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ABSTRACT
Fuzzing has become an important method for finding vulnerabilities in software. For
fuzzing programs expecting structural inputs, syntactic- and semantic-aware fuzzing
approaches have been particularly proposed. However, they still cannot fuzz in-
memory data stores sufficiently, since some code paths are only executed when the
required data are available. In this article, we propose a data-aware fuzzing method,
DAFuzz, which is designed by considering the data used during fuzzing. Specifically,
to ensure different data-sensitive code paths are exercised, DAFuzz first loads
different kinds of data into the stores before feeding fuzzing inputs. Then, when
generating inputs, DAFuzz ensures the generated inputs are not only syntactically
and semantically valid but also use the data correctly. We implement a prototype of
DAFuzz based on Superion and use it to fuzz Redis and Memcached. Experiments
show that DAFuzz covers 13~95% more edges than AFL, Superion, AFL++, and
AFLNET, and discovers vulnerabilities over 2.7× faster. In total, we discovered four
new vulnerabilities in Redis and Memcached. All the vulnerabilities were reported to
developers and have been acknowledged and fixed.

Subjects Data Science, Databases, Security and Privacy, Software Engineering
Keywords Coverage-base fuzzing, In-memory data store, Data-aware, Semantic-aware, Input
generation, Coverage-guided fuzzing

INTRODUCTION
Fuzzing has become an important way to find vulnerabilities in software (Manes et al.,
2019; Zhu et al., 2022), and coverage-guided fuzzing (CGF) (Zalewski, 2017; Böhme, Pham
& Roychoudhury, 2016) is one of the most popular fuzzing technologies, since it could
gradually explore the state space of the program under test (PUT) even if only several
initial seeds are given. This is because when it mutates seeds to create new inputs, it traces
the coverage information of the new inputs, and adds the inputs into the seed pool as new
seeds if the inputs have new code coverage. CGF fuzzers (e.g., AFL (Zalewski, 2017),
honggfuzz (Honggfuzz, 2023), libFuzzer (libFuzzer, 2023), and AFL++ (Fioraldi et al.,
2020)) are the main fuzzers used in the famous OSS-Fuzz project (Google Security Team,
2018), which has discovered over 8,900 vulnerabilities and 28,000 bugs across 850 open-
source projects by February 2023 (https://github.com/google/oss-fuzz). CGF fuzzers have
also been used to discover vulnerabilities in other fields including operation systems
(Google, 2015; Pan et al., 2021), network protocols (Pham, Böhme & Roychoudhury, 2020;
Ba et al., 2022), as well as the Internet of Things (IoT) (Zheng et al., 2019, 2020).
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It is known to be difficult for CGF fuzzers to fuzz programs expecting structural inputs
because it is hard to get syntactically and semantically valid inputs through seed mutation
(Wang et al., 2019). For instance, common mutation operations like bit flipping and byte
modification (Zalewski, 2017; Fioraldi et al., 2020) can often corrupt the original format of
an input. To tackle the problem, grammar-aware CGF fuzzers that understand the
grammar (syntax and semantics) of inputs have been proposed recently (Wang et al., 2019;
Han, Oh & Cha, 2019; Padhye et al., 2019; Park et al., 2020; He et al., 2021; Liang, Liu &
Hu, 2022). They usually consider syntactic and semantic constraints when creating new
inputs, and then the created new inputs could pass the corresponding syntax and
semantics checks in the code. For instance, when fuzzing JavaScript engines, Superion
(Wang et al., 2019) guarantees the generation of syntactically valid JavaScript inputs, such
as ensuring that brackets always exist in pairs. Additionally, SoFi (He et al., 2021) can
further ensure the creation of semantically valid JavaScript inputs, such as ensuring
variables are defined before they are used.

In-memory data stores like Redis are widely used in thousands of companies like
Twitter and Snapchat (https://redis.io/docs/about/users/), since they provide very efficient
and convenient access to data. It is crucial to uncover any vulnerabilities in them in a
timely manner. However, when applying CGF fuzzers to fuzz in-memory data stores,
merely considering the syntactic and semantic validity of the inputs is insufficient. In-
memory data stores usually use different commands with defined parameter formats to
access the data, and may use serialization protocols for communicating between their
clients and servers. However, even if commands are sent in syntactically and semantically
format, some code paths may not be executed when the required data are not available.
This is because the statuses of the data directly control how commands are processed and
which code paths are executed. For example, the processing of command “RPOP key” in
Redis may execute a quick-exit code path and return an empty array when the list key is
empty, and may execute a popping data code path and return the last element of the list
only when the list key is not empty.

In this article, we propose DAFuzz, a data-aware fuzzing method for in-memory data
stores that considers data requirements in addition to syntactic and semantic validity in
fuzzing, as shown in Fig. 1. We also compare DAFuzz with other typical CGF fuzzers in
Table 1. Although general CGF fuzzers like AFL (Zalewski, 2017) and AFL++ (Fioraldi
et al., 2020) can be applied to fuzz in-memory data stores, they are not grammar-aware.

Syntax aware

Seman�cs aware

Data aware

e.g., correct 
formats

e.g., defined 
variables

e.g., with 
required data

Figure 1 DAFuzz considers the syntax, semantics, and data (which is a newly proposed factor) at the
same time in fuzzing. Full-size DOI: 10.7717/peerj-cs.1592/fig-1
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AFLNET (Pham, Böhme & Roychoudhury, 2020) and Superion (Wang et al., 2019) are
partially or fully syntax-aware but not semantics-aware. Other fuzzers such as SoFi (He
et al., 2021), Squirrel (Zhong et al., 2020), and SQLRight (Liang, Liu & Hu, 2022) are both
syntax-aware and semantics-aware, but they are specifically designed for and limited to
fuzzing JavaScript engines or SQL databases. Also, all these fuzzers are not data-ware. In
contrast, DAFuzz proposed in this article is syntax-aware, semantics-aware, and data-
aware, and is designed for fuzzing in-memory data stores. Specifically, firstly, DAFuzz
designs a data construction algorithm to generate a special data set that is used to satisfy
the requirements of different code paths. Then, DAFuzz generates inputs according to the
data set, as well as the grammar of commands. Finally, DAFuzz also uses syntax-aware
mutation to improve mutation efficiency. We implement a prototype of DAFuzz based on
Superion and test DAFuzz with two popular in-memory data stores Redis and
Memcached. The experiments show that DAFuzz could find 13~95% more edges than
AFL, Superion, AFL++, and AFLNET in 24 h, and discover the same number of edges at
least 26�, 21�, 19�, and 288� faster than AFL, Superion, AFL++, and AFLNET,
respectively. In addition, DAFuzz discovers the same vulnerabilities as other fuzzers but
discovers them at least 2.7� faster. All four discovered vulnerabilities (three in Redis and
one in Memcached), including three segmentation violations and one stack buffer overflow
(more details in the “Vulnerabilities Discovered” section), were reported to the developers
and have been acknowledged and addressed in new releases.

