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ABSTRACT
The ability to create decentralized applications without the authority of a single entity
has attracted numerous developers to build applications using blockchain technology.
However, ensuring the correctness of such applications poses significant challenges,
as it can result in financial losses or, even worse, a loss of user trust. Testing smart
contracts introduces a unique set of challenges due to the additional restrictions and
costs imposed by blockchain platforms during test case execution. Therefore, it remains
uncertain whether testing techniques developed for traditional software can effectively
be adapted to smart contracts. In this study, we propose a multi-objective test selection
technique for smart contracts that aims to balance three objectives: time, coverage, and
gas usage. We evaluated our approach using a comprehensive selection of real-world
smart contracts and compared the results with various test selectionmethods employed
in traditional software systems. Statistical analysis of our experiments, which utilized
benchmark Solidity smart contract case studies, demonstrates that our approach
significantly reduces the testing cost while still maintaining acceptable fault detection
capabilities. This is in comparison to random search, mono-objective search, and the
traditional re-testing method that does not employ heuristic search.

Subjects Software Engineering, Blockchain
Keywords Smart Contracts, Test Selection, Multi-objective optimization, Blockchain

INTRODUCTION
In recent years, blockchain (BC) technology has grown in popularity. This technology
provides a computing paradigm that is decentralized and the immutable data structures
afforded by it can address the trust in settings with multiple parties with no need of single
authority. BC technology can offer several features such as immutability, decentralization,
transparency, and security. Recent studies have shown successful application of the BC
technology in healthcare, manufacturing, governance, and insurance domains (Maesa
& Mori, 2020). These solutions are implemented by smart contracts (SC) that are self-
executed computations that run on the nodes in the decentralized network. Despite the
rapid adoption of the BC technology, there is a lack of tools and techniques to support
the development and testing of the developed decentralized systems (Lal & Marijan,
2021; Zou et al., 2019). Specially, most SC are written in new languages (e.g., Solidity)
and decentralized platforms where most developers and college graduates lack formal
training. In a study by Zou et al. (2019), 54.7% of the interviewed developers reported a
lack of specialized testing tools and the absence of practical testing guidelines as a problem
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in development of safe and reliable SC. Such deficiencies could lead to development of
incorrect and vulnerable SC, which in most scenarios can lead to extensive financial losses,
such as a recent DAO attack where 3.6 million Ether (equivalent to $15 billion US dollars
today) were stolen by the attacker (Güçlütürk, 2018).

Typically, most SC and decentralized applications (aka, DApps) use tools such as
Truffle, Oyente (Luu et al., 2016), and Contractfuzzer (Jiang, Liu & Chan, 2018) for testing.
However, it’s important to note that all testing is conducted in a test environment.
While early testing is considered an effective quality assurance strategy for standard
software systems, BC applications can be impacted by external factors that cannot be
accurately predicted or simulated in a test environment. These factors include network
congestion, consensus mechanisms, the number of available miners, end-users’ preferences
(i.e.,GEWI, gas limit, wallet), and other BCnetworks that the contract is designed to interact
with. Validating the performance of BC applications sometimes requires testing in both
controlled test environments and real-world scenarios. According to Chainalysis (2022), 13
separate attacks on bridges have resulted in the theft of approximately $2 billion worth of
tokens . It is not necessarily accurate to say that the victims of these attacks failed to perform
adequate testing before deploying their bridges. In fact, even the largest exchange, Binance,
suffered a loss of $570 million due to a bridge incident last year (Shukla & Irrera, 2022).
The complexity of these tools, compounded by the fact that different blockchains are often
written in distinct programming languages and deployed in varying virtual environments,
can make it extremely challenging to determine how they should interact. While testing in
a controlled environment is important, additional testing on a live network can provide
valuable insights and benefits. However, testing on a live network should be approached
with caution, as it may expose potential security vulnerabilities or other issues to the
public. Therefore, appropriate precautions should be taken during live testing. It is worth
noting that live testing should not replace testing on a controlled environment, but rather
complement it. Nevertheless, it should be considered that using the live network for testing
comes with a cost per transaction, which can make it impractical and expensive to run all
test cases again. Therefore, test selection in BC is critical. Unfortunately, unlike mainstream
software systems where there are numerous studies in test selection and optimization (Yoo
& Harman, 2012), we cannot say the same for the SC applications.

In this study, we aim to formulate the test case selection as amulti-objective optimization
problem to find the most efficient test suite that meets the following conditions: (1)
minimize execution time: transactions on the Ethereum network requires time, unlike
local networks, it may take anywhere between 15 and 300 s. Theoretically, the network does
not have a timeout, therefore, a transaction can last forever. Thus, reducing the execution
time on a local network will minimize the possibility of spending 10x the time on the actual
platform. The second objective is to (2) minimize gas cost that aims to reduce the monetary
cost of test execution. In fact, performing operations on the Ethereum BC involves paying
fees to the miners and to keep bad actors away from flooding the network with denial of
service attacks. Therefore, it is important to keep the testing activities within a reasonable
budget without compromising the third objective which is to (3) maximize coverage. Code
coverage has traditionally been used as as a metric in quality of test suite. While high code
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coverage cannot guarantee correctness of software, lack of it poses serious doubts about
the quality of tests.

We evaluated the effectiveness of the proposed approach based on five real-world
Solidity projects from State of the DApps (https://www.stateofthedapps.com) and GitHub.
We compared the effectiveness of our approach against other common test selection
techniques including mono-objective test selection and baseline random selection. The
main contributions of this paper are:
1. The paper presents the first study for SC test case selection. To address the competing

objectives of coverage and cost, we used a multi-objective algorithm to select the test
cases in order to minimize gas cost and execution time while maximizing the coverage.

2. The paper compares the effectiveness of the proposed approachwith the state-of-the-art
approaches based on real-world Solidity projects.

3. The paper provides a set of guidelines for test case selection in SC by analyzing the
selected test cases chosen by the approach.
The remainder of this paper is structured as follows. We first introduce necessary

background and relatedwork in ‘Background andRelatedWork’. Our approach is described
in ‘Test Cases Selection for smart Contracts’. Evaluation including execution and analysis
plans are in ‘Validation’. Finally, threats to validity and conclusion are presented in ‘Threats
to Validity and Conclusion’, respectively.

BACKGROUND AND RELATED WORK
Background
In this section, we provide a brief overview of the main concepts in block chain technology
and SC.

Blockchain technology
ABC is a decentralized and distributed ledger consisting of chronically ordered blockswhere
each block consists of a series of transactions (Nakamoto, 2008). In order to ensure the
immutability of the data stored in the ledger, every block contains a hash of its predecessor.
Since BC follows a P2P topology, the ledger usually has duplicates in different nodes across
the network. Therefore, to append new blocks to the ledger, a consensus mechanism needs
to be performed. In short, the consensus mechanism is a protocol, e.g., Proof-of-Work
(PoW), and Proof-of-Stake (PoS), that defines the conditions required for a new block to
be added to the BC (Xiao et al., 2020). Therefore, nodes across the network can achieve the
necessary agreement on new data values before updating the ledger.

BC can be classified into two categories: permissioned or permissionless. The former
is used for private networks, where only pre-defined nodes are allowed to join the
network. The permissionless type, however, is public. Therefore, anyone can take part
in the consensus process, store a ledger state, send and receive transactions, etc. The
type of BC is decided based on its objective. If the application requires an open and
accessible environment, transparency of transactions, or the absence of a central authority,
a permissionless BC may be the preferred choice. On the other hand, if privacy is
important, the speed of transactions is vital, or when customization is required, a private

Alkhazi and Alipour (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1587 3/31

https://peerj.com
https://web.archive.org/web/20221205213943/https:/www.stateofthedapps.com/
http://dx.doi.org/10.7717/peerj-cs.1587


(permissioned) BC is a better fit. Overall, BC-based systems provide valuable and unique
features such as decentralization, immutability, provenance, and consensus making it the
perfect solution to many of our modern technical difficulties (Wu et al., 2019b; Maesa &
Mori, 2020).

