
Instance attack: an explanation-based vulnerability analysis
framework against DNNs for malware detection
Ruijin Sun 1 , Shize Guo 2 , ChanYou Xing 1 , YeXin Duan 3 , LuMing Yang 4 , Xi Guo Corresp., 5 , ZhiSong Pan Corresp. 1

1 Army Engineering University of PLA, NanJing, China
2 National Computer Network and Information Security Management Center, BeiJing, China
3 Army Military Transportation University of PLA, zhenjiang, China
4 National University of Defense Technology, Changsha, China
5 University Of Science and Technology Beijing, BeiJing, China

Corresponding Authors: Xi Guo, ZhiSong Pan
Email address: xiguo@ustb.edu.cn, hotpzs@hotmail.com

Deep Neural Networks (DNNs) are increasingly being used in malware detection and their
robustness has been widely discussed. Conventionally, the development of an adversarial
example generation scheme for DNNs involves either detailed knowledge concerning the
model (i.e., gradient-based methods) or a substantial quantity of data for training a
surrogate model. However, under many real-world circumstances, neither of these
resources is necessarily available. Our work introduces the concept of the instance-based
attack, which is both interpretable and suitable for deployment in a black-box
environment.In our approach, a specific binary instance and a malware classifier are
utilized as input. By incorporating data augmentation strategies, sufficient data are
generated to train a relatively simple and interpretable model. Our methodology involves
providing explanations for the detection model, which entails displaying the weights
assigned to different components of the specific binary. Through the analysis of these
explanations, we discover that the data subsections have a significant impact on the
identification of malware. In this study, a novel function preserving transformation
algorithm designed specifically for data subsections is introduced. Our approach involves
leveraging binary diversification techniques to neutralize the effects of the most heavily-
weighted section, thus generating effective adversarial examples. Our algorithm can fool
the DNNs in certain cases with a success rate of almost 100\%. Instance attack exhibits
superior performance compared to the state-of-the-art approach. Notably, our technique
can be implemented in a black-box environment and the results can be verified utilizing
domain knowledge. The model can help to improve the robustness of malware detectors.

PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Instance Attack:An Explanation-based1

Vulnerability Analysis Framework Against2

DNNs for Malware Detection3

Sun RunJin1, Guo ShiZe2, Xing ChangYou1, Duan YeXin4, Yang LuMing3,4

Guo xi5, and Pan ZhiSong1
5

1Army Engineering University of PLA6

2National Computer Network and Information Security Management Center7

3National University of Defense Technology8

4Army Military Transportation University of PLA9

5University Of Science & Technology Beijing10

Corresponding author:11

Pan ZhiSong,Guo Xi12

Email address: hotpzs@hotmail.com,xiguo@ustb.edu.cn13

ABSTRACT14

Deep Neural Networks (DNNs) are increasingly being used in malware detection and their robustness has

been widely discussed. Conventionally, the development of an adversarial example generation scheme

for DNNs involves either detailed knowledge concerning the model (i.e., gradient-based methods) or a

substantial quantity of data for training a surrogate model. However, under many real-world circumstances,

neither of these resources is necessarily available. Our work introduces the concept of the instance-

based attack, which is both interpretable and suitable for deployment in a black-box environment.In our

approach, a specific binary instance and a malware classifier are utilized as input. By incorporating

data augmentation strategies, sufficient data are generated to train a relatively simple and interpretable

model. Our methodology involves providing explanations for the detection model, which entails displaying

the weights assigned to different components of the specific binary. Through the analysis of these

explanations, we discover that the data subsections have a significant impact on the identification of

malware. In this study, a novel function preserving transformation algorithm designed specifically for

data subsections is introduced. Our approach involves leveraging binary diversification techniques to

neutralize the effects of the most heavily-weighted section, thus generating effective adversarial examples.

Our algorithm can fool the DNNs in certain cases with a success rate of almost 100%. Instance attack

exhibits superior performance compared to the state-of-the-art approach. Notably, our technique can be

implemented in a black-box environment and the results can be verified utilizing domain knowledge. The

model can help to improve the robustness of malware detectors.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

INTRODUCTION33

Malware attack is an important issue in today’s cybersecurity community. Thousands of malware attacks34

are reported every day, according to (Demetrio et al., 2021a)’s description. Both academia and industry35

have devoted a lot of manpower to malware detection. Traditional detection methods, such as SVM36

(Li et al., 2015) and signature (Vinod et al., 2012) require manual feature engineering, which can be a37

daunting task. Given the vast number of malware instances in existence, the labor-intensive nature of this38

work renders it both time-consuming and tedious. As DNNs have made significant advances in many39

domains, such as image (Sharif et al., 2016) and voice classification (Qin et al., 2019), an increasing40

number of researchers and anti-virus enterprises have begun leveraging DNN-based detectors in the field41

of cybersecurity. The DNNs models automatically make the classification for malware without expert42

knowledge. Researchers use deep learning models in an end-to-end manner that operates directly on the43

raw bytes of Windows Portable Executable (PE) files.44

In the domain of cybersecurity, malware detection systems can be broadly classified into dynamic and45

PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



static approaches. While dynamic systems rely on learning the behavioral features of malware for46

classification, static systems directly classify files using features without executing them (Sharif et al.,47

2019). This paper primarily focuses on the static approach. There exist several byte-based deep neural48

network (DNN) models that have demonstrated comparable performance with traditional methods (Saxe49

and Berlin, 2015)(Raff et al., 2018). The robustness of the DNNs detection system and the interpretability50

of DNNs have attracted much attention, while the DNNs have shown great potential. The interpretability51

of models is particularly important in financial and security-related domains. The absence of model52

interpretability can significantly limit the applicability of DNN models in these domains. Adversarial53

examples are the techniques that focus on perturbing the examples to mislead DNN-based detection54

systems, and can be leveraged to enhance the robustness of such systems. Unlike other domains, semantic55

invariance constraints must be satisfied in binary. When an adversarial example is generated, its characters56

may be transformed and its semantic should not be changed. People introduce different transformation57

techniques that could keep the functionality of the binaries intact (Anderson et al., 2018)(Song et al.,58

2020)(Park et al., 2019). In the context of binary-based adversarial attacks, transformations refer to59

modifications made to a Windows Portable Executable (PE) file that do not alter the execution of its60

underlying code (Anderson et al., 2018). Despite the considerable progress that has been made in61

generating adversarial examples for malware detection, there are still a number of unresolved issues. First,62

only a few articles that use DNNs to detect malware have explained their detection models. The lack63

of transparency makes it questioned by many people (Arp et al., 2022). The uninterpretable model may64

detect the binaries according to false causalities that are unrelated to any malicious activity (Arp et al.,65

2022). Second, the binary transformation methods used by others focus on the structural part (Demetrio66

et al., 2021a) and the code part (Sharif et al., 2019), but they leave the data section alone. Third, after67

figuring out how to transform malware, they resort to complicated optimization methods (such as genetic68

algorithms) (Demetrio et al., 2021a) or uninterpretable stochastic methods (Sharif et al., 2019). These69

deficiencies limit their performance under the black-box model. Our approach fills the gap.70

In this paper, we propose the notion of instance-based attacks. Our method is very similar to the transfer-71

based approach. The most important difference between instance-based and transfer-based methods is72

that all the data used to train our model is generated by data augmentation from one single binary. We use73

an explanation based adversarial example generation technique to test malware detectors by iteratively74

approximating the decision boundary. Our method is more effective than others in the context of black-box75

settings. In order to evade the DNNs in fewer steps, we could transform the most influential modules76

in each round. Furthermore, our optimization method is interpretable and can be verified with domain77

knowledge. We highlight our contributions below.78

• We introduce the concept of the instance-based attack. Rather than training a surrogate model79

against the entire model, we instead train a surrogate model for an instance, with a specific80

emphasis on perturbing around that instance. The adversarial instances are generated by iteratively81

approximating the decision boundary.82

• Several prominent detection models are analyzed using a local interpretable model, their char-83

acteristics and drawbacks are highlighted. Notably, we observed a lack of focus on data section84

transformations within PE files, representing a significant gap in current approaches.85

• A novel functionality-preserving transformation method is proposed which is suitable for data86

sections in PE files that have not been evaluated by other authors.87

• The theoretical and mathematical foundations of our model are discussed.88

• Our method are tested in various scenarios, and the results demonstrate its superiority over other89

state-of-the-art approaches in black-box settings (Sharif et al., 2019). It can achieve a success rate90

of almost 100% in certain cases.91

BACKGROUND AND RELATED WORK92

In this section, we provide an overview of the most commonly used DNN-based malware detection93

models, with a particular emphasis on their static components. Following this, adversarial methods94

designed to target the raw bytes of PE files in malware detectors are discussed. Finally, we conclude the95

section by examining literature that explains the use of DNNs for malware classification.96

