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ABSTRACT
The leading cause of vision loss globally is diabetic retinopathy. Researchers are
making great efforts to automatically detect and diagnose correctly diabetic
retinopathy. Diabetic retinopathy includes five stages: no diabetic retinopathy, mild
diabetic retinopathy, moderate diabetic retinopathy, severe diabetic retinopathy and
proliferative diabetic retinopathy. Recent studies have offered several multi-tasking
deep learning models to detect and assess the level of diabetic retinopathy. However,
the explanation for the assessment of disease severity of these models is limited, and
only stops at showing lesions through images. These studies have not explained on
what basis the appraisal of disease severity is based. In this article, we present a
system for assessing and interpreting the five stages of diabetic retinopathy. The
proposed system is built from internal models including a deep learning model that
detects lesions and an explanatory model that assesses disease stage. The deep
learning model that detects lesions uses the Mask R-CNN deep learning network to
specify the location and shape of the lesion and classify the lesion types. This model is
a combination of two networks: one used to detect hemorrhagic and exudative
lesions, and one used to detect vascular lesions like aneurysm and proliferation. The
explanatory model appraises disease severity based on the severity of each type of
lesion and the association between types. The severity of the disease will be decided
by the model based on the number of lesions, the density and the area of the lesions.
The experimental results on real-world datasets show that our proposed method
achieves high accuracy of assessing five stages of diabetic retinopathy comparable to
existing state-of-the-art methods and is capable of explaining the causes of disease
severity.
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Learning, Data Science
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INTRODUCTION
Diabetic retinopathy (DR), a complication of diabetes, can cause damage to the retina, the
crucial part of the eye. Specifically, the damage caused to the retina by diabetes is known as
“diabetic retinopathy”. Diabetic retinopathy is a common complication of diabetes that
occurs when blood sugar levels are poorly controlled over a long period of time. The
negative effects of high blood sugar on the tiny blood vessels (microvasculature) in the
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retina lead to abnormal changes in the retina. It is one of the most frequent diseases in the
elderly, damaging the retina by diabetes, and one of the leading causes of blindness
(Trivino et al., 2018; Jonas et al., 2013; Shenavarmasouleh & Arabnia, 2021; Vincent et al.,
2010). The longer a person has diabetes, the higher the risk of developing diabetic
retinopathy. According to statistics, diabetic retinopathy accounts for 12% of all new
blindness cases, each year in the United States. Diabetic retinopathy is also the leading
cause of blindness for patients from 20 to 64 years old, especially the elderly (Li et al., 2020;
Wang et al., 2021; Lakshminarayanan et al., 2021). If not detected and treated promptly, it
will cause severe damage to the fundus such as macular edema, vitreous hemorrhage,
retinal hemorrhage, etc. leading to blindness (Ding & Wong, 2012; Stevens et al., 2013).

Diabetic retinopathy causes a number of significant conditions. Background
retinopathy’s symptoms include forms of the retinal capillary aneurysm, slight bleeding,
stagnation of secretions in the retina, and retinal edema. The macular disease has forms of
macular edema, cyst formation, or ischemic injury. The pre-proliferative disease forms
caused by the abnormal blood supply to the retina, leading to ischemic lesions,
hemorrhages, exudates, and retinal edema. Proliferative pathology has forms caused by the
proliferation of abnormal neovascularization, causing continuous recurrent bleeding,
causing organization and pulling of retinal fluid. The consequences are severe damage to
the retina, and tear or detachment of the retina leading to blindness.

These pathologies are represented by the types of lesions that can be observed on fundus
images. Exudate includes hard exudates and soft exudates. Hard exudates are caused by the
rupture of retinal blood vessels, composed of blood fluid, lipids, and small particles. The
discharge is yellowish-white with clear margins, which makes the retina thicken markedly.
Soft exudate, also known as cottony discharge/cotton spot, is an edema of the nerve fibers
caused by capillary ischemia in the nerve fiber layers. The shape is smooth white spots with
indistinct margins, usually located in about three disc diameters where the nerve fiber layer
is thickest and absent in the center of the macula because this area is supplied with blood
by the choroidal system. Hemorrhage includes dot and spotted hemorrhages and flame-
shaped hemorrhages. Dot and spotted hemorrhages are small, circular hemorrhages
originating in the deep anterior venous capillaries. They have small round shapes because
they are located in the inner nucleus and outer plexus layer, and are therefore limited by
the surrounding structures. Flame-shaped hemorrhages are superficial retinal
hemorrhages usually found in the nerve fiber layer, especially near the optic disc. Because
they are located in the layer of striped nerve fibers, they have a flame shape. An aneurysm is
an area of local varicose veins with vessel wall thinning. The most obvious sign is the
swollen veins. New Vessels Elsewhere are new vessels arising from and beyond the optic
disc due to the ischemia from chronically obstructed capillaries. Optic-disc new vessels are
neovascularization characterized by coils of blood vessels that develop on the optic disc or
within 1 diameter of the optic disc. To distinguish optic disc neovascularization from
normal small vessels, it is important to remember that normal vessels are always
progressively smaller and do not rotate back towards the optic disc while
neovascularization always does so, which can form a plexus in the loop with the top of the
loop wider than the background. Extraoptic new vessels are located outside the optic disc
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neovascularization site, manifesting as a wheel-shaped network of small vessels, usually
arising from the retinal veins or capillaries. Cardiac fluorescein angiography showed
marked drug leakage, while retinal microvascular abnormalities showed no drug leakage.
The lesion types of diabetic retinopathy are shown in Fig. 1.