In summary, this article contains the following contributions.

� We propose the first data-aware fuzzing method for reaching code paths that are
executed only when the required data are available.

� We design an algorithm to construct a data set to load for fuzzing, and an algorithm to
generate fuzzing inputs that use the required data and are syntactically and semantically
valid as well.

� We implement a prototype of DAFuzz based on Superion, and compare DAFuzz with
other state-of-the-art fuzzers including AFL, Superion, AFL++, and AFLNET using two
popular in-memory data stores Redis and Memcached. We discover four new
vulnerabilities and report them to the developers. We share the DAFuzz prototype as

Table 1 Conceptual comparison of typical CGF fuzzers.

Fuzzer Syntax-
aware

Semantics-
aware

Data-
aware

Applied to in-memory data stores

AFL (Zalewski, 2017), AFL++ (Fioraldi et al., 2020) No No No Yes

AFLNET (Pham, Böhme & Roychoudhury, 2020) Partial No No Yes

Superion (Wang et al., 2019) Yes No No Yes

SoFi (He et al., 2021) Yes Yes No No (JavaScript engine only)

Squirrel (Zhong et al., 2020), SQLRight (Liang, Liu & Hu, 2022) Yes Yes No No (SQL database only)

DAFuzz (this article) Yes Yes Yes Yes
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Free and Open Source Software at https://github.com/hdusoftsec/DAFuzz (release after
publication).

BACKGROUND AND MOTIVATING EXAMPLE
Background
In-memory data store
In-memory data stores like Redis and Memcached are widely used in web and mobile
application servers. They are popular because they store data in memory and provide very
efficient and convenient access to the data, which makes them quite suitable for tasks like
caching and session management. In-memory data stores may support different kinds of
data types, for example, Redis supports string, list, set, sorted set, hash, etc. (https://redis.
io/docs/data-types/tutorial/). They usually use different commands with defined
parameter formats to access data. For example, in Redis “SET key value” is for storing
value to key, and both value and key could be arbitrary strings. They may also use some
serialization protocols (i.e., application layer network protocols) for client-server
communication (i.e., for sending and receiving commands and data). For example, Redis
mainly uses RESP (REdis Serialization Protocol) protocol (https://redis.io/docs/reference/
protocol-spec/) for client-server communication. It is important to eliminate any
vulnerabilities in such widely used programs, especially since they usually run on servers
that have rich computation and network resources.

Fuzzing
Fuzzing, a technique used for vulnerability discovery, has a history of over 30 years (Miller,
Fredriksen & So, 1990). It has been widely recognized as an effective method and can
complement other techniques such as manual code inspection and static program analysis
(Godefroid, 2020). Coverage-guided fuzzing (CGF) now probably is the most popular
fuzzing technology (Manes et al., 2019; Zhu et al., 2022). CGF fuzzer usually first
instruments the PUT to trace coverage information when running each input, and starts a
fuzzing loop with some initial seeds. The fuzzing loop of AFL is also shown in Algorithm 1

Algorithm 1 The DAFuzz fuzzing loop. The differences between DAFUZZ and AFL are underlined.

Input: Initial seed set s, grammar G, data set D

1: repeat

2: generate inputs with G and D, and fuzz them

3: s = ChooseNextðsÞ
4: deterministically fuzz with s if needed

5: mutate s in havoc/splicing style and fuzz the mutated inputs

6: mutate s in syntax-aware style with G and fuzz the mutated inputs

7: until timeout reached or user aborts

Output: Crash inputs sc
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(without the grey part). In the fuzzing loop, it keeps selecting seeds and mutating them to
create new inputs and runs the inputs with the PUT. The mutation of a seed may include a
deterministic stage in which the seed is sequentially changed by predefined steps like one-
by-one bit flipping, and an indeterministic (havoc/splicing) stage in which the seed is
applied with stacking changes (i.e., applying multiple changes to produce one input) and
may be spliced with another randomly selected seed first. If any new inputs have new code
coverage, they are added to the seed pool as new seeds. Thus, the fuzzer could gradually
explore more state space of the PUT, compared to traditional unit testing and mutation
testing.

Mutation-based CGF fuzzers do not perform well for programs expecting structural
inputs, such as JavaScript engines, XML parsers, etc., because it is hard for the fuzzers to get
syntactically and semantically valid inputs during random seed mutation (Wang et al.,
2019). Programs expecting structural inputs usually have syntax and semantics checks
early in the program execution, and inputs that are either not syntactically or semantically
valid could not pass such checks to execute deep program code paths. Syntax-aware (Wang
et al., 2019; Padhye et al., 2019) and semantics-aware fuzzers (Han, Oh & Cha, 2019; He
et al., 2021) have been proposed to solve the problem. They understand the grammar of
inputs and could obtain new inputs that are syntactically and even semantically valid. For
example, they may convert seeds into abstract syntax trees (ASTs) and mutate at the AST
tree node level instead of the byte level of seeds (Wang et al., 2019).

Motivating example
Only syntax-aware and semantics-aware fuzzing is not enough for efficiently fuzzing in-
memory data stores like Redis, since some code paths could only be executed when the
required data are available. Take the processing of RPOP key command in Redis for
example. The command is to remove and return the last element of the key list, and its
corresponding code snippet in t_list.c is shown in Fig. 2A. An input “RPOP list1” is
both syntactically valid (i.e., command format) and semantically valid (i.e., using list1
without declaration first is correct in Redis), however, if list1 is empty, the execution exits
at line 5 and the left code lines in the function are not executed. Another example is the
processing of SINTER key [key…] command. The command is to return the intersection of
all the given sets, and its code snippet in t_set.c is shown in Fig. 2B. The execution would
end early at line 6 if any set is empty, and even if they are all not empty, the code lines
represented between line 16 and line 18 are not executed if the intersection of the sets is
empty.