2/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



DNNs for Malware Detection97

Malware detection plays an important role in the field of cyber security. DNNs have been used widely by98

researchers in malware classification. The most appealing aspect of the DNNs-based malware detectors is99

their ability to achieve state-of-the-art performance from raw bits rather than manually crafted features that100

require tedious human effort. Many DNNs-based detectors have been proposed so far, and we introduce101

the most famous ones here. Nataraj et al. (2011) visualize the malware binaries as gray-scale images. A102

classification method using standard image features is proposed, based on the observation that malware103

images belonging to the same family appear very similar in layout and texture. Then they use the classifier104

originally designed for images to sort malware. Coull and Gardner (2019) introduce a DNN with five105

convolutional and pooling layers. It also has a learnable 10-dimensional embedding layer. At the end106

of the network, there is a single fully-connected layer and a sigmoid function. Saxe and Berlin (2015)107

employ four distinct complementary features from the static, benign and malicious binaries. They use108

a DNNs-based classifier which consists of an input layer, two hidden layers, and an output layer. They109

translate the output of the DNNs into a score that can be realistically interpreted as an approximation of110

the probability that the file is malware. Johns (2017) proposes deep convolutional neural networks (CNN)111

that combine a ten-dimensional, learnable embedding layer with a series of five interleaved convolutional112

and max-pooling layers arranged hierarchically. MalConv (Raff et al., 2018) is the most popular CNN113

model which combines an eight-dimensional trainable embedding layer. Raff et al. (2018) have tried114

many different structures. They have tried deeper networks (up to 13 layers), narrower convolutional115

filters (width 3–10), and smaller strides (1–10). Finally, they adopted the network consisting of two 1-D116

gated convolutional windows with 500 strides. We used the MalConv detection model to evaluate the117

effectiveness of our method.118

Adversarial Examples Against DNN-based Malware Detectors119

Adversarial examples are the technologies that focus on the minimal input perturbations of break machine120

learning algorithms. They can expose the vulnerability of the machine learning model and improve the121

robustness of the DNNs. For example, when DNNs are used in street sign detection, researchers show122

ways to mislead street signs recognition (Chen et al., 2019). Adversarial examples could also fool voice-123

controlled interfaces (Qin et al., 2019), mislead NLP tasks (Jia and Liang, 2017). It is natural to introduce124

adversarial sample techniques to bypass DNNs based malware detectors. However, the semantics of125

binaries limit the applicability of the existing adversarial methods designed against image, voice, or126

NLP classifiers transplanted to the cybersecurity realm, because there is a structural interdependence127

between adjacent bytes. Anderson et al. (2018) introduce one way to bypass machine-learning-based128

detection by manipulating the PE file format. They find several structures in Windows PE files that could129

be modified without affecting their functionality. Kreuk et al. (2018) craft bytes adversarially in regions130

that do not affect execution. Specifically, they append adversarial bits at the end of files. Suciu et al.131

(2019) extend this idea by finding more places to append in PE files, such as in the middle of two sections132

of PE files. Different padding strategies are also evaluated, including random appending, FGM appending,133

and benign appending. Sharif et al. (2019) manipulate instructions to produce adversarial examples.134

Instructions are a functional part of binary files. They introduce two families of transformations. The first135

one named in-Place randomization (IPR) is quoted from (Pappas et al., 2012). The second one named code136

displacement (Disp) is also adopted in our article as the baseline. Disp relocates sequences of instructions137

that contain gadgets from their original locations to newly allocated code segments with a jmp instruction.138

Sharif et al. (2019) extend the Disp algorithm. They make it possible to displace any length of consecutive139

instructions, not just those belonging to gadgets. As far as the variable space is concerned, they focus on140

the structure characteristic or the code characteristic. None of the above-mentioned articles discuss the141

data segment, although it plays an important role in malware classification.142

Explanation of Adversarial Machine Learning in Malware143

In the field of malware, the traditional routine for producing adversarial examples in black-box settings144

involves proposing function-preserving actions and using a uninterpretable method (Anderson et al., 2018)145

or a random method (Sharif et al., 2019) to evade DNNs. Different ways are presented to transform146

malware without changing its functionality, but only a few articles have explained why their approaches147

work. Due to the non-linearity of DNNs detectors, they rely on uninterpretable methods or random ways148

to optimize their transformation. These methods are of little help in designing the malware detector.149

Demetrio et al. (2021a) use the genetic algorithm to generate the adversarial examples. Sharif et al. (2019)150

3/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



use the transformation randomly. Anderson et al. (2018) use DNNs based reinforcement learning to evade151

the detector which is also uninterpretable. While DNNs have shown great potential in various domains, the152

lack of transparency limits their application in security or safety-critical domains. Arp et al. (2022) claim153

that artefacts unrelated to the classified target may create shortcut patterns to separate different classes.154

Consequently, the DNNs may adapt to the artefacts instead of the original problems. It is important to155

investigate what these models have learned from malware. An interpretable technique is needed to tell us156

the most influential features. Most of the existing research on the interpretability of DNNs focuses on157

image classification and NLP processing (Ribeiro et al., 2016)(Camburu, 2020)(Lundberg and Lee, 2017).158

To improve the transparency of malware classification, researchers have started to work on the explanation159

issue of malware classification. To the best of our knowledge, Coull and Gardner (2019) are the first160

to explore this topic. They use various methods such as hdbscan, shaply value and byte embeddings to161

analyze the model. They examine the learned features at multiple levels of resolution, from individual162

byte embeddings to end-to-end analysis of the model. Jeffrey Johns et al. also examine what DNNs163

have learned in malware classification by analyzing the activation of the CNN filter. They suggest that a164

CNN-based malware detector could find meaningful features of malware (Johns, 2017). Luca Demetrio’s165

work is the closest one to our research. They use Integrated Gradients to find the most important input and166

point out that the MalConv model does not learn the key information in the PE file header according to167

the interpretability analysis (Demetrio et al., 2019). They devise an effective adversarial scheme based on168

the explanation. Rosenberg et al. (2020) make use of the explainable techniques to train a surrogate neural169

network to represent the attacked malware classifier. They attack the surrogate model instead. Different170

from these articles, our function-preserving measures are able to process more types of segments and171

fewer examples are needed.172

TECHNICAL APPROACH173

In this section, we discuss the technical approach behind our framework. First, the general algorithm is174

described. Then, we introduce the approximating boundary model for fitting the DNNs. Next, the data175

augmentation module are present. Finally, how we create adversarial examples are explained in detail.176

Throughout the paper, we use the following notations. m refers to the original malware, f (m) refers to177

the output of the DNNs detector (e.g. class probabilities or logits). We use g(m) = m⃗◦ w⃗ to approximate178

f (m). m⃗ is the interpretable data representation vector. w⃗ is the weight of the linear equation. m̃i refers to179

the perturbed malware in the i-th round of the algorithm and m̃i
j is the j-th perturbed example in each180

round. r j is the perturbation that we make.181

Instance Attack182

Portions of this text were previously published as part of a preprint (RuiJin et al., 2022). In the field of183

adversarial examples for binary code in a black-box setting, the transformation can only be limited to a184

few discrete actions as mentioned in Section:Function Invariant Transformation because of the semantic185

invariance constriction. The transformation is discrete and difficult to optimize with gradient-descent186

methods. Therefore, interpretable models are being exploited to make adversarial attacks. Adversarial187

attacks can roughly be divided into three categories: gradient-based, transfer-based, and score-based (or188

decision-based) attacks (Brendel et al., 2018). Our method is somewhat similar to the transfer-based189

method. Traditionally a transfer-based method trains a surrogate neural network model on a training set190

that is believed to accurately represent the attacked malware classifier such as (Rosenberg et al., 2020). To191

train a surrogate model, traditional methods require a large number of examples. This is often impossible192

in practice. The framework for training our surrogate model is distinct from other models in that it only193

requires a single sample to be trained. Our framework fits a specific example, not the detection model. To194

accomplish this, we train a surrogate model that is designed to precisely represent the specific instance195

being fitted. A locally interpretable algorithm is used in training the surrogate model. For example, for a196

