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ABSTRACT
Deep neural networks (DNNs) are increasingly being used in malware detection and
their robustness has been widely discussed. Conventionally, the development of an
adversarial example generation scheme for DNNs involves either detailed knowledge
concerning the model (i.e., gradient-based methods) or a substantial quantity of data
for training a surrogate model. However, under many real-world circumstances,
neither of these resources is necessarily available. Our work introduces the concept of
the instance-based attack, which is both interpretable and suitable for deployment in
a black-box environment. In our approach, a specific binary instance and a malware
classifier are utilized as input. By incorporating data augmentation strategies,
sufficient data are generated to train a relatively simple and interpretable model. Our
methodology involves providing explanations for the detection model, which entails
displaying the weights assigned to different components of the specific binary.
Through the analysis of these explanations, we discover that the data subsections
have a significant impact on the identification of malware. In this study, a novel
function preserving transformation algorithm designed specifically for data
subsections is introduced. Our approach involves leveraging binary diversification
techniques to neutralize the effects of the most heavily-weighted section, thus
generating effective adversarial examples. Our algorithm can fool the DNNs in
certain cases with a success rate of almost 100%. Instance attack exhibits superior
performance compared to the state-of-the-art approach. Notably, our technique can
be implemented in a black-box environment and the results can be verified utilizing
domain knowledge. The model can help to improve the robustness of malware
detectors.

Subjects Artificial Intelligence, Computer Networks and Communications, Data Mining and
Machine Learning, Security and Privacy, Neural Networks
Keywords Malware, Adversarial examples, DNN, Interpretable

INTRODUCTION
Malware attack is an important issue in today’s cybersecurity community. Thousands of
malware attacks are reported every day, according to Demetrio et al.’s (2021a) description.
Both academia and industry have devoted a lot of manpower to malware detection.
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Traditional detection methods, such as support vector machine (SVM) (Li, Ge & Dai,
2015) and signature (Vinod et al., 2012) require manual feature engineering, which can be a
daunting task. Given the vast number of malware instances in existence, the labor-
intensive nature of this work renders it both time-consuming and tedious. As deep neural
networks (DNNs) have made significant advances in many domains, such as image (Sharif
et al., 2016) and voice classification (Qin et al., 2019), an increasing number of researchers
and anti-virus enterprises have begun leveraging DNN-based detectors in the field of
cybersecurity. The DNNs models automatically make the classification for malware
without expert knowledge. Researchers use deep learning models in an end-to-end manner
that operates directly on the raw bytes of Windows Portable Executable (PE) files.

In the domain of cybersecurity, malware detection systems can be broadly classified into
dynamic and static approaches. While dynamic systems rely on learning the behavioral
features of malware for classification, static systems directly classify files using features
without executing them (Sharif et al., 2019). This article primarily focuses on the static
approach. There exist several byte-based DNNmodels that have demonstrated comparable
performance with traditional methods (Saxe & Berlin, 2015; Raff et al., 2018). The
robustness of the DNNs detection system and the interpretability of DNNs have attracted
much attention, while the DNNs have shown great potential. The interpretability of
models is particularly important in financial and security-related domains. The absence of
model interpretability can significantly limit the applicability of DNN models in these
domains. Adversarial examples are the techniques that focus on perturbing the examples
to mislead DNN-based detection systems, and can be leveraged to enhance the robustness
of such systems. Unlike other domains, semantic invariance constraints must be satisfied
in binary. When an adversarial example is generated, its characters may be transformed
and its semantic should not be changed. People introduce different transformation
techniques that could keep the functionality of the binaries intact (Anderson et al., 2018;
Song et al., 2020; Park, Khan & Yener, 2019). In the context of binary-based adversarial
attacks, transformations refer to modifications made to a PE file that do not alter the
execution of its underlying code (Anderson et al., 2018). Despite the considerable progress
that has been made in generating adversarial examples for malware detection, there are still
a number of unresolved issues. First, only a few articles that use DNNs to detect malware
have explained their detection models. The lack of transparency makes it questioned by
many people (Arp et al., 2022). The uninterpretable model may detect the binaries
according to false causalities that are unrelated to any malicious activity (Arp et al., 2022).
Second, the binary transformation methods used by others focus on the structural part
(Demetrio et al., 2021a) and the code part (Sharif et al., 2019), but they leave the data
section alone. Third, after figuring out how to transform malware, they resort to
complicated optimization methods (such as genetic algorithms) (Demetrio et al., 2021a) or
uninterpretable stochastic methods (Sharif et al., 2019). These deficiencies limit their
performance under the black-box model. Our approach fills the gap.

In this article, we propose the notion of instance-based attacks. Our method is very
similar to the transfer-based approach. The most important difference between instance-
based and transfer-based methods is that all the data used to train our model is generated
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by data augmentation from one single binary. We use an explanation based adversarial
example generation technique to test malware detectors by iteratively approximating the
decision boundary. Our method is more effective than others in the context of black-box
settings. In order to evade the DNNs in fewer steps, we could transform the most
influential modules in each round. Furthermore, our optimization method is interpretable
and can be verified with domain knowledge. We highlight our contributions below.

� We introduce the concept of the instance-based attack. Rather than training a surrogate
model against the entire model, we instead train a surrogate model for an instance, with
a specific emphasis on perturbing around that instance. The adversarial instances are
generated by iteratively approximating the decision boundary.

� Several prominent detection models are analyzed using a local interpretable model, their
characteristics and drawbacks are highlighted. Notably, we observed a lack of focus on
data section transformations within PE files, representing a significant gap in current
approaches.

� A novel functionality-preserving transformation method is proposed which is suitable
for data sections in PE files that have not been evaluated by other authors.

� The theoretical and mathematical foundations of our model are discussed.

� Our method are tested in various scenarios, and the results demonstrate its superiority
over other state-of-the-art approaches in black-box settings (Sharif et al., 2019). It can
achieve a success rate of almost 100% in certain cases.

BACKGROUND AND RELATED WORK
In this section, we provide an overview of the most commonly used DNN-based malware
detection models, with a particular emphasis on their static components. Following this,
adversarial methods designed to target the raw bytes of PE files in malware detectors are
discussed. Finally, we conclude the section by examining literature that explains the use of
DNNs for malware classification.

