Submitted 27 June 2023
Accepted 27 August 2023
Published 10 November 2023

Corresponding authors
Xi Guo, xiguo@ustb.edu.cn
Zhisong Pan, hotpzs@hotmail.com

Academic editor
Bilal Alatas

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.1591

© Copyright
2023 Sun et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Instance attack: an explanation-based
vulnerability analysis framework against
DNNs for malware detection

Ruijin Sun’, Shize Guo?, Changyou Xing', Yexin Duan’, Luming Yang®,
Xi Guo” and Zhisong Pan'

! Army Engineering University of PLA, Nanjing, China

% National Computer Network and Information Security Management Center, Beijing, China

3 Army Military Transportation University of PLA, Zhenjiang, China

* National University of Defense Technology, Changsha, China
> University of Science and Technology Beijing, Beijing, China

ABSTRACT

Deep neural networks (DNNs) are increasingly being used in malware detection and
their robustness has been widely discussed. Conventionally, the development of an
adversarial example generation scheme for DNNs involves either detailed knowledge
concerning the model (i.e., gradient-based methods) or a substantial quantity of data
for training a surrogate model. However, under many real-world circumstances,
neither of these resources is necessarily available. Our work introduces the concept of
the instance-based attack, which is both interpretable and suitable for deployment in
a black-box environment. In our approach, a specific binary instance and a malware
classifier are utilized as input. By incorporating data augmentation strategies,
sufficient data are generated to train a relatively simple and interpretable model. Our
methodology involves providing explanations for the detection model, which entails
displaying the weights assigned to different components of the specific binary.
Through the analysis of these explanations, we discover that the data subsections
have a significant impact on the identification of malware. In this study, a novel
function preserving transformation algorithm designed specifically for data
subsections is introduced. Our approach involves leveraging binary diversification
techniques to neutralize the effects of the most heavily-weighted section, thus
generating effective adversarial examples. Our algorithm can fool the DNNs in
certain cases with a success rate of almost 100%. Instance attack exhibits superior
performance compared to the state-of-the-art approach. Notably, our technique can
be implemented in a black-box environment and the results can be verified utilizing
domain knowledge. The model can help to improve the robustness of malware
detectors.

Subjects Artificial Intelligence, Computer Networks and Communications, Data Mining and
Machine Learning, Security and Privacy, Neural Networks
Keywords Malware, Adversarial examples, DNN, Interpretable

INTRODUCTION

Malware attack is an important issue in today’s cybersecurity community. Thousands of
malware attacks are reported every day, according to Demetrio et al’s (2021a) description.
Both academia and industry have devoted a lot of manpower to malware detection.

How to cite this article Sun R, Guo S, Xing C, Duan Y, Yang L, Guo X, Pan Z. 2023. Instance attack: an explanation-based vulnerability
analysis framework against DNNs for malware detection. Peer] Comput. Sci. 9:e1591 DOI 10.7717/peerj-cs.1591

http://dx.doi.org/10.7717/peerj-cs.1591
mailto:xiguo@�ustb.�edu.�cn
mailto:hotpzs@�hotmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1591
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

Traditional detection methods, such as support vector machine (SVM) (Li, Ge ¢ Dai,
2015) and signature (Vinod et al., 2012) require manual feature engineering, which can be a
daunting task. Given the vast number of malware instances in existence, the labor-
intensive nature of this work renders it both time-consuming and tedious. As deep neural
networks (DNNs) have made significant advances in many domains, such as image (Sharif
et al., 2016) and voice classification (Qin et al., 2019), an increasing number of researchers
and anti-virus enterprises have begun leveraging DNN-based detectors in the field of
cybersecurity. The DNNs models automatically make the classification for malware
without expert knowledge. Researchers use deep learning models in an end-to-end manner
that operates directly on the raw bytes of Windows Portable Executable (PE) files.

In the domain of cybersecurity, malware detection systems can be broadly classified into
dynamic and static approaches. While dynamic systems rely on learning the behavioral
features of malware for classification, static systems directly classify files using features
without executing them (Sharif et al., 2019). This article primarily focuses on the static
approach. There exist several byte-based DNN models that have demonstrated comparable
performance with traditional methods (Saxe ¢ Berlin, 2015; Raff et al., 2018). The
robustness of the DNN’s detection system and the interpretability of DNNs have attracted
much attention, while the DNNs have shown great potential. The interpretability of
models is particularly important in financial and security-related domains. The absence of
model interpretability can significantly limit the applicability of DNN models in these
domains. Adversarial examples are the techniques that focus on perturbing the examples
to mislead DNN-based detection systems, and can be leveraged to enhance the robustness
of such systems. Unlike other domains, semantic invariance constraints must be satisfied
in binary. When an adversarial example is generated, its characters may be transformed
and its semantic should not be changed. People introduce different transformation
techniques that could keep the functionality of the binaries intact (Anderson et al., 2018;
Song et al., 20205 Park, Khan ¢ Yener, 2019). In the context of binary-based adversarial
attacks, transformations refer to modifications made to a PE file that do not alter the
execution of its underlying code (Anderson et al., 2018). Despite the considerable progress
that has been made in generating adversarial examples for malware detection, there are still
a number of unresolved issues. First, only a few articles that use DNNs to detect malware
have explained their detection models. The lack of transparency makes it questioned by
many people (Arp et al., 2022). The uninterpretable model may detect the binaries
according to false causalities that are unrelated to any malicious activity (Arp et al., 2022).
Second, the binary transformation methods used by others focus on the structural part
(Demetrio et al., 2021a) and the code part (Sharif et al., 2019), but they leave the data
section alone. Third, after figuring out how to transform malware, they resort to
complicated optimization methods (such as genetic algorithms) (Demetrio et al., 2021a) or
uninterpretable stochastic methods (Sharif et al., 2019). These deficiencies limit their
performance under the black-box model. Our approach fills the gap.

In this article, we propose the notion of instance-based attacks. Our method is very
similar to the transfer-based approach. The most important difference between instance-
based and transfer-based methods is that all the data used to train our model is generated

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 2/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

by data augmentation from one single binary. We use an explanation based adversarial
example generation technique to test malware detectors by iteratively approximating the
decision boundary. Our method is more effective than others in the context of black-box
settings. In order to evade the DNNs in fewer steps, we could transform the most
influential modules in each round. Furthermore, our optimization method is interpretable
and can be verified with domain knowledge. We highlight our contributions below.

e We introduce the concept of the instance-based attack. Rather than training a surrogate
model against the entire model, we instead train a surrogate model for an instance, with
a specific emphasis on perturbing around that instance. The adversarial instances are
generated by iteratively approximating the decision boundary.

e Several prominent detection models are analyzed using a local interpretable model, their
characteristics and drawbacks are highlighted. Notably, we observed a lack of focus on
data section transformations within PE files, representing a significant gap in current
approaches.

e A novel functionality-preserving transformation method is proposed which is suitable
for data sections in PE files that have not been evaluated by other authors.

e The theoretical and mathematical foundations of our model are discussed.

e Our method are tested in various scenarios, and the results demonstrate its superiority
over other state-of-the-art approaches in black-box settings (Sharif et al., 2019). It can
achieve a success rate of almost 100% in certain cases.

BACKGROUND AND RELATED WORK

In this section, we provide an overview of the most commonly used DNN-based malware
detection models, with a particular emphasis on their static components. Following this,
adversarial methods designed to target the raw bytes of PE files in malware detectors are
discussed. Finally, we conclude the section by examining literature that explains the use of
DNNs for malware classification.

DNNs for malware detection

Malware detection plays an important role in the field of cyber security. DNNs have been
used widely by researchers in malware classification. The most appealing aspect of the
DNNs-based malware detectors is their ability to achieve state-of-the-art performance
from raw bits rather than manually crafted features that require tedious human effort.
Many DNNs-based detectors have been proposed so far, and we introduce the most
famous ones here. Nataraj et al. (2011) visualize the malware binaries as gray-scale images.
A classification method using standard image features is proposed, based on the
observation that malware images belonging to the same family appear very similar in
layout and texture. Then they use the classifier originally designed for images to sort
malware. Coull & Gardner (2019) introduce a DNN with five convolutional and pooling
layers. It also has a learnable 10-dimensional embedding layer. At the end of the network,
there is a single fully-connected layer and a sigmoid function. Saxe ¢ Berlin (2015) employ

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 3/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

four distinct complementary features from the static, benign and malicious binaries. They
use a DNNs-based classifier which consists of an input layer, two hidden layers, and an
output layer. They translate the output of the DNNSs into a score that can be realistically
interpreted as an approximation of the probability that the file is malware. Johns (2017)
proposes deep convolutional neural networks (CNN) that combine a ten-dimensional,
learnable embedding layer with a series of five interleaved convolutional and max-pooling
layers arranged hierarchically. MalConv (Raff et al., 2018) is the most popular CNN model
which combines an eight-dimensional trainable embedding layer. Raff et al. (2018) have
tried many different structures. They have tried deeper networks (up to 13 layers),
narrower convolutional filters (width 3-10), and smaller strides (1-10). Finally, they
adopted the network consisting of two 1-D gated convolutional windows with 500 strides.
We used the MalConv detection model to evaluate the effectiveness of our method.