DNN detector f and a malware m0, we can train a surrogate model g(m1
0) = f (m1

0),g(m
2
0) = f (m2

0), · · · .197

But for another malware n, g(n0) ̸= f (n0).198

A locally generated linear function g is used to find the important features of the binary, then the function199

invariant transformation mentioned in Section:Function Invariant Transformation is used to remove the200

features. Since only one binary is required, we name it Instance Attack.201

4/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



General Framework202

Our model works in a black-box setting. We assume that we have no access to the model parameters and203

the data set. We don’t have any idea about the structure of the classification model and the distribution204

of the data set. Only one binary instance is given. There is no limit to the number of queries. We can205

transform the instance arbitrarily. Our target is to generate a new binary to mislead the classifier. After the206

transformation, we have to guarantee the functionality of the program.207

The basic intuition of our framework is to approximate the result of the specific example with a linear208

function and make the perturbation towards the approximate decision boundary iteratively. The whole209

procedure works in rounds, where each round consists of three steps. In the first step, data augmentation210

is used to generate a large number of new samples from the original binary. Then a linear model is used to211

fit these samples. Here, the FastLSM algorithm will be used (described in detail in Section:.Interpretable212

Data Representations and Segmentation Algorithm ) to fit the malware detector f with a linear function213

g. The second step is to approximate the decision boundary by solving the linear equations g = benign,214

and transforming the most important part of the malware accordingly to make g(m̃i) = benign. For the215

function invariant restriction of the binary file, m̃i is transformed to m̃i+1 = m̃i + ri with the function216

invariant transformation we propose in Section:Function Invariant Transformation. We finally query the217

black-box detector to get f
�

m̃i+1
�

. If the result of f (m̃i+1) is still malware, we move on to the next218

iteration or we stop the algorithm if the maximum number of iterations is reached. Algorithm 1 shows the219

pseudocode of the whole procedure.

Algorithm 1 General algorithm

INPUT: a malware m, a classifier f , a linear equation g, the approximation algorithm FastLSM(), a

functional invariant transformation function Tran(), address of most weighted data [start,end]
OUTPUT: a new malware m̃i

1: while i < maxiteration do

2: g(m̃i)← FastLSM(m̃i, f ())
3: start,end← solving g(m̃i) = benign

4: m̃i+1← Tran
�

start,end, m̃i
�

5: if f (m̃i+1) == malware then

6: i← i+1

7: else

8: return success

9: end if

10: end while

11: return f alse

220

How Interpretability Is Applied221

In traditional detection models, the initial step involves selecting features, followed by designing the222

detection algorithm. In contrast, DNNs are end-to-end models, they eliminate the need for explicit feature223

extraction. They can directly input raw data into the model and learn the desired outcomes. DNNs are224

often referred to as featureless models due to their ability to learn features internally. Similarly, existing225

attack models that target DNNs do not possess knowledge of the feature weights. These attack models226

launch direct attacks without this crucial information. While direct attacks may occasionally be successful,227

they fail to provide insights into understanding deep detection models. In contrast, our approach focuses228

on acquiring the features employed in deep detection models or identifying the associated feature weights.229

By modifying features with higher weights, we aim to achieve the attack objective. We utilize the instance230

attack model to calculate the weights of different parts (superpixels) within the binary. If a superpixel231

possesses a high weight in this model and is associated with code segments or data segments, we proceed232

with targeted attacks. These steps are iterated, resulting in the displacement of superpixels. Through233

this process, we are able to gain insights into the functioning of the DNN model and effectively execute234

targeted attacks.235

5/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Formalizing The Model236

Adversarial examples are variants of normal examples by adding some imperceptible perturbations. The237

adversarial examples cause the detection model to misclassify examples with high confidence. Carlini238

and Wagner (2017) model the adversarial examples as a constrained minimization problem:239

min D
�

m̃i, m̃i+1
�

(1)

s.t f
�

m̃i+1
�

= benign (2)

m̃i is fixed and the object is to find the perturbation m̃i+1 that can minimize D
�

m̃i, m̃i+1
�

and further leads240

to the evasion. D
�

m̃i, m̃i+1
�

is a distance function and the perturbation is subject to f
�

m̃i+1
�

= benign.241

Since the identifier is a black-box model, it is difficult to find a solution for the original function f . Carlini242

and Wagner (2017) proposed to solve a simple objective function G instead, G
�

m̃i+1
�

= benign if and243

only if f (m̃i+1) = benign.244

min D
�

m̃i, m̃i+1
�

(3)

s.t G
�

m̃i+1
�

= benign (4)

In malware detection, these formulas are also utilized to find adversarial perturbations m̃i+1 for the245

original binary m̃i that target a class fbenign. In a black-box environment, finding an object function G246

such that G
�

m̃i+1
�

= benign if and only if f (m̃i+1) = benign is an overly strong requirement. Here the247

local explanation g is used instead. If f (m̃i+1) = benign is true, then g(m̃i+1) = benign is established, but248

the opposite is not necessarily true. When g(m̃i+1) = benign is true, f (m̃i+1) may not be benign. The249

optimization could be converted to the following problem:250

min D
�

m̃i, m̃i+1
�

(5)

s.t g
�

m̃i+1
�

= benign (6)

Eq.(6) can easily be solved to get the minimal perturbation r from m̃i to m̃i+1, since g is a linear equation.251

Because g(m̃i + r) is the approximation of f (m̃i+1), we must incorporate the perturbation m̃i+1 back into252

the original classifier f to get the accurate value. If f
�

m̃i+1
�

= benign, then we stop the algorithm or253

we should recompute the linear approximation of f
�

m̃i+1
�

. We continue to repeat this process until the254

evasion is successful or the maximum number of iterations is reached.255

Local Linear Explanations of Malware Detection256

Here, how we build the linear function g are explained. Our method is inspired by Local Interpretable

Model-Agnostic Explanations(LIME) (Ribeiro et al., 2016) and Locally Linear Embedding (LLE) (Roweis

and K.Saul, 2000). Deep learning algorithms provide highly satisfactory results. However, their decision

procedures are non-linear and the important parts of the input data cannot be featured out directly. When

one instance are given to bypass the classifier, we try to infer how the detector behaves around a specific

instance by querying the detector for the results of different transformed examples. The data augmentation

method are used to produce the adversarial perturbations. As claimed in (Roweis and K.Saul, 2000), it is

assumed that binary files can be represented by points in a high-dimensional vector space. The binary and

its transformations lie on or close to the locally linear path of the manifold.In this context, it is assumed

that the coherent structure between the binary and its variants leads to strong correlations, which can be

characterized by linear coefficients. The use of a linear model is considered simple and interpretable, as it

allows for a clear understanding of the relationship between the different features of the binary and its

variants.

ξ (m) = argming∈G L ( f ,g,Πm)+Ω(g) (7)

Eq.(7) describes how to solve this problem, where f denotes a DNNs detector, and g is an interpretable257

model to approximate f without knowing its parameters. In classification, f (m) produces the probability258

(or a malware indicator) that m belongs to a certain category. If g is a potentially interpretable function,259

and Ω(g) measures the complexity of the explanation. L ( f ,g,Πm) measures how unfaithful g is260

in approximating f in the locality defined by Πm. To ensure the interpretability and local closeness,261

L ( f ,g,Πm) should be minimized and Ω(g) should be low enough. The lower the Ω(g), the easier it262

6/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



is for humans to understand the model. In this paper, G could be the class of linear models, such that263

g(m) = w⃗g ◦ m⃗. It is stated that an interpretable representation m⃗ of m can be obtained directly, the specific264

rule is described in the following section. it is defined that Πm

�

m̃i
i

�

= D
�

m̃i
i, m̃

i
0

�

, where D is some kind of265

distance function, for example, the L2-norm distance. m̃i
0 is the specific example and m̃i

j is the perturbed266

example in each round. We carefully choose some perturbed examples m̃i
1, m̃

i
2, m̃

i
3 · · · , m̃

i
j within each267

round. For information on the method of perturbation, see Section:Data Augmentation Module . L could268

be a locally weighted square loss as defined in Eq.(9). In this way, the function has been converted into a269

linear function fitting problem.270

g
�

m̃i
j

�

= w⃗i ◦ m⃗i
j (8)

L ( f ,g,Πm) = ∑
j

Πm(m̃
i
i)
�

f (m̃i
j)−g

�

m̃i
j

��2
(9)

Given a malware instance m̃i and f , this problem is a typical ordinary least square problem. It is suggested271

that examples around m̃i can be sampled by drawing non-zero elements uniformly at random to get the272

value of m̃i
j. f (m̃i

j) could be obtained by querying the classifier. m⃗i
j is the interpretable data representation273

that can be easily calculated. By solving these functions, the weight w⃗i can be obtained for sample i. g is274

the local explanation model of f . g could also be used as the approximate function of f .275