Smart contracts
SC are programs stored on a BC (e.g., Ethereum), which run when certain conditions
are met. Since transactions are irreversible and traceable, SC is broadly used to handle
transactions between disparate parties without the supervision of a central authority or
the enforcement of a legal system (Buterin, 2014; Macrinici, Cartofeanu & Gao, 2018).
SC typically are written in special high-level programming languages such as Solidity
and Go Lang. The former, however, is the most popular language used especially with
contracts deployed to the Ethereum platform (Dannen, 2017). SC programs usually consist
of three main structures: sequential, selection, and loop structure (Grishchenko, Maffei &
Schneidewind, 2018). Solidity has similar coding fundamentals to common programming
languages such as C++, Python, and JavaScript. Therefore, it supports inheritance between
SC, libraries, loops, and user-defined types. Besides its contract-oriented programming
capabilities, Solidity has distinct properties that are tailored for writing code on the
Ethereum BC. For instance, developers can use ‘‘require’’ statements in Solidity to set
conditions that must be fulfilled for a function to execute. Additionally, the ‘‘payable’’
function modifier lets functions receive and transfer Ether. Furthermore, Solidity provides
the ‘‘self-destruct’’ function, which allows developers to remove a contract and transfer its
remaining Ether balance to another account.

1 pragma solidity ^0.6.0;
2

3 contract MembershipSubscription {
4 uint256 monthlyFees;
5

6 constructor(uint256 fee) public{
7 monthlyFees = fee;
8 }
9

10 function makePayment () payable public {
11 }
12

13 function isBalanceValid(uint256 monthsElapsed) public view returns (bool) {
14 return monthlyFees * monthsElapsed >= address(this).balance;
15 }
16

17 function withdrawBalance () public {
18 msg.sender.transfer(address(this).balance);
19 }
20 }

Listing 1: Sample Smart contract

A sample SC code is shown in Listing 1. The first line defines compiler compatibility. In
this case, the code is compatible with Solidity version 0.6.0 onwards. Line 3 sets the name
of the contract as (MembershipSubscription), which is the name used in our example.

Line 4 defines monthlyFees as an unsigned integer of 256 bits. Next, the constructor is
defined in line 6. In Solidity, the constructor is only called once after deployment, therefore
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it cannot be called explicitly afterwards. The constructor in our example initializes the
monthlyFees variable with the passed argument fee (line 7). The function makePayment

in line 10 allows the customer to pay their fees. By default, Ethereum SC act as wallet.
This allows the SC to receive, store, and send tokens and digital coins. The body of this
function is empty as the term payable allows the SC to automatically store the sent value
internally to be used later by other functions. On line 13, the function isBalanceValid

takes monthsElapsed as a parameter and returns true only if the balance of this account
is enough to pay the bill. The view keyword indicates that this function will not change
the internal state (read-only). Finally, the function withdrawBalance in line 17 sends the
entire account balance to the recent caller. Note that in real world contracts, a restricted
pre-approved list of sender addresses will be allowed to withdraw the balance to prevent
random users from stealing the funds. However, for simplicity purposes, we made the
example as basic as possible. In the following subsection, we present an overview of
software testing for traditional and BC applications including SC.

Software testing
Software testing is a set of activities carried out either manually or automatically to identify
the correctness of the software and detect bugs. While the testing process may find errors
in a system, passing all test cases does not guarantee their absence. Since exhaustive testing
for complex systems is practically infeasible, there are two main testing approaches: white
box and black box testing. In white box testing, the internal code structure is known to the
tester when designing the test cases. This approach is mainly used for unit testing. In black
box testing, the behavior or the functionality of the system is the focus, therefore knowing
much about the internal perspective of the system is not needed. Thus, this approach is
often called Input-Output testing. The types of testing can be further classified as unit,
integration, system, and acceptance testing (Lal & Marijan, 2021). The objective of the unit
testing is to ensure that individual parts of the code work flawlessly. After combining several
code components together, an integration test is performed to confirm that these units are
coordinating correctly. The next step is system testing, where the aim is to check that the
entire system is working as stated in the requirements. The final step is to test whether the
customer will find the system good enough to be accepted and delivered to its intended
users. The complexity and cost of testing increases as the project progresses; therefore, it
is encouraged to perform testing as early as possible to fix bugs before propagating across
the entire system.

Related work
Test case selection and prioritization
Testing activities consumes up to 50% of the project’s development cost (Singh & Singh,
2012), therefore, optimizing the test suite will have a positive impact on the budget and the
quality of the software since developers will have more time to build and debug the code.
There are many techniques used to improve the efficiency of software testing such as test
case selection, reduction, and prioritization (Yoo & Harman, 2012). Test case prioritization
is the process of arranging test cases based on particular criteria to make software testing
more effective (Elbaum, Malishevsky & Rothermel, 2002). Test case selection, however,
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achieves the same objective by selecting a subset of the available test cases based on certain
preferences.

Integer programming was employed in early work on test case selection methods
such as the work in Fischer (1977), Fischer, Raji & Chruscicki (1981) and Lee & He (1990).
Hartmann & Robson (1989) and Hartmann & Robson (1990), extended this work to be
used for C programs. Heuristics have been employed in some studies to choose test
cases; in Biswas et al. (2009), the authors used genetic algorithms. While in Mirarab,
Akhlaghi & Tahvildari (2012), Kumar, Sharma & Kumar (2012), Panichella et al. (2015),
de Souza, Prudêncio & Barros (2014), Yoo & Harman (2007) and Alkhazi et al. (2020a), the
researchers adopted multi-objective optimization methods to choose the suitable cases.

Recent studies used evolutionary algorithms to solve the test case prioritization
problem (Li, Harman & Hierons, 2007). In Tulasiraman & Kalimuthu (2018), the authors
used historical information of test cases such as the severity of fault identified and execution
time in order to prioritize test suites using a clonal selection algorithm. The authors
in Konsaard & Ramingwong (2015) addressed the problem of test case prioritization by
proposing a modified adaptive genetic algorithm that ranks test cases based on their
total coverage. When compared to five other algorithms, their approach yielded better
results. Khanna et al. (2018) applied multi-objective algorithms on web testing to prioritize
test cases based on execution time and fault detection. The proposed approach achieved
better results than random search, greedy algorithm, and weighted genetic algorithm.
In Yadav & Dutta (2017), the Average Percentage of Statements Covered (APSC) was used
as an evaluation metric for a genetic algorithm, the study delivered improved results when
compared with other techniques. Multiple coverage metrics were used by Ahmed, Shaheen
& Kosba (2012) to prioritize test cases. They defined three fitness functions to evaluate the
proposed solutions. The three metrics were (1) condition coverage, (2) multiple condition
coverage, and (3) statement coverage. The authors evaluated the performance of their
proposed work using APFD, and results showed a significant improvement in the average
percentage of fault detected. Other studies tackled the prioritization problemusing different
algorithms and approaches such as Ant Colony Optimization (ACO) (Panwar et al., 2018),
Bayesian networks (BN) (Mirarab & Tahvildari, 2007), and neural networks (Gökçe &
Eminli, 2014; Gökçe, Eminov & Belli, 2006). Given the abundance of research in this area,
we recommend the following survey papers for the interested readers: (Yoo & Harman,
2012; Biswas et al., 2011; Rosero, Gómez & Rodríguez, 2016; Kazmi et al., 2017).

Our proposed work is categorized with test suite selection solutions using a multi-
objective approach. However, the used software artifact (i.e., SC) is a new application
domain for these techniques.