Adversarial examples against DNN-based malware detectors
Adversarial examples are the technologies that focus on the minimal input perturbations
of break machine learning algorithms. They can expose the vulnerability of the machine
learning model and improve the robustness of the DNNs. For example, when DNNs are
used in street sign detection, researchers show ways to mislead street signs recognition
(Chen et al., 2019). Adversarial examples could also fool voice-controlled interfaces (Qin
et al., 2019), mislead NLP tasks (Jia ¢ Liang, 2017). It is natural to introduce adversarial
sample techniques to bypass DNNs based malware detectors. However, the semantics of
binaries limit the applicability of the existing adversarial methods designed against image,
voice, or NLP classifiers transplanted to the cybersecurity realm, because there is a
structural interdependence between adjacent bytes. Anderson et al. (2018) introduce one
way to bypass machine-learning-based detection by manipulating the PE file format. They
find several structures in Windows PE files that could be modified without affecting their
functionality. Kreuk et al. (2018) craft bytes adversarially in regions that do not affect
execution. Specifically, they append adversarial bits at the end of files. Suciu, Coull & Johns
(2019) extend this idea by finding more places to append in PE files, such as in the middle
of two sections of PE files. Different padding strategies are also evaluated, including
random appending, FGM appending, and benign appending. Sharif et al. (2019)
manipulate instructions to produce adversarial examples. Instructions are a functional part
of binary files. They introduce two families of transformations. The first one named in-
Place randomization (IPR) is quoted from Pappas, Polychronakis ¢» Keromytis (2012). The
second one named code displacement (Disp) is also adopted in our article as the baseline.
Disp relocates sequences of instructions that contain gadgets from their original locations
to newly allocated code segments with a jmp instruction. Sharif et al. (2019) extend the
Disp algorithm. They make it possible to displace any length of consecutive instructions,
not just those belonging to gadgets. As far as the variable space is concerned, they focus on
the structure characteristic or the code characteristic. None of the above-mentioned
articles discuss the data segment, although it plays an important role in malware
classification.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 4/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Explanation of adversarial machine learning in malware

In the field of malware, the traditional routine for producing adversarial examples in black-
box settings involves proposing function-preserving actions and using a uninterpretable
method (Anderson et al., 2018) or a random method (Sharif et al., 2019) to evade DNNS.
Different ways are presented to transform malware without changing its functionality, but
only a few articles have explained why their approaches work. Due to the non-linearity of
DNNs detectors, they rely on uninterpretable methods or random ways to optimize their
transformation. These methods are of little help in designing the malware detector.
Demetrio et al. (2021a) use the genetic algorithm to generate the adversarial examples.
Sharif et al. (2019) use the transformation randomly. Anderson et al. (2018) use DNNs
based reinforcement learning to evade the detector which is also uninterpretable. While
DNNs have shown great potential in various domains, the lack of transparency limits their
application in security or safety-critical domains. Arp et al. (2022) claim that artefacts
unrelated to the classified target may create shortcut patterns to separate different classes.
Consequently, the DNNs may adapt to the artefacts instead of the original problems. It is
important to investigate what these models have learned from malware. An interpretable
technique is needed to tell us the most influential features. Most of the existing research on
the interpretability of DNNs focuses on image classification and NLP processing (Ribeiro,
Singh & Guestrin, 2016; Camburu, 2020; Lundberg & Lee, 2017). To improve the
transparency of malware classification, researchers have started to work on the explanation
issue of malware classification. To the best of our knowledge, Coull ¢» Gardner (2019) are
the first to explore this topic. They use various methods such as HDBSCAN, shaply value
and byte embeddings to analyze the model. They examine the learned features at multiple
levels of resolution, from individual byte embeddings to end-to-end analysis of the model.
Johns (2017) also examine what DNN's have learned in malware classification by analyzing
the activation of the CNN filter. They suggest that a CNN-based malware detector could
find meaningful features of malware (Johns, 2017). Demetrio et al.’s (2019) work is the
closest one to our research. They use integrated gradients to find the most important input
and point out that the MalConv model does not learn the key information in the PE file
header according to the interpretability analysis. They devise an effective adversarial
scheme based on the explanation. Rosenberg et al. (2020) made use of the explainable
techniques to train a surrogate neural network to represent the attacked malware classifier.
They attack the surrogate model instead. Different from these articles, our function-
preserving measures are able to process more types of segments and fewer examples are
needed.

TECHNICAL APPROACH

In this section, we discuss the technical approach behind our framework. First, the general
algorithm is described. Then, we introduce the approximating boundary model for fitting
the DNNs. Next, the data augmentation module are present. Finally, how we create
adversarial examples are explained in detail. Throughout the article, we use the following
notations. m refers to the original malware, f (m) refers to the output of the DNNs detector
(e.g., class probabilities or logits). We use g(m) = m o w to approximate f(m). m is the

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 5/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

interpretable data representation vector. w is the weight of the linear equation. ' refers to
the perturbed malware in the i-th round of the algorithm and ﬁaj’ is the j-th perturbed
example in each round. 7; is the perturbation that we make.

Instance attack

Portions of this text were previously published as part of a preprint (Ruijin et al., 2022). In
the field of adversarial examples for binary code in a black-box setting, the transformation
can only be limited to a few discrete actions as mentioned in Section: Function Invariant
Transformation 6 because of the semantic invariance constriction. The transformation is
discrete and difficult to optimize with gradient-descent methods. Therefore, interpretable
models are being exploited to make adversarial attacks. Adversarial attacks can roughly be
divided into three categories: gradient-based, transfer-based, and score-based (or decision-
based) attacks (Brendel, Rauber ¢» Bethge, 2018). Our method is somewhat similar to the
transfer-based method. Traditionally a transfer-based method trains a surrogate neural
network model on a training set that is believed to accurately represent the attacked
malware classifier such as Rosenberg et al. (2020). To train a surrogate model, traditional
methods require a large number of examples. This is often impossible in practice. The
framework for training our surrogate model is distinct from other models in that it only
requires a single sample to be trained. Our framework fits a specific example, not the
detection model. To accomplish this, we train a surrogate model that is designed to
precisely represent the specific instance being fitted. A locally interpretable algorithm is
used in training the surrogate model. For example, for a DNN detector f and a malware
mg, we can train a surrogate model g(m}) = f(m}), g(m) = f(m3), - - -. But for another
malware 1, g(ng) # f(no).

A locally generated linear function g is used to find the important features of the binary,
then the function invariant transformation mentioned in Section: Function Invariant
Transformation 6 is used to remove the features. Since only one binary is required, we
name it Instance Attack.

General framework

Our model works in a black-box setting. We assume that we have no access to the model
parameters and the data set. We don’t have any idea about the structure of the
classification model and the distribution of the data set. Only one binary instance is given.
There is no limit to the number of queries. We can transform the instance arbitrarily. Our
target is to generate a new binary to mislead the classifier. After the transformation, we
have to guarantee the functionality of the program. The basic intuition of our framework is
to approximate the result of the specific example with a linear function and make the
perturbation towards the approximate decision boundary iteratively. The whole procedure
works in rounds, where each round consists of three steps. In the first step, data
augmentation is used to generate a large number of new samples from the original binary.
Then a linear model is used to fit these samples. Here, the FastLSM algorithm will be used
(described in detail in Section: Interpretable Data Representations and Segmentation
Algorithm) to fit the malware detector f with a linear function g. The second step is to

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 6/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

approximate the decision boundary by solving the linear equations g = benign, and
transforming the most important part of the malware accordingly to make

g(m') = benign. For the function invariant restriction of the binary file, 7 is transformed
to m't! = m’ + 1 with the function invariant transformation we propose in Section:
Function Invariant Transformation. We finally query the black-box detector to get
f(m™"). If the result of f (") is still malware, we move on to the next iteration or we
stop the algorithm if the maximum number of iterations is reached. Algorithm 1 shows the

pseudocode of the whole procedure.

How interpretability is applied

In traditional detection models, the initial step involves selecting features, followed by
designing the detection algorithm. In contrast, DNNs are end-to-end models, they
eliminate the need for explicit feature extraction. They can directly input raw data into the
model and learn the desired outcomes. DNNs are often referred to as featureless models
due to their ability to learn features internally. Similarly, existing attack models that target
DNNs do not possess knowledge of the feature weights. These attack models launch direct
attacks without this crucial information. While direct attacks may occasionally be
successful, they fail to provide insights into understanding deep detection models. In
contrast, our approach focuses on acquiring the features employed in deep detection
models or identifying the associated feature weights. By modifying features with higher
weights, we aim to achieve the attack objective. We utilize the instance attack model to
calculate the weights of different parts (superpixels) within the binary. If a superpixel
possesses a high weight in this model and is associated with code segments or data
segments, we proceed with targeted attacks. These steps are iterated, resulting in the
displacement of superpixels. Through this process, we are able to gain insights into the
functioning of the DNN model and effectively execute targeted attacks.

Formalizing the model

Adversarial examples are variants of normal examples by adding some imperceptible
perturbations. The adversarial examples cause the detection model to misclassify examples
with high confidence. Carlini & Wagner (2017) model the adversarial examples as a
constrained minimization problem:

min D(m',m"™*") (1)
s.t f(ﬁqi+1) = benign (2)
m' is fixed and the object is to find the perturbation /i'*! that can minimize D(m', in'™")

and further leads to the evasion. D(rhi7 m'*!) is a distance function and the perturbation is
subject to f (') = benign. Since the identifier is a black-box model, it is difficult to find
a solution for the original function f. Carlini ¢» Wagner (2017) proposed to solve a simple

objective function G instead, G(m'"") = benign if and only if f(n'"!) = benign.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 7/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 1 General algorithm.

INPUT: a malware m, a classifier f, a linear equation g, the approximation algorithm FastLSM(), a functional invariant transformation function
Tran(), address of most weighted data [start,end]

OUTPUT: new malware 7'
1: while i < maxiteration do

g(#ir*) « FastLSM (i’ £())

start, end «— solving g(im') = benign

'l — Tran(start,end, m’)

if f(m'™') == malware then

2

3

4

5

6: i—i+1
7 else

8 return success
9 end if

10: end while

11: return false

min D, i) 3)
s.t G(rh’“) = benign (4)

In malware detection, these formulas are also utilized to find adversarial perturbations
m'™! for the original binary /' that target a class fyenign. In a black-box environment,
finding an object function G such that G(m'*"') = benign if and only if f ("™") = benign is
an overly strong requirement. Here the local explanation g is used instead. If
f(m'™*!) = benign is true, then g(m'™') = benign is established, but the opposite is not
necessarily true. When g(m'™!) = benign is true, f(m'™') may not be benign. The
optimization could be converted to the following problem:

min D(rhi, fn’“) (5)
st g(m™') = benign (6)

Equation (6) can easily be solved to get the minimal perturbation r from m'’ to m'™!,
since g is a linear equation. Because g(m' + r) is the approximation of f(m'*!), we must
incorporate the perturbation 7'"! back into the original classifier f to get the accurate
value. If f (") = benign, then we stop the algorithm or we should recompute the linear
approximation of f (rh’“). We continue to repeat this process until the evasion is
successful or the maximum number of iterations is reached.