DAFUZZ APPROACH
Overview
DAFuzz incorporates data-aware fuzzing, in addition to syntax-aware and semantics-
aware fuzzing. The architecture of DAFuzz is shown in Fig. 3, and its differences from
other fuzzers like AFL are highlighted. First, DAFuzz uses a data construction module to
produce the data that would be used later in program execution and input generation in
the fuzzing loop (the “Data Construction” section). Second, in the fuzzing loop, DAFuzz
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A

1. void sinterGenericCommand(client *c, robj **setkeys, …) {
2. /* Check empty set */
3. …
4. if (empty > 0) {
5. …
6. return;
7. }
8. /* Compute the intersection set */
9. …
10. if (cardinality_only) {
11. addReplyLongLong(c,cardinality);
12. } else if (dstkey) {
13. /* Store the resulting set into the target, if the
14. * intersection is not an empty set. */
15. if (setTypeSize(dstset) > 0) {
16. setKey(c,c->db,dstkey,dstset,0);
17. addReplyLongLong(c,setTypeSize(dstset));
18. …
19. } else {
20. …
21. }
22. …
23. }
24. …
25. }

B

1. void popGenericCommand(client *c, int where) {
2. …
3. robj *o = lookupKeyWriteOrReply(c, c->argv[1],

shared.null[c->resp]);
4. if (o == NULL || checkType(c, o, OBJ_LIST))
5. return; // return if no data in list
6. …
7. if (!count) {
8. value = listTypePop(o,where);
9. serverAssert(value != NULL);
10. addReplyBulk(c,value);
11. decrRefCount(value);
12. listElementsRemoved(c,c-

>argv[1],where,o,1,NULL);
13. }
14. …
15. }

Figure 2 Code snippets for processing two commands in Redis. (A) The RPOP command. (B) The
SINTER command. Full-size DOI: 10.7717/peerj-cs.1592/fig-2

Figure 3 The DAFuzz architecture, with differences from AFL highlighted.
Full-size DOI: 10.7717/peerj-cs.1592/fig-3
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uses a data-aware and semantics-aware generation module for generating inputs that are
syntactically and semantically valid, as well as referring to valid data (the “Data-aware and
Semantics-aware Input Generation” section). Last but not least, DAFuzz uses syntax-aware
mutation in the fuzzing loop for creating syntactically valid inputs (the “Syntax-aware
Mutation” section).

The fuzzing loop of DAFuzz is shown in Algorithm 1, and its differences from AFL are
highlighted as well. DAFuzz is still a CGF fuzzer like AFL, i.e., with a fuzzing loop that
keeps choosing a seed, mutating it to get inputs, and fuzzing inputs by feeding them to the
PUT. However, in the fuzzing loop, it uses input generation as well for using the grammar
and the data constructed. Using input generation together with seed mutation to create
inputs is similar to some CGF fuzzers like syzkaller (Google, 2015). In addition to the
havoc/splicing stage, DAFuzz contains a syntax-aware mutation stage like Superion (Wang
et al., 2019) for improving the ratio of valid inputs obtained from seed mutation.

Data construction
The data construction module is to construct a data set containing different types of data,
which is later provided to program execution and input generation. The algorithm is
shown in Algorithm 2. Users could specify the set of data types T to generate (e.g., list and
hash), the number of data items N to create for each type, and the maximum number of

Algorithm 2 Data construction for fuzzing.

Input: a set of data types T, number of data to create for each type N, maximum number of values inside
each data Nf

1: D ¼ f ▹ The data to output

2: V ¼ f

3: add predefined different values to V

4: for each data type t in T do

5: for i from 1 to N do

6: create data item d of type t

7: nf = UniformRandomð1;Nf Þ
8: for j from 1 to |V| do

9: add the corresponding value of V to d

10: end for

11: for j from jVj þ 1 to nf do

12: add a random string value to d

13: end for

14: add d to D

15: end for

16: end for

Output: data set D
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values Nf to store in each data item (e.g., the number of members in list). In the algorithm,
a small set of predefined values V is prepared first. Then, for each data type, N data items
would be generated. For generating each data item, its number of members nf is randomly
obtained by UniformRandomð1;Nf Þ (uniformly selected in [1, Nf ]). After that, both the
predefined values V and some randomly generated strings are added to the data item,
according to nf . The predefined value set V is useful since it makes sure that the data items
have common values, which makes the calculations (e.g., the intersection) among them
may not empty.

To run the algorithm, users should know the supported data types of the data store
(PUT), and they usually should add all supported data types into T to construct different
types of data, unless users just want to focus on fuzzing part of data types like in directed
fuzzing (Böhme et al., 2017). In addition, however, it is better to specify moderate values for
N and Nf , which define how much data to generate, because loading too much data when
starting the server would slow down the fuzzing execution speed.

Data-aware and semantics-aware input generation
The data-aware and semantics-aware input generation module is used to generate inputs
according to the grammar of inputs and the data constructed in the previous section, and
its algorithm is shown in Algorithm 3. For in-memory data stores, the grammar of inputs
is mainly the grammar of commands, which consists of the name, options, and parameters
of each command. In addition to the grammar and data set, DAFuzz also prepares a
command list C containing all commands and an optional command-to-related-
commands map R. The map R is a map that maps each command to a command list
containing all its related commands, e.g., the related commands of SINTER command (set
intersection command) including all commands about set calculations. The normal
distribution Nðl; r2Þ is to define how many commands to put inside a single input.
DAFuzz does not use uniform distribution here for having a small probability to generate
extraordinarily big inputs.