Data Augmentation Module And Optimization Algorithm276

Data Augmentation Module277

Ablation analysis is often used in evaluating the DNNs model. It is a technique for evaluating machine278

learning models by discarding certain features (everybodywiki, 2020). We adopt similar ideas by279

discarding certain features of the instance. As our model is instance-based, we do not quantify the DNNs280

detector, but the important portion of a specific instance. Augmented examples are created from a given281

instance by discarding (masking) certain features. Then a linear function g is used to fit the DNNs around282

these examples, and the weights for each feature are calculated. Computing the weights of all the bits283

is time-consuming. Given a file of length LM, it would take o(LM3) time to find the most important bit284

using the Least Square Method. To improve efficiency, two optimization mechanisms are proposed. First,285

the superpixel are used as the basic unit of interpretable representation. Then, the FastLSM algorithm are286

introduced to reduce the computational complexity.287

Interpretable Data Representations and Segmentation Algorithm288

Superpixels were used in image segmentation originally (Ghosh et al., 2019). Common image segmenta-289

tion algorithms include quick shift, felzenszwalb, slic. In this paper, superpixels are the results of a binary290

file over segmentation. We could use the tools to disassemble the binary file, such as IDA, Binary ninja.291

Superpixels are the basic function blocks returned by disassembly tools. The Capstone disassembler292

framework are used in our experiment (Capstone, 2021). A basic block is a straight-line sequence of293

codes with only one entry point and only one exit. Or the examples could just be segmented by their offset.294

For example, a large binary file of size 200KB could be divided into ten parts, each of which would be295

20KB in size. As shown in Figure 1, there are 3 superpixels returned by the disassembly tool. The staed rt296

offsets of these superpixels are 0x10004675h, 0x1000469Ah, and 0x100046A1h. The lengths of the three297

superpixels are 0x25h, 0x7h, and 0x8h respectively. Interpretable data representations m⃗ and data features298

m are different. Features m in the range mεR
L

are the ground truths. An interpretable representation m⃗299

is a binary vector indicating the “presence” (denoted by 1) or “absence” (denoted by 0) of a patch of300

codes and its range is m⃗ε {0,1}l
. L is the length of the features and l is the length of the interpretable301

representations. Given a file whose content is “0x1122”, “0x11” and “0x22” are the two super pixels302

and “11” is their interpretable representation. f (“0x1122”) is equal to g(“0x1122”) = w1 ∗ 1+w2 ∗ 1.303

Sampling around a specific offset in a binary file, such as ”0x1122”, can help to generate the correspond-304

ing interpretable representation of the data. For example, if “0x1122” is transformed to “0x0022”, its305

interpretable representation is transformed to “01”. Table 1 shows the examples in detail.306

Fast Least Square Method307

In Algorithm 1 referred, it is necessary to find the minimum perturbation at each round. Sometimes the308

weight of the top-k important superpixels is needed instead of each superpixel. Fleshman et al. (2018)309

introduce a segmentation algorithm to find the most important superpixels. We extend it and combine it310

7/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Figure 1. An Example of Superpixels.

Interpretable Representation 00 01 10 11

Original Feature 0x0000 0x0022 0x1100 0x1122

Table 1. An example of interpretable data representation.

with our local explanation algorithm. It is named as the Fast Least Square Method (FastLSM), because it311

can reduce the computational complexity to o(log(LM)) to compute the weight of the most important312

superpixel.313

Figure 2. The data augmentation algorithm used in our experiments.

314

The steps of FastLSM are as follows. The entire binary are selected as the base superpixel. First, the315

superpixel are divided into n different superpixels. each super pixel is occluded respectively with zero316

to generate variants and each variant is analyzed by the DNNs f . Second, we choose the variant that317

results in a larger drop in classification confidence. Third, if the length of the superpixel with a larger318

drop is smaller than a specific value β , it is set as the base superpixel and the algorithm starts over from319

the beginning. There are different ways to occlude the superpixel. This can be done by replacing it320

with random values, null values, or adversarial values (Fleshman et al., 2018). We will discuss how to321

determine the hyperparameter β in Chapter 4.6. Figure 2 illustrates the overarching process of FastLSM,322

depicting the general flow and steps involved in the algorithm. The Algorithm 2 provides a comprehensive323

breakdown of the fundamental stages comprising FastLSM, elucidating the specific actions and operations324

undertaken within the algorithmic framework.325

8/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Algorithm 2 FastLSM algorithm

INPUT: a malware m, a classifier f , a target occlusion size β , n is the number of segments within each

iteration

OUTPUT: a new malware m̃

1: Split file m into n sections, splitsize← |m÷n| ,size of ith section is|m(i) = splitsize|
2: Use LSM to get the weight for each section

3: Find the jth section with the maximum weight

4: start← start address of jth section

5: end← end address of jth section

6: while splitsize > β do

7: max← 1,i← 1

8: while i < n do

9: starttemp← (start + splitsize∗ (i−1))
10: endtemp← (start + splitsize∗ i)
11: mi[starttemp:endtemp]← 0x00, occlusion the ith segment with 0x00

12: starttemp← (start + splitsize∗ (max−1))
13: endtemp← (start + splitsize∗max)
14: mmax[starttemp:endtemp]← 0x00, occlusion the most weight segment with 0x00

15: if f (mi)< f (mmax) then

16: max← i

17: i← i+1

18: else

19: i← i+1

20: end if

21: end while

22: start← start + splitsize∗ (max−1).
23: end← start + splitsize∗ (max).
24: splitsize← splitsize÷n

25: end while

26: return m̃[start : end]

Function Invariant Transformation326

The semantics of binaries hinder the direct transplantation of existing traditional adversarial learning327

methods. Even changes as small as one bit can disrupt the original syntax of the binary and may cause it328

to malfunction or even crash. For example, if the characters are changed from 53 to 52 in the binary file,329

at the assembly level it means that push ebx is changed to push edx and the function of the generated330

adversarial example would be invalid. Because of the function preserving constraint, the transformations331

that we use are limited to those that preserve the function of the binary. In this paper, three families of332

transformations are used. The first transformation is an appending algorithm that applies the evasion333

by appending adversarial bits at the end of the original files (Suciu et al., 2019). These bytes cannot334

affect the semantic integrity. Appending bytes to inaccessible regions of the binary may be easy to335

detect and could be sanitized statically (Sharif et al., 2019). The second transformation that we use336

is named code displacement (Disp), which was proposed by (Koo and Polychronakis, 2016) to break337

the gadgets originally. Sharif et al. (2019) adopt it to mislead DNNs-based classifiers. The general338

idea of Disp is to move some codes to the end of the binary. The original codes are replaced by a jmp339

instruction at the beginning of the code segment. After filling the newly allocated code segment with340

the adversarial codes, another jmp instruction is immediately appended. The third transformation is an341

original one named data displacement (DataDisp). Disp can only transform code segments rather than342

data segments. However, we find that the DNNs sometimes attach importance to data segments as shown343

in the experiment (Section:Distribution ). Therefore, we propose DataDisp, an algorithm that could be344

used to transform data segments (this transformation can also be applied to code segments with some345

modifications). DataDisp is a practical code diversification technique for stripped binary executables.346

DataDisp transfers data to the end of the file and uses the mov instruction to move the data back before347

the binary is executed. It starts by adding a new section at the end of the PE file. The original codes348

to be moved are replaced with adversarial data (Fleshman et al., 2018), random data, or null data.After349

9/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



filling the newly allocated segment with the mov code, a jmp instruction is immediately appended to give350

control back to the original binary. At last, the OEP are changed to the beginning of the newly allocated351

section. There are a few tips to be noted. If the displaced codes contain important structural information352

(e.g., edata section) we leave them alone.

Figure 3. An illustration of DataDisp transformation.

353

As shown in Figure 3a, the original data at 0x402A4E is the string f ail, and is replaced by 0x00. The354

Original Entry Point (OEP) address is displaced to 0x47E14B in Figure 3b. Then the address 0x402A4E355

is stored in EAX . The new code will reconstruct the original file using mov. After the reconstruction, it356

will jmp back to the original OEP.357

EVALUATION358

This section presents comprehensive empirical evidence for the adversarial theme. First, we describe the359

datasets and the DNN detectors in detail. We also discuss the interpretational analysis on the experimental360

data. Then, different methods of transformations are presented. Finally, our model is compared with three361

other methods. The results demonstrate that our adversarial example generation model is trustworthy.362

Datasets and Malware Detector363

Class All Train Validation Test

Malware 10868 8708 1080 1080

Benign 9814 7814 1000 1000

Table 2. The number of binaries for training, validating and testing the DNNs.

