
Submitted 15 May 2023
Accepted 16 August 2023
Published 27 November 2023

Corresponding author
Ramli Ahmad,
s10814904@gm.cyut.edu.tw

Academic editor
Shibiao Wan

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.1580

Copyright
2023 Li et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

STB: synthetic minority oversampling
technique for tree-boosting models
for imbalanced datasets of intrusion
detection systems
Li-Hua Li, Ramli Ahmad, Radius Tanone and Alok Kumar Sharma
Information Management, Chaoyang University of Technology, Taichung, Wufeng District, Taiwan

ABSTRACT
Attacks on the Intrusion Detection System (IDS) can result in an imbalanced dataset,
making it difficult to predict what types of attacks will occur. A novel method called
SMOTE Tree Boosting (STB) is proposed to generate synthetic tabular data from
imbalanced datasets using the Synthetic Minority Oversampling Technique (SMOTE)
method. In this experiment, multiple datasets were used along with three boosting-
based machine learning algorithms (LightGBM, XGBoost, and CatBoost). Our results
show that using SMOTE improves the content accuracy of the LightGBM and XGBoost
algorithms. Using SMOTE also helps to better predict computational processes. proven
by its accuracy and F1 score, which average 99%, which is higher than several previous
studies attempting to solve the same problem known as imbalanced IDS datasets. Based
on an analysis of the three IDS datasets, the average computation time required for the
LightGBM model is 2.29 seconds, 11.58 seconds for the XGBoost model, and 52.9
seconds for the CatBoost model. This shows that our proposed model is able to process
data quickly.

Subjects Artificial Intelligence, Computer Networks and Communications, Data Mining and
Machine Learning, Security and Privacy
Keywords Intrusion detection system, SMOTE, LightGBM, XGBoost, CatBoost, Machine
learning

INTRODUCTION
Internet-connected devices (Xu et al., 2023) such as smartphones and laptops are
increasingly being used to exchange information,making network security crucial. Network
administrators (Jemmali et al., 2022) need to prepare for offline and online data exchange
on a secure computer network. Although there are several security methods (Shah et al.,
2023), attacks can still disrupt network functions. To protect information passing through
the network, it is important to keep it secure and confidential.

Intrusion Detection System (IDS) (Ghanem et al., 2022) is an essential part of a network
security system that monitors network activity to detect and prevent attacks. IDS can
identify attack patterns in network packets (Raharjo et al., 2022), monitor user behavior
and detect abnormal traffic. However, no network is completely secure (El Houda, Brik
& Khoukhi, 2022), and optimal IDS performance is required to immediately discover and

How to cite this article Li L-H, Ahmad R, Tanone R, Sharma AK. 2023. STB: synthetic minority oversampling technique for tree-
boosting models for imbalanced datasets of intrusion detection systems. PeerJ Comput. Sci. 9:e1580 http://doi.org/10.7717/peerj-cs.1580

https://peerj.com/computer-science
mailto:s10814904@gm.cyut.edu.tw
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1580
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1580

secure the network. Due to the limited human ability to detect various attacks, information
technologies such as Artificial Intelligence and machine learning should be used.

Machine learning research is constantly evolving, bringing with it new methods and
models. A good dataset is critical for accurate machine learning predictions, but in fact,
IDS surveillance records produce imbalanced data. Imbalanced datasets (Wang et al., 2022)
and missing datasets can affect the accuracy of machine learning in classifying attacks. To
solve this problem, the Synthetic Minority Oversampling Technique (SMOTE) (Das et al.,
2020) method is used to generate the data (Liu et al., 2021).

The SMOTE method is one of the oversampling techniques used in unbalanced data
processing, especially in classification. The advantage of SMOTE compared to other
oversampling methods is that it generates synthetic data for minority classes by randomly
selecting two or more similar samples and combining them. In this way, SMOTE creates
new samples that still reflect the features and patterns of minority classes, thus maintaining
the integrity of the information on the synthetic data. Simple oversampling methods, such
as data replication or simple duplication, can lead to overfitting, where models tend to
remember training data very well but cannot generalize well to new data. SMOTE helps
address this problem by creating variations within minority classes, which prevents models
from overfitting on the same data.

The novelty of this research is to develop a new method called STB (SMOTE Tree
Boosting) to solve the problem of imbalanced IDS datasets using the SMOTE method.
The research focuses on the proposed SMOTE technique to improve machine learning
performance of Tree Boosting (LightGBM, XGBoost and CatBoost) called STB to solve
imbalanced IDS datasets namely: KDDCup99, CICIDS 2017 and UNSW_NB15. Then we
compare the outcomes to previous research (Lin et al., 2022) with the same problem.

