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ABSTRACT
When a well-trainedmodel learns a new class, the data distribution differences between
the new and old classes inevitably cause catastrophic forgetting in order to perform
better in the new class. This behavior differs from human learning. In this article,
we propose a class incremental object detection method for remote sensing images
to address the problem of catastrophic forgetting caused by distribution differences
among different classes. First, we introduce a class similarity distillation (CSD) loss
based on the similarity between new and old class prototypes, ensuring the model’s
plasticity to learn new classes and stability to detect old classes. Second, to better extract
class similarity features, we propose a global similarity distillation (GSD) loss that
maximizes the mutual information between the new class feature and old class features.
Additionally, we present a region proposal network (RPN)-based method that assigns
positive and negative labels to prevent mislearning issues. Experiments demonstrate
that our method is more accurate for class incremental learning on public DOTA and
DIOR datasets and significantly improves training efficiency compared to state-of-the-
art class incremental object detection methods.

Subjects Artificial Intelligence, Computer Vision, Neural Networks
Keywords Class incremental learning, Class similarity distillation, Global similarity distillation,
Catastrophic forgetting, Remote sensing

INTRODUCTION
In various industries such as urban planning, security monitoring, outer space exploration,
andmany others, remote sensing image processing is widely utilized. It has consistently been
a focal point in computer vision due to its high resolution, significant differences in object
size distribution within images, and varying orientations. In recent years, the development
of deep learning technology has enabled some methods to effectively handle small and
multi-directional objects (Xiaolin et al., 2022;Ming et al., 2021).However, existingmethods
do not allow for continuous learning of new classes in a human-likemanner. In other words,
when the model learns a new class, it must retrain with samples from both the previously
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learned class and the new class to achieve satisfactory results. Otherwise, the model will
experience catastrophic forgetting. This learning process differs from that of humans.
Furthermore, storing samples from old classes consumes a considerable amount of storage
space.

For this reason, developing a model that can learn new classes without using old samples
and avoid catastrophic forgetting is essential. Some methods attempt to address this issue
by updating the parameters of new tasks in the orthogonal space of old tasks from an
optimization perspective, thus mitigating forgetting to some extent (Kirkpatrick et al.,
2017; Li & Hoiem, 2017). Other methods (Rebuffi et al., 2017; Rolnick et al., 2019) adopt a
rehearsal mechanism, similar to human review. When learning new tasks, they include
a small number of training samples from old tasks. Distillation (Lee et al., 2019; Yang &
Cai, 2022) is widely employed in these methods to ensure the model performs well across
all tasks. Yet other methods (Kirkpatrick et al., 2017; Mallya & Lazebnik, 2018; Fernando
et al., 2017) are based on the over-parameterized characteristics of deep neural networks,
activating or expanding neurons for different tasks. However, these methods lack the
utilization of learned knowledge, akin to humans reviewing old knowledge to better learn
new knowledge. Furthermore, recent work (Simon et al., 2022) employs Mahalanobis
similarity as a learning parameter to learn meaningful features, but it still encounters the
issue of linearly increasing the number of parameters as the number of tasks increases. Most
existing lifelong learning methods assume that tasks originate from the same distribution,
ignoring the more general situation where tasks come from different domains.

There are also incremental object detection methods designed to address catastrophic
forgettings, such as Liu et al. (2020a), which restricts the updating of weights on new classes
based on the importance of the impact of a new class on the model and limits the update of
weights on new tasks. A regularization term is introduced to constrain the update of model
weights on a new class. With a certain number of neurons added to the model to learn the
new class, Dong et al. (2021) and Shieh et al. (2020) ensure that the model learns the new
class while maintaining the model’s parameters for the old classes simultaneously. In Hao,
Fu & Jiang (2019a), distillation techniques are employed to ensure that the network model
remembers the old classes while learning a new one. Shieh et al. (2020) use a replay-based
approach, i.e., storing some representative samples of the old classes, and acquiring new
knowledge by using new task samples and the stored old samples. However, there are two
main problems with existing methods:
1. The existing methods cannot fully exploit the similarity information among classes as

humans can. For instance, humans can learn to detect helicopters faster in a model
that has learned to detect aircraft.

2. With the increase in classes, a larger model, storage and computational costs will be
inevitable, and the model’s accuracy will decrease rapidly.
To deal with the above issues, the main contributions of this article are concluded as

follows:
1. Based on class similarity distillation, we propose a method for class incremental object

detection, which can dynamically adjust the distillation weights according to the
similarity between new and learned classes, i.e., if the new task is more similar to the
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old class. In that case, the distillation weights on the new class can be increased to
enhance the forward transfer ability of the model and vice versa to ensure the unity of
model plasticity and stability.

2. By maximizing the mutual information between the new class and the old task, we
propose a global similarity loss (GSL) that maximizes the extraction of similarity
information between the new and old classes.

3. The experiments demonstrate that our model can guarantee high accuracy without
adding additional storage or computing resources.
The related work is briefly reviewed in the ‘‘Related work’’ section, and the proposed

approach is clarified in the ‘‘Methods’’ section. Experiments and implementation details
are provided in the ‘‘Results’’ section to validate our method’s effectiveness using two
standard remote sensing datasets. There is further discussion of the article’s shortcomings
in the ‘‘Discussion’’ section, and a conclusion is in ‘‘Conclusions’’.

RELATED WORK
In recent years, deep learning-based object detectionmethods have seen rapid development.
Generally, these methods can be classified into two categories: anchor-based, such as the R-
CNN series (Girshick, 2015;Ren et al., 2015) and YOLO series (Redmon et al., 2016;Redmon
& Farhadi, 2017; Redmon & Farhadi, 2018), and anchor-free, which are not based on preset
anchors, such as FCOS (Tian et al., 2019) and DETR (Zhu et al., 2020). Both algorithms
are highly accurate in detecting objects, but they cannot handle class incremental learning
tasks. In recent years, some class incremental object detection algorithms (Yang et al., 2022;
Zhang et al., 2021; Ul Haq et al., 2021) have emerged that can incrementally learn new
tasks. These methods are divided into three main categories: parameter isolation-based,
replay-based, and regularization-based.