DNNs for malware detection
Malware detection plays an important role in the field of cyber security. DNNs have been
used widely by researchers in malware classification. The most appealing aspect of the
DNNs-based malware detectors is their ability to achieve state-of-the-art performance
from raw bits rather than manually crafted features that require tedious human effort.
Many DNNs-based detectors have been proposed so far, and we introduce the most
famous ones here. Nataraj et al. (2011) visualize the malware binaries as gray-scale images.
A classification method using standard image features is proposed, based on the
observation that malware images belonging to the same family appear very similar in
layout and texture. Then they use the classifier originally designed for images to sort
malware. Coull & Gardner (2019) introduce a DNN with five convolutional and pooling
layers. It also has a learnable 10-dimensional embedding layer. At the end of the network,
there is a single fully-connected layer and a sigmoid function. Saxe & Berlin (2015) employ
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four distinct complementary features from the static, benign and malicious binaries. They
use a DNNs-based classifier which consists of an input layer, two hidden layers, and an
output layer. They translate the output of the DNNs into a score that can be realistically
interpreted as an approximation of the probability that the file is malware. Johns (2017)
proposes deep convolutional neural networks (CNN) that combine a ten-dimensional,
learnable embedding layer with a series of five interleaved convolutional and max-pooling
layers arranged hierarchically. MalConv (Raff et al., 2018) is the most popular CNNmodel
which combines an eight-dimensional trainable embedding layer. Raff et al. (2018) have
tried many different structures. They have tried deeper networks (up to 13 layers),
narrower convolutional filters (width 3–10), and smaller strides (1–10). Finally, they
adopted the network consisting of two 1-D gated convolutional windows with 500 strides.
We used the MalConv detection model to evaluate the effectiveness of our method.

Adversarial examples against DNN-based malware detectors
Adversarial examples are the technologies that focus on the minimal input perturbations
of break machine learning algorithms. They can expose the vulnerability of the machine
learning model and improve the robustness of the DNNs. For example, when DNNs are
used in street sign detection, researchers show ways to mislead street signs recognition
(Chen et al., 2019). Adversarial examples could also fool voice-controlled interfaces (Qin
et al., 2019), mislead NLP tasks (Jia & Liang, 2017). It is natural to introduce adversarial
sample techniques to bypass DNNs based malware detectors. However, the semantics of
binaries limit the applicability of the existing adversarial methods designed against image,
voice, or NLP classifiers transplanted to the cybersecurity realm, because there is a
structural interdependence between adjacent bytes. Anderson et al. (2018) introduce one
way to bypass machine-learning-based detection by manipulating the PE file format. They
find several structures in Windows PE files that could be modified without affecting their
functionality. Kreuk et al. (2018) craft bytes adversarially in regions that do not affect
execution. Specifically, they append adversarial bits at the end of files. Suciu, Coull & Johns
(2019) extend this idea by finding more places to append in PE files, such as in the middle
of two sections of PE files. Different padding strategies are also evaluated, including
random appending, FGM appending, and benign appending. Sharif et al. (2019)
manipulate instructions to produce adversarial examples. Instructions are a functional part
of binary files. They introduce two families of transformations. The first one named in-
Place randomization (IPR) is quoted from Pappas, Polychronakis & Keromytis (2012). The
second one named code displacement (Disp) is also adopted in our article as the baseline.
Disp relocates sequences of instructions that contain gadgets from their original locations
to newly allocated code segments with a jmp instruction. Sharif et al. (2019) extend the
Disp algorithm. They make it possible to displace any length of consecutive instructions,
not just those belonging to gadgets. As far as the variable space is concerned, they focus on
the structure characteristic or the code characteristic. None of the above-mentioned
articles discuss the data segment, although it plays an important role in malware
classification.
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Explanation of adversarial machine learning in malware
In the field of malware, the traditional routine for producing adversarial examples in black-
box settings involves proposing function-preserving actions and using a uninterpretable
method (Anderson et al., 2018) or a random method (Sharif et al., 2019) to evade DNNs.
Different ways are presented to transform malware without changing its functionality, but
only a few articles have explained why their approaches work. Due to the non-linearity of
DNNs detectors, they rely on uninterpretable methods or random ways to optimize their
transformation. These methods are of little help in designing the malware detector.
Demetrio et al. (2021a) use the genetic algorithm to generate the adversarial examples.
Sharif et al. (2019) use the transformation randomly. Anderson et al. (2018) use DNNs
based reinforcement learning to evade the detector which is also uninterpretable. While
DNNs have shown great potential in various domains, the lack of transparency limits their
application in security or safety-critical domains. Arp et al. (2022) claim that artefacts
unrelated to the classified target may create shortcut patterns to separate different classes.
Consequently, the DNNs may adapt to the artefacts instead of the original problems. It is
important to investigate what these models have learned from malware. An interpretable
technique is needed to tell us the most influential features. Most of the existing research on
the interpretability of DNNs focuses on image classification and NLP processing (Ribeiro,
Singh & Guestrin, 2016; Camburu, 2020; Lundberg & Lee, 2017). To improve the
transparency of malware classification, researchers have started to work on the explanation
issue of malware classification. To the best of our knowledge, Coull & Gardner (2019) are
the first to explore this topic. They use various methods such as HDBSCAN, shaply value
and byte embeddings to analyze the model. They examine the learned features at multiple
levels of resolution, from individual byte embeddings to end-to-end analysis of the model.
Johns (2017) also examine what DNNs have learned in malware classification by analyzing
the activation of the CNN filter. They suggest that a CNN-based malware detector could
find meaningful features of malware (Johns, 2017). Demetrio et al.’s (2019) work is the
closest one to our research. They use integrated gradients to find the most important input
and point out that the MalConv model does not learn the key information in the PE file
header according to the interpretability analysis. They devise an effective adversarial
scheme based on the explanation. Rosenberg et al. (2020) made use of the explainable
techniques to train a surrogate neural network to represent the attacked malware classifier.
They attack the surrogate model instead. Different from these articles, our function-
preserving measures are able to process more types of segments and fewer examples are
needed.

TECHNICAL APPROACH
In this section, we discuss the technical approach behind our framework. First, the general
algorithm is described. Then, we introduce the approximating boundary model for fitting
the DNNs. Next, the data augmentation module are present. Finally, how we create
adversarial examples are explained in detail. Throughout the article, we use the following
notations.m refers to the original malware, f ðmÞ refers to the output of the DNNs detector
(e.g., class probabilities or logits). We use gðmÞ ¼ ~m �~w to approximate f ðmÞ. ~m is the

Sun et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1591 5/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/


interpretable data representation vector. ~w is the weight of the linear equation. ~mi refers to
the perturbed malware in the i-th round of the algorithm and ~mi

j is the j-th perturbed
example in each round. rj is the perturbation that we make.

Instance attack
Portions of this text were previously published as part of a preprint (RuiJin et al., 2022). In
the field of adversarial examples for binary code in a black-box setting, the transformation
can only be limited to a few discrete actions as mentioned in Section: Function Invariant
Transformation 6 because of the semantic invariance constriction. The transformation is
discrete and difficult to optimize with gradient-descent methods. Therefore, interpretable
models are being exploited to make adversarial attacks. Adversarial attacks can roughly be
divided into three categories: gradient-based, transfer-based, and score-based (or decision-
based) attacks (Brendel, Rauber & Bethge, 2018). Our method is somewhat similar to the
transfer-based method. Traditionally a transfer-based method trains a surrogate neural
network model on a training set that is believed to accurately represent the attacked
malware classifier such as Rosenberg et al. (2020). To train a surrogate model, traditional
methods require a large number of examples. This is often impossible in practice. The
framework for training our surrogate model is distinct from other models in that it only
requires a single sample to be trained. Our framework fits a specific example, not the
detection model. To accomplish this, we train a surrogate model that is designed to
precisely represent the specific instance being fitted. A locally interpretable algorithm is
used in training the surrogate model. For example, for a DNN detector f and a malware

m0, we can train a surrogate model gðm1
0Þ ¼ f ðm1

0Þ, gðm2
0Þ ¼ f ðm2

0Þ; � � �. But for another
malware n, gðn0Þ 6¼ f ðn0Þ.