Local linear explanations of malware detection
Here, how we build the linear function g are explained. Our method is inspired by Local
Interpretable Model-Agnostic Explanations (LIME) (Ribeiro, Singh ¢» Guestrin, 2016) and

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 8/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Locally Linear Embedding (LLE) (Roweis ¢ Saul, 2000). Deep learning algorithms provide
highly satisfactory results. However, their decision procedures are non-linear and the
important parts of the input data cannot be featured out directly. When one instance are
given to bypass the classifier, we try to infer how the detector behaves around a specific
instance by querying the detector for the results of different transformed examples. The
data augmentation method are used to produce the adversarial perturbations. As claimed
in Roweis ¢ Saul (2000), it is assumed that binary files can be represented by points in a
high-dimensional vector space. The binary and its transformations lie on or close to the
locally linear path of the manifold. In this context, it is assumed that the coherent structure
between the binary and its variants leads to strong correlations, which can be characterized
by linear coefficients. The use of a linear model is considered simple and interpretable, as it
allows for a clear understanding of the relationship between the different features of the
binary and its variants.

¢(m) = argmin, . Z(f, g, 1) + Q(g) (7)

Equation (7) describes how to solve this problem, where f denotes a DNN's detector, and
g is an interpretable model to approximate f without knowing its parameters. In
classification, f(m) produces the probability (or a malware indicator) that m belongs to a
certain category. If ¢ is a potentially interpretable function, and €2(g) measures the
complexity of the explanation. #(f, g, I1,,,) measures how unfaithful g is in approximating
f in the locality defined by II,,. To ensure the interpretability and local closeness,
Z(f,g,11,,) should be minimized and Q(g) should be low enough. The lower the Q(g),
the easier it is for humans to understand the model.

In this article, G could be the class of linear models, such that g(m) = W, 7. It is stated
that an interpretable representation 7 of m can be obtained directly, the specific rule is
described in the following section. it is defined that IL,, (!) = D(rm!, i}), where D is some
kind of distance function, for example, the L2-norm distance. fnf) is the specific example
and fn]’ is the perturbed example in each round. We carefully choose some perturbed
examples m), m,, mj - - -, ﬁaj’ within each round. For information on the method of
perturbation, see Section: Data Augmentation Module 6. & could be a locally weighted
square loss as defined in Eq. (9). In this way, the function has been converted into a linear
function fitting problem.

g () = o (®)

P(f.. 1) = 3 M () (7 () — ¢ ()) ©)

Given a malware instance ' and f, this problem is a typical ordinary least square
problem. It is suggested that examples around ' can be sampled by drawing non-zero
elements uniformly at random to get the value of rh]’ f (th‘) could be obtained by querying

the classifier. rh’J’ is the interpretable data representation that can be easily calculated. By

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 9/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

solving these functions, the weight w; can be obtained for sample i. g is the local
explanation model of f. g could also be used as the approximate function of f.

Data augmentation module and optimization algorithm

Data augmentation module

Ablation analysis is often used in evaluating the DNNs model. It is a technique for
evaluating machine learning models by discarding certain features (everybodywiki, 2020).
We adopt similar ideas by discarding certain features of the instance. As our model is
instance-based, we do not quantify the DNNs detector, but the important portion of a
specific instance. Augmented examples are created from a given instance by discarding
(masking) certain features. Then a linear function g is used to fit the DNNs around these
examples, and the weights for each feature are calculated. Computing the weights of all the
bits is time-consuming. Given a file of length LM, it would take o(LM?) time to find the
most important bit using the Least Square Method. To improve efficiency, two
optimization mechanisms are proposed. First, the superpixel are used as the basic unit of
interpretable representation. Then, the FastLSM algorithm are introduced to reduce the
computational complexity.

Interpretable data representations and segmentation algorithm

Superpixels were used in image segmentation originally (Ghosh et al., 2019). Common
image segmentation algorithms include quick shift, felzenszwalb, slic. In this article,
superpixels are the results of a binary file over segmentation. We could use the tools to
disassemble the binary file, such as IDA, Binary ninja. Superpixels are the basic function
blocks returned by disassembly tools. The Capstone disassembler framework are used in
our experiment (Capstone, 2021). A basic block is a straight-line sequence of codes with
only one entry point and only one exit. Or the examples could just be segmented by their
offset. For example, a large binary file of size 200 KB could be divided into ten parts, each of
which would be 20 KB in size. As shown in Fig. 1, there are three superpixels returned by
the disassembly tool. The staed rt offsets of these superpixels are 0x10004675h,
0x1000469Ah, and 0x100046A1h. The lengths of the three superpixels are 0x25h, 0x7h,
and 0x8h respectively. Interpretable data representations 7 and data features m are
different. Features m in the range meR! are the ground truths. An interpretable
representation 7 is a binary vector indicating the “presence” (denoted by 1) or “absence”
(denoted by 0) of a patch of codes and its range is 7i£{0, 1}. Lis the length of the features
and [is the length of the interpretable representations. Given a file whose content is
“0x11227, “0x11” and “0x22” are the two super pixels and “11” is their interpretable
representation. f(“0x1122") is equal to g("0x1122") = wy * 1 + w, * 1. Sampling around
a specific offset in a binary file, such as “0x1122”, can help to generate the corresponding
interpretable representation of the data. For example, if “0x1122” is transformed to
“0x00227, its interpretable representation is transformed to “01”. Table 1 shows the
examples in detail.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 10/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

180084675 loc_100884675: ; CODE XREF: D11Install+8i
10004675 ; D1lInstall+1Cij
10004675 cmp [ebp+bInstall], @
10004679 nov ecx, offset dword_10014334
1000467E jz short loc_1068046A1
10004688 push esi
18084681 push 1
18084683 call sub_18884528
10004688 nowv esi, eax
10004680 test esi, esi
1080084680 jns short loc_10808469A
1888468E push 1
18004690 mov ecx, offset dword_10814334
10004695 call sub_10606045B8
10004697
108084697 loc_10088469A: ; CODE XREF: D11Install+3(
10008469A nowv eax, esi
1000469C pop esi
1000469D pop ebp
1000469E retn 8
180B46A1 ;
188846A1
180046A1 loc_100646A1: ; CODE XREF: D1lInstall+2E
100046A1 push 1
100046A3 call sub_1808045B0
1080846A8 pop ebp
100046A9 retn 8
Figure 1 An example of superpixels. Full-size K&] DOT: 10.7717/peerj-cs.1591/fig-1

Table 1 An example of interpretable data representation.
Interpretable representation 00 01 10 11
Original feature 0x0000 0x0022 0x1100 0x1122

Fast least square method

In Algorithm 1 referred, it is necessary to find the minimum perturbation at each round.
Sometimes the weight of the top-k important superpixels is needed instead of each
superpixel. Fleshman et al. (2018) introduce a segmentation algorithm to find the most
important superpixels. We extend it and combine it with our local explanation algorithm.
It is named as the Fast least square method (FastLSM), because it can reduce the
computational complexity to o(log(LM)) to compute the weight of the most important
superpixel.

The steps of FastLSM are as follows. The entire binary are selected as the base
superpixel. First, the superpixel are divided into » different superpixels. each super pixel is
occluded respectively with zero to generate variants and each variant is analyzed by the
DNN:ss f. Second, we choose the variant that results in a larger drop in classification
confidence. Third, if the length of the superpixel with a larger drop is smaller than a
specific value f, it is set as the base superpixel and the algorithm starts over from the
beginning. There are different ways to occlude the superpixel. This can be done by
replacing it with random values, null values, or adversarial values (Fleshman et al., 2018).
We will discuss how to determine the hyperparameter f in the Miscellaneous section.
Figure 2 illustrates the overarching process of FastLSM, depicting the general flow and
steps involved in the algorithm. The Algorithm 2 provides a comprehensive breakdown of

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 11/29

http://dx.doi.org/10.7717/peerj-cs.1591/fig-1
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Original Binary 2

Perturbed Superpixels

3
-Unchanged Superpixels
4

First Round Augmentation Second Round Augmentation

Figure 2 The data augmentation algorithm used in our experiments.
Full-size k&l DOL: 10.7717/peerj-cs.1591/fig-2

the fundamental stages comprising FastLSM, elucidating the specific actions and
operations undertaken within the algorithmic framework.

Function invariant transformation

The semantics of binaries hinder the direct transplantation of existing traditional
adversarial learning methods. Even changes as small as one bit can disrupt the original
syntax of the binary and may cause it to malfunction or even crash. For example, if the
characters are changed from 53 to 52 in the binary file, at the assembly level it means that
push ebx is changed to push edx and the function of the generated adversarial example
would be invalid. Because of the function preserving constraint, the transformations that
we use are limited to those that preserve the function of the binary. In this article, three
families of transformations are used. The first transformation is an appending algorithm
that applies the evasion by appending adversarial bits at the end of the original files (Suciu,
Coull & Johns, 2019). These bytes cannot affect the semantic integrity. Appending bytes to
inaccessible regions of the binary may be easy to detect and could be sanitized statically
(Sharif et al., 2019). The second transformation that we use is named code displacement
(Disp), which was proposed by Koo ¢ Polychronakis (2016) to break the gadgets originally.
Sharif et al. (2019) adopt it to mislead DNNs-based classifiers. The general idea of Disp is
to move some codes to the end of the binary. The original codes are replaced by a jmp
instruction at the beginning of the code segment. After filling the newly allocated code
segment with the adversarial codes, another jmp instruction is immediately appended. The
third transformation is an original one named data displacement (DataDisp). Disp can
only transform code segments rather than data segments. However, we find that the DNNs
sometimes attach importance to data segments as shown in the experiment (Section:
Distribution 6). Therefore, we propose DataDisp, an algorithm that could be used to
transform data segments (this transformation can also be applied to code segments with
some modifications). DataDisp is a practical code diversification technique for stripped
binary executables. DataDisp transfers data to the end of the file and uses the mov
instruction to move the data back before the binary is executed. It starts by adding a new
section at the end of the PE file. The original codes to be moved are replaced with
adversarial data (Fleshman et al., 2018), random data, or null data. After filling the newly
allocated segment with the mov code, a jmp instruction is immediately appended to give

Sun et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1591 12/29

http://dx.doi.org/10.7717/peerj-cs.1591/fig-2
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Algorithm 2 FastLSM algorithm.