The first category is the rehearsal-based method, similar to human review. When the
model learns new tasks, the impact of old tasks is considered simultaneously, allowing
the model to better remember old tasks and avoid catastrophic forgetting. This method
widely uses distillation technology, as it can quickly learn new tasks with few samples.
The most representative is the ICARL algorithm (Rebuffi et al., 2017), which uses a teacher
network and student network to enable all learned tasks to converge quickly with a small
number of training samples. Therefore, only a small number of previous task samples need
to be stored when learning a new task. To save memory overhead, Rolnick et al. (2019)
propose reservoir sampling to limit the number of stored samples to a fixed budget data
stream. Continual prototype evolution (CPE) (De Lange & Tuytelaars, 2021) combines the
nearest-mean classifier approach with an efficient reservoir-based sampling scheme. More
detailed experiments on the rehearsal for lifelong learning are provided in (Masana et al.,
2020).

Compared to directly storing samples, another representative method is GEM (Lopez-
Paz & Ranzato, 2017). It stores the gradient of previous tasks instead of training samples,
ensuring the direction of the gradient update for new tasks is orthogonal to the previous
tasks, reducing interference with prior knowledge. Many methods adopt similar principles.
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To further save memory space, numerous GAN-based methods are proposed to generate
high-quality images andmodel the data-generating distribution of previous tasks, retraining
on generated examples (Robins, 1995; Goodfellow et al., 2014; Shin et al., 2017; Ye & Bors,
2021). AlthoughGAN-basedmethods reduce storage space, they introducemany additional
calculations.

The second category is the regularization-based method. The main idea of these
methods is to add a regularization term of parameter importance, which can reduce
the update of essential parameters for old tasks and increase the update of unimportant
parameters. To evaluate the importance of parameters, LwF (Li & Hoiem, 2017) limits
the update of parameters according to the difference between the new task and the old
task. EWC (Kirkpatrick et al., 2017) determines the importance of weight parameters
according to the training Fisher information matrix. However, with increased tasks, Fisher
regularizationwill excessively limit the network parameters, resulting in the inability to learn
more new tasks. To address this problem, some methods, such as the SI algorithm (Zenke,
Poole & Ganguli, 2017), determine the importance of network parameters according to the
variation range of network parameters from old tasks to new tasks. However, the parameter
update method of random gradient descent often makes the results unstable. In contrast,
MAS (Aljundi et al., 2018) allows importance weight estimation to provide datasets without
supervision, enabling it to perform user-specific data processing. Variational continuous
learning (VCL) (Nguyen, Ngo & Nguyen-Xuan, 2017) uses a variational framework for
continuous learning.

Some Bayesian-based works (Ahn et al., 2019; Zenke, Poole & Ganguli, 2017) estimate
the importance of weights online during task training. Aljundi et al. (2018) propose
an unsupervised parameter importance evaluation method to increase flexibility and
online user adaptability. Further work by Lange et al. (2020) and Aljundi, Kelchtermans
& Tuytelaars (2019) extends this method to the case of no task setting. However, these
methods are generally difficult to converge.

The third category is neuron activation or expansion methods, which activate different
parameters of the network for different tasks or add additional parameters for new tasks in
advance if the deep neural network is over-parameterized. However, the increased number
of tasks can easily lead to the saturation of model parameters.

PackNet (Mallya & Lazebnik, 2018) prunes weights in the network according to the
importance of the weights. Only the first 50% of the weight is selected each time to
train the current task. HAT (Serra et al., 2018) either freezes previous task parameters or
dedicates a model copy to each task when learning new tasks. Alternatively, the architecture
remains static, with fixed parts allocated to each task. The previous task parameters are
masked during new task training, and each task feature is converted into an embedding.
After passing these embeddings, the network converts them into masks. HAT (Serra et al.,
2018) takes sparsity as the loss function, which is more intelligent. These works typically
require a task oracle, activating corresponding masks or task branches during prediction.
Therefore, they are restrained to a multi-head setup, incapable of coping with a shared head
between tasks. Expert gate (Aljundi, Chakravarty & Tuytelaars, 2017) avoids this problem
by learning an auto-encoder gate.
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Compared to fixed network weight numbers, there are also some methods such as
progressive networks (Rusu et al., 2016), dynamic memory networks (Perkonigg et al.,
2021), and DER (Yan, Xie & He, 2021) that increase the network structure. Whenever a
new task is performed, appropriate neurons are added to train the new task. However,
these methods cannot be used for large-scale task learning due to the limitation of the
number of parameters.

In recent years, several works in remote sensing have been using incremental learning
methods to detect optical remote sensing images acquired through remote sensing, SAR,
and hyperspectral images as a result of the above methods of incremental object detection.
These works have been achieving some results by using these incremental learningmethods.
Although remote sensing image object detection is a complex task, studies have yet to be
conducted on class incremental object detection owing to its high complexity. Instead
of adapting to unseen new classes, acquiring new samples from old classes will improve
the detector rather than adapting to unseen new classes. The article’s authors propose a
class incremental learning method based on multiscale features to detect objects in more
than one direction. Dong et al. (2021) proposed a method that could reduce the number of
new classes by using a class incremental learning method that combines a teacher-student
structure and selective distillation to reduce the number of new classes.