A locally generated linear function g is used to find the important features of the binary,
then the function invariant transformation mentioned in Section: Function Invariant
Transformation 6 is used to remove the features. Since only one binary is required, we
name it Instance Attack.

General framework
Our model works in a black-box setting. We assume that we have no access to the model
parameters and the data set. We don’t have any idea about the structure of the
classification model and the distribution of the data set. Only one binary instance is given.
There is no limit to the number of queries. We can transform the instance arbitrarily. Our
target is to generate a new binary to mislead the classifier. After the transformation, we
have to guarantee the functionality of the program. The basic intuition of our framework is
to approximate the result of the specific example with a linear function and make the
perturbation towards the approximate decision boundary iteratively. The whole procedure
works in rounds, where each round consists of three steps. In the first step, data
augmentation is used to generate a large number of new samples from the original binary.
Then a linear model is used to fit these samples. Here, the FastLSM algorithm will be used
(described in detail in Section: Interpretable Data Representations and Segmentation
Algorithm) to fit the malware detector f with a linear function g. The second step is to
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approximate the decision boundary by solving the linear equations g ¼ benign, and
transforming the most important part of the malware accordingly to make

gð~miÞ ¼ benign. For the function invariant restriction of the binary file, ~mi is transformed
to ~miþ1 ¼ ~mi þ ri with the function invariant transformation we propose in Section:
Function Invariant Transformation. We finally query the black-box detector to get

f ~miþ1� �
. If the result of f ð~miþ1Þ is still malware, we move on to the next iteration or we

stop the algorithm if the maximum number of iterations is reached. Algorithm 1 shows the
pseudocode of the whole procedure.

How interpretability is applied
In traditional detection models, the initial step involves selecting features, followed by
designing the detection algorithm. In contrast, DNNs are end-to-end models, they
eliminate the need for explicit feature extraction. They can directly input raw data into the
model and learn the desired outcomes. DNNs are often referred to as featureless models
due to their ability to learn features internally. Similarly, existing attack models that target
DNNs do not possess knowledge of the feature weights. These attack models launch direct
attacks without this crucial information. While direct attacks may occasionally be
successful, they fail to provide insights into understanding deep detection models. In
contrast, our approach focuses on acquiring the features employed in deep detection
models or identifying the associated feature weights. By modifying features with higher
weights, we aim to achieve the attack objective. We utilize the instance attack model to
calculate the weights of different parts (superpixels) within the binary. If a superpixel
possesses a high weight in this model and is associated with code segments or data
segments, we proceed with targeted attacks. These steps are iterated, resulting in the
displacement of superpixels. Through this process, we are able to gain insights into the
functioning of the DNN model and effectively execute targeted attacks.

Formalizing the model
Adversarial examples are variants of normal examples by adding some imperceptible
perturbations. The adversarial examples cause the detection model to misclassify examples
with high confidence. Carlini & Wagner (2017) model the adversarial examples as a
constrained minimization problem:

min D ~mi; ~miþ1� �
(1)

s:t f ~miþ1� � ¼ benign (2)

~mi is fixed and the object is to find the perturbation ~miþ1 that can minimizeD ~mi; ~miþ1� �
and further leads to the evasion. D ~mi; ~miþ1� �

is a distance function and the perturbation is
subject to f ~miþ1� � ¼ benign. Since the identifier is a black-box model, it is difficult to find
a solution for the original function f . Carlini & Wagner (2017) proposed to solve a simple
objective function G instead, G ~miþ1� � ¼ benign if and only if f ð~miþ1Þ ¼ benign.

Sun et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1591 7/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/


min D ~mi; ~miþ1� �
(3)

s:t G ~miþ1� � ¼ benign (4)

In malware detection, these formulas are also utilized to find adversarial perturbations

~miþ1 for the original binary ~mi that target a class fbenign. In a black-box environment,

finding an object functionG such thatG ~miþ1� � ¼ benign if and only if f ð~miþ1Þ ¼ benign is
an overly strong requirement. Here the local explanation g is used instead. If

f ð~miþ1Þ ¼ benign is true, then gð~miþ1Þ ¼ benign is established, but the opposite is not
necessarily true. When gð~miþ1Þ ¼ benign is true, f ð~miþ1Þ may not be benign. The
optimization could be converted to the following problem:

min D ~mi; ~miþ1� �
(5)

s:t g ~miþ1� � ¼ benign (6)

Equation (6) can easily be solved to get the minimal perturbation r from ~mi to ~miþ1,
since g is a linear equation. Because gð~mi þ rÞ is the approximation of f ð~miþ1Þ, we must
incorporate the perturbation ~miþ1 back into the original classifier f to get the accurate
value. If f ~miþ1� � ¼ benign, then we stop the algorithm or we should recompute the linear
approximation of f ~miþ1� �

. We continue to repeat this process until the evasion is
successful or the maximum number of iterations is reached.

Local linear explanations of malware detection
Here, how we build the linear function g are explained. Our method is inspired by Local
Interpretable Model-Agnostic Explanations (LIME) (Ribeiro, Singh & Guestrin, 2016) and

Algorithm 1 General algorithm.

INPUT: a malware m, a classifier f, a linear equation g, the approximation algorithm FastLSMðÞ, a functional invariant transformation function
TranðÞ, address of most weighted data [start,end]

OUTPUT: new malware ~mi

1: while i,maxiteration do

2: gð~miÞ  FastLSMð~mi; f ðÞÞ
3: start; end  solving gð~miÞ ¼ benign

4: ~miþ1  Tran start; end; ~mi
� �

5: if f ð~miþ1Þ ¼¼ malware then

6: i iþ 1

7: else

8: return success

9: end if

10: end while

11: return false
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Locally Linear Embedding (LLE) (Roweis & Saul, 2000). Deep learning algorithms provide
highly satisfactory results. However, their decision procedures are non-linear and the
important parts of the input data cannot be featured out directly. When one instance are
given to bypass the classifier, we try to infer how the detector behaves around a specific
instance by querying the detector for the results of different transformed examples. The
data augmentation method are used to produce the adversarial perturbations. As claimed
in Roweis & Saul (2000), it is assumed that binary files can be represented by points in a
high-dimensional vector space. The binary and its transformations lie on or close to the
locally linear path of the manifold. In this context, it is assumed that the coherent structure
between the binary and its variants leads to strong correlations, which can be characterized
by linear coefficients. The use of a linear model is considered simple and interpretable, as it
allows for a clear understanding of the relationship between the different features of the
binary and its variants.

nðmÞ ¼ argming2GL f ; g;�mð Þ þ �ðgÞ (7)

Equation (7) describes how to solve this problem, where f denotes a DNNs detector, and
g is an interpretable model to approximate f without knowing its parameters. In
classification, f mð Þ produces the probability (or a malware indicator) that m belongs to a
certain category. If g is a potentially interpretable function, and � gð Þ measures the
complexity of the explanation.L f ; g;�mð Þmeasures how unfaithful g is in approximating
f in the locality defined by �m. To ensure the interpretability and local closeness,
L f ; g;�mð Þ should be minimized and � gð Þ should be low enough. The lower the � gð Þ,
the easier it is for humans to understand the model.