In this article, we will assess the severity of the disease based on the above four types of
lesions at five levels as follows: 0—No DR, 1—Mild DR, 2—Moderate DR, 3—Severe DR,
and 4—Proliferate DR. In the United Kingdom, the Diabetic Eye Screening Program
follows five-stage screening criteria to determine the stages of DR. Stage No DR indicates
the absence of any signs of diabetic retinopathy. There are no abnormalities observed in
the retinal blood vessels, and there are no clinical manifestations of the disease. In this Mild
DR stage, there are minor abnormalities observed in the retinal blood vessels. These may
include microaneurysms (small swellings of the blood vessels), leakage of fluid from blood
vessels, and the presence of hard exudates (yellowish deposits). However, these
abnormalities do not significantly affect visual acuity. The Moderate DR stage involves a
further increase in abnormalities in the retinal blood vessels. The small blood vessels may
become blocked or distorted, leading to the deterioration of the retinal area. Retinal
exudates and hemorrhages may be present. Mild visual impairment can occur at this stage.
At this Severe DR stage, there is a significant worsening of retinal deterioration. The retinal
blood vessels continue to deteriorate, and there may be blockages or distortions. Visual
impairment can be more pronounced at this stage. Proliferative DR is the most severe stage
of diabetic retinopathy. It is characterized by the growth of abnormal blood vessels in the
retina, known as neovascularization. These new blood vessels are fragile and can lead to
bleeding within the retina. Fibrous membranes can form, pulling the retina away from its
underlying structure and causing severe visual disturbances and even vision loss. By UK
standards, two images will be required for each eye, one centered on the optic disc, and the
other centered on the macular. However, in the world, people often use one image for one

Figure 1 Types of lesions of diabetic retinopathy. Full-size DOI: 10.7717/peerj-cs.1585/fig-1
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eye containing both optic disc and optic disc to assess the extent of the damage. The set of
images we use will be world standard. The five severity levels of DR are shown in Fig. 2.
The levels from 1 to 3 include the following types of lesions: exudative, hemorrhagic, and
aneurysm. We found that at these three levels, the larger the number and area of damaged
areas are, the higher the level of damage will be determined. In level 4, new proliferative
blood vessels or a combination of other very severe lesions occupying a large area may
appear.

A major problem with DR detection involves the difficulty of identifying symptoms in
the early stages due to the similarity between images of no DR, mild DR, and sometimes
moderate DR (Porwal et al., 2020; Shenavarmasouleh et al., 2020). In particular, detecting
current DR requires a clinician well trained to manually assess digital color retinal images.
DR is determined by locating lesions associated with diabetic vascular abnormalities. This
current solution works, but it is time-consuming and highly dependent on the expertise of
the trained photo reader. With the same picture, one doctor can conclude that it is a 3—DR
severe state, while another doctor might think that it is only a mild 1—DR state. It is clear
that differences in individual judgments are inevitable. This can cause noise during later
model training and affect the results. To solve this problem, over the past few years, much
research has been carried out to develop an automated solution to detect and evaluate DR

Figure 2 Five levels of DR severity: (A) No DR, (B) Mid DR, (C) moderate DR, (D) Severe DR, (E)
Proliferate DR. Full-size DOI: 10.7717/peerj-cs.1585/fig-2
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levels (Muhammed & Toman, 2020;Wang & Yang, 2018; Trivino et al., 2018; Kaggle, 2019;
Ricci & Perfetti, 2007; Leahy, O’Brien & Dainty, 2012; Shenavarmasouleh & Arabnia,
2021).

