

Wang, J., Chen, B., Wei, L., and Liu, Y. (2019). Superion: Grammar-Aware Greybox Fuzzing. In644

International Conference on Software Engineering, pages 724–735.645

Wang, J., Song, C., and Yin, H. (2021a). Reinforcement Learning-based Hierarchical Seed Scheduling646

for Greybox Fuzzing. In 28th Annual Network and Distributed System Security Symposium (NDSS),647

number February.648

Wang, M., Wu, Z., Xu, X., Liang, J., Zhou, C., Zhang, H., and Jiang, Y. (2021b). Industry practice of649

coverage-guided enterprise-level DBMS fuzzing. In International Conference on Software Engineering,650

pages 328–337.651

Wang, T., Wei, T., Gu, G., and Zou, W. (2010). TaintScope: A Checksum-Aware Directed Fuzzing Tool652

for Automatic Software Vulnerability Detection. In IEEE Symposium on Security and Privacy (S&P),653

pages 497–512.654

Xie, K. T., Bai, J. J., Zou, Y. H., and Wang, Y. P. (2022). ROZZ: Property-based Fuzzing for Robotic655

Programs in ROS. In Proceedings of IEEE International Conference on Robotics and Automation,656

pages 6786–6792. IEEE.657

Xu, W., Moon, H., Kashyap, S., Tseng, P. N., and Kim, T. (2019). Fuzzing file systems via two-658

dimensional input space exploration. In IEEE Symposium on Security and Privacy (S&P), volume659

2019-May, pages 818–834.660

Yue, T., Wang, P., Tang, Y., Wang, E., Yu, B., Lu, K., and Zhou, X. (2020). EcoFuzz: Adaptive energy-661

saving greybox fuzzing as a variant of the adversarial multi-armed bandit. Proceedings of the 29th662

USENIX Security Symposium, pages 2307–2324.663

Zalewski, M. (2017). AFL - American Fuzzy Lop. http://lcamtuf.coredump.cx/afl/.664

Accessed on 2023-3-20.665

Zeng, Y., Lin, M., Guo, S., Shen, Y., Cui, T., Wu, T., Zheng, Q., and Wang, Q. (2020). Multifuzz: A666

coverage-based multiparty-protocol fuzzer for IoT publish/subscribe protocols. Sensors, 20(18):1–19.667

Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., and Sun, L. (2019). FIRM-AFL: High-throughput668

greybox fuzzing of IoT firmware via augmented process emulation. In Proceedings of the 28th USENIX669

Security Symposium, pages 1099–1114.670

Zhong, R., Chen, Y., Hu, H., Zhang, H., Lee, W., and Wu, D. (2020). SQUIRREL: Testing Database671

Management Systems with Language Validity and Coverage Feedback. Proceedings of the ACM672

Conference on Computer and Communications Security (CCS), pages 955–970.673

Zhu, X., Wen, S., Camtepe, S., and Xiang, Y. (2022). Fuzzing: A Survey for Roadmap. ACM Computing674

Surveys, pages 1–34.675

Zou, Y. H., Bai, J. J., Zhou, J., Tan, J., Qin, C., and Hu, S. M. (2021). TCP-fuzz: Detecting memory676

and semantic bugs in TCP stacks with fuzzing. In 2021 USENIX Annual Technical Conference, pages677

161–175.678

19/19PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84412:1:1:NEW 21 Jul 2023)

Manuscript to be reviewedComputer Science