In this article, G could be the class of linear models, such that g mð Þ ¼ wg
�!�~m. It is stated

that an interpretable representation ~m of m can be obtained directly, the specific rule is
described in the following section. it is defined that�m ~mi

i

� � ¼ D ~mi
i; ~m

i
0

� �
, whereD is some

kind of distance function, for example, the L2-norm distance. ~mi
0 is the specific example

and ~mi
j is the perturbed example in each round. We carefully choose some perturbed

examples ~mi
1; ~m

i
2; ~m

i
3 � � � ; ~mi

j within each round. For information on the method of
perturbation, see Section: Data Augmentation Module 6. L could be a locally weighted
square loss as defined in Eq. (9). In this way, the function has been converted into a linear
function fitting problem.

g ~mi
j

� �
¼ wi
!� ~mi

j (8)

L f ; g;�mð Þ ¼
X
j

�m ~mi
i

� �
f ~mi

j

� �
� g ~mi

j

� �� �2
(9)

Given a malware instance ~mi and f , this problem is a typical ordinary least square
problem. It is suggested that examples around ~mi can be sampled by drawing non-zero
elements uniformly at random to get the value of ~mi

j. f ð~mi
jÞ could be obtained by querying

the classifier. ~mi
j is the interpretable data representation that can be easily calculated. By
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solving these functions, the weight wi
! can be obtained for sample i. g is the local

explanation model of f . g could also be used as the approximate function of f .

Data augmentation module and optimization algorithm
Data augmentation module
Ablation analysis is often used in evaluating the DNNs model. It is a technique for
evaluating machine learning models by discarding certain features (everybodywiki, 2020).
We adopt similar ideas by discarding certain features of the instance. As our model is
instance-based, we do not quantify the DNNs detector, but the important portion of a
specific instance. Augmented examples are created from a given instance by discarding
(masking) certain features. Then a linear function g is used to fit the DNNs around these
examples, and the weights for each feature are calculated. Computing the weights of all the
bits is time-consuming. Given a file of length LM, it would take oðLM3Þ time to find the
most important bit using the Least Square Method. To improve efficiency, two
optimization mechanisms are proposed. First, the superpixel are used as the basic unit of
interpretable representation. Then, the FastLSM algorithm are introduced to reduce the
computational complexity.

Interpretable data representations and segmentation algorithm
Superpixels were used in image segmentation originally (Ghosh et al., 2019). Common
image segmentation algorithms include quick shift, felzenszwalb, slic. In this article,
superpixels are the results of a binary file over segmentation. We could use the tools to
disassemble the binary file, such as IDA, Binary ninja. Superpixels are the basic function
blocks returned by disassembly tools. The Capstone disassembler framework are used in
our experiment (Capstone, 2021). A basic block is a straight-line sequence of codes with
only one entry point and only one exit. Or the examples could just be segmented by their
offset. For example, a large binary file of size 200 KB could be divided into ten parts, each of
which would be 20 KB in size. As shown in Fig. 1, there are three superpixels returned by
the disassembly tool. The staed rt offsets of these superpixels are 0x10004675h,
0x1000469Ah, and 0x100046A1h. The lengths of the three superpixels are 0x25h, 0x7h,
and 0x8h respectively. Interpretable data representations ~m and data features m are
different. Features m in the range meRL are the ground truths. An interpretable
representation ~m is a binary vector indicating the “presence” (denoted by 1) or “absence”
(denoted by 0) of a patch of codes and its range is m!ef0; 1gl. L is the length of the features
and l is the length of the interpretable representations. Given a file whose content is
“0x1122”, “0x11” and “0x22” are the two super pixels and “11” is their interpretable
representation. f ð}0x1122}Þ is equal to gð}0x1122}Þ ¼ w1 � 1þ w2 � 1. Sampling around
a specific offset in a binary file, such as “0x1122”, can help to generate the corresponding
interpretable representation of the data. For example, if “0x1122” is transformed to
“0x0022”, its interpretable representation is transformed to “01”. Table 1 shows the
examples in detail.
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Fast least square method

In Algorithm 1 referred, it is necessary to find the minimum perturbation at each round.
Sometimes the weight of the top-k important superpixels is needed instead of each
superpixel. Fleshman et al. (2018) introduce a segmentation algorithm to find the most
important superpixels. We extend it and combine it with our local explanation algorithm.
It is named as the Fast least square method (FastLSM), because it can reduce the
computational complexity to oðlogðLMÞÞ to compute the weight of the most important
superpixel.

The steps of FastLSM are as follows. The entire binary are selected as the base
superpixel. First, the superpixel are divided into n different superpixels. each super pixel is
occluded respectively with zero to generate variants and each variant is analyzed by the
DNNs f . Second, we choose the variant that results in a larger drop in classification
confidence. Third, if the length of the superpixel with a larger drop is smaller than a
specific value b, it is set as the base superpixel and the algorithm starts over from the
beginning. There are different ways to occlude the superpixel. This can be done by
replacing it with random values, null values, or adversarial values (Fleshman et al., 2018).
We will discuss how to determine the hyperparameter b in the Miscellaneous section.
Figure 2 illustrates the overarching process of FastLSM, depicting the general flow and
steps involved in the algorithm. The Algorithm 2 provides a comprehensive breakdown of

Figure 1 An example of superpixels. Full-size DOI: 10.7717/peerj-cs.1591/fig-1

Table 1 An example of interpretable data representation.

Interpretable representation 00 01 10 11

Original feature 0x0000 0x0022 0x1100 0x1122
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the fundamental stages comprising FastLSM, elucidating the specific actions and
operations undertaken within the algorithmic framework.