All experiments were conducted on an Ubuntu 18.04 server with an Intel Xeon CPU and 64GB of364

RAM. The computer was equipped with Python 3.7, PyTorch, and an NVIDIA GTX3090 Graphics365

processing unit. A mixed data set is used. We resorted to a publicly available dataset to collect malware.366

And benign binaries are collected by ourselves. The malware binaries were adopted from the Kaggle367

Microsoft Malware Classification Challenge (Ronen et al., 2018). This dataset contains nine different368

families of malware. Even though there are no benign ones, we still used the dataset to train our model. It369

is based on the following considerations. First, most previous works (Anderson and Roth, 2018)(Krčál370

et al., 2018)(Raff et al., 2018) used proprietary datasets and some other public datasets contain only371

packed data (Vigna and Balzarotti, 2018). The dataset of (Noever and Miller.Noever, 2021) contains only372

processed data. Although Yang et al. (2021) also offer sufficient raw files, they do not provide benign373

files either, for copyright reasons. Second, over fifty articles had cited this dataset (Ronen et al., 2018),374

which was the de facto standard for malware classification. Our dataset of benign binaries was collected375

from a newly created Windows 7 machine. We used two specific tools, Portable apps and 360 package376

manager, to install a total of 180 different packages. To ensure that our dataset was representative, we377

10/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Classifier
Accuracy

Train Validation Test

MalConv 98.8% 97.8% 96.1%

AvastNet 99.8% 97.2% 97.5%

Table 3. The DNN’s performance

also included popular files such as Chrome, Firefox, and notepad++. In addition, we collected packages378

that were likely to be used by academics (such as MiKTeX and MATLAB), developers (such as VSCode379

and PyCharm), and document workers (such as WPS and Adobe Reader). By including a diverse range of380

packages, our dataset provides a comprehensive representation of commonly used software across various381

domains. We selected 9,814 benign binaries, most of them were smaller than 2MB. The files are divided382

into the train, validation, and test sets as shown in Table 2.383

Two DNN classifiers were chosen from those mentioned in Section: BACKGROUND AND RELATED384

WORK. Both classifiers were given raw byte binaries. The first classifier, named AvastNet, is a four-layer385

convolutional neural network with four fully connected layers. It receives inputs of up to 512KB and was386

proposed by (Krčál et al., 2018). The second DNN model is called MalConv and was proposed by (Raff387

et al., 2018). Its network structure consists of two 1-D gated convolutional windows with 500 strides,388

and it receives inputs of up to 2MB. To evaluate the performance of these models, we split all the files389

into three sets: training, test, and validation. Both of these DNNs achieved accuracies above 95% on our390

datasets. The classification results of these two DNNs are shown in Table 3.391

Because there were no PE headers in the Microsoft dataset, disassembling the binaries to validate our392

algorithm was not possible. Consequently, we turned to VirusShare and downloaded malware samples393

from the nine malware families that were not present in the Microsoft dataset. VirusShare is an open394

repository of malware samples with labels. We obtained 88 binaries that belonged to the same nine395

families but did not appear in the training set. These samples are then evaluated against MalConv and396

AvastNet separately. The results are shown in Table 4, where 68 of them were identified as malware by397

MalConv. We also sampled 88 benign binaries for the test, 10 of which were misclassified by MalConv.398

AvastNet marked 72 of them as malware, as shown in Table 4. We also sampled 88 benign binaries for399

testing, 8 of which were misclassified by AvastNet.400

Class Model all as malicious as benign

Malware MalConv 88 77.3% 22.7%

Benign MalConv 88 11.4% 88.6%

Malware AvastNet 88 81.2% 18.8%

Benign AvastNet 88 9.1% 90.9%

Malware Endgame 88 87.5% 12.5%

Benign Endgame 88 5.7% 94.3%

Table 4. Binaries used to test our model.

In addition to the two DNNs that we trained, we evaluated our attacks using a publicly avaible401

model Endgame(Anderson and Roth, 2018). It is a gradient boosed decision tree (GBDT) model using402

LightGBM with default parameters (100 trees, 31 leaves per tree), resulting in fewer than 10K tunable403

parameters. The dataset of Endgame includes features extracted from 1.1M binary files: 900K training404

samples (300K malicious, 300K benign, 300K unlabeled). As there is no raw file available in Endgame405

dataset, we turned to VirusShare. For our evaluation, we utilized the identical set of 176 binaries that406

were previously tested in MalConv and Avast to assess the performance of the Endgame model. Out of407

these 88 malware binaries, Endgame successfully identified 77 of them as malware. Additionally, we408

included 88 benign binaries in our test set, out of which Endgame erroneously misclassified 5 as malware.409

11/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Weight Analysis On Superpixels410

Distribution411

Weight [0,0.01] [0.01,0.1] [0.1,0.2] [0.2,1]

MalConv 43.2% 50.8% 5.5% 0.5%

AvastNet 44.2% 50.2% 5.2% 0.4%

Table 5. Percentage of superpixels with different weights.

We used the least square algorithm to obtain the weights of different parts of the binaries and con-412

ducted a statistical analysis to understand the black-box classifier. The sampled files were divided into413

superpixels that were smaller than 8KB and larger than 4KB, and we summarized the corresponding414

weights of these superpixels for the MalConv and AvastNet classifiers. As shown in Table 5, 90% of the415

superpixels had a weight of less than 0.1, and only about 5% of the superpixels were between 0.1 and 0.2.416

0.5% of the superpixels had a weight greater than 0.2. We can even estimate their distribution. We plot the417

weight of different superpixels of the malware on MalConv, as shown in Figure 4. In general, although418

the sum of the weights of all the superpixels must be greater than 0, the weight distribution conforms419

to the normal distribution, and the mean is approximately zero. Figure 4 shows the result of the weight420

analysis on MalConv, and the analysis on AvastNet looks similar.421

According to the weight distribution diagram, we can conclude that most of the contents have little

Figure 4. Weight distribution diagram under the MalConv classifier. It shows that the weight distribution

curve of the malware follows the normal distribution.

422

influence on the result. There are only less than one percent of the superpixels that have a significant423

impact on the classifier, whose weight is greater than 0.2. We could use the data as adversarial data in the424

following experiments. Some superpixels with higher absolute weight are listed below. The data that is425

shown in Figure 5b has a negative impact on the MalConv classifier. It’s a URL for digicert.com. This426

website is obviously not malicious. The presence of these codes in binaries can increase the probability of427

being classified as benign. The data in Figure 5a plays positively to AvastNet, this figure is the disassembly428

result of IDA Pro. We can see that the code is the import table of a PE file. Many of the functions in the429

table are related to malicious behavior with high probabilities, such as the isdebuggerpresent which is430

the API that is often used by malware to resist reverse analysis.431

432

We also analyzed the malware containing malicious APIs with the lightGBM model Endgame which433

is introduced by (Anderson and Roth, 2018). The lightGBM model was not trained on the same dataset434

as our model. Although the output of lightGBM was 0.8388964 which implied that there was a high435

probability that the file was malware. But by analyzing the file with our interpretable model, we can see436

12/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Figure 5. Data with different weights. The data on the right (b) has a positive impact on the results. The

data on the left (a) has a negative effect.

that the model gave most weight to the file’s PE header. We show the weight and offset of the three most437

weighted superpixels in Table 6. We could conclude that the lightGBM model makes decisions according438

to the header features.439

Offset 0x0000-0x1000 0xe000-0xf000 0xc000-0xd000

Weight 0.93 -0.0277 -0.0272

Table 6. The weight and offset of the three most weighted superpixels of the malware under the

lightGBM. 0x0000-0x1000 is the address of the PE header. The model gave too much weight to the file’s

PE header, we concluded that the lightGBM model makes a decision according to false causalities.