Smart contract testing
The majority of existing SC analysis tools focus on vulnerability detection. Some of these
tools use static program analysis such as GASPER (Chen et al., 2017), Teether (Krupp &
Rossow, 2018), Oyente (Luu et al., 2016), Securify (Tsankov et al., 2018), MAIAN (Nikolić
et al., 2018), and Smartcheck (Tikhomirov et al., 2018). A random fuzzing is used to
find security issues in ContractFuzzer (Jiang, Liu & Chan, 2018), while Su et al. (2022)
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introduced RLF, a reinforcement learning-based vulnerability-guided fuzz testing approach
for detecting complex vulnerabilities in SC. They modeled the fuzz testing process as a
Markov decision process, with a reward that accounted for vulnerabilities and code
coverage. This approach effectively generated transaction sequences to reveal vulnerabilities,
particularly those related to multiple functions. The authors in Li et al. (2019) proposed
MuSC: a graphical user interface that performs mutation operations at the level of abstract
syntax tree. The work of Grishchenko, Maffei & Schneidewind (2018), Zeus (Kalra et al.,
2018), and Vandal (Brent et al., 2018) utilizes formal verification tools in their approaches.

Recently, there have been several developments in test case generation approaches for SC.
Similar to ContractFuzzer, the authors in Akca, Rajan & Peng (2019) proposed SolAnalyser
that randomly generates test cases to detect vulnerabilities. More complicated test case
generator (sfuzz) are proposed in Nguyen et al. (2020). In their proposed approach, they
used a search-based technique to generate test cases that focus on uncovered branches.
Similarly, Driessen et al. (2021) proposed AGSOLT. Their automatic test suite generator
composed of two stages: the initialization phase and testing loop phase. In the first step,
the tool extracts relevant data from the SC. In the second phase, however, the test cases
are randomly generated, executed on a local testnet (Ganache), and their performance is
measured to decide whether they should move to the next iteration or not. The latter step
uses genetic algorithm to iteratively improve the initially generated random test cases for
better branch coverage.Wang et al. (2019) also tackled the efficient generation of test cases
for SC using genetic algorithms. They validated their approach on 8 SC to show that branch
coverage improved compared to random generation. Additional tools that took advantage
of mutation testing include Regularmutator (Ivanova & Khritankov, 2020; Andesta, Faghih
& Fooladgar, 2020, and Hartel & Schumi (2020)).

To summarize, while many researchers investigated test case generation for SC, the
problem of efficiently and effectively testing SC has mostly been ignored. To the best of our
knowledge, our proposed work is the first test case selection approach for smart contacts.

TEST CASES SELECTION FOR SMART CONTRACTS
In this section, we describe our multi-objective approach for test case selection for SC
using a search-based technique, namely Non-Dominated Sorting Genetic Algorithm II
(NSGA-II).

Approach overview
The main objective of our approach is to optimize a test suite to achieve three goals as
illustrated in Fig. 1. Initially, we take the SC in addition to its existing test cases as inputs. Our
algorithm will begin by analyzing and collecting certain data such as coverage, execution
time and cost, test case size, and so on. Our objective is to maximize coverage, reduce
total execution time, and minimize the gas cost. Since these objectives are conflicting, and
because we are inherently dealing with a huge search space, we will utilize a multi-objective
algorithm to locate the Pareto-optimal solutions for this problem. An overview of this
algorithm and how it can be used in our case will be illustrated in the subsequent section.
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Figure 1 An overview of the proposed approach.
Full-size DOI: 10.7717/peerjcs.1587/fig-1

Search-based formulation

Algorithm 1 Pseudo code of NSGA-II adaptation for smart contract test-cases prioritiza-
tion
1: Inputs: Solidity smart contract P , Test suite TC
2: Output: subset(s) of the test suite
3: Begin
4: I:= Instantiation(TC)// vectors of TCs
5: P0:= set_of(I)
6: t:= 0
7: Repeat
8: Ct := apply_Genetic_Operators(Pt )
9: Gt := Pt ∪ Ct // Combine parent and offspring populations
10: for all I ∈ Gt do
11: Execution_Time(I):= calculate_Execution_Time(P)
12: Coverage(I):= calculate_Code_Coverage(P)
13: Cost(I):= calculate_Execution_Cost(P)
14: end for
15: F:= fast_Non_Dominated_Sort(Gt ) // F=(F1,F2, . . . ), all nondominated fronts of Gt
16: Pt+1 =∅
17: i:= 1
18: while |Pt+1| + |Fi|<Max_size do
19: Crowding_distance_assignment(Fi) // calculate crowding distance in Fi
20: Pt+1= Pt+1 ∪ Fi // include ith nondominated front in parent pop
21: i:= i+1
22: end while
23: Sort (Fi, ≺n) // sort in descending order using ≺n
24: Pt+1= Pt+1 ∪ Fi [1. . . (Max_size−|Pt+1|)] // choose the first Max_size - |Pt+1| elements of Fi

25: t:= t+1 // increment generation counter
26: until t=Max_iteration
27: best_solutions := first_front(Pt )
28: return best_solutions
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In the literature (Mkaouer et al., 2015;Alkhazi et al., 2020b), themulti-objective problem
as follows is represented by the following formula:
Minf (x)= [f1(x),f1(x),...,fM (x)]T

gj(x)≥ 0 j = 1,...,P;
hk(x)= 0 k= 1,...,Q;
xLi ≤ xi≤ xUi i= 1,...,n;

In short, the number of objective functions is represented by M . Whereas Q and P are
the equality constraints and inequality constraints, respectively. The lower bound of the
decision variable is represented by xLi , and the higher ones by xUi .

Each solution x is represented by a number of decision variables. The metaheuristic
algorithm objective is to optimize these variables. � is a set of all feasible solutions (search
space), which are the solutions that met the constraints ((P+Q)). To calculate the objective
value for a particular solution fi, the fitness function f is evaluatedwhere all objectives should
be minimized. When the maximum value of an objective is desired, we simply take its
negative value to meet the algorithm’s condition. A high-level pseudo-code of NSGA-II is
shown in Algorithm 1.

Pareto-optimal solutions
For each multi-objective problem, we evaluate its defined objective functions for a specific
solution. By comparing the objective vectors of two solutions, we can figure out which one
is ‘better’ based on these objectives. One common way to do this comparison is by adding
up all the objective values of one solution and comparing the total with that of another
solution. However, this only works if all the values are in the same units of measurement. In
the context of SBSE, we frequently rely on the concept of Pareto optimality. As defined in
(1) and (2) with strict inequality (Harman, 2007), Pareto optimality means that a solution
is considered superior to another if it outperforms it in at least one objective function and
doesn’t perform worse in any other. This definition helps us identify which solution is
better, although it doesn’t provide a measure of ‘how much’ better it is.

F(x1)> F(x2)⇐⇒∀ifi(x1)> fi(x2) (1)

F(x1)> F(x2)⇐⇒∀ifi(x1)> fi(x2)∧∃ifi(x1)> fi(x2) (2)

In the field of SBSE, the algorithms utilize the concept of Pareto optimality as part
of the search process to generate a collection of non-dominated solutions. Each of
these non-dominated solutions can be thought of as a balanced trade-off across
all objective functions, where no solution in the set is definitively better or worse than an-
other. It’s important to acknowledge that SBSE operates under the assumption that ac-
curately determining the ‘true’ Pareto front of a problem—which is the set of all val-
ues that are Pareto optimal—is analytically infeasible and impractical to achieve through ex-
haustive search. Consequently, every set produced throughmetaheuristic search serves as an
approximation of this often elusive ‘true’ Pareto front (Fig. 2). Further itera-
tions of such an algorithm could potentially enhance this approximation.
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Figure 2 Pareto optimality and pareto fronts. From Harman (2007).
Full-size DOI: 10.7717/peerjcs.1587/fig-2

Table 1 Sample solution representation.