Function invariant transformation
The semantics of binaries hinder the direct transplantation of existing traditional
adversarial learning methods. Even changes as small as one bit can disrupt the original
syntax of the binary and may cause it to malfunction or even crash. For example, if the
characters are changed from 53 to 52 in the binary file, at the assembly level it means that
push ebx is changed to push edx and the function of the generated adversarial example
would be invalid. Because of the function preserving constraint, the transformations that
we use are limited to those that preserve the function of the binary. In this article, three
families of transformations are used. The first transformation is an appending algorithm
that applies the evasion by appending adversarial bits at the end of the original files (Suciu,
Coull & Johns, 2019). These bytes cannot affect the semantic integrity. Appending bytes to
inaccessible regions of the binary may be easy to detect and could be sanitized statically
(Sharif et al., 2019). The second transformation that we use is named code displacement
(Disp), which was proposed by Koo & Polychronakis (2016) to break the gadgets originally.
Sharif et al. (2019) adopt it to mislead DNNs-based classifiers. The general idea of Disp is
to move some codes to the end of the binary. The original codes are replaced by a jmp
instruction at the beginning of the code segment. After filling the newly allocated code
segment with the adversarial codes, another jmp instruction is immediately appended. The
third transformation is an original one named data displacement (DataDisp). Disp can
only transform code segments rather than data segments. However, we find that the DNNs
sometimes attach importance to data segments as shown in the experiment (Section:
Distribution 6). Therefore, we propose DataDisp, an algorithm that could be used to
transform data segments (this transformation can also be applied to code segments with
some modifications). DataDisp is a practical code diversification technique for stripped
binary executables. DataDisp transfers data to the end of the file and uses the mov
instruction to move the data back before the binary is executed. It starts by adding a new
section at the end of the PE file. The original codes to be moved are replaced with
adversarial data (Fleshman et al., 2018), random data, or null data. After filling the newly
allocated segment with the mov code, a jmp instruction is immediately appended to give

Figure 2 The data augmentation algorithm used in our experiments.
Full-size DOI: 10.7717/peerj-cs.1591/fig-2
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control back to the original binary. At last, the OEP are changed to the beginning of the
newly allocated section. There are a few tips to be noted. If the displaced codes contain
important structural information (e.g., edata section) we leave them alone.

As shown in Fig. 3A, the original data at 0x402A4E is the string fail, and is replaced by
0x00. The Original Entry Point (OEP) address is displaced to 0x47E14B in Fig. 3B. Then
the address 0x402A4E is stored in EAX. The new code will reconstruct the original file
using mov. After the reconstruction, it will jmp back to the original OEP.

Algorithm 2 FastLSM algorithm.

INPUT: a malware m, a classifier f, a target occlusion size β, n is the number of segments within each iteration

OUTPUT: a new malware ~m

1: Split file m into n sections, splitsize m� nj j;size of ith section is mðiÞ ¼ splitsizej j
2: Use LSM to get the weight for each section

3: Find the jth section with the maximum weight

4: start  start address of jth section

5: end  end address of jth section

6: while splitsize. b do

7: max 1, i 1

8: while i, n do

9: starttemp ðstart þ splitsize � ði� 1ÞÞ
10: endtemp ðstart þ splitsize � iÞ
11: mi[starttemp:endtemp]  0x00, occlusion the ith segment with 0x00

12: starttemp ðstart þ splitsize � ðmax � 1ÞÞ
13: endtemp ðstart þ splitsize �maxÞ
14: mmax[starttemp:endtemp]← 0x00, occlusion the most weight segment with 0x00

15: if f ðmiÞ, f ðmmaxÞ then
16: max i

17: i iþ 1

18: else

19: i iþ 1

20: end if

21: end while

22: start  start þ splitsize � ðmax � 1Þ.
23: end  start þ splitsize � ðmaxÞ.
24: splitsize splitsize� n

25: end while

26: return ~m½start : end�

Sun et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1591 13/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/


EVALUATION
This section presents comprehensive empirical evidence for the adversarial theme. First,
we describe the datasets and the DNN detectors in detail. We also discuss the
interpretational analysis on the experimental data. Then, different methods of
transformations are presented. Finally, our model is compared with three other methods.
The results demonstrate that our adversarial example generation model is trustworthy.

Datasets and malware detector
All experiments were conducted on an Ubuntu 18.04 server with an Intel Xeon CPU and
64 GB of RAM. The computer was equipped with Python 3.7, PyTorch, and an NVIDIA
GTX3090 Graphics processing unit. A mixed data set is used. We resorted to a publicly
available dataset to collect malware. And benign binaries are collected by ourselves. The
malware binaries were adopted from the Kaggle Microsoft Malware Classification
Challenge (Ronen et al., 2018). This dataset contains nine different families of malware.
Even though there are no benign ones, we still used the dataset to train our model. It is
based on the following considerations. First, most previous works (Anderson & Roth, 2018;
Krčál et al., 2018; Raff et al., 2018) used proprietary datasets and some other public datasets
contain only packed data (Vigna & Balzarotti, 2018). The dataset of Noever & Noever
(2021) contains only processed data. Although Yang et al. (2021) also offer sufficient raw
files, they do not provide benign files either, for copyright reasons. Second, over fifty
articles had cited this dataset (Ronen et al., 2018), which was the de facto standard for
malware classification. Our dataset of benign binaries was collected from a newly created
Windows 7 machine. We used two specific tools, Portable apps and 360 package manager,
to install a total of 180 different packages. To ensure that our dataset was representative, we
also included popular files such as Chrome, Firefox, and notepad++. In addition, we
collected packages that were likely to be used by academics (such as MiKTeX and

Figure 3 An illustration of DataDisp transformation. (A) Before transformation. (B) After transfor-
mation. Full-size DOI: 10.7717/peerj-cs.1591/fig-3
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MATLAB), developers (such as VSCode and PyCharm), and document workers (such as
WPS and Adobe Reader). By including a diverse range of packages, our dataset provides a
comprehensive representation of commonly used software across various domains. We
selected 9,814 benign binaries, most of them were smaller than 2 MB. The files are divided
into the train, validation, and test sets as shown in Table 2.

Two DNN classifiers were chosen from those mentioned in Section: Background and
Related Work. Both classifiers were given raw byte binaries. The first classifier, named
AvastNet, is a four-layer convolutional neural network with four fully connected layers. It
receives inputs of up to 512 KB and was proposed by Krčál et al. (2018). The second DNN
model is called MalConv and was proposed by Raff et al. (2018). Its network structure
consists of two 1-D gated convolutional windows with 500 strides, and it receives inputs of
up to 2 MB. To evaluate the performance of these models, we split all the files into three
sets: training, test, and validation. Both of these DNNs achieved accuracies above 95% on
our datasets. The classification results of these two DNNs are shown in Table 3.

Because there were no PE headers in the Microsoft dataset, disassembling the binaries to
validate our algorithm was not possible. Consequently, we turned to VirusShare and
downloaded malware samples from the nine malware families that were not present in the
Microsoft dataset. VirusShare is an open repository of malware samples with labels. We
obtained 88 binaries that belonged to the same nine families but did not appear in the
training set. These samples are then evaluated against MalConv and AvastNet separately.
The results are shown in Table 4, where 68 of them were identified as malware by
MalConv. We also sampled 88 benign binaries for the test, 10 of which were misclassified
by MalConv. AvastNet marked 72 of them as malware, as shown in Table 4. We also
sampled 88 benign binaries for testing, eight of which were misclassified by AvastNet.