440

Proportion of Code Segment Weight441

We also examined the proportion of code segments in the total score generated by the classifiers. To442

analyze the results, we employed an explanation-based model. The weight of the code segments are443

calculated by adding the weight of all the superpixels that belonged to the code segments. Although it was444

not strictly defined, it corresponded to the code/text section of the binaries (Microsoft, 2021). However,445

the author of the malware could change the name of the code segment at will. By using the explanation446

model, we could get the weight of all the sections (bss, edata, idata, idlsym, pdata, rdata, reloc, rsrc, sbss,447

sdata, srdata, code/text). We computed the weight of code/text for all binaries and presented the CDF in448

Figure 6. The CDF reveals that the weight of code sections amounts to roughly 50% in half of all the449

binaries. Although this was only an estimation, the weight of the code segments must be limited. We450

concluded that code sections only account for part of the weight. Due to the fact that not all data segments451

can be transformed by Disp, it is highly probable that the success rate will be low if the Disp algorithm is452

used alone.453

Randomly Applied Transformations454

In order to study the influence of the location of the transformed content and the type of the transformed455

content on the success rate of adversarial examples, we evaluated whether the randomly applied transfor-456

mation would lead to evasion of the DNNs. To evaluate the transformations, we created up to 200 variants457

for each binary. If the detection results of more than one variant changed, the transformation would be458

considered successful. The binary are divided into superpixels. For code sections, the superpixel was459

the basic functional block returned by the disassembly tools. For data sections, we divided binaries into460

1KB length superpixels by offset. The concept of ”randomly applied transformations” encompassed two461

aspects. Firstly, whether a particular superpixel in the binary underwent transformation was determined462

randomly. Secondly, the gap space following the transformation was filled either with adversarial data463

or random data. Specifically, we designed two experiments. We conducted two distinct experiments to464

13/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Figure 6. A cumulative distribution function (CDF) graph depicting the weight of code sections

contributing to the decision provides valuable insights into the behavior of a malware detection model.

Approximately 50% of the binary’s code sections have little contribution to the final result.

test our approach. In the first experiment, we filled the gap spaces with random data, while in the second465

experiment, we used adversarial data to fill the gaps. The adversarial data was the data we found in the466

previous section with a high absolute weight.467

We conducted both experiments with the constraint that the size of each binary would not increase by468

more than 5%, and limited the number of iterations to 200 for both Disp and DataDisp. When Disp and469

DataDisp were both used randomly with random data, the results showed that three malware binaries470

were misclassified, and five benign binaries were incorrectly classified as malware when using MalConv.471

4 malware and 6 benign binaries were misclassified for AvastNet. The results are easy to explain under472

our framework, because the weight is under a normal distribution with a mean value of 0 as shown in473

Figure 4. If the Disp&DataDisp algorithms are applied randomly, the weight of the transformed binaries474

is also under a normal distribution and the sum of the weights has a high probability with a mean value475

of 0. There is a high probability that the adversarial examples will not evade the detector. So we could476

conclude that it’s not that the DNNs are robust against naive Disp transformations as claimed in (Sharif477

et al., 2019) but it’s just a matter of probability.However, when we filled the gap spaces with adversarial478

data, the results improved significantly. The adversarial data was selected from the higher-weighted data479

we identified in the previous section. Using this approach, we achieved a success rate of 24% for MalConv480

and 39% for AvastNet, which represented the highest success rates obtained in our experiments.481

Evaluation of the Transformations: Disp and DataDisp482

In this section, we evaluated the Disp and DataDisp transformations individually using an interpretable483

model to optimize the procedure. With regards to Disp, we set the maximum displacement budget to484

5% and the maximum number of iterations to 200. We filled the gap left by the transformation with485

adversarial data. The Disp algorithm could achieve a maximum success rate of 59% for MalConv and486

45% for AvastNet. With regards to DataDisp, we used a maximum displacement budget of 5% and a487

maximum number of iterations of 200. Once again, we filled the gap spaces left by the transformation488

with adversarial data. The DataDisp algorithm yielded a maximum success rate of 53% for MalConv and489

35% for AvastNet.490

Sharif et al. (2019) also tested Disp with a hill-climbing approach. They only moved subsections that had491

a positive impact on the results. They got a maximum success rate of 24%. Our hypothesis was that this492

result was due to the fact that Disp was only capable of transforming the code section of a binary file.493

Evaluation On Explanation-Based Adversarial Algorithm494

In this subsection, we evaluated our explanation-based model by comparing it to other algorithms. We495

set the maximum displacement budget to 5% and limited the number of rounds to 200. To improve the496

performance, we used a combination of Disp and DataDisp transformations. We compared our model497

with three different models, they were Disp with a hill-climbing approach (Sharif et al., 2019), genetic498

padding (Demetrio et al., 2021a) and gradient-based attack (Kreuk et al., 2018). All of these algorithms,499

including the explanation-based model, increased the length of the binary by padding different contents at500

the end of the file. The gradient-based algorithm operated in a white-box setting, using the parameters of501

14/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



the DNNs to calculate the gradient (Suciu et al., 2019)(Kreuk et al., 2018). The gradient-based padding502

we used was adapted from (Kreuk et al., 2018) with epsilon 0.5 and iteration 2. The genetic padding was503

a black-box approach that we adapted from (Demetrio et al., 2021a) with iteration 10 and population 50.504

The genetic padding required data randomly sampled from different files.Similar to the genetic padding505

algorithm, our approach also worked in a black-box setting. However, we improved upon this method506

by adding binary files with the most weighted data identified in the previous section. The impact of this507

modification can be seen in the results displayed in Figure 7.508

Figure 7. We provided a demonstration of various attacking algorithms, where the orange line represents

the misclassification rate of our black-box algorithm. Our approach proved to be less effective than the

gradient-based algorithm, but outperformed both genetic padding and Disp in combination with the

climb-hill algorithm within a certain range.

Although our algorithm was not as effective as the gradient-based model, we observed that it outper-509

formed genetic padding and Disp with the hill-climbing approach. Notably, the gradient-based attack510

requires model information that may be unavailable in practice. Among all black-box models, our attack511

model yielded the best performance. However, without budget constraints, our explanation-based model512

could resulted in a much higher number of misclassified binaries. To comprehensively evaluate our attack513

model, we also conducted attacks on the Endgame model. The results demonstrate a maximum success514

rate of 52%. The Endgame model, which benefits from a larger training dataset, incorporates substantial515

structural information in its features. These features, unfortunately, are immutable in our attack model,516

consequently resulting in the relatively poorer performance of our attacks.517

Computational Analysis518

In our paper, we evaluated the performance of our attack on three different models: MalConv and Avast,519

which are DNN-based models, and the Endgame model, which is a gradient boosted decision tree model.520

The DNN models have a linear complexity when it comes to training, as it depends on the length of the521

binary input. On the other hand, the complexity of the Endgame model is determined by the number of522

trees and the number of leaves per tree. It is important to note that none of these models were developed523

by us, so we focused on analyzing the computation requirements for generating adversarial examples.The524

complexity of the attack model consists of two parts: the time required to displace instructions and the525

time required to query the detector. Displacing instructions randomly within a binary function with k526

instructions has a time complexity of o(k). If the length of the binary function is n, the query time is has527

o(log(n)) time complexity. For the instance attack model, the overall running time of the model is equal528

to the sum of query time and the time to displacing the instructions, which is o(log(n)+ k). Regarding529

the collected data on actual running conditions, there were 1805, 1921 query for attacking MalConv and530

Avast on average. The attacks took 630, 730 seconds on average respectively for Malconv and Avast531

model. The average number of queries was 6210 with an average time of 1545s for Endgame.532

Miscellaneous533

Hyperparameters. Throughout this article, we chose 200 as the maximum number of iterations and 5%534

as the maximum displacement budget, we also used 1KB as the size of the superpixel of DataDisp in535

Section:Randomly Applied Transformations. We used these hyperparameters because our method could536

15/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



achieve almost perfect success under this configuration. In (Sharif et al., 2019)(Lucas et al., 2021), they537

tested Disp with a hill-climbing approach with similar hyperparameters.538

Integrity of binary. To ensure that the functionality of the binaries was intact after the transformation.539

Firstly, we selected 6 different binaries and manually checked their instructions with OllyDbg (Oleh540

Yuschuk, 2014). Secondly, we selected 10 different benign binaries and manually checked their function-541

ality by running them on Windows. All the files worked fine. Thirdly, we also used the Cuckoo Sandbox542

(Claudio Guarnieri, Allessandro Tanasi, Jurriaan Bremer, and Mark Schloesser, 2019) to test 10 malware543

programs. One of them collapsed after transformation, and the rest ones functioned normally. We checked544

the file manually. We found that the binary does not strictly follow the PE format specification. The length545

of the data segment shown in the file header does not match the actual length.546

DISCUSSION AND FUTURE WORK547

In this section, we presented the results of our experiments and highlighted areas for future improvement.548