In this article, we focus on solving two problems. First, we detect and quantify the lesion
types of the disease to have a basis to assess the severity of DR, basing on the number of
lesions of each type, and the ratio of each lesion type (calculated by the area of the lesion in
the retinal area). To solve the problem of detecting and quantifying the lesion types of the
disease, we found that the above four types of the lesion can be divided into two categories
exudative lesions (hemorrhagic, exudative lesions), and vascular lesions (aneurysmal,
proliferative lesions). In order to increase each type’s clarity, we had to use two different
image preprocessing methods, therefore we also used two sub-nets to detect the five types
of lesions (hemorrhage, hard exudate, soft exudate, aneurysm, proliferation). The first
sub-net was used to detect hemorrhage, hard exudate, and soft exudate while the second
one was used to detect aneurysm and proliferation. Second, we provide an explanatory
model to assess the severity of the disease. In the explanatory model, we use a decision tree
to classify fundus images into five levels basing on features found after the quantification of
lesion types.

The rest of the article is arranged as follows: the Related research section describes
current studies on DR detection and assessment; the Proposed method section describes
the data and methods for measuring DR severity; the Experiment and results section
describes experimental results; the Conclusion section gives the conclusion.

RELATED RESEARCH
Due to the danger of DR and the increasing number of patients, there have been many
studies to solve the problem of detecting and assessing the degree of DR. These studies can
be categorized as follows.

Traditional methods
These methods usually let the computer simulate the human way, using the characteristics
of each type of lesion (also called features) to automatically detect them for DR screening
and classification.

Some typical vascular segmentation and detection methods (Marín et al., 2010;Waly &
El-Hossiny, 2020; Soares et al., 2006; Smailagic et al., 2019; Ronneberger, Fischer & Brox,
2015) are outlined below. Marín et al. (2010), use 7-D feature vectors and classify each
pixel into two classes as vascular and non-vascular, which provides a clear picture of the
vascular structure of the fundus image under different light and noise conditions. Soares
et al. (2006) based on the pixel’s feature vector, segmentations by classifying each image
pixel as vessel or non-vessel. Feature vectors are two-dimensional Gabor wavelet transform
responses taken at multiple scales and the pixel’s intensity. The Gabor wavelet is capable of
tuning to specific frequencies, allowing noise filtering and vessel enhancement in a single
step. They use a Bayesian classifier with conditional probability density functions of the
class described as a Gaussian mixture, making it capable of fast classifiers, and able to
model complex decision surfaces. The probability distribution is estimated based on the
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training set of manually labeled pixels. They used two publicly available databases, DRIVE
and STARE, with manually labeled images, to evaluate method performance (Soares et al.,
2006). Smailagic et al. (2019) improve the accuracy of diabetic retinopathy detection by
implementing color correction and shadow removal as a pre-processing stage from the
orbital image of the eye. They propose a shadow removal class that allows us to learn
preprocessing functionality for a particular task (Smailagic et al., 2019). Ronneberger,
Fischer & Brox (2015) presents an architecture consisting of a contracting path to capture
context and a symmetric expanding path that enables precise localization. This is a
network and training strategy that relies on the strong use of data augmentation to use the
available annotated samples (Ronneberger, Fischer & Brox, 2015). Waly & El-Hossiny
(2020) use the Gobar filter to identify blood vessels in two free retinal databases, STARE
and DRIVE.

There are a number of fundus image preprocessing methods (Foracchia, Grisan &
Ruggeri, 2005; Leahy, O’Brien & Dainty, 2012; Xiong, Li & Xu, 2017; Cheung, Mitchell &
Wong, 2010; Klein et al., 1984) used to make the lesions that can be identified by the naked
eye clearer, while also highlight the lesions’s features in machine learning. Some prominent
examples include Smailagic et al. (2019) using U-net architecture to create shadowless
images (Leahy, O’Brien & Dainty, 2012); Foracchia, Grisan & Ruggeri (2005) normalizing
the brightness and increasing image contrast by removing foreground and background
pixels using a Gaussian model (Xiong, Li & Xu, 2017); Leahy, O’Brien & Dainty (2012)
utilizing Laplace interpolation and a multiplicative illumination model to produce sharp
images (Cheung, Mitchell & Wong, 2010); Xiong, Li & Xu (2017) proposing an image
formation model related to scattering and background illumination being proposed and
inverted to obtain well-illuminated images (Klein et al., 1984).

Deep learning methods
Recently, convolutional neural networks (CNN) have been applied with great success in
the field of computer vision. This method has shown effectiveness superior to the
traditional techniques.