In addition to the two DNNs that we trained, we evaluated our attacks using a publicly
avaible model Endgame (Anderson & Roth, 2018). It is a gradient boosed decision tree
(GBDT) model using LightGBM with default parameters (100 trees, 31 leaves per tree),
resulting in fewer than 10K tunable parameters. The dataset of Endgame includes features
extracted from 1.1M binary files: 900K training samples (300K malicious, 300K benign,
300K unlabeled). As there is no raw file available in Endgame dataset, we turned to
VirusShare. For our evaluation, we utilized the identical set of 176 binaries that were
previously tested in MalConv and Avast to assess the performance of the Endgame model.
Out of these 88 malware binaries, Endgame successfully identified 77 of them as malware.
Additionally, we included 88 benign binaries in our test set, out of which Endgame
erroneously misclassified five as malware.

Table 2 The number of binaries for training, validating and testing the DNNs.

Class All Train Validation Test

Malware 10,868 8,708 1,080 1,080

Benign 9,814 7,814 1,000 1,000
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Weight analysis on superpixels
Distribution
We used the least square algorithm to obtain the weights of different parts of the binaries
and conducted a statistical analysis to understand the black-box classifier. The sampled
files were divided into superpixels that were smaller than 8 KB and larger than 4 KB, and
we summarized the corresponding weights of these superpixels for the MalConv and
AvastNet classifiers. As shown in Table 5, 90% of the superpixels had a weight of less than
0.1, and only about 5% of the superpixels were between 0.1 and 0.2. A total of 0.5% of the
superpixels had a weight greater than 0.2. We can even estimate their distribution. We plot
the weight of different superpixels of the malware on MalConv, as shown in Fig. 4. In
general, although the sum of the weights of all the superpixels must be greater than 0, the
weight distribution conforms to the normal distribution, and the mean is approximately
zero. Figure 4 shows the result of the weight analysis on MalConv, and the analysis on
AvastNet looks similar.

According to the weight distribution diagram, we can conclude that most of the
contents have little influence on the result. There are only less than one percent of the
superpixels that have a significant impact on the classifier, whose weight is greater than 0:2.
We could use the data as adversarial data in the following experiments. Some superpixels
with higher absolute weight are listed below. The data that is shown in Fig. 5B has a
negative impact on the MalConv classifier. It is a URL for digicert (digicert.com). This
website is obviously not malicious. The presence of these codes in binaries can increase the
probability of being classified as benign. The data in Fig. 5A plays positively to AvastNet,
this figure is the disassembly result of IDA Pro. We can see that the code is the import table
of a PE file. Many of the functions in the table are related to malicious behavior with high

Table 3 The DNN’s performance.

Classifier Accuracy

Train Validation Test

MalConv 98.8% 97.8% 96.1%

AvastNet 99.8% 97.2% 97.5%

Table 4 Binaries used to test our model.

Class Model All As malicious As benign

Malware MalConv 88 77.3% 22.7%

Benign MalConv 88 11.4% 88.6%

Malware AvastNet 88 81.2% 18.8%

Benign AvastNet 88 9.1% 90.9%

Malware Endgame 88 87.5% 12.5%

Benign Endgame 88 5.7% 94.3%
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probabilities, such as the isdebuggerpresent which is the API that is often used by malware
to resist reverse analysis.

We also analyzed the malware containing malicious APIs with the lightGBM model
Endgame which is introduced by Anderson & Roth (2018). The lightGBM model was not
trained on the same dataset as our model. Although the output of lightGBMwas 0.8388964
which implied that there was a high probability that the file was malware. But by analyzing
the file with our interpretable model, we can see that the model gave most weight to the
file’s PE header. We show the weight and offset of the three most weighted superpixels in
Table 6. We could conclude that the lightGBM model makes decisions according to the
header features.

Proportion of code segment weight
We also examined the proportion of code segments in the total score generated by the
classifiers. To analyze the results, we employed an explanation-based model. The weight of
the code segments are calculated by adding the weight of all the superpixels that belonged
to the code segments. Although it was not strictly defined, it corresponded to the code/text
section of the binaries (Microsoft, 2021). However, the author of the malware could change
the name of the code segment at will. By using the explanation model, we could get the
weight of all the sections (bss, edata, idata, idlsym, pdata, rdata, reloc, rsrc, sbss, sdata,
srdata, code/text). We computed the weight of code/text for all binaries and presented the

Table 5 Percentage of superpixels with different weights.

Weight 0; 0:01½ � 0:01; 0:1½ � 0:1; 0:2½ � 0:2; 1½ �
MalConv 43.2% 50.8% 5.5% 0.5%

AvastNet 44.2% 50.2% 5.2% 0.4%

Figure 4 Weight distribution diagram under the MalConv classifier. It shows that the weight dis-
tribution curve of the malware follows the normal distribution.

Full-size DOI: 10.7717/peerj-cs.1591/fig-4
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CDF in Fig. 6. The CDF reveals that the weight of code sections amounts to roughly 50% in
half of all the binaries. Although this was only an estimation, the weight of the code
segments must be limited. We concluded that code sections only account for part of the
weight. Due to the fact that not all data segments can be transformed by Disp, it is highly
probable that the success rate will be low if the Disp algorithm is used alone.

Randomly applied transformations
In order to study the influence of the location of the transformed content and the type of
the transformed content on the success rate of adversarial examples, we evaluated whether
the randomly applied transformation would lead to evasion of the DNNs. To evaluate the
transformations, we created up to 200 variants for each binary. If the detection results of
more than one variant changed, the transformation would be considered successful. The
binary are divided into superpixels. For code sections, the superpixel was the basic

Figure 5 The data with varying weights exhibit contrasting effects on the results. On the right (B), the data includes a benign URL, digicert.com
that can raise the probability of being classified as benign. Conversely, the data on the left (A) demonstrates a positive effect. Numerous functions
listed in the table exhibit high probabilities of being associated with malicious behavior, such as the isdebuggerpresent API, frequently exploited by
malware to evade reverse analysis. This increases the likelihood of being categorized as malware. Full-size DOI: 10.7717/peerj-cs.1591/fig-5

Table 6 The weight and offset of the three most weighted superpixels of the malware under the
lightGBM.