In the input generation algorithm, the number of commands nc in the input is first
calculated. After that, the first command type is randomly selected from the command list
C. Then, DAFuzz creates a command c of the given command type, with options of the
command randomly enabled. The creation method is introduced later with examples.
DAFuzz fills all fields of the command c before appending it to the seed. When filling a field
of a data type, DAFuzz first tries to randomly select a data item from all the data items with
the same data type in data set D. If no such data items exist in the data set, it randomly
generates a data item with the given type. When selecting the next command type, if the
current command has related commands in the map R, it obtains all related commands
with R½next cmd� and randomly selects the next command. Otherwise, it still randomly
selects a command type from the whole command list as the next command. Now the
algorithm does not try to ensure the “normal” order of generated commands, because it is
hard to define the “normal” order (e.g., hard to know which list command, LPOP or
LPUSH, is normally executed first), and randomly executing commands may help to
expose vulnerabilities in data stores.
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We use examples to illustrate the aforementioned command creation, mainly about how
options are enabled. Suppose the LPOP key [count] command is selected for creation
(where “[]” means inner content is optional). DAFuzz randomly selects one from the two
possible commands to create, LPOP key and LPOP key count, which means there are two
possible values for the component “[count]”: “count” or “ ” (i.e., blank). Considering
another ZADD command is selected and it has the grammar ZADD key [NX|XX] [GT|LT]
[CH] [INCR] score member [score member] (where “|”means any one of the listed elements
is allowed). We can see that there are three possible values for the component “[NX|XX]”:
“NX”, “XX”, or “ ” (i.e., blank). Thus, for the ZADD command, DAFuzz randomly selects
one from the 3� 3� 2� 2� 2 ¼ 72 possible commands to create. The creation method
is implemented by processing “[]” and “|” symbols in multiple rounds until all of them are
parsed, which could easily deal with the case that options are nested (e.g., “[[…]…]”).

Syntax-aware mutation
DAFuzz uses the tree-based mutation method proposed in Superion (Wang et al., 2019) to
mutate seeds, which could keep the syntax of test inputs correct. The tree-based mutation

Algorithm 3 Data-aware and semantics-aware input generation.

Input: command grammar G, command list C, command-to-related-commands map R, data set D, a normal distribution Nðl; r2Þ deciding the
number of commands in an input.

1: s ¼ f ▹ The seed to output

2: nc = Nðl; r2Þ
3: next cmd ¼ SelectRandomCommandðCÞ
4: for i from 1 to nc do

5: create command c of type next cmd according to G

6: for each field f of data type t in c do

7: if t exists in D then

8: select a random data item in D of type t and fill the field f

9: else

10: generate random data item and fill the field f

11: end if

12: end for

13: append c to s

14: if R½next cmd� is not empty then

15: next cmd ¼ SelectRandomCommandðR½next cmd�Þ
16: else

17: next cmd ¼ SelectRandomCommandðCÞ
18: end if

19: end for

Output: seed s
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method generally works as follows. It parses two seeds tar and pro into two abstract syntax
trees first and collects all the subtrees into a set S. Then, it iterates all the subtrees of the
AST of tar one by one, and for each subtree obtains a batch of new inputs, by replacing the
subtree with each subtree in S once and serializing the mutated AST to an input. DAFuzz
follows the same method to mutate seeds, however, it uses the grammar of in-memory data
stores instead (e.g., the grammar of commands and the RESP protocol for Redis).

DAFuzz also adopts the enhanced dictionary-based mutation method proposed in
Wang et al. (2019), which could cleverly mutate seeds by considering token boundaries
(e.g., not partially overwriting tokens). We add the names of commands and the names of
data items in the constructed data set into the fuzzing dictionary to better support the
method.

Note that DAFuzz still would mutate seeds to produce inputs that are not syntactically
or semantically valid, since it still has the havoc/splicing stage as we mentioned in
Algorithm 1. This is helpful to cover exception handling code during fuzzing, and we do
observe a higher code coverage in our testing.

IMPLEMENTATION
Preparing the grammars
The grammars mainly include the grammars of commands and serialization protocols and
are obtained from corresponding official websites. For example, Redis has more than 300
commands in 6.x, and we retrieve its command grammar (including command name,
options, parameters) from https://redis.io/commands/ with a web crawler written in
Python. In the document for each command, there is also a column for “Related
commands”, which is used to build the command-to-related-commands map. Redis may
use both RESP and inline commands as its serialization protocol, and DAFuzz supports
both of them in its syntax-aware mutation. The grammars are stored in JSON files and are
provided to the fuzzer at runtime.

Data construction
The data constructed for Redis are stored into a rdb file, which is loaded when starting the
Redis server with the --dbfilename option. However, Memcached does not have a
mechanism to load data into the data store when starting the server, and the constructed
data are loaded by using commands that are inserted in the front of the initial seeds. The
more data are constructed for fuzzing, the higher probability that different data conditions
would be satisfied during fuzzing. However, the more data are loaded when starting the
server, the slower the fuzzing execution speed would become. For Redis, the rdb file we
use for fuzzing is about 3.8 KB, and we have tested that it does not slow down the fuzzing
execution speed too much, and also supports good code coverage.

The fuzzer
DAFuzz is implemented based on Superion (Wang et al., 2019), which is further based on
AFL (Zalewski, 2017). We implement the data-aware and semantics-aware input
generation methods using C++. We also use ANTLR (ANother Tool for Language
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Recognition) 4 (v4.9.3) for recognizing the ASTs of seeds and making syntax-aware seed
mutations, though with new grammars. The mutation and generation methods are
implemented using a predefined function interface, which follows the same framework
utilized by Superion. AFL++ (Fioraldi et al., 2020) also adopts similar frameworks for
custom mutations. As a result, switching implementations becomes effortless by loading
different dynamic libraries (i.e., different .so files). Superion disables the havoc/splice
stage by default during fuzzing, but we find such a stage is useful for in-memory data stores
and we re-enable it. We also implement a mode for testing multi-dimensional fuzzing as
we will explain in a later “The Effect of Multi-Dimensional Fuzzing” section.

EVALUATION
In this section, we evaluate our DAFuzz prototype, aiming to answer the following research
questions.

� Does DAFuzz improve the code coverage when fuzzing in-memory data stores?

� Can DAFuzz find more vulnerabilities or find vulnerabilities more quickly?

Experiment setup
Programs
We use the two most popular in-memory data stores, Redis and Memcached, for
experiments. For performance comparison, we use Redis unstable (master) branch with
the last commit #5460c10 (2022/1/3), and Memcached 1.6.13.