Zhou et al. (2020) establish three benchmark tasks for evaluation are DR lesion
segmentation, DR grading by joint classification and segmentation, and transfer learning
for ocular multi-disease identification. Moreover, a novel inductive transfer learning
method is introduced for the third task. They construct a large fine-grained annotated DR
dataset containing 2,842 images (FGADR) (Zhou et al., 2020). Muhammed & Toman
(2020) propose work that includes visual enhancement in the visual image in the
preprocessing stage, after that the CNNmodel is trained to be able to recognize and classify
the stage, in order to diagnose the unhealthy and healthy retina image. Three public
datasets DrimDB, DiaretDB0, and DiaretDB1 were used in practical testing. The authors
used Matlab-R2019a, a deep learning toolbox, and a deep network designer to design and
train a deep learning network (Muhammed & Toman, 2020). Wang & Yang (2018)
proposes a deep-learning method to detect interpretable diabetic retinopathy. The intuitive
interpretability of the proposed method is achieved by adding a regression activation map
(RAM) after the global average aggregation layer of the integrated networks. With RAM,
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the proposed model can segment the distinct regions of the retinal images to display
specific regions of interest in terms of severity (Wang & Yang, 2018). Toledo-Cortés et al.
(2020) propose a combined deep learning-Gaussian procedural approach to diagnose DR
and quantify the uncertainty presented. This method combines the representational power
of deep learning, with the ability to generalize from small datasets of Gaussian process
models (Toledo-Cortés et al., 2020). This method combines deep learning’s representative
power, with the ability to generalize from small datasets of Gaussian process models. The
result shows that the quantification of the prediction’s uncertainty has improved the
interpretability of the method as a diagnostic supporting tool. Shenavarmasouleh et al.
(2020) build a DRDr II system based on the success of the previous version DRDr
(Shenavarmasouleh & Arabnia, 2021). DRDr II is trained to detect and segment for the two
types of exudative and microvascular lesions (hemorrhagic and proliferative). They use
Kaggle’s 2019 dataset with over thirty-five thousand images. The authors are able to
predict the disease’s severity with more than 92% accuracy.

However, these models’ explanation for the assessment of disease severity is still limited,
only showing lesions through images. These studies have not provided an explanation
about on what basis the assessment of disease severity was based. In this article, we will
focus on solving this problem.

PROPOSED METHOD
Data selection
In recent studies on DR, several databases have been built, such as EyePACS, APTOS 2019,
MESSIDOR, DRIVE, STARE and DIARETDB. In this study, we are using two Kaggle’s
datasets, EyePACS (Eye Picture Archive Communication System; https://www.eyepacs.
com/) and APTOS 2019 (Asia Pacific Tele-Ophthalmology Society, East Melbourne, VIC,
Australia; https://www.kaggle.com/c/aptos2019-blindness-detection). These two datasets
have a relatively large number of images and are already classified into the five stated
degrees of severity. The statistics of the two datasets are shown in Table 1.

It can be seen that both datasets have similar resolutions, but the data distribution is
severely imbalanced. There are a lot of non-DR images, while the number of heavy DR and
proliferative DR images is very small. The number of severe DR and proliferate DR images
each is just over 1,000 images. We therefore combine these two datasets and choose 5,000

Table 1 Statistics of two image datasets APTOS 2019 and EyePACS.

APTOS 2019 EyePACS Total

Total image number 3.662 35.126 38.788

No DR 1.805 25.810 27.615

Mild DR 370 2.443 2.813

Moderate DR 999 5.292 6.291

Severe DR 193 873 1.066

Proliferate DR 295 708 1.003

Resolution 3,216 � 2,136 3,888 � 2,951
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images (1,000 images for each category). This new dataset was re-evaluated by a panel of
five ophthalmologists before being put into use. Then using these 5,000 images, we
cooperated with ophthalmologists to segment the lesion area to produce training data and
test the model. From this dataset, 4,000 images will be selected for the training set, and
1,000 images for the testing set.

Data preprocessing and enhancement
Before training the model, there are a few key preprocessing steps that can help the model
learn better. The first is to crop the image close to the edge of the retina, removing some of
the unnecessary black backgrounds that don’t help train the model. The images were read
and converted to grayscale to produce binary images represented by two values 0 (black)
and 1 (white). Then the bounding rectangle for the object is found. The images after this
step are resized to 1,024 × 1,024. At this size, the image is not too small to clearly observe
the details of the damaged areas and help the model to be trained faster. The second is to
increase the image contrast in order to highlight details that are hard to see with the naked
eye such as blood vessels, yellow and green “mold” streaks or black spots around the retina
boundary, etc. An example is shown in Fig. 3. It can be seen that after performing the above
two preprocessing steps, the contours on the retinal image are shown more clearly. Third,
because the data is not much, we apply some processing steps to data augmentation such as
flipping horizontally, rotating the image, increasing the contrast and the brightness.