INPUT: a malware m, a classifier f, a target occlusion size 3, n is the number of segments within each iteration
OUTPUT: a new malware m

1: Split file m into n sections, splitsize <— |m <+ n|,size of ith section is |m(i) = splitsize|

2: Use LSM to get the weight for each section

3: Find the jth section with the maximum weight

4: start « start address of jth section

5: end — end address of jth section

6: while splitsize > f§ do

7: max «— 1,i 1

8: while i < do

9: starttemp «— (start + splitsize x (i — 1))

10: endtemp — (start + splitsize * i)

11: m;[starttemp:endtemp] < 0x00, occlusion the ith segment with 0x00
12: starttemp «— (start + splitsize ¥ (max — 1))

13: endtemp — (start + splitsize x max)

14: Mypax[starttemp:endtemp] < 0x00, occlusion the most weight segment with 0x00
15: if f(m;) <f(Mpmayx) then

16: max < i

17: i—i+1

18: else

19: i—i+1

20: end if

21: end while

22: start — start + splitsize * (max — 1).
23: end — start + splitsize * (max).

24: splitsize — splitsize + n

25: end while

26: return r[start : end)]

control back to the original binary. At last, the OEP are changed to the beginning of the
newly allocated section. There are a few tips to be noted. If the displaced codes contain
important structural information (e.g., edata section) we leave them alone.

As shown in Fig. 3A, the original data at 0x402A4E is the string fail, and is replaced by
0x00. The Original Entry Point (OEP) address is displaced to 0x47E14B in Fig. 3B. Then
the address 0x402A4E is stored in EAX. The new code will reconstruct the original file
using mov. After the reconstruction, it will jmp back to the original OEP.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 13/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Before transformation After transformation
=y Original
Address 00402A4E 00
00402A4E 6661696C; fail 00402A4F 00
00402A50 00
00402A51 00

l~» 0047E14B mov eax,402A4Eh
0047E150 mov eax,6661696Ch ;fail
0047E155 mov [eax],edx

—— 0047E157 jmp start

A B
Figure 3 An illustration of DataDisp transformation. (A) Before transformation. (B) After transfor-
mation. Full-size 4] DOTI: 10.7717/peerj-cs.1591/fig-3

This section presents comprehensive empirical evidence for the adversarial theme. First,
we describe the datasets and the DNN detectors in detail. We also discuss the
interpretational analysis on the experimental data. Then, different methods of
transformations are presented. Finally, our model is compared with three other methods.
The results demonstrate that our adversarial example generation model is trustworthy.

Datasets and malware detector

All experiments were conducted on an Ubuntu 18.04 server with an Intel Xeon CPU and
64 GB of RAM. The computer was equipped with Python 3.7, PyTorch, and an NVIDIA
GTX3090 Graphics processing unit. A mixed data set is used. We resorted to a publicly
available dataset to collect malware. And benign binaries are collected by ourselves. The
malware binaries were adopted from the Kaggle Microsoft Malware Classification
Challenge (Ronen et al., 2018). This dataset contains nine different families of malware.
Even though there are no benign ones, we still used the dataset to train our model. It is
based on the following considerations. First, most previous works (Anderson ¢ Roth, 2018;
Krcal et al., 2018; Raff et al., 2018) used proprietary datasets and some other public datasets
contain only packed data (Vigna ¢ Balzarotti, 2018). The dataset of Noever ¢ Noever
(2021) contains only processed data. Although Yang et al. (2021) also offer sufficient raw
files, they do not provide benign files either, for copyright reasons. Second, over fifty
articles had cited this dataset (Ronen et al., 2018), which was the de facto standard for
malware classification. Our dataset of benign binaries was collected from a newly created
Windows 7 machine. We used two specific tools, Portable apps and 360 package manager,
to install a total of 180 different packages. To ensure that our dataset was representative, we
also included popular files such as Chrome, Firefox, and notepad++. In addition, we
collected packages that were likely to be used by academics (such as MiKTeX and

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 14/29

http://dx.doi.org/10.7717/peerj-cs.1591/fig-3
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 The number of binaries for training, validating and testing the DNNs.

Class All Train Validation Test
Malware 10,868 8,708 1,080 1,080
Benign 9,814 7,814 1,000 1,000

MATLAB), developers (such as VSCode and PyCharm), and document workers (such as
WPS and Adobe Reader). By including a diverse range of packages, our dataset provides a
comprehensive representation of commonly used software across various domains. We
selected 9,814 benign binaries, most of them were smaller than 2 MB. The files are divided
into the train, validation, and test sets as shown in Table 2.

Two DNN classifiers were chosen from those mentioned in Section: Background and
Related Work. Both classifiers were given raw byte binaries. The first classifier, named
AvastNet, is a four-layer convolutional neural network with four fully connected layers. It
receives inputs of up to 512 KB and was proposed by Krcdl et al. (2018). The second DNN
model is called MalConv and was proposed by Raff et al. (2018). Its network structure
consists of two 1-D gated convolutional windows with 500 strides, and it receives inputs of
up to 2 MB. To evaluate the performance of these models, we split all the files into three
sets: training, test, and validation. Both of these DNNs achieved accuracies above 95% on
our datasets. The classification results of these two DNNs are shown in Table 3.

Because there were no PE headers in the Microsoft dataset, disassembling the binaries to
validate our algorithm was not possible. Consequently, we turned to VirusShare and
downloaded malware samples from the nine malware families that were not present in the
Microsoft dataset. VirusShare is an open repository of malware samples with labels. We
obtained 88 binaries that belonged to the same nine families but did not appear in the
training set. These samples are then evaluated against MalConv and AvastNet separately.
The results are shown in Table 4, where 68 of them were identified as malware by
MalConv. We also sampled 88 benign binaries for the test, 10 of which were misclassified
by MalConv. AvastNet marked 72 of them as malware, as shown in Table 4. We also
sampled 88 benign binaries for testing, eight of which were misclassified by AvastNet.

In addition to the two DNNs that we trained, we evaluated our attacks using a publicly
avaible model Endgame (Anderson ¢ Roth, 2018). It is a gradient boosed decision tree
(GBDT) model using LightGBM with default parameters (100 trees, 31 leaves per tree),
resulting in fewer than 10K tunable parameters. The dataset of Endgame includes features
extracted from 1.1M binary files: 900K training samples (300K malicious, 300K benign,
300K unlabeled). As there is no raw file available in Endgame dataset, we turned to
VirusShare. For our evaluation, we utilized the identical set of 176 binaries that were
previously tested in MalConv and Avast to assess the performance of the Endgame model.
Out of these 88 malware binaries, Endgame successfully identified 77 of them as malware.
Additionally, we included 88 benign binaries in our test set, out of which Endgame
erroneously misclassified five as malware.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 15/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 The DNN’s performance.

Classifier Accuracy

Train Validation Test
MalConv 98.8% 97.8% 96.1%
AvastNet 99.8% 97.2% 97.5%

Table 4 Binaries used to test our model.

Class Model All As malicious As benign
Malware MalConv 88 77.3% 22.7%
Benign MalConv 88 11.4% 88.6%
Malware AvastNet 88 81.2% 18.8%
Benign AvastNet 88 9.1% 90.9%
Malware Endgame 88 87.5% 12.5%
Benign Endgame 88 5.7% 94.3%

Weight analysis on superpixels

Distribution

We used the least square algorithm to obtain the weights of different parts of the binaries
and conducted a statistical analysis to understand the black-box classifier. The sampled
files were divided into superpixels that were smaller than 8 KB and larger than 4 KB, and
we summarized the corresponding weights of these superpixels for the MalConv and
AvastNet classifiers. As shown in Table 5, 90% of the superpixels had a weight of less than
0.1, and only about 5% of the superpixels were between 0.1 and 0.2. A total of 0.5% of the
superpixels had a weight greater than 0.2. We can even estimate their distribution. We plot
the weight of different superpixels of the malware on MalConv, as shown in Fig. 4. In
general, although the sum of the weights of all the superpixels must be greater than 0, the
weight distribution conforms to the normal distribution, and the mean is approximately
zero. Figure 4 shows the result of the weight analysis on MalConv, and the analysis on
AvastNet looks similar.

According to the weight distribution diagram, we can conclude that most of the
contents have little influence on the result. There are only less than one percent of the
superpixels that have a significant impact on the classifier, whose weight is greater than 0.2.
We could use the data as adversarial data in the following experiments. Some superpixels
with higher absolute weight are listed below. The data that is shown in Fig. 5B has a
negative impact on the MalConv classifier. It is a URL for digicert (digicert.com). This
website is obviously not malicious. The presence of these codes in binaries can increase the
probability of being classified as benign. The data in Fig. 5A plays positively to AvastNet,
this figure is the disassembly result of IDA Pro. We can see that the code is the import table
of a PE file. Many of the functions in the table are related to malicious behavior with high

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 16/29

http://digicert.com
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 Percentage of superpixels with different weights.