1 Test_Case(22, 32, 533.1, Statement[S7,S1,S5,S7,S7])
2 Test_Case(15, 18, 302.04, Statement[S1,S4])
3 Test_Case(6, 89, 941.93, Statement[S10,S9,S3,S7,S8,S2])
... ....
NN Test_Case(11, 105, 211.7, Statement[S10,S9,S3,S2])

Solution representations
Table 1 is a sample solution vector. Each solution is represented by a vector where every
dimension constitutes a test case. After analyzing each test case to measure its execution
time, gas cost, and coverage, we use this data in the solution representation as shown
in Table 1 where each test case constitutes: Test_Case(ID, Gas Cost, Execution Time, and
Covered Statements.)

1 // SPDX -License -Identifier: GPL -3.0
2 pragma solidity ^0.8.4;
3

4 contract donations{
5 struct Donation {
6 uint id;
7 uint amount;
8 string donor;
9 uint timestamp; // seconds since unix start
10 }
11 uint amount = 0;
12 uint id = 0;
13 mapping(address => uint) public balances;
14 mapping(address => Donation []) public donationsMap;
15

16 function donate(address _recipient , string memory _donor) public payable {
17 require(msg.value > 0, "The donation needs to be >0 in order for it to go

through");
18 amount = msg.value;
19 balances[_recipient] += amount;
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20 donationsMap[_recipient ].push(Donation(id++,amount ,_donor ,block.timestamp)
);

21 }
22

23 function withdraw () public { //whole thing by default.
24 amount = balances[msg.sender ];
25 balances[msg.sender] -= amount;
26 require(amount > 0, "Your current balance is 0");
27 (bool success ,) = msg.sender.call{value:amount }("");
28 if(! success){
29 revert ();
30 }
31 }
32

33 function balances_getter(address _recipient) public view returns (uint){
34 return balances[_recipient ];
35 }
36

37 function getBalance () public view returns(uint) {
38 return msg.sender.balance;
39 }
40 }

Listing 2: Sample smart contract adopted from Remix documentation Remix (2021)

1 // SPDX -License -Identifier: GPL -3.0
2 pragma solidity ^0.8.4;
3 import "./ donations.sol";
4

5 contract testSuite is donations {
6 address sender = TestsAccounts.getAccount (0);
7 address recipient = TestsAccounts.getAccount (1);
8

9 function donateAndCheckBalance () public payable{
10 Assert.equal(msg.value , 1000000000000000000 , ’value should be 1 Eth’);
11 donate(recipient , "Bader");
12 Assert.equal(balances_getter(recipient), 1000000000000000000 , ’balances

should be 1 Eth’);
13 }
14

15 }

Listing 3: Sample test case for the contract in listing 2

A simple Solidity contract is shown in listing 2, and a sample test case for this contract is
shown in listing 3. Executing this test case will cover 50% of the statements leaving half of
the functions untested. While executing this single test case required only 0.86 s on a local
test BC, executing a transaction on the mainnet requires 15 s on average. The speed of the
transaction on the mainnet is affected by different factors such as network congestion, paid
gas, and number of available miners. The consumed gas for this single test case was 21,484.
Therefore, executing this test case on the mainnet will cost around $4.0 at the current
average gas price (4∼6 Gwei), making running more cases a burden on the testing team.

In general, the initial population is selected randomly, and the vector V is bound by a
maximum size VMAX that is proportional to the SC’s statements and the test cases available
for selection.
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Figure 3 Exemplified crossover operation.
Full-size DOI: 10.7717/peerjcs.1587/fig-3

Figure 4 Exemplified mutation operation.
Full-size DOI: 10.7717/peerjcs.1587/fig-4

Solution variation
Variation operations are vital in exploring the search space. They allow the algorithm to
potentially find better alternative solutions by using the crossover, mutation, and selection
of the fittest. In our case, we will use a one-point crossover operation where the parent
solutions are split at an arbitrary location. The next step is crossing the split parts between
the parents to form new children as shown in Fig. 3. The crossover allows for better
convergence in a subspace. The mutation, however, helps to diversify the population and
provides a way to escape a local optimum. In our study, we use the bit-string mutation
operator to randomly select one test case in the vector dimension in order to replace it with
another entry. Figure 4 illustrates a high-level overview of the mutation operator.

Evaluation metrics
During this step, we make sure that we select the fittest solutions (elitism) to be carried
out for the next iteration. Therefore, we use three fitness functions to evaluate and rank
solutions to make a better decision about whether a solution should pass to the next
generation or not.

Lower gas cost: To perform an operation on the Ethereum BC (or almost any BC), a
particular amount of gas needs to be paid. The motivation for this fee is twofold. First, the
BC will be free from bad actors and spammers who may flood the BC to cause congestion
and breakdowns. This is because the transaction originator should specify the amount
of Ether they are willing to pay during the life cycle of their transactions. Therefore, bad
actors need a significant amount of capital to flood the network. The same applies to poor
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programming practices such as infinite loops, where the transaction would eventually
fail and throw an out-of-gas exception. The second reason for the gas fees is to pay the
miners for processing the transactions and including it in the block. The transaction cost is
determined by two factors: amount of gas used, and the gas price as shown in the following
formula:

GasCost =Used_Gas∗Gas_Price (3)

The goal is to organize the test cases in a way where testers who are on budget can run a
larger number of test cases. It is worth mentioning that gas price varies over time based on
the number of available miners, network congestion, and Ether price.

Maximum coverage: The objective is simply to increase the SC coverage. After executing
each test case, we trace the triggered code statements by that case. We later combine the
aggregated covered statements to measure the coverage score. It is important to note
that coverage and gas costs are not correlated. In solidity, some statements and functions
will cost lower gas than others since they do not access the BC state. For instance, Pure
functions in Solidity are purely computational and deterministic. They only operate on
input parameters to compute a value and do not modify the state of the BC. As a result, they
are less expensive in terms of gas than functions that do modify the state. Thus, covering
these functions in test cases can improve code coverage without significantly increasing gas
consumption.

Lower execution time: A shorter execution time is desired; therefore, we aim tominimize
the time needed to discover faults. We will use a test net to run every test case and record
its execution time. This data will be used in the following step to prioritize test solutions
with lower execution time.

VALIDATION
Research Questions
To evaluate our approach, we defined three research questions as follows:

• RQ1: Search validation (sanity check). To assess the need of our problem formulation,
we compared our multi-objective approach to a random search algorithm (RS). If RS
proves to be more effective than a sophisticated search method, it would indicate that
there is no need for the use of metaheuristic search.
• RQ2: How efficient is the proposed multi-objective method in comparison to mono-
objective approach? To confirm that the objectives are in opposition, we combined the
three normalized objectives into a single fitness function. If the results are equal or the
mono-objective approach outperforms the multi-objective approach, it suggests that the
latter is unnecessary. The single-objective genetic algorithm, which has the same design
as NSGA-II but only for optimizing a single objective, was used for the mono-objective
approach. It does not utilize the non-dominance principles and crowding distance in
generating the Pareto front.
• RQ3: How effective is our multi-objective test case selection method in revealing
faults? A well-designed test selection approach plays a vital role in ensuring the success
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of a software system by striking a balance between cost and time efficiency and thorough
fault detection. By carefully selecting the tests to be executed, this approach minimizes
the cost and time needed to run the tests, while preserving the test suite’s effectiveness
in uncovering faults, thereby maintaining the validity of the software’s functionality and
performance.

Case Studies
To evaluate the research questions, we used five solidity SC case studies based on data
collected from GitHub and State of the DApps (https://www.stateofthedapps.com). We
only considered projects that are hosted in the top five BC platforms, written in Solidity,
and has its open-source code for the SC published. We did not include stealth, inactive, or
beta projects. In addition, projects with less than 100 lines of code for their combined SC
was not considered for evaluation.

The case studies employed vary in size, application area, and structure. The solidity
programs that we used are briefly described in the section below.