In addition, while conducting the experiments we found that it was difficult to identify
vascular lesions (aneurysm, proliferation) since the blood vessels were often blurred and
not clear, and the proliferative vessels were often very small. To overcome this problem, we
used an auto-encoding model for vascular segmentation. This method was inspired by
Vincent et al. (2010) who used auto-encoders to denoise (Adem, 2018) and then applied by
Fan & Mo (2016) to segment blood vessels (Tan et al., 2017).

The pre-segmented image are converted to the green channel to reduce computation
and help the vessels achieving high contrast (Guo et al., 2019). Figure 4 is an example of
retinal vascular segmentation processing.

Proposed method
Diabetic retinopathy progresses through stages from low to high severity. The assessment
of these stages is currently being conducted manually through the doctors’ intuition.
Therefore, we propose a quantification-based lesion classifying method based on the
characteristics of each type of lesion and the combination of those types of lesions together
(Fig. 5).

The auto-encoding model for vascular segmentation is used to segment blood vessels in
the retinal images to easily observe aneurysm or proliferative lesions.

The deep learning model for lesion detection, including two subnets. The first subnet is
a mask R-CNN to detect hemorrhagic and exudative lesions, which is used to detect and
segment retinal lesions such as hemorrhage and exudate and the characteristics of each
lesion. The second one is a mask R-CNN to detect vascular lesions, which is used to detect
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and segment retinal lesions such as aneurysms, proliferation and the characteristics of each
lesion.

An explanatory and DR lesson assessing model is used to classify and explain DR
lesions.

Auto-encoding model of vascular segmentation

Before evaluating the aneurysm and proliferative lesion, we performed vascular
segmentation to produce vascular images that were clear and easy to access. There have
been several studies on auto-encoding models for denoising (Vincent et al., 2010) and for

Figure 3 Image before and after contrast enhancement: (A) Image before processing, (B) image with
increased contrast. Full-size DOI: 10.7717/peerj-cs.1585/fig-3
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vascular segmentation (Fan & Mo, 2016) which have proven effective. Based on those
studies, we designed the following vascular segmentation model:

Encoding parameters in vascular segmentation model training are shown in Table 2.
Decoding parameters in vascular segmentation model training are shown in Table 3.
The detailed setup parameters of the auto-encoding model are shown in Tables 2 and 3.

Deep learning model for lesion detection
The Mask R-CNN (Ren et al., 2015), the deep learning model for lesion detection, is built
on Faster R-CNN (Toledo-Cortés et al., 2020; Abràmoff, Garvin & Sonka, 2010). In
addition to returning the label and bounding box of each object, it will also add object
masks to the image.

To train the model, clinicians will have to conduct localization of lesions on the selected
set of images as training data. The shape of the lesions is very diverse, it is not possible to
use a rectangle to close the area to the object. Therefore we will use polygons to represent
the object container. Clinicians will localize as close to the edge of the lesion as possible. In
the case of small and dense lesions (usually hard exudative lesions) we will treat the whole
area as one large lesion.

The model will first use ConvNet, ResNet101 architecture (Backbone), to extract
features from the input image Table 4. They will be passed through a region proposal

Figure 4 Example of retinal vascular segmentation processing: (A) Original image; (B) green channel
of the original image; (C) segmented image. Full-size DOI: 10.7717/peerj-cs.1585/fig-4
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network (RPN) which will then return bounding boxes of different sizes at regions that
may have objects. A layer of Roi pooling layer will be added in order to aggregate all
bounding boxes of the same object with different sizes to the same size. Finally, they will be
passed to the fully connected layer (FC layers) branch and the mask branch for
classification; and the output is a bounding box and mask for each object.

Characteristics of lesions

From the mask object obtained after using the Mask R-CNN model, we analyzed and
extracted several features that affect the assessment of lesion severity. These characteristics
were calculated with each lesion type, including number of hemorrhagic lesions, ratio of
hemorrhagic lesions, number of hard exudative lesions, ratio of hard exudative lesions,
number of soft exudative lesions, ratio of soft exudate lesions, number of aneurysmal
lesions, ratio of aneurysmal lesions, number of proliferative lesions, and ratio of

Figure 5 Overview of the proposed method. Full-size DOI: 10.7717/peerj-cs.1585/fig-5
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Table 3 Decoding parameters in vascular segmentation model training.

Layer Parameter

Conv2D Filters 64

Kernel_size (3, 3)

Activation ReLU

Padding Same

UpSampling2D Size (2, 2)

Conv2D Filters 64

Kernel_size (3, 3)

Activation ReLU

Padding Same

UpSampling2D Size (2, 2)

Conv2D Filters 1

Kernel_size (3, 3)

Activation Sigmoid

Padding Same

Table 4 Training parameters of the lesion detection model.