Baseline fuzzers
We select several state-of-the-art fuzzers for comparisons, including AFL (Zalewski, 2017),
Superion (Wang et al., 2019), AFLNET (Pham, Böhme & Roychoudhury, 2020), and AFL++
(Fioraldi et al., 2020). The first one is the latest AFL (v2.52b) (Zalewski, 2017). Superion
(Wang et al., 2019) is a fuzzer that supports grammar-aware (mainly syntax-aware)
mutation. We update it with the grammar of commands and network protocols of the two
data stores. AFLNET (Pham, Böhme & Roychoudhury, 2020) is selected because it is
specially designed for fuzzing network protocols, and we update it with the network
protocols of the two data stores as well. AFL++ (Fioraldi et al., 2020) (v4.00c) is the
successor of AFL and has many improvements like better seed scheduling, more mutators,
and faster instrumentation. For all the fuzzers we use their default parameters. All fuzzers
are explicitly configured to skip the deterministic stage (i.e., with “-d” option), except
AFLNET and AFL++, which have disabled the stage by default (Pham, Böhme &
Roychoudhury, 2020; Fioraldi et al., 2020). However, since Superion needs deterministic
fuzzing for grammar-aware trimming and enhanced dictionary-based mutation (Wang
et al., 2019), we still do deterministic fuzzing for seeds with a probability, even the “-d”
option is set. We enable the probability for AFL, Superion, and DAFuzz for a fair
comparison, but do not enable it for AFLNET and AFL++, which have disabled the
deterministic stage by default. We set the probability to be 0.05 since we find it makes a
good balance on different stages.
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Fuzzing parameters
For a fair comparison, we provide all the fuzzers with the same dictionary, the same initial
seeds, and the same constructed data set (i.e., constructed as described in the “Data
Contruction” section). The dictionary contains the names of data store commands and the
names of data items in the data set. The program parameter of Redis is like ./redis-
server --dbfilename data.rdb --bind 127.0.0.1 --protected-mode no, where
data.rdb is the file contains the constructed data set, and the program parameter of
Memcached is like ./memcached, and the constructed data are stored in initial seeds. We
use a faster de-socketing tool, desockmulti (Zeng et al., 2020), for fuzzing both programs,
since they communicate with their clients through sockets but not files or stdin, except
for AFLNET which directly communicates with the PUTs through ordinary sockets.

Platform
The experiments are conducted on a server with 2 Intel(R) Xeon(R) CPU E5-2640 v4 @
2.40 GHz processors, 64 GB RAM memory, and with 64-bit Ubuntu 20.04 LTS as server
operating system. Each case lasts for 24 h on a single core and is repeated five times if not
explicitly stated, for reducing the randomness of fuzzing (Klees et al., 2018). It is worth
noting that the use of a 24-h run is a popular setting for fuzz testing, particularly after the
publication of Klees et al. (2018)’s article. This is because some fuzzers may start slow and
bugs often reside in certain parts of the program (Klees et al., 2018). Therefore, longer
fuzzing runs are considered fairer and can provide a more accurate representation of
performance trends in real-world scenarios (Klees et al., 2018).

The comparison of code coverage
Edge coverage
Edge coverage (i.e., branch coverage) is used here since it is one of the most widely used
coverage metrics now (Lemieux & Sen, 2018; Fioraldi et al., 2020;Wang, Song & Yin, 2021;
Metzman et al., 2021; Fioraldi, Maier & Balzarotti, 2022), and the edge coverage growth of
different fuzzers is shown in Figs. 4 and 5, for Redis and Memcached respectively. We can
see that DAFuzz outperforms all other fuzzers in both programs. AFL, Superion, and
AFL++ perform similarly and are in the second tier, while AFLNET performs considerably
worse. This is mainly because the execution speed of AFLNET is slow (e.g., less than 20
execs/s vs. over 100 execs/s for other fuzzers), which is a known problem (Zeng et al., 2020;
Schumilo et al., 2022) since it feeds inputs to PUT through ordinary INET sockets but not
faster UNIX sockets (Zeng et al., 2020). Superion outperforms its base fuzzer AFL in Redis
while performs similarly in Memcached, which suggests that syntax-aware mutation (the
“Syntax-Aware Mutation”) may be only useful in some cases. In addition, DAFuzz
performs much better than its base fuzzer Superion in both programs, which suggests that
data-aware and semantics-aware input generation module (the “Data-aware and
Semantics-aware Input Generation” section) could further boost the capability of the
fuzzer, since the input generation module is the only difference between them in the
experiment.
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The final numbers of edges discovered by different fuzzers in 24 h are shown in Table 2
for quantitative comparison. DAFuzz discovers 17,424 edges in total in the two programs,
which are 17%, 95%, 16%, and 13% more than AFL, AFLNET, AFL++, and Superion,
respectively. We further calculate the time DAFuzz needs to discover the same number of
edges other fuzzers discover in 24 h and list the time and improvements of DAFuzz over
others in Table 3. The number of edges is collected every 5 min. We can see that DAFuzz

Figure 5 The edge coverage growth discovered by different fuzzers for Memcached.
Full-size DOI: 10.7717/peerj-cs.1592/fig-5

Figure 4 The edge coverage growth discovered by different fuzzers for Redis.
Full-size DOI: 10.7717/peerj-cs.1592/fig-4
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needs at most 1 h and 15 min to discover the same number of edges any other fuzzer
discovers in 24 h, which means DAFuzz is at least 19� faster in edge discovery.

Statistical analysis
We also use the p value of Mann Whitney U-test to decide whether there is a statistically
significant difference between two sets of results, as suggested in Klees et al. (2018). The
p values are shown in Table 4, where p1, p2, p3, p4, and p5 represent the differences
between DAFuzz and the other four fuzzers, AFL, AFLNET, AFL++, and Superion
respectively. p value is less than 0.05 means the difference is statistically significant. Here all
the p values are less than 0.01, which means the code coverage of DAFuzz is different from
the code coverage of other fuzzers significantly.