We also briefly covered the limitations and basic assumptions of our model.549

Discussion On Experiments550

We carefully designed multiple sets of experiments to evaluate the effectiveness of our approach. First,551

we analyzed binary files to identify which content the black-box detector valued and used this informa-552

tion for targeted attacks. Second, we randomly applied transformations in Section:Randomly Applied553

Transformations but found that these techniques alone were not sufficient to achieve high adversarial554

results. This demonstrated the importance of both optimization and adoption of adversarial data. Third,555

we compared our model with others and observed that it did not perform as well as the gradient-based556

attack model. However, it is important to note that the gradient-based model works in white-box settings557

and requires model information that may not be available in practice. Our adversarial model utilized558

Disp & DataDisp transformation methods to transform both data and code segments, resulting in the best559

performance under black-box conditions.560

Discussion On The Model561

In black-box attacks, adversaries lack knowledge of the internal workings of the model. To overcome this,562

adversaries may leverage adversarial classifier reverse engineering (ACRE) to learn sufficient information563

for recovering the classifier (Lowd and Meek, 2005). Another approach for attacking black-box systems564

is to train a substitute model using synthetic inputs generated by adversaries (Szegedy et al., 2014). This565

method is based on the assumption that two models with comparable performance solving the same ML566

task are likely to have similar decision boundaries (Papernot et al., 2018). We make a similar assumption567

that two models with comparable performance around one instance are likely to have similar decision568

boundaries. So we train a surrogate model around a specific example. Compared with training a surrogate569

model on the entire data set, the instance-based approach greatly reduces the computational complexity of570

training and reduces the amount of data required.571

Our model requires only a single training instance rather than many. In practice, we often have access to572

only one or a few examples and need to generate enough targeted adversarial samples. The inputs used573

to train the surrogate model are transformed solely from the example itself because a coherent structure574

between the binary and its variants leads to strong correlations. We believe that the information learned575

from these perturbed instances is specific and targeted. By training a simpler substitute model, we can576

then use this model as our target for attack. This approach is referred as the instance-based attack. In577

Locally Linear Embedding(LLE) (Roweis and K.Saul, 2000), each data point is a linear combination of its578

neighbours. As claimed in LLE (Roweis and K.Saul, 2000), we assume that the binary and its perturbed579

instances lie on or close to a locally linear path of the manifold. So we can characterize each binary from580

its neighbours by linear coefficients. This is the key assumption of our paper.581

After discussing the mathematical basis of the instance attack model, we concluded that our fitting function582

is necessary but not sufficient. Thus, we must iterate the process many times. Unlike in NLP and image583

classification, the goal is not to minimize perturbation but rather to maintain the function’s integrity. For584

two semantically identical binary files, their characters may have no resemblance to each other. This is585

why we need to make many transformations.586

16/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Limitations and Future Works587

Limited by our linear fitting model, our interpretable model is not suitable for some structure-based588

adversarial transformations such as content shifting (Demetrio et al., 2021b)(Anderson et al., 2018). Our589

algorithm is instance-based, which means that it needs a lot of queries and calculations to do an adjustment590

for each example. However, the convergence of the algorithm has not been proven and we have to iterate591

many times. We use a linear function to fit the classifier. We believe that we could introduce some more592

complex models such as the local non-linear interpretable model (Guo et al., 2018), and the accuracy593

can be furtherly improved. The combination of global fitting and local fitting frameworks is also worth594

exploring and the intrinsic dimension of our model could also be discussed (Pope et al., 2021). In the595

field of malicious code detection, conventional models do not typically impose limitations on the number596

of queries, as scanning a single personal computer often necessitates querying millions of files. However,597

our model does not possess a distinct advantage in scenarios where query efficiency is paramount. Thus598

far, there has been no evident demand for such capabilities in the domain of code analysis. Nevertheless,599

exploring avenues to significantly reduce the number of queries on the base of (Guo et al., 2019) remains600

a promising research direction.601

Potential Mitigations602

While our model has achieved a commendable success rate, it is crucial to develop mitigation measures603

that bolster the resilience of malware detection against potential evasion efforts stemming from our attack604

strategies. Although our model necessitates a substantial number of queries for effective implementation,605

we do not regard this as an inherently efficacious mitigation approach. Static detection is widely acknowl-606

edged as being generally undecidable. However, we posit that the following two techniques can impart a607

degree of mitigation against our attack model. Firstly, our model primarily focuses on the perturbation608

of code and data segments. By ascribing higher weights to structural elements such as file headers609

or structure data entities like input/output functions name, we can augment the accuracy of detection.610

Secondly, Our model does not affect the dynamic execution of the code. Through the integration of static611

and dynamic detection methodologies, such attack methods can be proficiently circumvented.612

CONCLUSIONS613

Our paper introduces a new concept, known as the ”instance-based attack,” through which we analyzed two614

DNN-based malware classifiers using an interpretable model. Our analysis revealed key characteristics615

of these models under black-box conditions, highlighting the critical role played by data segments in616

determining results. This importance of data segments had not been discussed in related articles before.617

Additionally, we introduced a novel method to generate adversarial examples, which we call the instance618

attack. Unlike other methods that insert code in invalid places or transform only code segments, our619

adversarial model can transform both data and code segments using Disp and DataDisp. Our model620

achieves state-of-the-art results under black-box conditions, and the results of the instance attack can be621

verified using domain knowledge. We hope that our work will inspire future research efforts in this area.622

REFERENCES623

Anderson, H. S., Kharkar, A., Filar, B., Evans, D., and Roth, P. (2018). Learning to evade static PE624

machine learning malware models via reinforcement learning.625

Anderson, H. S. and Roth, P. (2018). EMBER: an open dataset for training static PE malware machine626

learning models.627

Arp, D., Quiring, E., Pendlebury, F., Warnecke, A., Pierazzi, F., Wressnegger, C., Cavallaro, L., and628

Rieck, K. (2022). Dos and don’ts of machine learning in computer security. In 31st USENIX Security629

Symposium (USENIX Security 22), Boston, MA. USENIX Association.630

Brendel, W., Rauber, J., and Bethge, M. (2018). Decision-based adversarial attacks: Reliable attacks631

against black-box machine learning models.632

Camburu, O. (2020). Explaining deep neural networks.633

Capstone (2021). The ultimate disassembly framework - capstone- the ultimate disassembler. https:634

//www.capstone-engine.org. Accessed: 2021-03-31.635

Carlini, N. and Wagner, D. A. (2017). Towards evaluating the robustness of neural networks. In 2017636

IEEE Symposium on Security and Privacy (SP), pages 39–57.637

17/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Chen, S.-T., Cornelius, C., Martin, J., and Chau, D. H. P. (2019). Shapeshifter: Robust physical adversarial638

attack on faster r-cnn object detector. In Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., and Ifrim,639

G., editors, Machine Learning and Knowledge Discovery in Databases, pages 52–68, Cham. Springer640

International Publishing.641

Claudio Guarnieri, Allessandro Tanasi, Jurriaan Bremer, and Mark Schloesser (2019). Cuckoo sandbox.642

https://www.cuckoosandbox.org. Accessed: 2022-2-10.643

Coull, S. E. and Gardner, C. (2019). Activation analysis of a byte-based deep neural network for malware644

classification. In 2019 IEEE Security and Privacy Workshops (SPW), pages 21–27.645

Demetrio, L., Biggio, B., Lagorio, G., Roli, F., and Armando, A. (2019). Explaining vulnerabilities of646

deep learning to adversarial malware binaries.647

Demetrio, L., Biggio, B., Lagorio, G., Roli, F., and Armando, A. (2021a). Functionality-preserving648

black-box optimization of adversarial windows malware. IEEE Transactions on Information Forensics649

and Security, 16:3469–3478.650

Demetrio, L., Coull, S. E., Biggio, B., Lagorio, G., Armando, A., and Roli, F. (2021b). Adversarial651

exemples: A survey and experimental evaluation of practical attacks on machine learning for windows652

malware detection. ACM Trans. Priv. Secur., 24(4).653

everybodywiki (2020). Ablation analysis. https://en.everybodywiki.com/Ablative\654

_analysis. Accessed: 2021-11-22.655

Fleshman, W., Raff, E., Zak, R., McLean, M., and Nicholas, C. (2018). Static malware detection amp;656

subterfuge: Quantifying the robustness of machine learning and current anti-virus. In 2018 13th657

International Conference on Malicious and Unwanted Software (MALWARE), pages 1–10.658