Weight [0,0.01] 0.01,0.1] [0.1,0.2] 0.2,1]
MalConv 43.2% 50.8% 5.5% 0.5%
AvastNet 44.2% 50.2% 5.2% 0.4%

(%]
E o
3500
.20
Q
3 000
-
c
)
@ 2500
E
©
<
S 2000
2
o
£ 1500
o
'™
2 1000
=]
(%]
S
O 500
F
2 ||
£ o -~=--=ul Ine. . _ &
=]
> O QA P O > > v D ‘o’\‘b
< °°0°Q°0°0°0°0°0°0°,°°°~°0°0°0°0°00°v°
weights

Figure 4 Weight distribution diagram under the MalConv classifier. It shows that the weight dis-
tribution curve of the malware follows the normal distribution.
Full-size K&l DOT: 10.7717/peerj-cs.1591/fig-4

probabilities, such as the isdebuggerpresent which is the API that is often used by malware
to resist reverse analysis.

We also analyzed the malware containing malicious APIs with the lightGBM model
Endgame which is introduced by Anderson ¢ Roth (2018). The lightGBM model was not
trained on the same dataset as our model. Although the output of light GBM was 0.8388964
which implied that there was a high probability that the file was malware. But by analyzing
the file with our interpretable model, we can see that the model gave most weight to the
file’s PE header. We show the weight and offset of the three most weighted superpixels in
Table 6. We could conclude that the lightGBM model makes decisions according to the
header features.

Proportion of code segment weight

We also examined the proportion of code segments in the total score generated by the
classifiers. To analyze the results, we employed an explanation-based model. The weight of
the code segments are calculated by adding the weight of all the superpixels that belonged
to the code segments. Although it was not strictly defined, it corresponded to the code/text
section of the binaries (Microsoft, 2021). However, the author of the malware could change
the name of the code segment at will. By using the explanation model, we could get the
weight of all the sections (bss, edata, idata, idlsym, pdata, rdata, reloc, rsrc, sbss, sdata,
srdata, code/text). We computed the weight of code/text for all binaries and presented the

Sun et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1591 17/29

http://dx.doi.org/10.7717/peerj-cs.1591/fig-4
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

L 1UYIZUTZ WUTU_1uwiZure
:100126F4
10812707
:10012708
180812708
:1061271A
:18081271C
:100812728
:1001272A
:108012734
:10012736
:18012743
10012744
:10012746
:10812751
110012752
:10812754
:100812760
:18612762
:100812778
:1801277¢
:1081277E
:10081279a
:1861279¢C
:108127AE
:166127B6
:186127¢C1
:188127c2
:180127C4
:1008127D6
:1008127D8
:180127E1
:1008127E2
t100127E4
:100127F0 word_100127F0
:100127F2
:180127FE
:100612800
:10012868
:10081280a
:10012817

word_10012768
word_16081271A
word_100812728

word_10012734

word_16012744

word_108012752

word_160812760

word_10801277C
word_1001279A

word_1808127AE

word_10808127C2

word_1608127D6

word_10808127E2

word_1680127FE

word_10012808

R E R R E R R R RS

wamiad 4@A40040

uw 1Lon

UHIN ARCr. .TUdLd. 1UVIZOU4IU

db *CetCurrentThreadId,0 05 05 67 62 01 16 2E 68 74 74 70 30 2F 2F 77 77 | http://uu
aLign 4 . DATA KREF: .rdata:10612308%0 77 2E 64 69 67 69 63 65 72 74 2E 63 6F 6D 2F 73 | w.digicert.con/s
db *GetConnandLinen* ,0 . 73 6C 2D 63 70 73 2D 72 65 70 6F 73 69 74 6F 72 | 51-cp5-repositor
o eattprocess: .o 3 DATA KREF: rdatas10012306T0 79 2E 68 74 6D 20 82 01 64 06 68 2B 06 61 05 05 | y_htmO?d..+....r
. ; DATA XREF: .rdata:100123167o 67 62 02 36 82 61 56 1E 82 61 52 06 41 00 6E 00 | ...07U0.7R.A.n..r
du 264N ’ ; DATA XREF: .rdata:10012314to 79 80 20 00 75 08 73 00 65 60 26 088 6F 08 66 60 | y. .u.s.e. .o.f.
O ey Statandte, 0 20 00 74 00 68 @0 69 00 73 00 20 B8 43 00 65 08 | .t.h.i.s. .C.e.
dw 2CDh ; DATA XREF: .rdata:18812318%0 72 BB 74 068 69 00 66 68 69 60 63 66 61 68 74 80 | r.t.i.f.i.c.a.t.
gy ot reate. 65 00 20 00 63 @0 6F 00 6E 60 73 08 74 00 69 00 | e. .c.o.n.s.t.i.
du 2CEh ; DATA XREF: .rdata:1081231cio 74 B0 75 00 74 00 65 00 73 00 20 60 61 00 63 00 | t.u.t.e.s. .a.c.
o poopoestroy’, 0 . DATA XREF: .rdata:18812320t0 63 00 65 66 78 08 74 00 61 00 6E 00 63 00 65 00 | c.e.p.t.a.n.c.e.
0 oUnhandledExceptionFilter,0 20 00 6F 00 66 80 20 00 74 00 68 0O 65 00 20 08 | .0.f. .t.h.e. .
dw 4A5h ; DATA XREF: .rdata:10881232470 L4 BB 69 060 67 68 69 60 43 60 65 A6 72 68 74 68 I).l'.g.i.B.E.l’.t.
O osetUnhandledExceptionFllter s0 @ iatar10012328T0 20 60 43 06 50 @0 2F 60 43 60 56 06 53 68 28 88 | .C.P./.C.P.S. .
db " IsDebuggerpresent” ,0 X 61 00 6E 00 64 @0 20 60 74 00 68 06 65 08 28 00 | a.n.d. .t.h.e. .
G “Terminateprocess: g W raatazionizecio 52 00 65 @6 6C 0O 79 00 69 0O 6F OO 67 00 20 00 | R.e.l.y.i.n.g. .
atign 2 e e e eresaate 50 00 61 00 72 @0 74 00 79 00 26 00 41 00 67 00 | P.a.r.t.y. .A.g.
db *GetCurrentProcess’ o s e 72 00 65 00 65 80 6D 00 65 00 6E B8 74 00 20 08 | r.e.e.m.e.n.t. .
G e s 3 DATA XREF: .rdata:1001233uTo 77 08 68 08 69 B0 63 80 68 B0 20 B8 6C 00 69 08 | w.h.i.c.h. .1.i.
align 2 ’ 6D 88 69 08 74 B8 20 08 6C 60 69 B8 &1 08 62 80 | m.i.t. .1.i.a.b.
T etvatger,o R rdatesionzassto 69 00 6C OO 69 80 74 00 79 6O 20 60 61 6O 6F 06 | i.1.i.t.y. .a.n.
dw 4C8h ; DATA XREF: .rdata:1081233Cto 64 0O 20 00 61 00 72 00 65 00 20 A0 69 00 6E 60 d. .a.r.e. _.i.n.
o ey Setyatue’,0 : DATA XREF: .rdata:16812345to 63 00 6F 00 72 @0 70 00 6F 00 72 00 61 00 74 00 | c.0.r.p.0.r.a.t.
dh ‘¥isFres.s e St st asioate 65 00 64 00 20 B0 68 00 65 00 72 B8 65 00 69 00 | e.d. .h.e.r.e.i.
db ‘SetlastError®,0 R 6E 80 20 06 62 08 79 00 20 60 72 00 &5 00 66 60 | n. .b.y. .r.e.f.
align 4 e . 65 80 72 06 65 @0 6F 00 63 00 65 A8 2F 30 81 82 | e.r.e.n.c.e..fZ

A

B

Figure 5 The data with varying weights exhibit contrasting effects on the results. On the right (B), the data includes a benign URL, digicert.com
that can raise the probability of being classified as benign. Conversely, the data on the left (A) demonstrates a positive effect. Numerous functions
listed in the table exhibit high probabilities of being associated with malicious behavior, such as the isdebuggerpresent API, frequently exploited by

malware to evade reverse analysis. This increases the likelihood of being categorized as malware.

Full-size K&l DOT: 10.7717/peerj-cs.1591/fig-5

Table 6 The weight and offset of the three most weighted superpixels of the malware under the
lightGBM.

Offset 0x0000-0x1000 0xe000-0xf000 0xc000-0xd000
Weight 0.93 -0.0277 -0.0272
Note:

0x0000-0x1000 is the address of the PE header. The model gave too much weight to the file’s PE header, we concluded
that the lightGBM model makes a decision according to false causalities.

CDF in Fig. 6. The CDF reveals that the weight of code sections amounts to roughly 50% in
half of all the binaries. Although this was only an estimation, the weight of the code
segments must be limited. We concluded that code sections only account for part of the
weight. Due to the fact that not all data segments can be transformed by Disp, it is highly
probable that the success rate will be low if the Disp algorithm is used alone.

Randomly applied transformations

In order to study the influence of the location of the transformed content and the type of
the transformed content on the success rate of adversarial examples, we evaluated whether
the randomly applied transformation would lead to evasion of the DNNs. To evaluate the
transformations, we created up to 200 variants for each binary. If the detection results of
more than one variant changed, the transformation would be considered successful. The
binary are divided into superpixels. For code sections, the superpixel was the basic

Sun et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1591

18/29

http://digicert.com
http://dx.doi.org/10.7717/peerj-cs.1591/fig-5
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

1.0 4

0.8 4

0.6

CDF

0.4 4

0.2 4

0.0 4

T T
0.0 0.2 0.4 0.6 0.8 1.0
weights of code sections

Figure 6 A cumulative distribution function (CDF) graph depicting the weight of code sections

contributing to the decision provides valuable insights into the behavior of a malware detection

model. Approximately 50% of the binary’s code sections have little contribution to the final result.
Full-size K&l DOT: 10.7717/peerj-cs.1591/fig-6

functional block returned by the disassembly tools. For data sections, we divided binaries
into 1 KB length superpixels by offset. The concept of “randomly applied transformations”
encompassed two aspects. Firstly, whether a particular superpixel in the binary underwent
transformation was determined randomly. Secondly, the gap space following the
transformation was filled either with adversarial data or random data. Specifically, we
designed two experiments. We conducted two distinct experiments to test our approach.
In the first experiment, we filled the gap spaces with random data, while in the second
experiment, we used adversarial data to fill the gaps. The adversarial data was the data we
found in the previous section with a high absolute weight.