In Li et al. (2022), a Rank-aware Instance Incremental Learning (RAIL) method, based
on the notion of a rank-aware instance incremental learning measure, is proposed. RAIL
considers the differences between learning values in data learning order and training loss
weights. Rank scores are then used to weigh the training losses to balance the learning
contributions. However, existing research on continual object detection is still in its early
stages, and current approaches primarily fall into two main categories: experience replay
(Joseph et al., 2021a) and knowledge distillation (Liu et al., 2020b; Shmelkov, Schmid &
Alahari, 2017). Joseph et al. (2021a) stores representative examples in memory, allowing
them to be trained alongside new category samples and fine-tuning the model. Shmelkov,
Schmid & Alahari (2017) employs knowledge distillation for both object localization and
classification. Liu et al. (2020b) further utilizes attentive feature distillation to extract
essential knowledge through both top-down and bottom-up attention mechanisms.

However, when the distribution of the new class is very different from the distribution of
the old class, existing methods based on knowledge distillation cannot effectively learn the
information of the new class. Furthermore, even though complex models can be used to
increase the detection accuracy of individual tasks, it is detrimental to knowledge distillation
when this happens. Based on human learning, the efficiency of learning increases as more
knowledge is learned since humans can use the learned similarity information to increase
the speed of learning.

Inspired by human learning behavior, we propose a new method to continuously detect
objects in remote sensing images by considering the similarity and differences between
new and old classes by utilizing knowledge distillation to its fullest extent. As a result, the
efficiency of the model can improve as more knowledge is learned.

Shen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1583 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1583


Figure 1 The framework of proposed method,We use the faster R-CNN detection framework with the
backbone of FPN. To maximize the similarity between learning tasks, we use class similarity distillation
(CSD) loss in the block-wise level and global similarity distillation loss in the instance level.

Full-size DOI: 10.7717/peerjcs.1583/fig-1

METHODS
Our proposed class incremental object detection framework is shown in Fig. 1. We use the
Faster R-CNN detection framework with the backbone of the feature pyramid network
(FPN) (Lin et al., 2017). To maximize the similarity between learning tasks, we use class
similarity distillation (CSD) loss at the block-wise level and Global Similarity Distillation
loss at the instance level. In addition, we use an RPN-based method to assign positive and
negative labels to prevent the mislearning problem caused by the new class being taught
against the background of the previous class.

Problem setting
Our class incremental learning setup is as follows, given an object detector that has been
trained on C classes, when a new class Cn comes and we are given a dataset Dn which
comprises a set of pairs (Xn,Yn), where Xn is an image of size H × W and Yn is the
ground-truth. Here, Yn only consists of labels in current classes Cn. The model should be
able to predict all classes C1: Cn in the history.

Class similarity distillation
The detail of the proposed CSD is shown in Fig. 2. When learning a new class. We train
the new model using the new class samples and labels, consider the output of new samples
in the old model, and ensure that the new model avoids catastrophic forgetting. In order
to avoid the instability caused by large models, we use the CSD at the block level. The
proposed CSD can make better use of similar information. After each block, we use the
weighted distillation loss to decide the degree of distillation according to the similarity
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Figure 2 The detail of proposed class similarity distillation (CSD).
Full-size DOI: 10.7717/peerjcs.1583/fig-2

between the new class and the old classes, i.e., if the old classes are more similar to the new
classes, then the weights are small in the distillation process of the new class, and vice versa.

We first obtain the prototype of new class k by computing an in-batch average shown
in Fig. 2 on Z = RH×W×C . Given a batch of feature maps B= RB×H×W×C , we flatten
the batch, height and width dimensions and index the as zi, where i = 1, . . . , BHW . The
centroid of class c is computed as Eq. (1)

pk =
∑BHW

i=1 zi1
[
yi= k

]
k

(1)

where 1[yi= k] = 1 if the label yi is k, otherwise 1[yi= k] = 0. The cummulative prototypes
P1 : Pk of all classes from class 1 to class t are computed at the end of class k.

We construct a prototype map mx =RHxW×C where each pixel x contains a prototype
vector mx = pk Then we compute a similarity map S=RHxWxV between the prototype mx

of a new class in each pixel x and the prototype is pk of old class. Each entry S(x,k) is cosine
similarity between m and pk , the normalized similarity map S is defined as

S=

exp

(
mx ·pt−1k

‖mx‖·

∥∥∥pt−1k

∥∥∥
)

∑k
j=1exp

(
mx ·pt−1j

‖mx‖·

∥∥∥pt−1j

∥∥∥
) . (2)
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Finally the class similarity distillation loss distills the weighted outputs of the old model
and the new model:

Ls(k,x)=
m∑
k=1

S(x−k)2 (3)

where k and x are old class and new class features.
Learning this similarity provides two benefits. As a first step, themodel can relate the new

class to what it had previously learned, which facilitates the transfer of the old knowledge
to the new class for a better learning experience. Second, it encourages the model to learn
the underlying class hierarchy implicitly. We do not need to save the class ID and only save
the prototype when the new class are well trained so that we can learn the similarity of the
new class more quickly.

Global similarity distillation
In order to maximize the extraction of correlation features of different class objects in
remote sensing images, we propose the global similarity loss (GBL) to maximize the
similarity information of old class and new new by maximizing the mutual information in
the instance level before classification and regression results. The GBL is shown in Eq. (4)

Lg =
S
(
xt ,yt

)∑k
j=1S

(
xj,yt

) (4)

where xt is the old instance-level class feature, and yt is current instance-level class feature,
xj is noisy old class feature. and S() is cosine similarity. Maximizing this equation is
equivalent to maximizing the relationship between the model discriminated learned and
unlearned classes, and maximizing the mutual information of the new class and the old
classes.

Positive and negative samples assignment based on RPN
In general, the way Ren et al. (2015) assigns positive and negative labels for training samples
in remote sensing datasets is based on the size of anchors. Some datasets contain multiple
class samples simultaneously. Thus, some unknown class positive samples are labeled as
new class negative samples, leading to decreased efficiency and accuracy in learning these
samples.