MASK R-CNN

BACKBONE ResNet101

FORMAT Coco

BATCH_SIZE 4

NUM_CLASSES Network 1 3 (HE, EX, SE)

Network 2 2 (AN, NV)

AUGMENTATION TRUE

NUM_EPOCHS 300

Table 2 Encoding parameters in vascular segmentation model training.

Layer Parameter

Conv2D Filters 64

Kernel_size (3, 3)

Activation ReLU

Padding Same

MaxPooling2D Pool_size (3, 3)

Padding Same

Conv2D Filters 64

Kernel_size (3, 3)

Activation ReLU

Padding Same

MaxPooling2D Pool_size (3, 3)

Padding Same
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proliferative lesions. As for aneurysmal lesion, we were only interested in the number of
lesions, not the ratio, since this type of lesion has very small area of damage. Specifically,
the results after running the lesion detection model on a fundus image will obtain a zoned
image labeled with the lesion and the array of the segmentation’s output. The array of the
segmentation’s output includes detected objects’ arrays, objects’ corresponding class_ids’
arrays, segmentation masks’ arrays, and the output’s array. From the class_ids’ array of the
subjects, we counted the number of each lesion type. From the segmentation masks array,
we get the list of point coordinates that make up the image mask to calculate the mask area.
Table 5 is some of the terms used.

Ratio of lesions for each type is calculated by dividing the total area of the lesion of that
type to the retinal area.

Tt ¼
Xnt

i¼0

Tt
i (1)

where:

Tt
i ¼ Sti=S (2)

where:

Sti ¼
X

ðxj � yjþ1Þ � ðyj � xjþ1Þ
���

���=2 (3)

Each object’s area of damage is calculated using vertices coordinates based on a list of
coordinates of the polygon’s vertices. With (xj, yj) is the coordinates of vertex j, and the last
vertex will be connected to the first vertex to create a polygon xnþ1 ! x1; ynþ1 ! y1.

In reality, the calculation of the retinal area has problems with images taken as follows.
(1) There are images that are missing the upper or lower parts like Fig. 6.
In order to solve this problem, we considered the retina to be a perfect circle, and the

retinal area is equal to the area of the circle surrounding it S = R2 � π, where R is the radius
of the circle, which is also equal to 1/2 the width of image after being trimmed in the
preprocessing step.

Table 5 Some terms used

Terms Describe

t Type of lesion such as hemorrhagic plaque, soft exudate, hard exudate, aneurysm, proliferative

nt The number of lesions of each type are integers greater than or equal to 0

Tt Total injury rate t

Ti
t Ratio of the ith lesion object of type t

S Area of retina

Sit Lesion area of the ith lesion object, type t
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(2) There are images with different resolution. Because the dataset is merged from two
different database, the images have different resolution. Therefore, we will not use directly
the value of the image area, instead we will convert them to the ratio of lesion object.

Vulnerability assessment model of DR & explanation
For the convenience of presentation, the following in Table 6 abbreviations will be used in
the article.

In this article, we use the decision tree to evaluate and interpret the lesion severity, based
on nine properties including four lesion ratios R_HE, R_EX, R_SE, R_NV, and five lesion
numbers N_HE, N_EX, N_SE, N_AN, N_NV to classify into five categories 0—No DR,
1—Mild DR, 2—Moderate DR, 3—Severe DR, 4—Proliferate DR. Which, the values of the
lesion attributes are calculated as follows:

R HE ¼ THE ¼
XnHE

i¼0
THE
i ¼

XnHE

i¼0
SHEi =S

R EX ¼ TEX ¼
XnEX

i¼0
TEX
i ¼

XnEX

i¼0
SEXi =S

Figure 6 Problem with retinal images: (A) Full image; (B) image with missing parts.
Full-size DOI: 10.7717/peerj-cs.1585/fig-6
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R SE ¼ TSE ¼
XnSE

i¼0
TSE
i ¼

XnSE

i¼0
SSEi =S

R NV ¼ TNV ¼
XnNV

i¼0
TNV
i ¼

XnNV

i¼0
SNVi =S

N HE ¼ nHE

N EX ¼ nEX

N SE ¼ nSE

N AN ¼ nAN

N NV ¼ nNV

In order to evaluate and interpret the DR severity, we use decision tree because of its
ease of understanding, without the need for additional tools and considerable computing
power (La Malfa et al., 2021). First, decision trees has a graphical structure. Second,
decision trees often contain a subset of attributes, helping the users to focus on analyzing
the most relevant ones. Third, the hierarchical tree structure provides information about
the relative importance of different attributes (Freitas, 2014). We used C&R Tree, CHAID,
Tree-AS, Quest algorithms on the dataset of 5,000 images. Among which, the C&R Tree
model produced the most accurate results, and the results are shown in Table 7. Therefore,
for the explanatory model, we used the Decision Tree-Classification and Regression Trees
(CART) algorithm.