We conducted both experiments with the constraint that the size of each binary would
not increase by more than 5%, and limited the number of iterations to 200 for both Disp
and DataDisp. When Disp and DataDisp were both used randomly with random data, the
results showed that three malware binaries were misclassified, and five benign binaries
were incorrectly classified as malware when using MalConv. Four malware and six benign
binaries were misclassified for AvastNet. The results are easy to explain under our
framework, because the weight is under a normal distribution with a mean value of 0 as
shown in Fig. 4. If the Disp & DataDisp algorithms are applied randomly, the weight of the
transformed binaries is also under a normal distribution and the sum of the weights has a
high probability with a mean value of 0. There is a high probability that the adversarial
examples will not evade the detector. So we could conclude that it’s not that the DNNs are
robust against naive Disp transformations as claimed in Sharif et al. (2019) but it’s just a
matter of probability. However, when we filled the gap spaces with adversarial data, the
results improved significantly. The adversarial data was selected from the higher-weighted

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 19/29

http://dx.doi.org/10.7717/peerj-cs.1591/fig-6
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

data we identified in the previous section. Using this approach, we achieved a success rate
of 24% for MalConv and 39% for AvastNet, which represented the highest success rates
obtained in our experiments.

Evaluation of the transformations: Disp and DataDisp

In this section, we evaluated the Disp and DataDisp transformations individually using an
interpretable model to optimize the procedure. With regards to Disp, we set the maximum
displacement budget to 5% and the maximum number of iterations to 200. We filled the
gap left by the transformation with adversarial data. The Disp algorithm could achieve a
maximum success rate of 59% for MalConv and 45% for AvastNet. With regards to
DataDisp, we used a maximum displacement budget of 5% and a maximum number of
iterations of 200. Once again, we filled the gap spaces left by the transformation with
adversarial data. The DataDisp algorithm yielded a maximum success rate of 53% for
MalConv and 35% for AvastNet.

Sharif et al. (2019) also tested Disp with a hill-climbing approach. They only moved
subsections that had a positive impact on the results. They got a maximum success rate of
24%. Our hypothesis was that this result was due to the fact that Disp was only capable of
transforming the code section of a binary file.

Evaluation on explanation-based adversarial algorithm

In this subsection, we evaluated our explanation-based model by comparing it to other
algorithms. We set the maximum displacement budget to 5% and limited the number of
rounds to 200. To improve the performance, we used a combination of Disp and DataDisp
transformations. We compared our model with three different models, they were Disp
with a hill-climbing approach (Sharif et al., 2019), genetic padding (Demetrio et al., 2021a)
and gradient-based attack (Kreuk et al., 2018). All of these algorithms, including the
explanation-based model, increased the length of the binary by padding different contents
at the end of the file. The gradient-based algorithm operated in a white-box setting, using
the parameters of the DNNSs to calculate the gradient (Suciu, Coull ¢ Johns, 2019; Kreuk
et al., 2018). The gradient-based padding we used was adapted from Kreuk et al. (2018)
with epsilon 0.5 and iteration 2. The genetic padding was a black-box approach that we
adapted from Demetrio et al. (2021a) with iteration 10 and population 50. The genetic
padding required data randomly sampled from different files. Similar to the genetic
padding algorithm, our approach also worked in a black-box setting. However, we
improved upon this method by adding binary files with the most weighted data identified
in the previous section. The impact of this modification can be seen in the results displayed
in Fig. 7.

Although our algorithm was not as effective as the gradient-based model, we observed
that it outperformed genetic padding and Disp with the hill-climbing approach. Notably,
the gradient-based attack requires model information that may be unavailable in practice.
Among all black-box models, our attack model yielded the best performance. However,
without budget constraints, our explanation-based model could resulted in a much higher
number of misclassified binaries. To comprehensively evaluate our attack model, we also

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 20/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Success Rate for MalConv

0.8 4
0.8 1

0.7
0.6 1 o]

£ 0.6

©
0.5 é

8
0.4 4 [

T 0.4

-4
0.3 1 @

(]

v

v
0.2 @

—&— Disp with climb-hill 0.2 —&— Disp with climb-hill
014 —o— DataDisp&Disp —o— DataDisp&Disp
—— whitebox padding —»— whitebox padding

0.0 4 —+— genetic padding 0.0 1 —+— genetic padding

3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000 8000

padding size number (bytes) padding size number (bytes)

(A) Malconv (B) AvastNet

T T
1000 2000 8000

Figure 7 We provided a demonstration of various attacking algorithms, where the orange line represents the misclassification rate of our
black-box algorithm. Our approach proved to be less effective than the gradient-based algorithm, but outperformed both genetic padding and
Disp in combination with the climb-hill algorithm within a certain range. (A) Malconv. (B) AvastNet. Full-size kal DOI: 10.7717/ peerj-cs.1591/fig-7

conducted attacks on the Endgame model. The results demonstrate a maximum success
rate of 52%. The Endgame model, which benefits from a larger training dataset,
incorporates substantial structural information in its features. These features,
unfortunately, are immutable in our attack model, consequently resulting in the relatively
poorer performance of our attacks.

Computational analysis

In our article, we evaluated the performance of our attack on three different models:
MalConv and Avast, which are DNN-based models, and the Endgame model, which is a
gradient boosted decision tree model. The DNN models have a linear complexity when it
comes to training, as it depends on the length of the binary input. On the other hand, the
complexity of the Endgame model is determined by the number of trees and the number of
leaves per tree. It is important to note that none of these models were developed by us, so
we focused on analyzing the computation requirements for generating adversarial
examples. The complexity of the attack model consists of two parts: the time required to
displace instructions and the time required to query the detector. Displacing instructions
randomly within a binary function with k instructions has a time complexity of o(k). If the
length of the binary function is n, the query time is has o(log(n)) time complexity. For the
instance attack model, the overall running time of the model is equal to the sum of query
time and the time to displacing the instructions, which is o(log(n) + k). Regarding the
collected data on actual running conditions, there were 1,805, 1,921 query for attacking
MalConv and Avast on average. The attacks took 630, 730 seconds on average respectively

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591

21/29

http://dx.doi.org/10.7717/peerj-cs.1591/fig-7
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

for Malconv and Avast model. The average number of queries was 6,210 with an average
time of 1,545 seconds for Endgame.

Miscellaneous

Hyperparameters

Throughout this article, we chose 200 as the maximum number of iterations and 5% as the
maximum displacement budget, we also used 1 KB as the size of the superpixel of
DataDisp in Section: Randomly Applied Transformations. We used these hyperparameters
because our method could achieve almost perfect success under this configuration. In
Sharif et al. (2019) and Lucas et al. (2021), they tested Disp with a hill-climbing approach
with similar hyperparameters.

Integrity of binary

To ensure that the functionality of the binaries was intact after the transformation. Firstly,
we selected six different binaries and manually checked their instructions with OllyDbg
(Yuschuk, 2014). Secondly, we selected 10 different benign binaries and manually checked
their functionality by running them on Windows. All the files worked fine. Thirdly, we also
used the Cuckoo Sandbox (Guarnieri et al., 2019) to test 10 malware programs. One of
them collapsed after transformation, and the rest ones functioned normally. We checked
the file manually. We found that the binary does not strictly follow the PE format
specification. The length of the data segment shown in the file header does not match the
actual length.

DISCUSSION AND FUTURE WORK

In this section, we presented the results of our experiments and highlighted areas for future
improvement. We also briefly covered the limitations and basic assumptions of our model.

Discussion on experiments

We carefully designed multiple sets of experiments to evaluate the effectiveness of our
approach. First, we analyzed binary files to identify which content the black-box detector
valued and used this information for targeted attacks. Second, we randomly applied
transformations in Section: Randomly Applied Transformations but found that these
techniques alone were not sufficient to achieve high adversarial results. This demonstrated
the importance of both optimization and adoption of adversarial data. Third, we compared
our model with others and observed that it did not perform as well as the gradient-based
attack model. However, it is important to note that the gradient-based model works in
white-box settings and requires model information that may not be available in practice.
Our adversarial model utilized Disp & DataDisp transformation methods to transform
both data and code segments, resulting in the best performance under black-box
conditions.

Discussion on the model
In black-box attacks, adversaries lack knowledge of the internal workings of the model. To
overcome this, adversaries may leverage adversarial classifier reverse engineering (ACRE)

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 22/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

to learn sufficient information for recovering the classifier (Lowd ¢ Meek, 2005). Another
approach for attacking black-box systems is to train a substitute model using synthetic
inputs generated by adversaries (Szegedy et al., 2014). This method is based on the
assumption that two models with comparable performance solving the same ML task are
likely to have similar decision boundaries (Papernot et al., 2018). We make a similar
assumption that two models with comparable performance around one instance are likely
to have similar decision boundaries. So we train a surrogate model around a specific
example. Compared with training a surrogate model on the entire data set, the instance-
based approach greatly reduces the computational complexity of training and reduces the
amount of data required.