To solve this problem, we propose an RPN-based technique for assigning positive
and negative samples to label potential new classes. Specifically, these new classes will be
designated as unknown samples, which means they will not be included in the training of
positive and negative samples, thereby avoiding the problem of new tasks appearing in old
tasks, which would result in inadequate training.

Firstly, based on the characteristics of the region proposal network (RPN), which can
output the class probability scores and the bounding boxes of almost all objects, our
approach is to treat those objects with higher objective scores but do not have higher IoU
with ground-truth scores as potential unknown objects that should not be included in the
training of the positive and negative samples. Specifically, a negative sample is defined as
‘‘1’’ where the probability score ranking of the last k objects is less than a certain threshold,
and at the same time, the IoU of the ground-truth is less than a certain threshold.
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Loss function
The loss function of the entire framework is shown as Eq. (5).

L= Ldet +aLs+bLg . (5)

The first of them is the faster R-CNN detection loss function, the second term is the
proposed class similarity distillation loss, and the third is the global similarity loss. We use
gradient descent with momentum to optimize the model. During the training period, we
first fix the other parameters and train the RPN of new class branches of the parameters to
converge, and then we train all the parameters. The results prove the effectiveness of the
training method.

RESULTS
We used two public remote sensing datasets, DOTA (Xia et al., 2018) and DIOR (Li et
al., 2020), to verify the effectiveness of the proposed method; first, we compared with
some State-of-the-Art (SOTA) methods, and then we conducted an ablation study to
verify the effectiveness of the proposed two distillation loss functions. The specific training
parameters were set as follows; we cropped the image to 800×800 size, the batch size was
set to 2, the momentum was set to 0.9, the iteration, the number of times, was set to 50,000,
the initial learning rate was set to 0.0025, every 10,000 times was reduced to one-tenth
of the original, IoU was marked as the correct result when it was significant with 0.7, the
RPN output was 128 for both positive and negative samples, and the experiments all used
horizontal bounding boxes.

There are 2,826 images in the DOTA dataset and 188,282 instances with image sizes
ranging from 800×800 to 4000×4000, containing 15 classes, and we use the first eight
classes as old classes. We incrementally learn the other seven classes.

There are 11,738 images in the DIOR dataset, and 20 classes contain 190,288 instances.
We set the first ten classes are old classes and the last ten classes are new.

Evaluation criteria
To obtain a generic model performance estimate, after training task t, we compute the
average accuracy (AA) on all testing datasets of tasks T. The average accuracy is defined as
Eq. (6). The higher the average accuracy, the better the performance of the model.

AA=
1
T

T∑
t=1

(
TPt +TNt

Pt +Nt
)×100 (6)

where TP and TN are the numbers of correctly classified samples. Pt andNt are the number
of positive and negative samples for task t. T is the total number of tasks.

Performance evaluation
We used ResNet as the uniform backbone, and it can be seen from the AA on both datasets
in Table 1 that the proposed method improves by 5% compared with the SOTA method
FPN-IL (Chen et al., 2020). This is because our method can consider the old class features
when learning new classes, thus obtaining a higher AA. Other methods use traditional

Shen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1583 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1583


Table 1 The detection results (AA%) of all six compared methods.

Method Basic Archietcture Learning Stategy DOTA AA% DIOR AA%

Old 8 New 7 Old 10 New 10

Incremental 26 13 31 19.4
Fast-IL

Joint-training 26.8 22.6 33.5 34.1
Incremental 36.1 26.4 36.7 47.0

Faster-IL
Joint-training 41.5 26.9 47.4 47.7
Incremental 69.2 60.7 68.8 68.1

FPN-IIL
Joint-training 69.8 60.8 69.4 71.3
Incremental 70.1 61.6 69.7 68.1

Meta-ILOD
Joint-training 69.8 70.5 69.9 72.3
Incremental 69.6 61.3 72.1 70.9

SID
Joint-training 70.3 71.9 70.3 72.1
Incremental 69.8 61.6 69.7 71.1

ORE
Joint-training 70.9 72.4 70.5 72.2
Incremental 68.7 60.5 68.2 70.5

CWSD
Joint-training 71.7 73.6 71.8 73.5
Incremental 70.5 62.7 70.5 72.4

CSD(Ours)

ResNet

Joint-training 71.7 73.6 71.8 73.5

methods to generate class agnostic RoI or use the dispersion of features before RPN to
learn new knowledge and do not fully use the new class information of similarity, so the
detection results are unsatisfactory.

Table 1 shows the detection results on each class in the new seven classes of the DOTA
dataset. The detection result by Fast-IL (Shmelkov, Schmid & Alahari, 2017) is poor in
detecting every class, as the detection framework is not effective. The Faster-IL (Hao et
al., 2019b) and FPN-IL (Chen et al., 2020) are much better than Fast-IL, but the average
accuracy (AA) is lower as the number of classes increases. Meta-ILOD (Joseph et al., 2021b)
uses meta-learning to learn a global optimum solution without learning the similarity
between classes. SID (Peng et al., 2021) employs distillation in some intermediate features,
while our method performs global information distillation at various scales, resulting in
better performance compared to SID. The training process of ORE (Joseph et al., 2021a) is
more complicated, requiring a long pre-training period to achieve good results. Compared
with the CWSD (Feng et al., 2021), the proposed method is supplemented by weighted
similarity not only supplements similar features. The proposed method has improved
approximately 1% on AA compared to the four most recent methods, and as the classes
increase, the detection of the new class does not show a noticeable drop.