• Chainlink is a decentralized oracle network that connects SC to real-world data, events,
and payments. It enables SC to securely access off-chain data feeds, web APIs, and
traditional bank payments. This allows for the creation of more advanced and reliable
SC, which can be used for a wide range of purposes such as financial applications, supply
chain management, and gaming. The Chainlink network is composed of a network of
independent, security-reviewed node operators that provide data to SC, and is secured
by a decentralized network of nodes. The token of Chainlink (LINK) is used as a form of
payment to the node operators for providing these services. The project is open-source
and is supported by a large and active community of developers and users.
• PancakeSwap is a decentralized exchange (DEX) built on the Binance Smart Chain
(BSC) that allows users to trade various tokens built on the Binance ecosystem. The
exchange utilizes an automated market maker (AMM) model, where users can trade
tokens without the need for a traditional order book. Additionally, PancakeSwap features
a unique liquidity mining mechanism, where users can provide liquidity to the exchange
and earn rewards in the form of CAKE tokens. This incentivizes users to provide
liquidity to the exchange, increasing its overall liquidity and contributing to its overall
decentralization. The platform is fully decentralized and is governed by its community
of users through a decentralized autonomous organization (DAO). PancakeSwap has
quickly gained popularity among the decentralized finance (DeFi) community for its
user-friendly interface, low transaction fees, and high liquidity.
• Venus Protocol The Venus Protocol is a decentralized finance (DeFi) platform built
on the Binance Smart Chain. It aims to provide a stablecoin-based yield farming and
lending platform, where users can lend and borrow assets, earn interest, and participate
in liquidity provision. The Venus Protocol uses a collateralized stablecoin, called VAI,
as its base currency, which is pegged to the value of the US dollar. This allows for more
stable lending and borrowing rates, as well as reducing the volatility of returns for yield
farming. Additionally, the Venus Protocol features a unique governance system, where
users can vote on and propose changes to the protocol using their XVS tokens. This
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allows for a more decentralized and community-driven approach to the development
andmanagement of the protocol. The Venus Protocol aims to provide a fair, transparent,
and sustainable DeFi platform for users to earn returns on their assets and participate in
the growth of the ecosystem.
• Axie Infinity is a play-to-earn decentralized gaming platform built on the Ethereum
BC. It allows players to earn cryptocurrency by participating in the game, such as by
breeding valuable Axies or participating in in-game events. The game features unique
collectible creatures called Axies that can be bought, bred, and battled. The genetic
system allows players to breed different Axies and create new and unique offspring. It
also has a marketplace where players can buy, sell and trade different Axies. The platform
also features a unique governance system where players can vote on and propose changes
to the game using their SLP tokens. The game has a vibrant community and is actively
developed by the team behind it.
• SushiSwap is a decentralized exchange (DEX) built on the Ethereum BC that allows
users to trade various tokens, including Ethereum and other ERC-20 tokens. The
exchange utilizes an automated market maker (AMM) model, where users can trade
tokens without the need for a traditional order book. It also features a unique liquidity
mining mechanism, where users can provide liquidity to the exchange and earn rewards
in the form of SUSHI tokens. This incentivizes users to provide liquidity to the exchange,
increasing its overall liquidity and contributing to its overall decentralization. SushiSwap
also supports yield farming, where users can earn additional rewards by providing
liquidity to certain pools. The platform is fully decentralized and is governed by
its community of users through a decentralized autonomous organization (DAO).
SushiSwap gained popularity among the decentralized finance (DeFi) community for its
unique features, low transaction fees, and high liquidity.

Table 2 summarizes the structural details of the test cases we used in our study. The
table shows the number of SC for each project, the total number of functions and branches,
and the total number of lines of code (LoC). In Table 3, however, we describe the test
cases available for selection for each project, the time needed to execute all cases in a
‘‘test network’’, the required amount of budget to cover the gas requirement, and the
percentage of coverage achieved for both lines and methods if we execute all available
test cases. We used the test suite created and used by the developers of each project. To
extract the required coverage details, we used both Hardhat (https://hardhat.org), and
Solidity-coverage (https://github.com/sc-forks/solidity-coverage). Moreover, to get an
estimate of the required execution time and gas for each method, we used Gas-reporter

(https://github.com/cgewecke/hardhat-gas-reporter) tool.

Experimental settings
The effectiveness of search algorithms can be greatly impacted by the settings of parameters,
as noted by Arcuri & Fraser (2013). It is crucial to choose the appropriate population size,
stopping criterion, crossover rate, and mutation rate to prevent early convergence. In our
experiments, we utilized MOEA Framework v3.2 (Hadka, 2012), and conducted several
trials with varying population sizes of 50, 100, 250, and 500. The stopping criterion was
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Table 2 General information about the case studies.

ID Name #Smart contracts #Functions #Lines #Branches

CS1 Chainlink 78 228 993 404
CS2 PancakeSwap 14 62 329 100
CS3 Venus 146 1751 8439 2966
CS4 Axie 45 145 539 170
CS5 Sushi 62 245 1394 556

Table 3 Test cases data for our case studies.

ID #Test cases Execution time (ms) Execution cost ($) Max line
coverage (%)

Max function
coverage (%)

CS1 26 11,354 13,223.48 64.95 63.16
CS2 17 3,471 2,745.1 90.88 90
CS3 109 41,183 7,592.53 19.62 17.99
CS4 10 34,380 1995.7 74.21 73.1
CS5 35 8,485 10,342.92 36.66 37.96

fixed at 100k evaluations for all algorithms. For crossover and mutation, probabilities of
0.5 were used for both, per generation. We employed the Design of Experiments (DoE)
approach, which is one of the most efficient and widely used methods for parameter
setting in evolutionary algorithms, as outlined by Talbi (2009). Each parameter was
uniformly discretized into certain intervals, and values from each interval were tested for
our application. Following multiple trial runs, we established the parameter values for the
algorithm as 100 solutions per population and a maximum of 300 generations.

We used the MOEA Framework’s standard parameter values for all other parameters.
Since metaheuristic algorithms are probabilistic optimizers, they may produce different
outcomes for the same problem. Therefore, we conducted 30 independent runs for each
configuration and problem instance. The results were then analyzed statistically using the
Wilcoxon test, as suggested by Arcuri and Fraser, with a confidence level of 95% (α =
5%). All experiments were carried out on a Macbook Pro machine equipped with a 2.3
GHz Intel 8-Core i9 processor, and 16 GB 2400 MHz DDR4 RAM. The Hardhat v2.6.8,
Solc version: 0.8.16, solidity-coverage v0.8.2, and hardhat-gas-reporter v1.0.9 were utilized
during the experiments. The Ethereum price at the time of writing the paper was $1,588,
and the gas price was set at 85 GWEI.

The primary goal of comparing the mono-objective search is to determine if the
three objectives are in conflict. Therefore, we assigned equal weight to all objectives after
normalization between 0 and 1, for the single-objective formulation. The mono-objective
approach only generates one solution, while the multi-objective algorithm generates
multiple non-dominated solutions that spread across the Pareto front of the objectives. To
ensure fair and meaningful comparisons, we employed the knee-point strategy to select the
NSGA-II solution for the multi-objective algorithm (Branke et al., 2004). The knee point
represents the solution with the highest trade-off between the different objectives, and it
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can be considered equivalent to the mono-objective solution with equal weights for the
objectives if there is no conflict among them. The knee point was chosen from the Pareto
approximation by identifying the median hyper-volume IHV value. Assigning weights to
objectives is often difficult as it depends on the developers’ priorities and preferences. A
multi-objective approach eliminates the need to assign weights to objectives, as developers
can select a solution by visualizing the Pareto front based on the objectives. The knee-point
method was adopted to guarantee an unbiased comparison between the two algorithms, as
it is considered best practice according to the present state of computational intelligence.