Ghosh, S., Das, N., Das, I., and Maulik, U. (2019). Understanding deep learning techniques for image659

segmentation.660

Guo, C., Gardner, J. R., You, Y., Wilson, A. G., and Weinberger, K. Q. (2019). Simple black-box661

adversarial attacks. CoRR, abs/1905.07121.662

Guo, W., Mu, D., Xu, J., Su, P., Wang, G., and Xing, X. (2018). Lemna: Explaining deep learning based663

security applications. page 364–379.664

Jia, R. and Liang, P. (2017). Adversarial examples for evaluating reading comprehension systems.665

Johannes Plachy (2018). Portable executable file format. https://blog.kowalczyk.info/666

articles/pefileformat.html. Accessed: 2018-7-26.667

Johns, J. (2017). Representation learning for malware classification. https://www.fireeye.com/668

content/dam/fireeye-www/blog/pdfs/malware-classification-slides.pdf.669

Accessed: 2020-07-26.670

Koo, H. and Polychronakis, M. (2016). Juggling the gadgets: Binary-level code randomization using671

instruction displacement. In Proceedings of the 11th ACM on Asia Conference on Computer and Com-672

munications Security, ASIA CCS ’16, page 23–34, New York, NY, USA. Association for Computing673

Machinery.674

Kreuk, F., Barak, A., Aviv-Reuven, S., Baruch, M., Pinkas, B., and Keshet, J. (2018). Adversarial675

examples on discrete sequences for beating whole-binary malware detection.676

Krčál, M., Švec, O., Bálek, M., and Jašek, O. (2018). Deep convolutional malware classifiers can learn677

from raw executables and labels only.678

Li, W., Ge, J., and Dai, G. (2015). Detecting malware for android platform: An svm-based approach. In679

2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing, pages 464–469.680

Lowd, D. and Meek, C. (2005). Adversarial learning. In Proceedings of the Eleventh ACM SIGKDD681

International Conference on Knowledge Discovery in Data Mining, KDD ’05, page 641–647, New682

York, NY, USA. Association for Computing Machinery.683

Lucas, K., Sharif, M., Bauer, L., Reiter, M. K., and Shintre, S. (2021). Malware makeover: Breaking ml-684

based static analysis by modifying executable bytes. In Proceedings of the 2021 ACM Asia Conference685

on Computer and Communications Security, ASIA CCS ’21, page 744–758, New York, NY, USA.686

Association for Computing Machinery.687

Lundberg, S. and Lee, S. (2017). A unified approach to interpreting model predictions. volume688

abs/1705.07874.689

Microsoft (2021). Pe format. https://docs.microsoft.com/en-us/windows/win32/690

debug/pe-format. Accessed: 2021-03-31.691

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B. S. (2011). Malware images: Visualization and692

18/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



automatic classification. In Proceedings of the 8th International Symposium on Visualization for Cyber693

Security, VizSec ’11, New York, NY, USA. Association for Computing Machinery.694

Noever, D. and Miller.Noever, S. E. (2021). Virus-mnist:a benchark malware dataset.695

Oleh Yuschuk (2014). Ollydbg. https://www.ollydbg.de. Accessed: 2022-2-10.696

Papernot, N., McDaniel, P., Sinha, A., and Wellman, M. P. (2018). Sok: Security and privacy in machine697

learning. In 2018 IEEE European Symposium on Security and Privacy (EuroS P), pages 399–414.698

Pappas, V., Polychronakis, M., and Keromytis, A. D. (2012). Smashing the gadgets: Hindering return-699

oriented programming using in-place code randomization. In 2012 IEEE Symposium on Security and700

Privacy, pages 601–615.701

Park, D., Khan, H., and Yener, B. (2019). Short paper: Creating adversarial malware examples using code702

insertion.703

Pope, P., Zhu, C., Abdelkader, A., Goldblum, M., and Goldstein, T. (2021). The intrinsic dimension of704

images and its impact on learning.705

Qin, Y., Carlini, N., Goodfellow, I., Cottrell, G., and Raffel, C. (2019). Imperceptible, Robust, and706

Targeted Adversarial Examples for Automatic Speech Recognition.707

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., and Nicholas, C. K. (2018). Malware708

detection by eating a whole EXE. WS-18:268–276.709

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why should i trust you?”: Explaining the predictions710

of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge711

Discovery and Data Mining, KDD ’16, page 1135–1144, New York, NY, USA. Association for712

Computing Machinery.713

Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., and Ahmadi, M. (2018). Microsoft malware classifica-714

tion challenge.715

Rosenberg, I., Meir, S., Berrebi, J., Gordon, I., Sicard, G., and David, E. (2020). Generating end-to-end716

adversarial examples for malware classifiers using explainability. CoRR, abs/2009.13243.717

Roweis, S. T. and K.Saul, L. (2000). Nonlinear dimensionality reduction by locally linear embedding.718

SCIENCE, 290:2323–2326.719

RuiJin, S., ShiZe, G., JinHong, G., ChangYou, X., LuMing, Y., Xi, G., and ZhiSong, P. (2022). Instance720

attack:an explanation-based vulnerability analysis framework against dnns for malware detection.721

Saxe, J. and Berlin, K. (2015). Deep neural network based malware detection using two dimensional722

binary program features. pages 11–20.723

Sharif, M., Bhagavatula, S., Bauer, L., and Reiter, M. K. (2016). Accessorize to a crime: Real and stealthy724

attacks on state-of-the-art face recognition. In Weippl, E. R., Katzenbeisser, S., Kruegel, C., Myers,725

A. C., and Halevi, S., editors, Proceedings of the 2016 ACM SIGSAC Conference on Computer and726

Communications Security, Vienna, Austria, October 24-28, 2016, pages 1528–1540. ACM.727

Sharif, M., Lucas, K., Bauer, L., Reiter, M. K., and Shintre, S. (2019). Optimization-guided binary728

diversification to mislead neural networks for malware detection.729

Song, W., Li, X., Afroz, S., Garg, D., Kuznetsov, D., and Yin, H. (2020). Automatic generation of730

adversarial examples for interpreting malware classifiers.731

Suciu, O., Coull, S. E., and Johns, J. (2019). Exploring adversarial examples in malware detection. In732

2019 IEEE Security and Privacy Workshops, SP Workshops 2019, San Francisco, CA, USA, May 19-23,733

2019, pages 8–14. IEEE.734

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., and Fergus, R. (2014).735

Intriguing properties of neural networks. In Bengio, Y. and LeCun, Y., editors, 2nd International Con-736

ference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference737

Track Proceedings.738

Vigna, G. and Balzarotti, D. (2018). When malware is Packin’ heat. In Enigma 2018 (Enigma 2018),739

Santa Clara, CA. USENIX Association.740

Vinod, P., Laxmi, V., Gaur, M. S., and Chauhan, G. (2012). Momentum: Metamorphic malware741

exploration techniques using msa signatures. In 2012 International Conference on Innovations in742

Information Technology (IIT), pages 232–237.743

Yang, L., Ciptadi, A., Laziuk, I., Ahmadzadeh, A., and Wang, G. (2021). Bodmas: An open dataset for744

learning based temporal analysis of pe malware. In 2021 IEEE Security and Privacy Workshops (SPW),745

pages 78–84.746

19/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



1 APPENDIX747

1.1 Windows Portable Executable File Format748

The data we use in this article are all Windows PE files and we take advantage of the format characteristics749

of the PE files to create adversarial examples. The PE files are derived from the Common Object File750

Format (COFF), which specifies how Windows executables are stored on the disk. The main file that751

specifies the PE files is winnt.h, related documents can also be found in Microsoft (2021). There are two752

types of PE files, one is executable (EXE) file and the other is dynamic link library (DLL) file. They753

are almost the same in terms of file format, the only difference is that a field is used to identify whether754

the file is an EXE or DLL. Generally, PE files can be roughly divided into different components. They755

begin with a MS-DOS header, a Stub and a PE file signature. Immediately following is the PE file header756

and optional header. Beyond that, section headers and section bodies follow. A PE file typically has757

nine predefined sections named .text,.bss,.rdata,.data,.rsrc,.edata,.idata,.pdata and .debug Johannes Plachy758

(2018). Figure 8 depicts a typical exemplification of the structure of a PE file. Some binaries do not need759

all of these sections while others may rename or define the section names according to their own needs.760

For the alignment reason, the start address of the segment part of PE is often 0x100.761

20/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science



Figure 8. Structure of a typical PE file image.

21/21PeerJ Comput. Sci. reviewing PDF | (CS-2023:06:87053:1:2:NEW 14 Aug 2023)

Manuscript to be reviewedComputer Science