After using the CART Decision Tree, we received the following rules shown in Fig. 7.
For convenience, the rules found are summarized in Table 8. For example, the rule that
determine that the severity degree is Moderate DR R_SE=<0.18 & R_HE>0.052 &
R_HE=<0.171 can be interpreted as: If the ratio of soft exudate lesions is less than or equal
18% and the ratio of hemorrhage lesions is greater than 5.2% and the ratio of hemorrhage
lesions is less than or equal 17.1%, the severity is moderate.

EXPERIMENT AND RESULTS
The experiments reported in this article were run on a computer equipped with an
NVIDIA Quadro GTX 1080 GPU. The computer has an Intel� CoreTM i7 processor with
four cores, eight 2.2 GHz threads, and 32 GB of RAM. The software packages used to

Table 6 Abbreviations used in the article.

Acronyms Explain Acronyms Explain

EXS Exudate N_EX Number of hard exudative lesions

EX Hard exudates R_EX Ratio of hard exudative lesions

SE Soft exudate N_SE Number of soft exudative lesions

HE Hemorrhage R_SE Ratio of soft exudate lesions

AN Aneurysm N_AN Number of aneurysmal lesions

NV New vessels elsewhere R_AN Ratio of aneurysmal lesions

N_HE Number of hemorrhagic lesions N_NV Number of proliferative lesions

R_HE Ratio of hemorrhagic lesions R_NV Ratio of proliferative lesions
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Figure 7 Decision tree to determine the extent of damage to the fundus image.
Full-size DOI: 10.7717/peerj-cs.1585/fig-7

Table 8 Several rules determining DR severity.

DR severity Rule Rule confidence (%)

No DR R_SE=<0.18 & R_HE=<0.052 & N_SE=0 95.125

Mild DR R_SE=<0.18 & R_HE=<0.052 & N_SE=[1, …, 15] & R_SE=<0.111 99.396

Moderate DR R_SE=<0.18 & R_HE=<0.052 & N_SE=[1, …, 15] & R_SE>0.111 95.238

R_SE=<0.18 & R_HE>0.052 & R_HE=<0.171 99.700

Severe DR R_SE=<0.18 & R_HE>=0.052 & R_HE>0.171 58.824

R_SE>0.18 & N_NV=0 & R_SE=<0.342 & R_HE=<0.343 92.381

Proliferate DR R_SE>0.18 & N_NV=[1, 2, 3] 100.000

R_SE>0.18 & N_NV=0 & R_SE>0.342 100.000

R_SE>0.18 & N_NV=0 & R_SE=<0.342 & R_HE>0.343 100.000

Table 7 The accuracy of the explanatory models.

Model Accuracy (%) Number of fields used

1 C&R Tree 96.24 8

2 Tree-AS 92.18 6

3 CHAID 92.10 5

4 Quest 87.44 8

Table 9 Calculated scores for each class.

Lesion type Score

Precision Recall F1 Accuracy

HM 0.96 0.98 0.97 0.94

HE 0.98 0.95 0.96 0.93

SE 0.97 0.95 0.96 0.92

AN 0.97 0.98 0.97 0.95

NV 0.97 1 0.98 0.97

Average: 0.942
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deploy the models are Python 3.8 along with deep learning libraries like Keras, Tensorflow,
OpenCV, Pixellib.

Because the number of lesions of each lesion type are different on each image, there are
common lesion types such as hemorrhage, hard exudate, soft exudate while the lesion
types like aneurysm and proliferation are rarer. Therefore, in order to avoid skewed data,
we evaluated each lesion type separately. For each lesion type, we randomly selected from

Figure 8 Performance of subnets. Full-size DOI: 10.7717/peerj-cs.1585/fig-8
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Table 10 Comparison with other lesion detecting methods.