Evaluation metrics
To evaluate our approach and to answer RQ1, we evaluate our NSGA-II formulation
against random search (RS) in terms of (1) search algorithm efficiency and (2) test
optimization system performance. The aim is to confirm the necessity of an intelligent
search method. This RQ serves as a basic verification and typical benchmark inquiry in any
SBSE formulation effort (Harman & Jones, 2001). If the intelligent search method doesn’t
surpass random search, it indicates that the proposed formulation is inadequate.

To assess the search algorithm performance, we quantify the efficiency of each algorithm
in exploring the search space. Multi-objective evolutionary algorithms, unlike mono-
objective ones, produce a set of non-dominated or Pareto optimal solutions accumulated
during the search process. Thus, we use three standard metrics for evaluating multi-
objective optimization algorithms: Hypervolume, Spread and Generational Distance
(Zitzler et al., 2003).

• Hypervolume (HV): is a performance indicator used to measure the quality of a set of
solutions obtained by an algorithm. It quantifies the volume of the dominated space in
the objective space, where the solution set dominates the area. A larger hypervolume
value indicates that the algorithm has found a set of solutions that cover a greater area in
the objective space, hence, a higher quality set of solutions. HV is used to compare the
performance of different algorithms and to determine the trade-off between conflicting
objectives.
• Generational distance (GD): is another performance indicator used in multi-objective
evolutionary algorithms. It measures the average Euclidean distance between a set of
solutions generated by an algorithm and a set of reference solutions, known as the
Pareto front. The reference solutions are considered to be the optimal solutions, and
GD provides a way to measure how close the algorithm’s solutions are to the optimal
solutions. A smaller GD value indicates that the algorithm’s solutions are closer to the
optimal solutions and hence, of higher quality. GD is used to assess the convergence of
the algorithm towards the Pareto front.

In regard to RQ2, we defined a mono-objective algorithm that generates only one
solution as output, formed by aggregating the three normalized objectives into a single
fitness function. In order to measure the performance of both algorithms in solving our
problem, i.e., test case selection, we compare the results in terms of cost, time, and coverage
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in addition to defining two more metrics:

Cost_per_FC_point = [
New_Cost (%)

FC(%)
] (4)

Cost_per_time_point = [
New_Cost (%)

Saved_Execution_time(%)
] (5)

These metrics will better illustrate the efficiency of each algorithm in maximizing the
coverage while minimizing the gas cost and computational time.

RQ3: Our approach focuses on streamlining the test suite for the post-deployment
phase, supplementing the extensive initial testing done before production. Thus, it is
not anticipated for the reduced test suite to exhibit the same level of performance as the
original suite, as the emphasis will be on examining the portions of the code that are more
susceptible to failures due to the dynamic nature of the Ethereum network.

This RS investigates the effectiveness of the new test suite in detecting most of the critical
faults? To do so, we will create various mutations to induce bugs at multiple locations. We
will use the approach and mutation operators proposed byWu et al. (2019a). In summary,
there are traditional mutation operators (Table 4) and Solidity specific ones (Table 5).
The specific mutation operators are grouped into four groups: (1) keyword operators, (2)
global variables and functions operators, (3) variable unit operators, and (4) error handling
operators. For instance, functions in a contract can be declared as view or pure. A ‘‘view’’
function only reads data and does not modify the contract’s state or emit events. ‘‘Pure’’
functions, on the other hand, are restricted from both reading from and modifying the
state, and can only call other ‘‘pure’’ functions. The function state keyword change (FSC)
operator can alter the behavior of a function by switching the ‘‘view’’ keyword to ‘‘pure,’’
thus changing its state. A sample function state keyword change (FSC) is shown in Table
6. Another example of a mutation operator is variable type keyword replacement (VTR).
Solidity is a statically and strongly typed language, meaning that the data type of each
variable must be specified. An integer overflow can result in the loss of the most significant
bits of the result, creating real-world security vulnerabilities. Table 7 provides an illustration
of a VTR mutant, which requires testers to take negative numbers and truncation into
account during testing. Further discussion about the approach, operators, and their impact
on the SC are presented in Wu et al. (2019a). After creating various mutations using both
general and Solidity specific operators for each test case, we compare the performance of
each algorithm in terms of its effectiveness in revealing faults using the following formula:

Effectiveness= [
DetectedFaults
TotalFaults

]∗100 (6)

Moreover, we calculate test case fault detection rate (DR) per unit of time as follows:

DR= [
DetectedFaults

Time(s)
] (7)

These metrics will demonstrate the effectiveness and efficiency of each algorithm in
choosing test cases that uncover a higher percentage of severe faults.
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Table 4 General mutation operators.

Operator Description

AOR Arithmetic Operator Replacement
AOI Arithmetic Operator Insertion
ROR Relational Operator Replacement
COR Conditional Operator Replacement
LOR Logical Operator Replacement
ASR Assignment Operator Replacement
SDL Statement Deletion
RVR Return Value Replacement
CSC Condition Statement Change

Table 5 Specific mutation operators.

Type Operator Description

Keyword FSC
FVC
DLR
VTR
PKD
DKD

Function State Keyword Change
Function Visibility Keyword Change
Data Location Keyword Replacement
Variable Type Keyword Replacement
Payable Keyword Deletion
Delete Keyword Deletion

Global Variable and Function GVC
MFR
AVR

Global Variable Change
Mathematical Functions Replacement
Address Variable Replacement

Variable Unit EUR
TUE

Ether Unit Replacement
Time Unit Replacement

Error Handling RSD
RSC
ASD
ASC

Require Statement Deletion
Require Statement Change
Assert Statement Deletion
Assert Statement Change

Table 6 Sample FSCmutant.

L1 function allowance(address account, address spender)
external pure returns (uint) {

L2 return allowances[account][spender]
L3 }
L1 function allowance(address account, address spender)

external view returns (uint) {
L2 return allowances[account][spender]
L3 {

RESULTS AND DISCUSSION
Results for RQ1: We evaluate the search performance of our NSGA-II based approach by
comparing it to Random Search (RS). This comparison with RS is standard in introducing
new search-based problem formulations to validate its efficacy. Our evaluation uses the
Hypervolume (HV) andGenerational Distance (GD) indicators, as described in ‘Evaluation
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Table 7 Sample VTRmutant.

L1 function transfer(address dst, uint256 amount) external
nonReentrant returns (bool) {

L2 return transferTokens(msg.sender, msg.sender, dst,
amount)== uint(Error.NO_ERROR)

L3 }
L1 function transfer(address dst, uint8 amount) external

nonReentrant returns (bool) {
L2 return transferTokens(msg.sender, msg.sender, dst,

amount)== uint(Error.NO_ERROR)
L3 }

Figure 5 Hypervolume (HV) indicator for all case studies, based on results from 31 independent algo-
rithm runs.

Full-size DOI: 10.7717/peerjcs.1587/fig-5

metrics’, over 31 independent runs for all case studies. The evaluation results are illustrated
in Figs. 5 and 6. Each boxplot displays the minimum and maximum values of the indicator
as the lower and upper whiskers respectively. The second and third quantiles are represented
by the lower and upper boxes, the median is represented by a horizontal line dividing the
boxes, and the mean value is marked by an x. It is evident that for the HV indicator, RS has
worse values compared to NSGA-II in all case studies. To validate these results, we applied
the Mann–WhitneyU test with a 95% significance level and found a statistically significant
difference between NSGA-II and RS for all case studies. For GD, the lower values, the more
likely the recommendation results are better. The results indicate that NSGA-II performs
well for all five case studies, while Random Search generally performs poorly (Fig. 6).
This supports the conclusion that an intelligent search method is necessary for obtaining
improved results in test case selection.

While the HV and GD metrics measure the efficiency of the search, we also
assess the solutions found by each algorithm in terms of coverage, execution time,
and cost. Table 8 summarizes the results. As discussed in Section ‘Pareto-optimal
Solutions’, our focus is on identifying non-dominated solutions. NSGA-II is designed
to optimize all objective values simultaneously, aiming for balanced results across
objectives. Therefore, it’s possible for RS to outperform in isolated single objectives.
However, upon reviewing the results, we observe that the results of RS for all three
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Figure 6 Generational distance (GD) indicator for all case studies, based on results from 31 indepen-
dent algorithm Runs.