The comparison of unique vulnerability discovery
All the fuzzers only discover crashes in Redis during performance comparison. We use
AddressSanitizer (Serebryany et al., 2012) to rebuild the program, run it against the inputs
that cause crashes, and manually remove duplicated vulnerabilities. Eventually, we confirm
that two unique vulnerabilities (one segmentation violation and one stack buffer overflow)
are discovered by all fuzzers except AFLNET, which does not discover any vulnerabilities.
We report the two vulnerabilities to developers in GitHub issue #10070 (https://github.
com/redis/redis/issues/10070) and issue #10076 (https://github.com/redis/redis/issues/
10076) respectively. Both of them have been confirmed and fixed by the developers. We

Table 4 The p values on the numbers of edges discovered by DAFuzz and other fuzzers.

Program p1 p2 p3 p4

Redis 0.008 0.008 0.008 0.008

Memcached 0.008 0.008 0.008 0.008

Table 2 Average numbers of edges discovered after 24 h, with the ratios in brackets representing how
many more edges DAFuzz discovers than them.

Program AFL AFLNET AFL++ Superion DAFuzz

Redis 12,913 (+18%) 7,555 (+102%) 13,043 (+17%) 13,398 (+14%) 15,257

Memcached 1,989 (+9%) 1,396 (+55%) 2,037 (+6%) 1,973 (+10%) 2,167

Total 14,902 (+17%) 8,951 (+95%) 15,080 (+16%) 15,371 (+13%) 17,424

Table 3 The time needed by DAFuzz to discover the same numbers of edges discovered by other
fuzzers in 24 h (measured every 5 min), with the improvements DAFuzz over them placed in
brackets.

Program AFL AFLNET AFL++ Superion

Redis 40 min (36�) <5 min (288�) 45 min (32�) 1 h 10 min (21�)

Memcached 55 min (26�) <5 min (288�) 1 h 15 min (19�) 50 min (29�)
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will describe their details later in the “Vulnerabilities Discovered” section, and focus on the
comparison of vulnerability discovery speed here. Table 5 shows the average time needed
for each fuzzer to discover the two vulnerabilities. DAFuzz only needs 28 min on average
to find both of them, which is 2.7� faster than Superion (1 h 15 min), 7.8� faster than
AFL++ (3 h 37 min), and 8.4� faster than AFL (3 h 55 min).

The effect of using constructed data only
In this subsection, we check the effect of the data construction module alone. In the “The
Comparison of Code Coverage” section, since all fuzzers are provided with the constructed
data as mentioned before, the comparison between Superion and AFL illustrates the effect
of syntax-aware mutation module (Superion is based on AFL but with this extra mutation
module), and the comparison between DAFuzz and Superion illustrate the effect of data-
aware and semantics-aware input generation module (DAFuzz is based on Superion but
with this extra generation module). It may be interesting to know the effect of using the
data constructed alone, and we use the base fuzzer AFL as an example. Here, one AFL
fuzzer uses the data constructed (marked as AFL), another AFL fuzzer has no data
provided (marked as AFLNoData), and the result is shown in Figs. 6 and 7. The code

Figure 6 Fuzzing Redis with or without constructed data.
Full-size DOI: 10.7717/peerj-cs.1592/fig-6

Table 5 Average time needed for the vulnerability discovery, with the improvements of DAFuzz over them in brackets.

Unique vulnerability AFL AFLNET AFL++ Superion DAFuzz

Redis issue #10070 (segmentation violation) 12 min >24 h 8 min 16 min 19 min

Redis issue #10076 (stack buffer overflow) 3 h 43 min >24 h 3 h 29 min 59 min 9 min

Total 3 h 55 min (8.4�) >24 h (>51.4�) 3 h 37 min (7.8�) 1 h 15 min (2.7�) 28 min
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coverage of AFL and AFLNoData is close in the figures. We confirm that by also using the
p value of Mann Whitney U-test, and showing the p values in Table 6. Both p values are
larger than 0.05, which means that there are no statistically significant differences between
the two fuzzers. We think this may have several reasons. First, although code lines executed
only when the constructed data are available are usually critical, they may be only a small
portion of the whole code base. Second, code coverage may not reflect program state
changes caused by satisfying different data conditions, since code coverage only cares
about code paths newly being discovered but not variables getting new values (Aschermann
et al., 2020; Fioraldi, Elia & Balzarotti, 2021). Third, loading extra data when starting the
PUT consumes more time. For example, the average executions per second of AFL and
AFLNoData are 134 and 137 exec/s for Redis, respectively. Thus, we can know that only
using the constructed data may not improve the overall fuzzing efficiency, and other
modules of DAFuzz are needed as well.

The effect of multi-dimensional fuzzing
Recently multi-dimensional fuzzing (Xu et al., 2019; Schumilo et al., 2020; Zou et al., 2021;
Xie et al., 2022) is proposed for fuzzing programs expecting two or more types of inputs at
the same time. For example, two types of inputs, disk-image input and system-call input,

Figure 7 Fuzzing Memcached with or without constructed data.
Full-size DOI: 10.7717/peerj-cs.1592/fig-7

Table 6 The p values on with or without constructed data.

Program p1

Redis 0.310

Memcached 1.000
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are used for fuzzing file systems (Xu et al., 2019). In DAFuzz, the constructed data file
provided for fuzzing may be considered as another type of input in addition to the
command type input. Thus, we also test the effect of multi-dimensional fuzzing in
DAFuzz, with a special mode we named DAFuzz-M. In DAFuzz-M mode, a seed contains
two parts: the command input part and the data input part (although for simple
implementation only the index of the data input part is actually stored in the seed, and the
content of data input is stored in a queue similar to the original seed queue). During
fuzzing, we follow the method in Xu et al. (2019) by first mutating the data input part and
using the original command input part of the seed to fuzz, and then mutating the
command input part and using the original data input part to fuzz. We only test multi-
dimensional fuzzing with Redis, since Memcached actually is fuzzed using one type of
inputs (the constructed data for Memcached are also loaded by using commands inserted
in the front of seeds as we explained before). The result is shown in Fig. 8. However,
DAFuzz-M has a lower code coverage than DAFuzz. We find it is mainly because the rdb
file used as data input has a highly structured format (https://github.com/sripathikrishnan/
redis-rdb-tools/blob/master/docs/RDB_File_Format.textile), and mutating such file could
easily fail the checks during parsing (e.g., inserting a single byte may cause a later length
field to read at a wrong position and get an invalidly large value). In addition, the
command inputs of DAFuzz may also modify the data of the data store since the
commands operate on the data as well, which makes the advantage of introducing the data
inputs in another dimension not apparent.