Offset 0x0000–0x1000 0xe000–0xf000 0xc000–0xd000

Weight 0.93 −0.0277 −0.0272

Note:
0x0000–0x1000 is the address of the PE header. The model gave too much weight to the file’s PE header, we concluded
that the lightGBM model makes a decision according to false causalities.
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functional block returned by the disassembly tools. For data sections, we divided binaries
into 1 KB length superpixels by offset. The concept of “randomly applied transformations”
encompassed two aspects. Firstly, whether a particular superpixel in the binary underwent
transformation was determined randomly. Secondly, the gap space following the
transformation was filled either with adversarial data or random data. Specifically, we
designed two experiments. We conducted two distinct experiments to test our approach.
In the first experiment, we filled the gap spaces with random data, while in the second
experiment, we used adversarial data to fill the gaps. The adversarial data was the data we
found in the previous section with a high absolute weight.

We conducted both experiments with the constraint that the size of each binary would
not increase by more than 5%, and limited the number of iterations to 200 for both Disp
and DataDisp. When Disp and DataDisp were both used randomly with random data, the
results showed that three malware binaries were misclassified, and five benign binaries
were incorrectly classified as malware when using MalConv. Four malware and six benign
binaries were misclassified for AvastNet. The results are easy to explain under our
framework, because the weight is under a normal distribution with a mean value of 0 as
shown in Fig. 4. If the Disp & DataDisp algorithms are applied randomly, the weight of the
transformed binaries is also under a normal distribution and the sum of the weights has a
high probability with a mean value of 0. There is a high probability that the adversarial
examples will not evade the detector. So we could conclude that it’s not that the DNNs are
robust against naive Disp transformations as claimed in Sharif et al. (2019) but it’s just a
matter of probability. However, when we filled the gap spaces with adversarial data, the
results improved significantly. The adversarial data was selected from the higher-weighted

Figure 6 A cumulative distribution function (CDF) graph depicting the weight of code sections
contributing to the decision provides valuable insights into the behavior of a malware detection
model. Approximately 50% of the binary’s code sections have little contribution to the final result.

Full-size DOI: 10.7717/peerj-cs.1591/fig-6
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data we identified in the previous section. Using this approach, we achieved a success rate
of 24% for MalConv and 39% for AvastNet, which represented the highest success rates
obtained in our experiments.

Evaluation of the transformations: Disp and DataDisp
In this section, we evaluated the Disp and DataDisp transformations individually using an
interpretable model to optimize the procedure. With regards to Disp, we set the maximum
displacement budget to 5% and the maximum number of iterations to 200. We filled the
gap left by the transformation with adversarial data. The Disp algorithm could achieve a
maximum success rate of 59% for MalConv and 45% for AvastNet. With regards to
DataDisp, we used a maximum displacement budget of 5% and a maximum number of
iterations of 200. Once again, we filled the gap spaces left by the transformation with
adversarial data. The DataDisp algorithm yielded a maximum success rate of 53% for
MalConv and 35% for AvastNet.

Sharif et al. (2019) also tested Disp with a hill-climbing approach. They only moved
subsections that had a positive impact on the results. They got a maximum success rate of
24%. Our hypothesis was that this result was due to the fact that Disp was only capable of
transforming the code section of a binary file.

Evaluation on explanation-based adversarial algorithm
In this subsection, we evaluated our explanation-based model by comparing it to other
algorithms. We set the maximum displacement budget to 5% and limited the number of
rounds to 200. To improve the performance, we used a combination of Disp and DataDisp
transformations. We compared our model with three different models, they were Disp
with a hill-climbing approach (Sharif et al., 2019), genetic padding (Demetrio et al., 2021a)
and gradient-based attack (Kreuk et al., 2018). All of these algorithms, including the
explanation-based model, increased the length of the binary by padding different contents
at the end of the file. The gradient-based algorithm operated in a white-box setting, using
the parameters of the DNNs to calculate the gradient (Suciu, Coull & Johns, 2019; Kreuk
et al., 2018). The gradient-based padding we used was adapted from Kreuk et al. (2018)
with epsilon 0.5 and iteration 2. The genetic padding was a black-box approach that we
adapted from Demetrio et al. (2021a) with iteration 10 and population 50. The genetic
padding required data randomly sampled from different files. Similar to the genetic
padding algorithm, our approach also worked in a black-box setting. However, we
improved upon this method by adding binary files with the most weighted data identified
in the previous section. The impact of this modification can be seen in the results displayed
in Fig. 7.

Although our algorithm was not as effective as the gradient-based model, we observed
that it outperformed genetic padding and Disp with the hill-climbing approach. Notably,
the gradient-based attack requires model information that may be unavailable in practice.
Among all black-box models, our attack model yielded the best performance. However,
without budget constraints, our explanation-based model could resulted in a much higher
number of misclassified binaries. To comprehensively evaluate our attack model, we also
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conducted attacks on the Endgame model. The results demonstrate a maximum success
rate of 52%. The Endgame model, which benefits from a larger training dataset,
incorporates substantial structural information in its features. These features,
unfortunately, are immutable in our attack model, consequently resulting in the relatively
poorer performance of our attacks.

Computational analysis
In our article, we evaluated the performance of our attack on three different models:
MalConv and Avast, which are DNN-based models, and the Endgame model, which is a
gradient boosted decision tree model. The DNN models have a linear complexity when it
comes to training, as it depends on the length of the binary input. On the other hand, the
complexity of the Endgame model is determined by the number of trees and the number of
leaves per tree. It is important to note that none of these models were developed by us, so
we focused on analyzing the computation requirements for generating adversarial
examples. The complexity of the attack model consists of two parts: the time required to
displace instructions and the time required to query the detector. Displacing instructions
randomly within a binary function with k instructions has a time complexity of oðkÞ. If the
length of the binary function is n, the query time is has oðlogðnÞÞ time complexity. For the
instance attack model, the overall running time of the model is equal to the sum of query
time and the time to displacing the instructions, which is oðlogðnÞ þ kÞ. Regarding the
collected data on actual running conditions, there were 1,805, 1,921 query for attacking
MalConv and Avast on average. The attacks took 630, 730 seconds on average respectively

Figure 7 We provided a demonstration of various attacking algorithms, where the orange line represents the misclassification rate of our
black-box algorithm. Our approach proved to be less effective than the gradient-based algorithm, but outperformed both genetic padding and
Disp in combination with the climb-hill algorithm within a certain range. (A) Malconv. (B) AvastNet. Full-size DOI: 10.7717/peerj-cs.1591/fig-7
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for Malconv and Avast model. The average number of queries was 6,210 with an average
time of 1,545 seconds for Endgame.

Miscellaneous
Hyperparameters
Throughout this article, we chose 200 as the maximum number of iterations and 5% as the
maximum displacement budget, we also used 1 KB as the size of the superpixel of
DataDisp in Section: Randomly Applied Transformations. We used these hyperparameters
because our method could achieve almost perfect success under this configuration. In
Sharif et al. (2019) and Lucas et al. (2021), they tested Disp with a hill-climbing approach
with similar hyperparameters.