Our model requires only a single training instance rather than many. In practice, we
often have access to only one or a few examples and need to generate enough targeted
adversarial samples. The inputs used to train the surrogate model are transformed solely
from the example itself because a coherent structure between the binary and its variants
leads to strong correlations. We believe that the information learned from these perturbed
instances is specific and targeted. By training a simpler substitute model, we can then use
this model as our target for attack. This approach is referred as the instance-based attack.
In Locally Linear Embedding(LLE) (Roweis ¢ Saul, 2000), each data point is a linear
combination of its neighbours. As claimed in LLE (Roweis ¢ Saul, 2000), we assume that
the binary and its perturbed instances lie on or close to a locally linear path of the manifold.
So we can characterize each binary from its neighbours by linear coefficients. This is the
key assumption of our article.

After discussing the mathematical basis of the instance attack model, we concluded that
our fitting function is necessary but not sufficient. Thus, we must iterate the process many
times. Unlike in NLP and image classification, the goal is not to minimize perturbation but
rather to maintain the function’s integrity. For two semantically identical binary files, their
characters may have no resemblance to each other. This is why we need to make many
transformations.

Limitations and future works

Limited by our linear fitting model, our interpretable model is not suitable for some
structure-based adversarial transformations such as content shifting (Demetrio et al.,
2021b; Anderson et al., 2018). Our algorithm is instance-based, which means that it needs a
lot of queries and calculations to do an adjustment for each example. However, the
convergence of the algorithm has not been proven and we have to iterate many times. We
use a linear function to fit the classifier. We believe that we could introduce some more
complex models such as the local non-linear interpretable model (Guo et al., 2018), and the
accuracy can be furtherly improved. The combination of global fitting and local fitting
frameworks is also worth exploring and the intrinsic dimension of our model could also be
discussed (Pope et al., 2021). In the field of malicious code detection, conventional models
do not typically impose limitations on the number of queries, as scanning a single personal
computer often necessitates querying millions of files. However, our model does not
possess a distinct advantage in scenarios where query efficiency is paramount. Thus far,

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 23/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

there has been no evident demand for such capabilities in the domain of code analysis.
Nevertheless, exploring avenues to significantly reduce the number of queries on the base
of Guo et al. (2019) remains a promising research direction.

Potential mitigations

While our model has achieved a commendable success rate, it is crucial to develop
mitigation measures that bolster the resilience of malware detection against potential
evasion efforts stemming from our attack strategies. Although our model necessitates a
substantial number of queries for effective implementation, we do not regard this as an
inherently efficacious mitigation approach. Static detection is widely acknowledged as
being generally undecidable. However, we posit that the following two techniques can
impart a degree of mitigation against our attack model. Firstly, our model primarily
focuses on the perturbation of code and data segments. By ascribing higher weights to
structural elements such as file headers or structure data entities like input/output
functions name, we can augment the accuracy of detection. Secondly, Our model does not
affect the dynamic execution of the code. Through the integration of static and dynamic
detection methodologies, such attack methods can be proficiently circumvented.

CONCLUSIONS

Our article introduces a new concept, known as the “instance-based attack,” through
which we analyzed two DNN-based malware classifiers using an interpretable model. Our
analysis revealed key characteristics of these models under black-box conditions,
highlighting the critical role played by data segments in determining results. This
importance of data segments had not been discussed in related articles before.
Additionally, we introduced a novel method to generate adversarial examples, which we
call the instance attack. Unlike other methods that insert code in invalid places or
transform only code segments, our adversarial model can transform both data and code
segments using Disp and DataDisp. Our model achieves state-of-the-art results under
black-box conditions, and the results of the instance attack can be verified using domain
knowledge. We hope that our work will inspire future research efforts in this area.

APPENDIX

Windows portable executable file format

The data we use in this article are all Windows PE files and we take advantage of the format
characteristics of the PE files to create adversarial examples. The PE files are derived from
the Common Object File Format (COFF), which specifies how Windows executables are
stored on the disk. The main file that specifies the PE files is winnt.h, related documents
can also be found in Microsoft (2021). There are two types of PE files, one is executable
(EXE) file and the other is dynamic link library (DLL) file. They are almost the same in
terms of file format, the only difference is that a field is used to identify whether the file is
an EXE or DLL. Generally, PE files can be roughly divided into different components. They
begin with a MS-DOS header, a Stub and a PE file signature. Immediately following is the
PE file header and optional header. Beyond that, section headers and section bodies follow.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 24/29

http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

PE File Format

MS-DOS
MZ Header

M5-D OS5 Rea-Mode
Stub Frogram

PE File Signature

PE File
Header

PE File
Optional Header

text Section Header

bss Section Header

rdata Section Header

.debug Section Header

text section

bss Section

rdata Section

.debug section

Figure 8 Structure of a typical PE file image. Full-size K&l DOT: 10.7717/peerj-cs.1591/fig-8

A PE file typically has nine predefined sections named .text, .bss, .rdata, .data, .rsrc, .edata,
.data, .pdata and .debug (Plachy, 2018). Figure 8 depicts a typical exemplification of the
structure of a PE file. Some binaries do not need all of these sections while others may
rename or define the section names according to their own needs. For the alignment
reason, the start address of the segment part of PE is often 0x100.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 25/29

http://dx.doi.org/10.7717/peerj-cs.1591/fig-8
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by the National Key R&D Plan: 2018YFB0805000. The funders
had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Key R&D Plan: 2018 YFB0805000.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Ruijin Sun conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

e Shize Guo conceived and designed the experiments, prepared figures and/or tables, and
approved the final draft.

e Changyou Xing performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

e Yexin Duan analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

e Luming Yang analyzed the data, performed the computation work, prepared figures and/
or tables, and approved the final draft.

o Xi Guo performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.

e Zhisong Pan performed the computation work, authored or reviewed drafts of the
article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:

- https://github.com/iamawhalez/instanceattack.

- iamawhalez. (2023). iamawhalez/instanceattack: intanceattack (intanceattack).
Zenodo. https://doi.org/10.5281/zenodo0.8242650.

The data is available at Kaggle https://www .kaggle.com/c/malware-classification/data,
and detail are described at https://arxiv.org/pdf/1802.10135.pdf.

REFERENCES

Anderson HS, Kharkar A, Filar B, Evans D, Roth P. 2018. Learning to evade static PE machine
learning malware models via reinforcement learning. Arxiv preprint
DOI 10.48550/arXiv.1801.08917.

Sun et al. (2023), Peerd Comput. Sci., DOl 10.7717/peerj-cs.1591 26/29

https://github.com/iamawhalez/instanceattack
https://doi.org/10.5281/zenodo.8242650
https://www.kaggle.com/c/malware-classification/data
https://arxiv.org/pdf/1802.10135.pdf
http://dx.doi.org/10.48550/arXiv.1801.08917
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Anderson HS, Roth P. 2018. EMBER: an open dataset for training static PE malware machine
learning models. Arxiv preprint DOI 10.48550/arXiv.1804.04637.

Arp D, Quiring E, Pendlebury F, Warnecke A, Pierazzi F, Wressnegger C, Cavallaro L, Rieck K.
2022. Dos and don’ts of machine learning in computer security. In: 31st USENIX Security
Symposium (USENIX Security 22). Boston, MA: USENIX Association.

Brendel W, Rauber J, Bethge M. 2018. Decision-based adversarial attacks: reliable attacks against
black-box machine learning models. Arxiv preprint DOI 10.48550/arXiv.1712.04248.

Camburu O. 2020. Explaining deep neural networks. Arxiv preprint
DOI 10.48550/arXiv.2010.01496.

Capstone. 2021. The ultimate disassembly framework—capstone- the ultimate disassembler.
Available at https://www.capstone-engine.org (accessed 31 March 2021).

Carlini N, Wagner DA. 2017. Towards evaluating the robustness of neural networks. In: 2017 IEEE
Symposium on Security and Privacy (SP). Piscataway: IEEE, 39-57.

Chen S-T, Cornelius C, Martin J, Chau DHP. 2019. ShapeShifter: robust physical adversarial
attack on faster R-CNN object detector. In: Berlingerio M, Bonchi F, Girtner T, Hurley N,
Ifrim G, eds. Machine Learning and Knowledge Discovery in Databases. Cham: Springer
International Publishing, 52-68.

Coull SE, Gardner C. 2019. Activation analysis of a byte-based deep neural network for malware
classification. In: 2019 IEEE Security and Privacy Workshops (SPW). Piscataway: IEEE, 21-27.

Demetrio L, Biggio B, Lagorio G, Roli F, Armando A. 2019. Explaining vulnerabilities of deep
learning to adversarial malware binaries. Arxiv preprint DOI 10.48550/arXiv.1901.03583.

Demetrio L, Biggio B, Lagorio G, Roli F, Armando A. 2021a. Functionality-preserving black-box
optimization of adversarial windows malware. IEEE Transactions on Information Forensics and
Security 16:3469-3478 DOI 10.48550/arXiv.2003.13526.

Demetrio L, Coull SE, Biggio B, Lagorio G, Armando A, Roli F. 2021b. Adversarial EXEmples: a
survey and experimental evaluation of practical attacks on machine learning for windows
malware detection. ACM Transactions on Privacy and Security 24(4):1-31
DOI 10.1145/3473039.

everybodywiki. 2020. Ablation analysis. Available at https://en.everybodywiki.com/Ablative
_analysis (accessed 22 November 2021).

Fleshman W, Raff E, Zak R, McLean M, Nicholas C. 2018. Static malware detection amp;
subterfuge: quantifying the robustness of machine learning and current anti-virus. In: 2018 13th
International Conference on Malicious and Unwanted Software (MALWARE). 1-10.

Ghosh S, Das N, Das I, Maulik U. 2019. Understanding deep learning techniques for image
segmentation. Arxiv preprint DOI 10.48550/arXiv.1907.06119.

Guarnieri C, Tanasi A, Bremer J, Schloesser M. 2019. Cuckoo sandbox. Available at https://www.
cuckoosandbox.org (accessed 10 February 2022).

Guo C, Gardner JR, You Y, Wilson AG, Weinberger KQ. 2019. Simple black-box adversarial
attacks. CoRR DOI 10.48550/arXiv.1905.07121.