To demonstrate in more detail that the proposed method can learn the similarity
information among classes well, we list the average accuracy of each class for each class,
as shown in Table 2. In the DOTA dataset, because the class of baseball field (BF) was
learned before when learning new categories such as tennis court (TC) and basketball court
(BC), which have relatively similar characteristics to a baseball court (BC), the accuracy
of our method in detecting these is significantly higher than that of other methods. Since
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Table 2 The detection result (AA%) on each class in new seven classes of DOTA dataset.

Method Basic Architecture Learning Stategy DOTA (New seven Classes) AA%

BC ST SBF TR Harbor SP HC

Incremental 19.2 17.6 28.8 19.4 17.4 13.2 4.7
Fast-IL

Joint-training 26.8 22.6 33.5 34.1 36.7 20.3 18.2
Incremental 36.1 26.4 36.7 47.0 42.4 35.4 9.7

Faster-IL
Joint-training 41.5 26.9 47.4 47.7 45.1 36.1 8.1
Incremental 69.2 60.7 68.8 68.1 70.6 62.7 45.9

FPN-IL
Joint-training 69.8 60.8 69.4 71.3 74.2 62.6 35.7
Incremental 69.7 60.4 69.7 69.3 71.7 63.8 45.9Meta-

ILOD Joint-training 70.3 61.3 69.5 70.8 74.2 63.3 37.1
Incremental 69.6 60.5 69.6 69.3 70.4 63.8 46.9

SID
Joint-training 70.4 62.4 70.8 71.4 75.5 62.7 36.3
Incremental 69.4 60.4 69.1 68.1 70.6 62.7 45.9

ORE
Joint-training 70.1 61.5 69.8 71.9 74.5 62.1 36.2
Incremental 68.4 60.2 68.6 69.2 71.3 64.2 46.8

CWSD
Joint-training 69.8 60.8 72.4 71.3 76.9 63.8 37.2
Incremental 69.5 60.7 69.1 70.4 72.5 65.3 46.8

CSD(Ours)

ResNet

Joint-training 69.8 60.8 72.4 71.3 76.9 63.8 37.2

our approach uses the same backbone architecture as FPN-IL, it has similar performance
during joint training without having learned from similar samples. However, due to our
method’s ability to fully learn similar information, it performs better when learning from
similar samples later on, such as SBF, SP, HC, etc.Meta-ILOD (Joseph et al., 2021b) employs
meta-learning to obtain a global optimum solution without learning inter-class similarities,
while our approach conducts global information distillation at multiple scales, leading to
enhanced performance in comparison. The training process of ORE (Joseph et al., 2021a)
is complex, and the CWSD (Feng et al., 2021) is not in line with the continual learning
setting. Therefore, the proposed method achieves roughly a 1% average improvement in
AA compared to the four most recent techniques mentioned above. Although the accuracy
of each class varies slightly with the learning order, the overall AA and joint training are
comparable due to the learning of the old class similarity by the proposed method, and
there is a significant improvement in AA when the similarity task is learned later. This
shows that the proposed method is stable and effective.

Figure 3 shows the visualization detection results of the proposed method on the DOTA
dataset with the truck as the old task to learn the new task sedan, and the visualization
detection results with the soccer ball field (SBF) as the old task to learn the basketball
court (BC) and tennis court (TC). From the detection results, we can see that our method
obtains high average accuracy on both new and old classes. In contrast, other methods have
many missed detections on the old class, as shown in the red box, which is because our
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Figure 3 The visualization detection results of the proposed method on the DOTA dataset.
Full-size DOI: 10.7717/peerjcs.1583/fig-3

Figure 4 The visualization detection results of the proposed method on the DIOR dataset.
Full-size DOI: 10.7717/peerjcs.1583/fig-4

method can learn information about the similarity between classes, preventing catastrophic
forgetting while accelerating the learning of new classes.

Figure 4 shows the comparison of the visualization results in the DIOR dataset with
low similarity of learning tasks, and since the proposed method can adjust the distillation
weights adaptively according to the task similarity, it can also obtain better detection
results.

Furthermore, the heatmaps are used to verify the effectiveness of the similarity distillation
method we proposed in Fig. 5. In the heatmaps, the darker the color of the heat map, the
more critical the area is. Figure 1 shows that we first learn the class SBF and then learn the
class BC. From the change in the heat map of the network, the SBF in the bottom right
corner of the heatmap (a) is activated. When the network continues to learn the class BC,
both areas can be activated, which shows that the proposed incremental learning method
can remember the previous knowledge well. Moreover, after learning BC, the activation
area of SBF changes from the annular to the central square area, which shows that the
network can learn the similarity features between classes.

Based on the public natural scene image dataset VOC, we tested the class similarity
distillationmethod to verify the effectiveness of class incremental object detection, as shown
in Table 3. For CSD in the last row, we used the settings described in the implementation
details. To compare, we also replaced the CSD loss with the L2 loss to minimize the distance
between the selected features. As a result of the performance of CSD on average accuracy,
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Figure 5 The heatmaps to verify the effectiveness of the proposed similarity distillation.
Full-size DOI: 10.7717/peerjcs.1583/fig-5

Table 3 Testing the class similarity distillation way to verify the effectiveness for class incremental ob-
ject detection.

Methods A B C D AA

Baseline 48.75 – – – 48.75
Baseline 44.12 58.34 – 51.21
Baseline 30.77 33.56 56.24 – 40.87
Baseline 15.33 18.25 43.28 35.66 28.54
Ours 48.75 – – – 48.75
Ours 45.25 57.88 – – 52.24
Ours 31.57 34.12 57.26 – 41.23
Ours 16.22 19.23 44.34 36.66 29.13

it is consistently superior to other methods, proving that it is more appropriate to obtain
a trade-off between stability and plasticity for continuous object detection by using CSD.
For 19+1 and 15+5 tasks, CSD is more effective than the L2 loss on average accuracy. Since
CSD enforces the instance-level features of the incremental model to imitate the features
of the old incremental model to a high degree, the performance of the old classes can be
adequately maintained.