Vulnerabilities discovered
In the following, we briefly introduce the two vulnerabilities discovered during the
performance comparison experiments, and another two vulnerabilities we discovered

Figure 8 Fuzzing Redis using or not using multi-dimensional fuzzing.
Full-size DOI: 10.7717/peerj-cs.1592/fig-8
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previously with DAFuzz (we used DAFuzz to fuzz Redis 6.2.1 and Memcached 1.6.9 for
finding bugs only and did not compare with other fuzzers). These vulnerabilities may be
used for exploitation or DoS (Denial-of-Service) attack. They are shown in Table 7 and
further explained below.

Wrongly processing commands containing “|” (redis issue #10070). Redis plans to treat
subcommands as commands in v7.0, which would allow having different ACL (access
control list) categories for subcommands. For example, “CONFIG GET” is allowed but not
“CONFIG SET”, and users may send commands like “ACL SETUSER test +CONFIG|
GET” to configure that. However, the processing codes added for splitting the
command with “|” make some commands that contain “|” (e.g., “scard|set1”) wrongly
pass the built-in “ERR unknown command” check, and crash in the function
addReplySubcommandSyntaxError. The developers fix the problem by introducing a
new function isContainerCommandBySds in server.c to check whether a command is
a container command (e.g., having subcommands) and reject the command early if it is
not.

Unexpected commands sent from replicas are not filtered (redis issue #8712 (https://
github.com/redis/redis/issues/8712), and #10076). Redis supports high availability and
failover with replication, and it only allows replicas to send limited commands like
REPLCONF and PING to the master. We find in Redis 6.2.1 that after a replica sends a
PSYNC and a FAILOVER command (meaning starting partial synchronization and
coordinated failover between the replica and the master), the replica sends other
commands like SET would cause segmentation violation in the master. Developers fix the
issue by rejecting commands from replicas that interact with the keyspace of the master in
function processCommand of server.c. However, the fix is incomplete unfortunately. In
the unstable branch, we later find a stack buffer overflow that is triggered by a PSYNC
command with a following SLOWLOG command. The developers further add code in the
function addReplyDeferredLen of networking.c to disconnect replicas that send
commands on the replication link that cause replies to be generated.

External storage is not checked for stats command (memcached issue #779, https://github.
com/memcached/memcached/issues/779). Extstore in Memcached is to reduce memory
footprint by leaving the hash table and keys in memory and moving values to external
storage (usually flash). However, in Memcached 1.6.9, a segmentation violation would be
triggered when “stats extstore” command is executed. This is because extstore is on by
default but the server needs to be started with -o option like -o ext_path=/path/to/a/

Table 7 The vulnerabilities newly found by us.

Program Version Vulnerability type Github issue no. Status

Redis Unstable branch Segmentation violation Redis issue #10070 Fixed in 7.0

Redis Unstable branch Stack buffer overflow Redis issue #10076 Fixed in 7.0

Redis 6.2.1 Segmentation violation Redis issue #8712 Fixed in 6.2.3

Memcached 1.6.9 Segmentation violation Memcached issue #779 Fixed in 1.6.10
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datafile:5G. Otherwise, an extstore value is null but would be used if that “stats extstore”
command is executed. Developers fix it simply by adding a null check when processing the
“stats” command in the function process_extstore_stats of storage.c.

RELATED WORK
Coverage-guided fuzzing
Starting with the invention of AFL in 2007 (Zalewski, 2017), coverage-guided fuzzing
(CGF) is one of the most popular fuzzing technologies (Manes et al., 2019; Li et al., 2021;
Zhu et al., 2022). CGF fuzzers are typical grey-box fuzzers, since they only collect
lightweight coverage information of inputs, and use that to guide the fuzzers to gradually
explore the state space of the PUT (Zalewski, 2017; Honggfuzz, 2023; libFuzzer, 2023;
Fioraldi et al., 2020; Fioraldi, Maier & Balzarotti, 2022). In contrast, black-box fuzzers do
not know any internal execution information of the PUT (though they may know the
grammar of inputs like Boofuzz (Boofuzz, 2023)), and white-box fuzzers know the most
detailed information of the PUT (e.g., through symbolic execution) (Manes et al., 2019).
Moreover, CGF fuzzers usually are mutation-based since they mutate seeds to get new
inputs, but there are CGF fuzzers that are generation-based as well, which generate new
inputs from scratch by using the grammar (or say, model) information (Manes et al., 2019;
Li et al., 2021; Zhu et al., 2022). For example, syzkaller (Google, 2015) could mutate existing
sequences of syscalls (i.e., seeds) and generate new sequences of syscalls at the same time
during fuzzing. DAFuzz follows the same approach. CGF fuzzers have successfully been
used to discover many vulnerabilities (Zalewski, 2017; Google Security Team, 2018), and
become popular in both the security industry (Zalewski, 2017; Honggfuzz, 2023; libFuzzer,
2023; Fioraldi et al., 2020; Google Security Team, 2018) and academia (Böhme, Pham &
Roychoudhury, 2016; Lemieux & Sen, 2018; Gan et al., 2018; Lyu et al., 2019; Pham, Böhme
& Roychoudhury, 2020; Aschermann et al., 2020; Yue et al., 2020;Wang, Song & Yin, 2021;
Lin et al., 2022; Fioraldi, Maier & Balzarotti, 2022).