Guo W, Mu D, Xu J, Su P, Wang G, Xing X. 2018. LEMNA: explaining deep learning based
security applications. In: CCS ’18: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. New York: ACM, 364-379.

Jia R, Liang P. 2017. Adversarial examples for evaluating reading comprehension systems. Arxiv
preprint DOI 10.48550/arXiv.1707.07328.

Johns J. 2017. Representation learning for malware classification. In: Conference on Applied
Machine Learning for Information Security 2017.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 27/29

http://dx.doi.org/10.48550/arXiv.1804.04637
http://dx.doi.org/10.48550/arXiv.1712.04248
http://dx.doi.org/10.48550/arXiv.2010.01496
https://www.capstone-engine.org
http://dx.doi.org/10.48550/arXiv.1901.03583
http://dx.doi.org/10.48550/arXiv.2003.13526
http://dx.doi.org/10.1145/3473039
https://en.everybodywiki.com/Ablative_analysis
https://en.everybodywiki.com/Ablative_analysis
http://dx.doi.org/10.48550/arXiv.1907.06119
https://www.cuckoosandbox.org
https://www.cuckoosandbox.org
http://dx.doi.org/10.48550/arXiv.1905.07121
http://dx.doi.org/10.48550/arXiv.1707.07328
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Koo H, Polychronakis M. 2016. Juggling the gadgets: binary-level code randomization using
instruction displacement. In: Proceedings of the 11th ACM on Asia Conference on Computer and
Communications Security, ASIA CCS ’16. New York, NY, USA: Association for Computing
Machinery, 23-34.

Kreuk F, Barak A, Aviv-Reuven S, Baruch M, Pinkas B, Keshet J. 2018. Adversarial examples on
discrete sequences for beating whole-binary malware detection. Arxiv preprint
DOI 10.48550/arXiv.1802.04528v1.

Kréal M, Svec O, Balek M, Jasek O. 2018. Deep convolutional malware classifiers can learn from
raw executables and labels only. Available at https://openreview.net/pdf?id=HkHrmMI1PM.

Li W, Ge J, Dai G. 2015. Detecting malware for android platform: an SVM-based approach. In:
2015 IEEE 2nd International Conference on Cyber Security and Cloud Computing. Piscataway:
IEEE, 464-469.

Lowd D, Meek C. 2005. Adversarial learning. In: Proceedings of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in Data Mining, KDD "05. New York, NY,
USA: Association for Computing Machinery, 641-647.

Lucas K, Sharif M, Bauer L, Reiter MK, Shintre S. 2021. Malware makeover: breaking ML-based
static analysis by modifying executable bytes. In: Proceedings of the 2021 ACM Asia Conference
on Computer and Communications Security, ASIA CCS ’21. New York, NY, USA: Association for
Computing Machinery, 744-758.

Lundberg S, Lee S. 2017. A unified approach to interpreting model predictions. ArXiv preprint
DOI 10.48550/arXiv.1705.07874.

Microsoft. 2021. PE format. Available at https://docs.microsoft.com/en-us/windows/win32/debug/
pe-format (accessed 31 March 2021).

Nataraj L, Karthikeyan S, Jacob G, Manjunath BS. 2011. Malware images: visualization and
automatic classification. In: Proceedings of the 8th International Symposium on Visualization for
Cyber Security, VizSec ’11. New York, NY, USA: Association for Computing Machinery.

Noever D, Noever SEM. 2021. Virus-MNIST: a benchmark malware dataset. Arxiv preprint
DOI 10.48550/arXiv.2111.02375.

Papernot N, McDaniel P, Sinha A, Wellman MP. 2018. SoK: security and privacy in machine
learning. In: 2018 IEEE European Symposium on Security and Privacy (EuroSSP). Piscataway:
IEEE, 399-414.

Pappas V, Polychronakis M, Keromytis AD. 2012. Smashing the gadgets: hindering return-
oriented programming using in-place code randomization. In: 2012 IEEE Symposium on
Security and Privacy. Piscataway: IEEE, 601-615.

Park D, Khan H, Yener B. 2019. Short paper: creating adversarial malware examples using code
insertion. Arxiv preprint DOI 10.48550/arXiv.1904.04802v1.

Plachy J. 2018. Portable executable file format. Available at https://blog.kowalczyk.info/articles/
pefileformat.html (accessed 26 July 2018).

Pope P, Zhu C, Abdelkader A, Goldblum M, Goldstein T. 2021. The intrinsic dimension of
images and its impact on learning. Arxiv preprint DOI 10.48550/arXiv.2104.08894.

Qin Y, Carlini N, Goodfellow I, Cottrell G, Raffel C. 2019. Imperceptible, robust, and targeted
adversarial examples for automatic speech recognition. Arxiv preprint
DOI 10.48550/arXiv.1903.10346.

Raff E, Barker J, Sylvester J, Brandon R, Catanzaro B, Nicholas CK. 2018. Malware detection by
eating a whole EXE. WS-18268-276. Arxiv preprint DOI 10.48550/arXiv.1710.09435.

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 28/29

http://dx.doi.org/10.48550/arXiv.1802.04528v1
https://openreview.net/pdf?id=HkHrmM1PM
http://dx.doi.org/10.48550/arXiv.1705.07874
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
https://docs.microsoft.com/en-us/windows/win32/debug/pe-format
http://dx.doi.org/10.48550/arXiv.2111.02375
http://dx.doi.org/10.48550/arXiv.1904.04802v1
https://blog.kowalczyk.info/articles/pefileformat.html
https://blog.kowalczyk.info/articles/pefileformat.html
http://dx.doi.org/10.48550/arXiv.2104.08894
http://dx.doi.org/10.48550/arXiv.1903.10346
http://dx.doi.org/10.48550/arXiv.1710.09435
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

PeerJ Computer Science

Ribeiro MT, Singh S, Guestrin C. 2016. “why Should I Trust You?”: explaining the predictions of
any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16. New York, NY, USA: Association for Computing
Machinery, 1135-1144.

Ronen R, Radu M, Feuerstein C, Yom-Tov E, Ahmadi M. 2018. Microsoft malware classification
challenge. Arxiv preprint DOI 10.48550/arXiv.1802.10135.

Rosenberg I, Meir S, Berrebi J, Gordon I, Sicard G, David E. 2020. Generating end-to-end
adversarial examples for malware classifiers using explainability. CoRR
DOI 10.48550/arXiv.2009.13243.

Roweis ST, Saul LK. 2000. Nonlinear dimensionality reduction by locally linear embedding.
Science 290:2323-2326 DOI 10.1126/science.290.5500.2323.

RuiJin S, ShiZe G, JinHong G, ChangYou X, LuMing Y, Xi G, ZhiSong P. 2022. Instance attack:
an explanation-based vulnerability analysis framework against dnns for malware detection.
Arxiv preprint DOI 10.48550/arXiv.2209.02453v1.

Saxe J, Berlin K. 2015. Deep neural network based malware detection using two dimensional
binary program features. In: 2015 10th International Conference on Malicious and Unwanted
Software (MALWARE). Piscataway: IEEE, 11-20.

Sharif M, Bhagavatula S, Bauer L, Reiter MK. 2016. Accessorize to a crime: real and stealthy
attacks on state-of-the-art face recognition. In: Weippl ER, Katzenbeisser S, Kruegel C,

Myers AC, Halevi S, eds. Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016. New York: ACM, 1528-1540.

Sharif M, Lucas K, Bauer L, Reiter MK, Shintre S. 2019. Optimization-guided binary
diversification to mislead neural networks for malware detection. Arxiv preprint
DOI 10.48550/arXiv.1912.09064v1.

Song W, Li X, Afroz S, Garg D, Kuznetsov D, Yin H. 2020. Automatic generation of adversarial
examples for interpreting malware classifiers. Arxiv preprint DOI 10.48550/arXiv.2003.03100v1.

Suciu O, Coull SE, Johns J. 2019. Exploring adversarial examples in malware detection. In: 2019
IEEE Security and Privacy Workshops, SP Workshops 2019, San Francisco, CA, USA, May 19-23,
2019. Piscataway: IEEE, 8-14.

Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow IJ, Fergus R. 2014.
Intriguing properties of neural networks. In: Bengio Y, LeCun Y, eds. 2nd International
Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
Conference Track Proceedings.

Vigna G, Balzarotti D. 2018. When malware is Packin’ heat. In: Enigma 2018 (Enigma 2018). Santa
Clara, CA: USENIX Association.

Vinod P, Laxmi V, Gaur MS, Chauhan G. 2012. Momentum: metamorphic malware exploration
techniques using MSA signatures. In: 2012 International Conference on Innovations in
Information Technology (IIT). Piscataway: IEEE, 232-237.

Yang L, Ciptadi A, Laziuk I, Ahmadzadeh A, Wang G. 2021. BODMAS: an open dataset for
learning based temporal analysis of PE malware. In: 2021 IEEE Security and Privacy Workshops
(SPW). Piscataway: IEEE, 78-84.

Yuschuk O. 2014. OllyDbg. Available at https://www.ollydbg.de (accessed 10 February 2022).

Sun et al. (2023), Peerd Comput. Sci., DOI 10.7717/peerj-cs.1591 29/29

http://dx.doi.org/10.48550/arXiv.1802.10135
http://dx.doi.org/10.48550/arXiv.2009.13243
http://dx.doi.org/10.1126/science.290.5500.2323
http://dx.doi.org/10.48550/arXiv.2209.02453v1
http://dx.doi.org/10.48550/arXiv.1912.09064v1
http://dx.doi.org/10.48550/arXiv.2003.03100v1
https://www.ollydbg.de
http://dx.doi.org/10.7717/peerj-cs.1591
https://peerj.com/computer-science/

	Instance attack: an explanation-based vulnerability analysis framework against DNNs for malware detection
	Introduction
	Background and related work
	Technical approach
	Evaluation
	Discussion and future work
	Conclusions
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