Full-size DOI: 10.7717/peerjcs.1587/fig-6

objectives largely underperformed when compared to solutions from other algorithms.
The only exception is CS4, where RS managed to reduce the cost and time more than the
other two other algorithms.Worthmentioning that CS4 has the lowest number of test cases
to select from, in addition to having the lowest total execution cost. Therefore, RS might
have saved more time due to the fact that it does not require a great deal of overhead time
compared to the other two, and since the selection space is relatively small, the intelligent
algorithms did not have the chance to make up the difference.

However, to put that gain in perspective, we calculated two metrics as descripted in
‘Evaluation metrics’: (1) cost per coverage, and (2) cost per time saved. Tables 9 and 10
summarizes the results. From these tables, we see that RS under-performed in bothmetrics.
In other words, the RS algorithm failed to balance between cost saving and other important
metrics such as time and gas cost.

In conclusion, our use of NSGA-II in a multi-objective formulation has been proven to
be effective based on a compelling evidence (addresses RQ1).

Results for RQ2: A mono-objective approach involves using a single fitness function
composed of the three normalized objectives, producing a single refactoring solution
as its output. We compare mono-objective and multi-objective algorithms. We see in
Table 8 that former have better coverage in CS1, CS2, and CS4. Moreover, in CS5,
mono-objective algorithm reduced the cost more than its counterpart. Again, since we
are interested in all three objectives, we see in Table 9 that the multi-objective algorithm
performed better in all test cases in terms of the value for money. This results confirm
the fact that the three objectives we defined are actually conflicting and a multi-objective
algorithms is useful to find the best trade-off between them. In Table 10, however,
the mono-objective managed to outperform NSGA-II in one case study (CS5). Here,
because the mono-objective covered only 7.76% of the functions, the time and cost were
lower than other two algorithms. While this might be useful in some situations when
the budget or time is limited, but our formulation give no preference to any particular
objective and tries to maximize all in the same time. In fact, after close investigation
of the code fragments covered by the mono-objective algorithm, we realized that most
of the functions it covered were constructors or pure functions. The pure functions
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Table 8 Percentage of coverage, cost saving, and time saving for RS, mono-objective andmulti-
objective approaches. The bold values indicate the best results.

ID Metric Random search Mono-objective Multi-objectives

LC 44.1% 55.09% 54.6%
BC 50.24% 56.93% 49.5%
FC 51.16% 50.44% 54.39%
Cost −8.41% −6.11% −11.10%

CS1

Time −21.03% −13.29% −25.32%
LC 35.26% 90.88% 78.12%
BC 30% 69% 55%
FC 30% 90% 78%
Cost −37.58% −2.01% −60.39%

CS2

Time −51.05% −2.59% −46.35%
LC 12.85% 6.23% 12.92%
BC 8.87% 5.06% 8.29%
FC 12.51% 5.71% 13.08%
Cost −62.66% −44.89% −72.75%

CS3

Time −59.08% −51.80% −74.8%
LC 41.56% 74.21% 51.02%
BC 30% 56.47% 35.29%
FC 42.06% 73.1% 50.34%
Cost −40.96% 0.00% −30.09%

CS4

Time −63.70% 0.00% −36.29%
LC 15.85% 8.61% 17.43%
BC 9.71% 5.58% 11.87%
FC 9.38% 7.76% 20%
Cost −66.49% −79.62% −55.42%

CS5

Time −62.02% −76.68% −79.13%

Table 9 Cost per function coverage point. The bold values indicate the best results.

ID Random search Mono-objective Multi-objectives

CS1 2.22 1.86 1.63
CS2 2.08 1.08 0.68
CS3 3.27 9.65 0.64
CS4 1.08 1.36 1.07
CS5 3.57 2.62 2.22

are unable to read or change the storage used by the contract. They are employed
for computing, such as in mathematical or cryptographic functions. As a result, these
functions are less resource-intensive, requiring low gas and taking less time to execute.
By utilizing functions that do not consume substantial computational power and gas,
the mono-objective approach was able to achieve a better cost-to-time balance in the
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Table 10 Cost per time reduction point. The bold values indicate the best results.

ID Random search Mono-objective Multi-objectives

CS1 4.35 7.06 3.51
CS2 1.22 37.83 0.88
CS3 0.67 1.06 0.09
CS4 0.71 65.46 1.49
CS5 0.56 0.26 0.56

Table 11 Average fault revealing rate for various approaches in %.

ID # of Mutations All Mono-objective Multi-objectives

CS1 30 43.3 40.0 40.0
CS2 30 56.6 50.0 46.6
CS3 30 50.0 30.0 50.0
CS4 30 63.3 53.3 50.0
CS5 30 70.0 63.3 66.6

case study being considered (CS5). There is a notable high variance in the mono-
objective results. This discrepancy arises from the inherent nature of mono-
objective algorithms, which prioritize the optimization of a single objective func-
tion. This often leads to a limited exploration of the solution space, potentially gen-
erating solutions that are locally optimal for that particular objective. However,
these solutions may lack a comprehensive or optimal balance when multiple
objectives come into play. Consequently, while the outcomes may exhibit strong
performance individually, such as enhanced coverage, reduced costs, or time
savings, accomplishing the simultaneous fulfillment of two or more objectives
becomes more challenging within the context of mono-objective algorithms.

These results show that our multi-objective approach outperforms mono-objective
formulation, providing empirical proof. The conflicting nature of the three objectives
supports the need for a multi-objective formulation to balance them, thereby answering
RQ2.

Results for RQ3: An outdated test suite can lead to critical bugs and lower software
quality. It’s crucial to keep the test suite up-to-date with changing technology and
systems. This research question investigates the impact of reducing the test suite size
on bug detection. Thirty bugs were manually introduced in each case study and only code
fragments covered by the initial test suite (Table 3) were mutated using 15 general and 15
Solidity-specific mutation operators (cf. ‘Validation’). The findings will help determine the
effectiveness and efficiency of the optimized test suite. Table 11 summarizes the results.

As expected, running all test cases gave the best detection score since it achieves the
highest code coverage. We also found a clear correlation between higher coverage and
higher fault revealing capabilities. What came as a surprise, however, was the bug detection
score even when all test cases are executed. While some of these bugs has no effect on
the execution result, many of them affected the required gas and the execution time. This
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Figure 7 The number of faults detected per second for the algorithms.
Full-size DOI: 10.7717/peerjcs.1587/fig-7

shows that testers pay less attention to the problems caused by solidity characteristics
when writing test cases. As emphasized by Wu et al. (2019a), there should be more focus
on employing solidity specific mutation operators when designing test cases. An other
observation was the similar score for the traditional (re-test all) and our approach in CS3,
and how close they were in CS1 and CS5. The results demonstrate robust evidence of our
ability to achieve reasonable fault detection rates despite significant reductions in time and
cost. Note that in our formulation, all metrics were given equal importance. However, in
some practical applications, the coverage may be given more weight to reveal more bugs.

When analyzing the fault detection rate in Fig. 7, it becomes clear that the traditional
approach of running all test cases results in the lowest efficiency in terms of bugs detected
per second. This can be attributed to the large number of test cases, some of which may be
overlapping, redundant, or obsolete, which increasesmaintenance costwithout actual value.
In contrast, our proposed multi-objective formulation excels in terms of fault detection
rate, as it focuses on the most effective test cases while still maintaining an acceptable level
of coverage. This approach highlights the advantages of taking a multi-objective approach
to testing, as it leads to improved efficiency and fault detection capabilities while avoiding
the cost and limitations of running redundant or obsolete tests.