In contrast, the performance of the new classes will be suppressed at the same time. A
comparison of CSD and L2 loss on average accuracy shows that CSD is more effective than
L2 loss for 19+1 and 15+5 tasks. CSD enforces instance-level features of the incremental
model to entirely mimic those of the oldmodel so that the performance of old classes can be
maintained simultaneously as the performance of new classes is suppressed simultaneously.

Ablation study
An ablation study is performed to validate the contribution of distillation loss in the DOTA
dataset. Like the experiment in Table 2, we incrementally learn the following seven classes.
The results of the ablation experiments in Table 4 show the effectiveness of the proposed
CSD and GSD. In Table 4, the second column is the result obtained without the distillation
algorithm, the second and third columns are the AA obtained by using one distillation loss,
respectively, and the last column is the result of using two distillation losses at the same
time. Each distillation loss we proposed can boost AA, and the best results can be obtained
when used together.
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Table 4 Ablation study is performed to validate the contribution of distillation loss in the DOTA
dataset.

Module 1 2 3 4

CSD – X – X

GSD – – X X

AA 14.5 65.7 64.3 66.6

DISCUSSION
Despite the promising gains that can be achieved with our proposed class similarity
distillation (CSD) and global similarity distillation (GSD) for class incremental object
detection in remote sensing, there are still several concerns that need to be further
researched in the future. First, there is a significant discrepancy between the outcomes
of sequential addition training and the outcomes of joint training in all classes, which
may be caused by the gradual accumulation of mistakes during the incremental learning
process. Additionally, the chosen features for correlation distillation need to be more
accurate after numerous learning stages. Due to the lack of data and the trade-off between
stability and plasticity, the performance of both old and new classes cannot be improved
simultaneously.

CONCLUSION
In this article, we propose a novel class similarity distillation-based class incremental object
detection method in remote sensing images that considers the similarity of new and old
classes. First, class similarity distillation (CSD) was proposed to determine the plasticity
and stability of the model during local distillation in the backbone of the object detector.
To further mitigate catastrophic forgetting of the incremental model, we also introduced
a global similarity distillation (GSD) loss to maximize the mutual information between
old and new classes. Results on DOTA, DIOR, and VOC datasets demonstrate that the
proposed method is effective in incremental class learning to detect objects in remote
sensing images without forgetting what has previously been learned.

In the future, it will be possible to combine incremental object detection with other
techniques, such as those found inMorioka & Hyvarinen (2023), to maintain better feature
discrimination within the incremental class procedure. We will also consider designing
novel methods for classifiers and regressors to further boost class incremental object
detection performance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Shen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1583 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1583


Author Contributions
• Mingge Shen conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.
• Dehu Chen conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Silan Hu analyzed the data, prepared figures and/or tables, authored or reviewed drafts
of the article, and approved the final draft.
• Gang Xu performed the experiments, performed the computation work, prepared figures
and/or tables, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The DOTA dataset is available at https://captain-whu.github.io/DOTA/dataset.html.
Ding J, Xue N, Xia G-S, Bai, X, Yang, W, Yang, M, Belongie S, Luo J, Datcu M,

Pelillo M, Zhang L. 2021. Object Detection in Aerial Images: A Large-Scale Benchmark
and Challenges. IEEE Transactions on Pattern Analysis and Machine Intelligence. DOI
10.1109/TPAMI.2021.3117983

The DIOR dataset is available at: Li K, Wan G, Cheng G, Meng L, Han J. 2020. Object
detection in optical remote sensing images: A survey and a new benchmark. ISPRS journal
of photogrammetry and remote sensing. 159:296-307.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1583#supplemental-information.

REFERENCES
AhnH, Cha S, Lee D, Moon T. 2019. Uncertainty-based continual learning with adaptive

regularization. ArXiv preprint. arXiv:1905.11614.
Aljundi R, Babiloni F, ElhoseinyM, RohrbachM, Tuytelaars T. 2018.Memory aware

synapses: learning what (not) to forget. In: Proceedings of the European Conference on
Computer Vision (ECCV). 139–154.

Aljundi R, Chakravarty P, Tuytelaars T. 2017. Expert gate: lifelong learning with a
network of experts. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. Piscataway: IEEE, 3366–3375.

Aljundi R, Kelchtermans K, Tuytelaars T. 2019. Task-free continual learning. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
Piscataway: IEEE, 11254–11263.

Chen J, Wang S, Chen L, Cai H, Qian Y. 2020. Incremental detection of remote sensing
objects with feature pyramid and knowledge distillation. IEEE Transactions on
Geoscience and Remote Sensing 60:1–13.

Shen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1583 15/19

https://peerj.com
https://captain-whu.github.io/DOTA/dataset.html
http://dx.doi.org/10.7717/peerj-cs.1583#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1583#supplemental-information
http://arXiv.org/abs/1905.11614
http://dx.doi.org/10.7717/peerj-cs.1583


De LangeM, Tuytelaars T. 2021. Continual prototype evolution: learning online from
non-stationary data streams. In: Proceedings of the IEEE/CVF international conference
on computer vision. Piscataway: IEEE, 8250–8259.

Dong N, Zhang Y, DingM, Lee GH. 2021. Bridging non co-occurrence with unlabeled
in-the-wild data for incremental object detection. Advances in Neural Information
Processing Systems 34:30492–30503.

Feng Y, Sun X, DiaoW, Li J, Gao X. 2021. Double similarity distillation for seman-
tic image segmentation. IEEE Transactions on Image Processing 30:5363–5376
DOI 10.1109/TIP.2021.3083113.