There are two kinds of fuzzing techniques that are related to the data-aware fuzzing
technique proposed here, but are actually different. One is fuzzing with the aid of data-flow
information (Wang et al., 2010; Rawat et al., 2017; Chen & Chen, 2018; Aschermann et al.,
2019b; Gan et al., 2020;Mantovani, Fioraldi & Balzarotti, 2022). CGF fuzzing usually uses
control-flow information only, e.g., coverage based on the edges of the control flow graph
(CFG). However, by using techniques like dynamic taint analysis, fuzzers could know
information like which bytes of the inputs are used in branch instructions. Such
information could further guide the fuzzer to bypass magic-byte and checksum checks
(Wang et al., 2010; Rawat et al., 2017; Aschermann et al., 2019b), mutate seeds more
efficiently (Chen & Chen, 2018; Gan et al., 2020; Mantovani, Fioraldi & Balzarotti, 2022),
or use as another interest feedback besides coverage feedback (Mantovani, Fioraldi &
Balzarotti, 2022). Generally, such data-flow information extra collected is about the data in
the input, while in DAFuzz the data concerned are stored in the in-memory data store (i.e.,
the PUT).

Another related technique is the recently proposed state-aware fuzzing (Aschermann
et al., 2020; Fioraldi, Elia & Balzarotti, 2021; Ba et al., 2022). It usually considers the whole
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program state space to be divided into different regions by different values of some
important variables. Such important variables could be variables representing the states of
protocols (Aschermann et al., 2020; Ba et al., 2022), or variables that stay the same values
for most inputs but change to other values for some inputs (Fioraldi, Elia & Balzarotti,
2021). The CGF fuzzers detect the important variables either manually (Aschermann et al.,
2020) or automatically (Fioraldi, Elia & Balzarotti, 2021; Ba et al., 2022) and use them
together to guide the exploration of state space during fuzzing. Different from DAFuzz,
state-aware fuzzing also usually concerns the important variables related to the input but
not the data stored in the program. In addition, the important variables usually are
variables related to the switching of execution paths, but DAFuzz directly concerns the
data and may work even if no such variables are explicitly defined.

Grammar-aware fuzzing
There are black-box (Peach Tech, 2020; Boofuzz, 2023), grey-box (Pham et al., 2021), and
white-box (Godefroid, Kiezun & Levin, 2008) fuzzers that support grammar-aware fuzzing.
For example, black-box fuzzers like Peach (Peach Tech, 2020) and Boofuzz (Boofuzz, 2023)
use XML configuration files or code to define the format of inputs to generate inputs, and
white-box fuzzers like (Godefroid, Kiezun & Levin, 2008) may generate extra constraints
using the grammar of inputs. For grey-box fuzzers, researchers have found that CGF
fuzzers do not perform well for programs expecting structural inputs, such as JavaScript
engines, XML parsers, etc., because when mutating seeds to get new inputs, it is easy to get
invalid inputs (Wang et al., 2019), which cannot pass the syntax and semantics checks early
in the program execution. Thus, grammar-aware CGF is proposed.

Grammar-aware CGF could roughly be divided into syntax-aware (Pham et al., 2021;
Wang et al., 2019; Padhye et al., 2019; Aschermann et al., 2019a; Pham, Böhme &
Roychoudhury, 2020; Salls et al., 2021), and semantics-aware fuzzing (Han, Oh & Cha,
2019; Park et al., 2020; He et al., 2021). Syntax-aware fuzzing tries to ensure the inputs
mutated from seeds are still in the correct format. For example, they may convert seeds
into abstract syntax trees (ASTs) and mutate at the tree node level (i.e., tree-based
mutation) to ensure the inputs serialized from mutated ASTs still have correct JavaScript
statements (Wang et al., 2019). Semantics-aware fuzzing tries to further ensure the inputs
mutated from seeds have valid semantics. For example, they may inspect the JavaScript
code or runtime errors to ensure the variables are defined before use (Han, Oh & Cha,
2019; Park et al., 2020; He et al., 2021). DAFuzz adopts the same tree-based syntax-aware
mutation (Wang et al., 2019), which is enough since in-memory data stores usually could
use data variables without defining them first. However, different from the existing work,
DAFuzz also generates data-aware and semantics-aware new inputs, which is to ensure
that different data items are correctly referred to in the inputs.

Data-related program fuzzing
There are researchers focusing on fuzzing data-related programs. For in-memory data
store, Google security researchers fuzzed Redis but only used existing ordinary fuzzers
like AFL (Google Information Security Engineering Team, 2020). Another kind of data-
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related program is SQL database, and different special black-box fuzzers (Seltenreich, Tang
& Mullender, 2022; Guo, 2017; Rigger, 2023; Rigger & Su, 2020) and grey-box fuzzers
(Zhong et al., 2020;Wang et al., 2021; Liang, Liu & Hu, 2022) have been developed. At first,
fuzzers mainly focus on keeping the generated or mutated SQL statements syntactically
valid (Seltenreich, Tang & Mullender, 2022; Guo, 2017). Recently, fuzzers also try to ensure
the statements are semantically valid (Rigger, 2023; Rigger & Su, 2020; Zhong et al., 2020;
Wang et al., 2021; Liang, Liu & Hu, 2022). For example, they ensure that the used tables are
created first and the mentioned columns still exist (Zhong et al., 2020; Liang, Liu & Hu,
2022). Several recent pieces of research focus on detecting logic bugs but not traditional
crashes or assert failures (Rigger, 2023; Rigger & Su, 2020; Liang, Liu & Hu, 2022).
However, all these previous works do not intentionally create different kinds of data as
DAFuzz does for providing the required data, and all these fuzzers are tightly bound to the
SQL language and cannot work with in-memory data stores that use other languages.

CONCLUSION
To exercise the code paths of in-memory data stores that require different data, we
presented a new fuzzing approach DAFuzz. DAFuzz could not only generate inputs that
are syntactically and semantically valid but also use different data correctly. In addition,
DAFuzz adopts the state-of-the-art tree-based mutation method as well. The comparisons
with other state-of-the-art fuzzers like AFL, AFL++, Superion, and AFLNET in two popular
in-memory data stores Redis and Memcached showed that DAFuzz could discover
13~95% more edges, or discover the same number of edges at least 19� faster.
Furthermore, DAFuzz found the same vulnerabilities but over 2.7� faster. We newly
found three vulnerabilities in Redis and one vulnerability in Memcached, and reported
them to developers. All vulnerabilities have been acknowledged and fixed. We also believe
that the concept of data-aware fuzzing can be applied to other in-memory data stores, such
as Dragonfly. Furthermore, it has the potential to be employed in fuzzing other software
systems that exhibit behavior dependent on different data conditions.
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