THREATS TO VALIDITY
There are few limitations and threats to validity concerning this study. The external validity
is concerned with the capacity to generalize the results. To minimize this risk, we used
multiple case studies, publicly available on State of the DApps and GitHub, of different
sizes, application domain, and design structure. To further validate our findings, it would
be useful to replicate the study using a broader range of programs and optimization
techniques. Replicating the study we conducted in this paper is part of our plan for
future work. Additionally, there may be optimization algorithms or approaches to the
test case selection problem that did not include in this study that could lead to improved
results. Currently, there is no known algorithm that is particularly effective for solving the
multi-objective test case selection problem (Yoo & Harman, 2010).
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Another concern is related to the quality of the test cases and mutations used. The test
code for all SC was obtained from the original project, and we understood that the quality
of the test cases could impact our experiment. For this reason, we opted to use the test
cases already established by the project developers to ensure the validity of our results.
Although we used existing tools that have been used and validated in wide number of
studies, there is no guarantee that the mutations realistically mimics real-world scenarios.
We used, however, our experience to manually validate the test cases and mutations to
minimize this risk.

The connection between what we observe and the theory lies within the scope of
construct validity. To evaluate the different methods, we utilized well-known metrics
like computational cost and code coverage. Additionally, we employed gas cost and fault
coverage as additional metrics to compare their performance. In the future, we aim to
explore different metrics and performance measures for a more comprehensive evaluation.
As there is limited research in the area of SC test case selection, we compared our work to
both a single-objective algorithm and the conventional retest-all approach.

There may be a threat to the internal validity of our method due to the stochastic nature
of the approach and parameter tuning. We conducted various independent simulations
for each problem instance to address this issue, to make sure that the multi-objective
formulation is unlikely to be the only factor that influences the data. To minimize the
conclusion validity threat, we used Mann–Whitney U -Test with 95% confidence level
(α = 5%) and employed a popular trial-and-error approach for evolutionary algorithms
(Eiben & Smit, 2011). We acknowledge the fact that selecting different parameters could
impact the outcome. To address this, wemay consider implementing an adaptive parameter
tuning strategy in the future. This would involve adjusting the values during the execution
to find the optimal combination for the best possible performance.

CONCLUSION
In this study, we presented a test case selection approach for Solidity SC, which takes into
account function coverage, execution time, and the gas cost required for executing the
test cases. Our evaluation, conducted on various case studies, demonstrated a significant
acceleration of the testing process, reduced monetary budget while still maintaining a
satisfactory level of testing performance. This study aims to assist practitioners who wish to
test their contracts in both test and live networks to ensure their BC applications perform
as expected in real-world scenarios.

For future work, we have identified several avenues to explore. First, we aim to consider
additional objectives, such as coverage of specific error-prone code fragments, security
vulnerabilities, or BC-specific faults, in the search process. This will aid the testing team in
managing their budget while still detecting the most severe faults that may arise due to the
nature of BC networks. Secondly, we plan to investigate the integration of test generation
and test selection techniques. This would enable us to automatically reduce the size of test
suites when they are generated, focusing the generation effort on cases that are not already
covered. Moreover, we plan to Investigating the use of machine learning techniques to
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prioritize test cases, after selecting them, in amore automated and efficient manner. Finally,
we plan to study the applicability of our approach to other smart contracts’ programming
languages, to determine the portability and generalizability of our approach.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Bader Alkhazi conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Amin Alipour conceived and designed the experiments, authored or reviewed drafts of
the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Bader Alkhazi, & Amin Alipour. (2023). Multi-objective test selection of smart
contract and blockchain applications. In PeerJ Computer Science. Zenodo. Available
at https://doi.org/10.5281/zenodo.8252898

REFERENCES
Ahmed AA, ShaheenM, Kosba E. 2012. Software testing suite prioritization using multi-

criteria fitness function. In: 2012 22nd international conference on computer theory
and applications (ICCTA). Piscataway: IEEE, 160–166.

Akca S, Rajan A, Peng C. 2019. SolAnalyser: a framework for analysing and testing
smart contracts. In: 2019 26th Asia-Pacific software engineering conference (APSEC).
Piscataway: IEEE, 482–489.

Alkhazi B, Abid C, Kessentini M, Leroy D,WimmerM. 2020a.Multi-criteria test cases
selection for model transformations. Automated Software Engineering 27(1):91–118
DOI 10.1007/s10515-020-00271-w.

Alkhazi B, Abid C, Kessentini M,WimmerM. 2020b. On the value of quality attributes
for refactoring ATL model transformations: a multi-objective approach. Information
and Software Technology 120:106243 DOI 10.1016/j.infsof.2019.106243.

Andesta E, Faghih F, Fooladgar M. 2020. Testing smart contracts gets smarter. In:
2020 10th international conference on computer and knowledge engineering (ICCKE).
Piscataway: IEEE, 405–412.

Alkhazi and Alipour (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1587 26/31

https://peerj.com
https://doi.org/10.5281/zenodo.8252898
http://dx.doi.org/10.1007/s10515-020-00271-w
http://dx.doi.org/10.1016/j.infsof.2019.106243
http://dx.doi.org/10.7717/peerj-cs.1587


Arcuri A, Fraser G. 2013. Parameter tuning or default values? An empirical investigation
in search-based software engineering. Empirical Software Engineering 18(3):594–623
DOI 10.1007/s10664-013-9249-9.

Biswas S, Mall R, SatpathyM, Sukumaran S. 2009. A model-based regression test
selection approach for embedded applications. ACM SIGSOFT Software Engineering
Notes 34(4):1–9.

Biswas S, Mall R, SatpathyM, Sukumaran S. 2011. Regression test selection techniques:
a survey. Informatica 35(3):289–321.

Branke J, Deb K, Dierolf H, OsswaldM. 2004. Finding knees in multi-objective opti-
mization. In: International conference on parallel problem solving from nature. Cham:
Springer, 722–731.

Brent L, Jurisevic A, KongM, Liu E, Gauthier F, Gramoli V, Holz R, Scholz B. 2018.
Vandal: a scalable security analysis framework for smart contracts. ArXiv preprint.
arXiv:1809.03981.

Buterin V. 2014. A next-generation smart contract and decentralized application
platform.White Paper 3(37).

Chainalysis. 2022. Vulnerabilities in cross-chain bridge protocols emerge as top security
risk. Available at https://blog.chainalysis.com/reports/cross-chain-bridge-hacks-2022/.

Chen T, Li X, Luo X, Zhang X. 2017. Under-optimized smart contracts devour your
money. In: 2017 IEEE 24th international conference on software analysis, evolution and
reengineering (SANER). Piscataway: IEEE, 442–446.

Dannen C. 2017. Introducing Eethereum and solidity. Vol. 318. Cham: Springer.
de Souza LS, Prudêncio RB, Barros FdA. 2014. A hybrid binary multi-objective particle

swarm optimization with local search for test case selection. In: Proceedings of the
Brazilian conference on intelligent systems. Piscataway: IEEE, 414–419.

Driessen S, Di Nucci D, Monsieur G, HeuvelW-JVD. 2021. Automated test-case
generation for solidity smart contracts: the AGSolT approach and its evaluation.
ArXiv preprint. arXiv:2102.08864.

Eiben AE, Smit SK. 2011. Parameter tuning for configuring and analyzing evo-
lutionary algorithms. Swarm and Evolutionary Computation 1(1):19–31
DOI 10.1016/j.swevo.2011.02.001.

Elbaum S, Malishevsky AG, Rothermel G. 2002. Test case prioritization: a family
of empirical studies. IEEE Transactions on Software Engineering 28(2):159–182
DOI 10.1109/32.988497.

Fischer K, Raji F, Chruscicki A. 1981. A methodology for retesting modified software. In:
Proceedings of the national telecommunications conference. 1–6.

Fischer KF. 1977. A test case selection method for the validation of software maintenance
modifications. In: Proceedings of 1st international computer software and applications
conference (COMPSAC). 421–426.
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