Fernando C, Banarse D, Blundell C, Zwols Y, Ha D, Rusu AA, Pritzel A, Wierstra D.
2017. Pathnet: evolution channels gradient descent in super neural networks. ArXiv
preprint. arXiv:1701.08734.

Girshick R. 2015. Fast r-cnn. In: Proceedings of the IEEE international conference on
computer vision. Piscataway: IEEE, 1440–1448.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B,Warde-Farley D, Ozair S, Courville
A, Bengio Y. 2014. Generative adversarial nets. In: Proceedings of international
conference neural information processing systems. 2672–2680.

Hao Y, Fu Y, Jiang Y-G. 2019a. Take goods from shelves: a dataset for class-incremental
object detection. In: Proceedings of the 2019 on international conference on multimedia
retrieval. 271–278.

Hao Y, Fu Y, Jiang Y-G, Tian Q. 2019b. An end-to-end architecture for class-incremental
object detection with knowledge distillation. In: 2019 IEEE International Conference
on Multimedia and Expo (ICME). Piscataway: IEEE, 1–6.

Joseph K, Khan S, Khan FS, Balasubramanian VN. 2021a. Towards open world object
detection. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. Piscataway: IEEE, 5830–5840.

Joseph K, Rajasegaran J, Khan S, Khan FS, Balasubramanian VN. 2021b. Incremental
object detection via meta-learning. IEEE Transactions on Pattern Analysis and
Machine Intelligence 44(12):9209–9216.

Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu AA, Milan K,
Quan J, Ramalho T, Grabska-Barwinska A, Hassabis D, Clopath C, Kumaran
D, Hadsell R. 2017. Overcoming catastrophic forgetting in neural networks.
Proceedings of the National Academy of Sciences of the United States of America
114(13):3521–3526.

LangeMD, Jia X, Parisot S, Leonardis A, Slabaugh G, Tuytelaars T. 2020. Unsupervised
model personalization while preserving privacy and scalability: an open problem. In:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
Piscataway: IEEE, 14463–14472.

Lee K, Lee K, Shin J, Lee H. 2019. Overcoming catastrophic forgetting with unlabeled
data in the wild. In: Proceedings of the IEEE/CVF international conference on computer
vision. Piscataway: IEEE, 312–321.

Li H, Chen Y, Zhang Z, Peng J. 2022. Raise: rank-aware incremental learning for remote
sensing object detection. Symmetry 14(5):1020 DOI 10.3390/sym14051020.

Shen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1583 16/19

https://peerj.com
http://dx.doi.org/10.1109/TIP.2021.3083113
http://arXiv.org/abs/1701.08734
http://dx.doi.org/10.3390/sym14051020
http://dx.doi.org/10.7717/peerj-cs.1583


Li K,Wan G, Cheng G, Meng L, Han J. 2020. Object detection in optical remote sensing
images: a survey and a new benchmark. ISPRS Journal of Photogrammetry and
Remote Sensing 159:296–307 DOI 10.1016/j.isprsjprs.2019.11.023.

Li Z, HoiemD. 2017. Learning without forgetting. IEEE Transactions on Pattern Analysis
and Machine Intelligence 40(12):2935–2947.

Lin T-Y, Dollár P, Girshick R, He K, Hariharan B, Belongie S. 2017. Feature pyramid
networks for object detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. Piscataway: IEEE, 2117–2125.

Liu L, Kuang Z, Chen Y, Xue J-H, YangW, ZhangW. 2020a. Incdet: in defense of elastic
weight consolidation for incremental object detection. IEEE Transactions on Neural
Networks and Learning Systems 32(6):2306–2319.

Liu X, Yang H, Ravichandran A, Bhotika R, Soatto S. 2020b.Multi-task incremental
learning for object detection. ArXiv preprint. arXiv:2002.05347.

Lopez-Paz D, RanzatoM. 2017. Gradient episodic memory for continual learning.
In: Proceedings of international conference neural information processing systems.
6467–6476.

Mallya A, Lazebnik S. 2018. Packnet: adding multiple tasks to a single network by
iterative pruning. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 7765–7773.

MasanaM, Liu X, Twardowski B, Menta M, Bagdanov AD, Van deWeijer J. 2020.
Class-incremental learning: survey and performance evaluation on image classifi-
cation. ArXiv preprint. arXiv:2010.15277.

Ming Q, Miao L, Zhou Z, Dong Y. 2021. Cfc-net: a critical feature capturing network for
arbitrary-oriented object detection in remote-sensing images. IEEE Transactions on
Geoscience and Remote Sensing 60:1–14.

Morioka H, Hyvarinen A. 2023. Connectivity-contrastive learning: combining causal
discovery and representation learning for multimodal data. In: International
conference on artificial intelligence and statistics. PMLR, 3399–3426.

Nguyen TN, Ngo TD, Nguyen-Xuan H. 2017. A novel three-variable shear deformation
plate formulation: theory and isogeometric implementation. Computer Methods in
Applied Mechanics and Engineering 326:376–401 DOI 10.1016/j.cma.2017.07.024.

Peng C, Zhao K, Maksoud S, Li M, Lovell BC. 2021. Sid: incremental learning for
anchor-free object detection via selective and inter-related distillation. Computer
Vision and Image Understanding 210:103229 DOI 10.1016/j.cviu.2021.103229.

PerkoniggM, Hofmanninger J, Herold CJ, Brink JA, Pianykh O, Prosch H,
Langs G. 2021. Dynamic memory to alleviate catastrophic forgetting in con-
tinual learning with medical imaging. Nature Communications 12(1):1–12
DOI 10.1038/s41467-021-25858-z.

Rebuffi S-A, Kolesnikov A, Sperl G, Lampert CH. 2017. icarl: incremental classifier and
representation learning. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. Piscataway: IEEE, 2001–2010.