Reference Task Dataset AUC Sensitivity (SE) Specificity (SP)

Van Grinsven et al. (2016) HE Kaggle 89.4 83.7 85.1

Van Grinsven et al. (2016) HE Messidor 97.2 91.9 91.4

Adem (2018) Exudates DiaretDB0 – 100 98.41

Adem (2018) Exudates DrimDB – 100 98.44

Tan et al. (2017) EX Cleopatra – 87.58 98.73

Tan et al. (2017) HE Cleopatra – 62.57 98.93

Tan et al. (2017) MA Cleopatra – 46.06 97.99

Guo et al. (2019) EX DDR 55.46 – –

Guo et al. (2019) SE DDR 26.48 – –

Guo et al. (2019) HE DDR 35.86 – –

Guo et al. (2019) MA DDR 10.52 – –

Abràmoff et al. (2010) MA, HE – – 47.7 90

Giancardo et al. (2011) MA – – 50 >10 false positive per image

Niemeijer et al. (2009) MA – – 60 8 false positive per image

Mizutani et al. (2009) MA – – 65 27 false positive per image

Quellec et al. (2008) MA – – 90.24 89.75

Walter et al. (2007) MA – – 88.50 2.13 false positive per image

Huang, Yan & Aviyente (2007) MA – – 68 >40 false positive per image

Niemeijer et al. (2007) Exudates – – 95 88

Philip et al. (2007) MA, HE – – 97.90 67.40

Fleming et al. (2006) MA – – 85.40 83.10

Quellec et al. (2006) MA – – 87.90 96.20

Pallawala et al. (2005) MA – – 93 NA

Serrano, Acha & Revuelto (2004) MA – – 90.72 82.35

Niemeijer et al. (2005) MA, HE – – 100 87

Larsen et al. (2003) MA, HE – – 96.70 71.40

Rapantzikos, Zervakis & Balas (2003) Drusem – – 98.80 99.31

Sinthanayothin et al. (2002) MA, HE – – 77.50 88.70

Hsu et al. (2001) EXS – – 100 74

Yang et al. (2001) MA – – 90 80

Wang et al. (2000) EXS – – 100 70

Hipwell et al. (2000) MA – – 85 76

Ege et al. (2000) MA, HE, EXS, SE – – 94 69

Lee, Wang & Lee (1999) MA, HE – – – –

Cree et al. (1997) MA – – 82 84

Gardner et al. (1996) HE, EXS – – 73.80 73.80

Spencer et al. (1992) MA – – 45 >150 false positive per image

Our method HE EyePACS & APTOS 2019 94.66 97.95 60

Our method EX EyePACS & APTOS 2019 97.07 94.89 71.42

Our method SE EyePACS & APTOS 2019 93.56 94.84 66.66

Our method AN EyePACS & APTOS 2019 95.58 97.93 62.5

Our method NV EyePACS & APTOS 2019 95.91 100 50
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two datasets APTOS 2019 and EyePACS so that the number of each lesion type is exactly
100.

We calculated the Precision, Recall, F1, Accuracy scores for each class and the results are
shown in Table 9:

The performance of the lesion detecting subnets is shown in Fig. 8.
According to the obtained results, the AUC scores of the two subnets fluctuated from

0.93 to 0.97. In which, the detection of hard exudative lesions has the highest accuracy
while the detection of soft exudative lesions has the lowest. We have compared our model
with many existing lesion detecting methods, and it shows that ours is adequate. The
results are listed in Table 10.

To evaluate the accuracy of the whole model, we built a 1,000-image dataset consisting
of 200 images for each lesion level. These images are not included in the training dataset.
We calculate the measure for each class, the results are shown in Table 11.

The system’s average accuracy is 90%. We think that with such accuracy it can be a
reference source for the doctor’s conclusions in practice.

CONCLUSION
We have presented a simple but effective approach to detect and create segmentation
masks for five types of lesions (EX, SE, HE, AN, NV) caused by diabetic retinopathy. In the
context of limited hardware resources in our research system, our study demonstrates the
feasibility of our approach. The process of delineating and labeling data for retinal fundus
images requires significant effort due to the diverse and complex nature of the lesion areas.
Training such a solution is also more complex and time-consuming compared to classical
methods. Despite the hardware limitations, we have successfully developed an effective
method for detecting and creating segmentation masks for various types of ocular lesions.
However, to deploy this system in practical settings, a higher-configured machine system is
required, along with a substantial investment of resources in data labeling. At the same
time, unlike the previous models, our model is capable of explaining its conclusion of
lesion severity assessment basing on the characteristics of the number and ratio of each
retinal lesion type. These explanations are very close to the doctor’s clinical practice, based
on the greater the number of lesions or incidence of lesions, the severity of the lesions.

Table 11 The results of the measurements of the model.

DR severity Score

Precision Recall F1 Accuracy

No DR 0.98 0.98 0.98 0.97

Mild DR 0.92 0.88 0.90 0.81

Moderate DR 0.96 0.88 0.92 0.86

Severe DR 0.95 0.95 0.95 0.91

Proliferate DR 1.00 0.95 0.98 0.95

Avg 0.90
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Doctors and patients can visually observe the marked localized lesions and have
explanations for assessing the extent of the lesion. Therefore, it has the potential to be
applied easily in healthcare facilities.
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