Integrity of binary
To ensure that the functionality of the binaries was intact after the transformation. Firstly,
we selected six different binaries and manually checked their instructions with OllyDbg
(Yuschuk, 2014). Secondly, we selected 10 different benign binaries and manually checked
their functionality by running them onWindows. All the files worked fine. Thirdly, we also
used the Cuckoo Sandbox (Guarnieri et al., 2019) to test 10 malware programs. One of
them collapsed after transformation, and the rest ones functioned normally. We checked
the file manually. We found that the binary does not strictly follow the PE format
specification. The length of the data segment shown in the file header does not match the
actual length.

DISCUSSION AND FUTURE WORK
In this section, we presented the results of our experiments and highlighted areas for future
improvement. We also briefly covered the limitations and basic assumptions of our model.

Discussion on experiments
We carefully designed multiple sets of experiments to evaluate the effectiveness of our
approach. First, we analyzed binary files to identify which content the black-box detector
valued and used this information for targeted attacks. Second, we randomly applied
transformations in Section: Randomly Applied Transformations but found that these
techniques alone were not sufficient to achieve high adversarial results. This demonstrated
the importance of both optimization and adoption of adversarial data. Third, we compared
our model with others and observed that it did not perform as well as the gradient-based
attack model. However, it is important to note that the gradient-based model works in
white-box settings and requires model information that may not be available in practice.
Our adversarial model utilized Disp & DataDisp transformation methods to transform
both data and code segments, resulting in the best performance under black-box
conditions.

Discussion on the model
In black-box attacks, adversaries lack knowledge of the internal workings of the model. To
overcome this, adversaries may leverage adversarial classifier reverse engineering (ACRE)
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to learn sufficient information for recovering the classifier (Lowd & Meek, 2005). Another
approach for attacking black-box systems is to train a substitute model using synthetic
inputs generated by adversaries (Szegedy et al., 2014). This method is based on the
assumption that two models with comparable performance solving the same ML task are
likely to have similar decision boundaries (Papernot et al., 2018). We make a similar
assumption that two models with comparable performance around one instance are likely
to have similar decision boundaries. So we train a surrogate model around a specific
example. Compared with training a surrogate model on the entire data set, the instance-
based approach greatly reduces the computational complexity of training and reduces the
amount of data required.

Our model requires only a single training instance rather than many. In practice, we
often have access to only one or a few examples and need to generate enough targeted
adversarial samples. The inputs used to train the surrogate model are transformed solely
from the example itself because a coherent structure between the binary and its variants
leads to strong correlations. We believe that the information learned from these perturbed
instances is specific and targeted. By training a simpler substitute model, we can then use
this model as our target for attack. This approach is referred as the instance-based attack.
In Locally Linear Embedding(LLE) (Roweis & Saul, 2000), each data point is a linear
combination of its neighbours. As claimed in LLE (Roweis & Saul, 2000), we assume that
the binary and its perturbed instances lie on or close to a locally linear path of the manifold.
So we can characterize each binary from its neighbours by linear coefficients. This is the
key assumption of our article.

After discussing the mathematical basis of the instance attack model, we concluded that
our fitting function is necessary but not sufficient. Thus, we must iterate the process many
times. Unlike in NLP and image classification, the goal is not to minimize perturbation but
rather to maintain the function’s integrity. For two semantically identical binary files, their
characters may have no resemblance to each other. This is why we need to make many
transformations.

Limitations and future works
Limited by our linear fitting model, our interpretable model is not suitable for some
structure-based adversarial transformations such as content shifting (Demetrio et al.,
2021b; Anderson et al., 2018). Our algorithm is instance-based, which means that it needs a
lot of queries and calculations to do an adjustment for each example. However, the
convergence of the algorithm has not been proven and we have to iterate many times. We
use a linear function to fit the classifier. We believe that we could introduce some more
complex models such as the local non-linear interpretable model (Guo et al., 2018), and the
accuracy can be furtherly improved. The combination of global fitting and local fitting
frameworks is also worth exploring and the intrinsic dimension of our model could also be
discussed (Pope et al., 2021). In the field of malicious code detection, conventional models
do not typically impose limitations on the number of queries, as scanning a single personal
computer often necessitates querying millions of files. However, our model does not
possess a distinct advantage in scenarios where query efficiency is paramount. Thus far,
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there has been no evident demand for such capabilities in the domain of code analysis.
Nevertheless, exploring avenues to significantly reduce the number of queries on the base
of Guo et al. (2019) remains a promising research direction.

Potential mitigations
While our model has achieved a commendable success rate, it is crucial to develop
mitigation measures that bolster the resilience of malware detection against potential
evasion efforts stemming from our attack strategies. Although our model necessitates a
substantial number of queries for effective implementation, we do not regard this as an
inherently efficacious mitigation approach. Static detection is widely acknowledged as
being generally undecidable. However, we posit that the following two techniques can
impart a degree of mitigation against our attack model. Firstly, our model primarily
focuses on the perturbation of code and data segments. By ascribing higher weights to
structural elements such as file headers or structure data entities like input/output
functions name, we can augment the accuracy of detection. Secondly, Our model does not
affect the dynamic execution of the code. Through the integration of static and dynamic
detection methodologies, such attack methods can be proficiently circumvented.

CONCLUSIONS
Our article introduces a new concept, known as the “instance-based attack,” through
which we analyzed two DNN-based malware classifiers using an interpretable model. Our
analysis revealed key characteristics of these models under black-box conditions,
highlighting the critical role played by data segments in determining results. This
importance of data segments had not been discussed in related articles before.
Additionally, we introduced a novel method to generate adversarial examples, which we
call the instance attack. Unlike other methods that insert code in invalid places or
transform only code segments, our adversarial model can transform both data and code
segments using Disp and DataDisp. Our model achieves state-of-the-art results under
black-box conditions, and the results of the instance attack can be verified using domain
knowledge. We hope that our work will inspire future research efforts in this area.

APPENDIX
Windows portable executable file format
The data we use in this article are all Windows PE files and we take advantage of the format
characteristics of the PE files to create adversarial examples. The PE files are derived from
the Common Object File Format (COFF), which specifies how Windows executables are
stored on the disk. The main file that specifies the PE files is winnt.h, related documents
can also be found in Microsoft (2021). There are two types of PE files, one is executable
(EXE) file and the other is dynamic link library (DLL) file. They are almost the same in
terms of file format, the only difference is that a field is used to identify whether the file is
an EXE or DLL. Generally, PE files can be roughly divided into different components. They
begin with a MS-DOS header, a Stub and a PE file signature. Immediately following is the
PE file header and optional header. Beyond that, section headers and section bodies follow.
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A PE file typically has nine predefined sections named .text, .bss, .rdata, .data, .rsrc, .edata,
.idata, .pdata and .debug (Plachy, 2018). Figure 8 depicts a typical exemplification of the
structure of a PE file. Some binaries do not need all of these sections while others may
rename or define the section names according to their own needs. For the alignment
reason, the start address of the segment part of PE is often 0x100.

Figure 8 Structure of a typical PE file image. Full-size DOI: 10.7717/peerj-cs.1591/fig-8
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