Shen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1583 17/19

https://peerj.com
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
http://arXiv.org/abs/2002.05347
http://arXiv.org/abs/2010.15277
http://dx.doi.org/10.1016/j.cma.2017.07.024
http://dx.doi.org/10.1016/j.cviu.2021.103229
http://dx.doi.org/10.1038/s41467-021-25858-z
http://dx.doi.org/10.7717/peerj-cs.1583


Redmon J, Divvala S, Girshick R, Farhadi A. 2016. You only look once: unified, real-
time object detection. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. Piscataway: IEEE, 779–788.

Redmon J, Farhadi A. 2017. Yolo9000: better, faster, stronger. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. Piscataway: IEEE, 7263–7271.

Redmon J, Farhadi A. 2018. Yolov3: an incremental improvement. ArXiv preprint.
arXiv:1804.02767.

Ren S, He K, Girshick R, Sun J. 2015. Faster r-cnn: towards real-time object detection
with region proposal networks. In: Proceedings of international conference neural
information processing systems. 91–99.

Robins A. 1995. Catastrophic forgetting, rehearsal and pseudorehearsal. Connection
Science 7(2):123–146 DOI 10.1080/09540099550039318.

Rolnick D, Ahuja A, Schwarz J, Lillicrap T,Wayne G. 2019. Experience replay for
continual learning. Advances in Neural Information Processing Systems 32:350–360.

Rusu AA, Rabinowitz NC, Desjardins G, Soyer H, Kirkpatrick J, Kavukcuoglu
K, Pascanu R, Hadsell R. 2016. Progressive neural networks. ArXiv preprint.
arXiv:1606.04671.

Serra J, Suris D, MironM, Karatzoglou A. 2018. Overcoming catastrophic forgetting
with hard attention to the task. In: International Conference on Machine Learning.
PMLR, 4548–4557.

Shieh J-L, Haq QMU, HaqMA, Karam S, Chondro P, Gao D-Q, Ruan S-J. 2020. Con-
tinual learning strategy in one-stage object detection framework based on experience
replay for autonomous driving vehicle. Sensors 20(23):6777 DOI 10.3390/s20236777.

Shin H, Lee JK, Kim J, Kim J. 2017. Continual learning with deep generative replay.
In: Proceedings of international conference neural information processing systems.
2994–3003.

Shmelkov K, Schmid C, Alahari K. 2017. Incremental learning of object detectors
without catastrophic forgetting. In: Proceedings of the IEEE international conference
on computer vision. Piscataway: IEEE, 3400–3409.

Simon C, Faraki M, Tsai Y-H, Yu X, Schulter S, Suh Y, Harandi M, Chandraker M.
2022. On generalizing beyond domains in cross-domain continual learning. ArXiv
preprint. arXiv:2203.03970.

Tian Z, Shen C, Chen H, He T. 2019. Fcos: fully convolutional one-stage object detection.
In: Proceedings of the IEEE/CVF international conference on computer vision. Piscat-
away: IEEE, 9627–9636.

Ul Haq QM, Ruan S-J, HaqMA, Karam S, Shieh JL, Chondro P, Gao D-Q. 2021.
An incremental learning of yolov3 without catastrophic forgetting for smart city
applications. IEEE Consumer Electronics Magazine 11(5):56–63.

Xia G-S, Bai X, Ding J, Zhu Z, Belongie S, Luo J, DatcuM, Pelillo M, Zhang L. 2018.
Dota: a large-scale dataset for object detection in aerial images. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. Piscataway: IEEE,
3974–3983.

Shen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1583 18/19

https://peerj.com
http://arXiv.org/abs/1804.02767
http://dx.doi.org/10.1080/09540099550039318
http://arXiv.org/abs/1606.04671
http://dx.doi.org/10.3390/s20236777
http://arXiv.org/abs/2203.03970
http://dx.doi.org/10.7717/peerj-cs.1583


Xiaolin F, Fan H, Ming Y, Tongxin Z, Ran B, Zenghui Z, Zhiyuan G. 2022. Small object
detection in remote sensing images based on super-resolution. Pattern Recognition
Letters 153:107–112 DOI 10.1016/j.patrec.2021.11.027.

Yan S, Xie J, He X. 2021. Der: dynamically expandable representation for class incre-
mental learning. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. Piscataway: IEEE, 3014–3023.

Yang D, Zhou Y, Zhang A, Sun X,WuD,WangW, Ye Q. 2022.Multi-view correlation
distillation for incremental object detection. Pattern Recognition 131:108863
DOI 10.1016/j.patcog.2022.108863.

Yang S, Cai Z. 2023. Cross domain lifelong learning based on task similarity. In: IEEE
transactions on pattern analysis and machine intelligence. Piscataway: IEEE.

Ye F, Bors AG. 2021. Lifelong infinite mixture model based on knowledge-driven dirich-
let process. In: Proceedings of the IEEE/CVF international conference on computer
vision. Piscataway: IEEE, 10695–10704.

Zenke F, Poole B, Ganguli S. 2017. Continual learning through synaptic intelligence. In:
International Conference on Machine Learning. 3987–3995.

Zhang N, Sun Z, Zhang K, Xiao L. 2021. Incremental learning of object detection with
output merging of compact expert detectors. In: 2021 4th international conference on
intelligent autonomous systems (ICoIAS).

Zhu X, SuW, Lu L, Li B, Wang X, Dai J. 2020. Deformable detr: deformable transformers
for end-to-end object detection. ArXiv preprint. arXiv:2010.04159.

Shen et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1583 19/19

https://peerj.com
http://dx.doi.org/10.1016/j.patrec.2021.11.027
http://dx.doi.org/10.1016/j.patcog.2022.108863
http://arXiv.org/abs/2010.04159
http://dx.doi.org/10.7717/peerj-cs.1583