In addition, the Related Work section will address literature reviews. IDS methods for
imbalanced data are discussed in the Proposed Method section. Experimental results are
discussed in the Results section and the rest is the conclusion of the study.

RELATED WORK
Recently, researchers still use IDS imbalanced datasets in their research including
KDDCup99 (Madhavi & Nethravathi, 2022), CICIDS 2017 (Leon, Markovic & Punnekkat,
2022), dan UNSW NB 15 (Shukla et al., 2023). Madhavi & Nethravathi (2022) proposed
the development of an intrusion detection model based on a combination of Gradient
Boosted Decision Tree (GBDT) and Gray Wolf Optimization (GWO). GBDT is used as
a powerful learning algorithm while GWO is used to optimize parameters in the model.
With this approach, the study aims to improve the performance and accuracy of intrusion
detection in the face of unbalanced data. It is expected that the resulting model can be
effective in detecting suspicious network activity or threats related to network security.
However, only one dataset, KDDCup99, was used in their research, so their proposed
model had to be retested with a different IDS dataset to test the reliability of their proposed
model. From the experimental result, their accuracy value is 96.20% and their F1 score
value is 95.81%. These results still need to be improved.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

Another study (Leon, Markovic & Punnekkat, 2022) conducted comparative evaluations
of different machine learning algorithms for network intrusion detection and attack
classification. They used four unbalanced IDS data sets, namely KDDCup99, NSL-KDD,
UNSW NB15 and CIC-IDS-2017. In their research study, the researchers used various
machine learning algorithms that detect network intrusions. They analyzed and compared
the performance of several popular algorithms such as decision tree, naive Bayes, support
vectormachines, neural networks or other algorithms commonly used in intruder detection.
However, their experimental results show only accuracy comparisons and no F1 score
results for each of their machine learning algorithms, and the accuracy values for the
UNSW NB15 and CICIDS 2017 datasets are still below 90%. These results still need to be
improved.

In addition, Shukla et al. (2023) uses UNSW-NB15 to predict attacks on IDS imbalanced
dataset. Researchers developed UInDeSI4.0, an efficient unattended intrusion detection
system for network traffic flow in the industry 4.0 ecosystem. This system can detect
suspicious or unauthorized activity in computer networks without requiring prior training
data. This research focuses on intrusion detection in network traffic flows in the context of
Industry 4.0 ecosystems, and includes the use of digital technologies, advanced automation,
and machine-to-machine communication to improve efficiency and productivity in the
manufacturing industry. However, the accuracy of the model used is below 70% and the
f1 score is not displayed. These results still need to be improved.

Our research certainly focuses on three types of datasets, but we discovered that some
datasets are not balanced. It will be interesting to see how this imbalanced dataset affects
us in the future. We’re attempting to balance a dataset using SMOTE. However, we
are aware that other researchers have used SMOTE in their work. Alshamy et al. (2021)
using the SMOTE Technique to deal with a class imbalanced problem and RF classifier
that has improved performance to detect types of attack. Furthermore, they use several
combinations of algorithms to classify and compare the performance of each algorithm
used. It’s the same as Rani & Gagandeep (2022) who used SMOTE in their research where
SMOTE was used as a data oversampling technique to balance the dataset.

In contrast to previous studies that usedmany open datasets, our study processes SMOTE
to deal with imbalanced datasets and employs the LightGBM algorithm. The goal is to
improve the performance of the boosting algorithm we use. Of course, other researchers
have independently used SMOTE and algorithms such as LightGBM. However, in this
study, we wanted to use it and found better results. The split data will then be used for
training using machine learning algorithms using the SMOTE approach. Additionally, the
results before and after SMOTE will be compared to the use of other boosting algorithms
such as XGBoost and CatBoost.

Given this situation, a machine learning intervention on IDS as part of the AI is required
to help identify the existing attack types. In addition, advances in IDS relate to the types
of attacks that are common today. We developed this study to address the problem of
identifying the types of network attacks. We identify several types of attacks: analysis,
backdoor, shellcode, worms and infiltration. Furthermore, this study aims to identify
the types of attacks that exist on IDS using a machine learning algorithm approach. The

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

following are the specific objectives of the study: A novel method called STB is proposed
to generate synthetic tabular data from imbalanced datasets using the SMOTE method.
Moreover, we compared three well-known boosting algorithms, LightGBM, XGBoost, and
CatBoost, to see how SMOTE affected the dataset we used both in terms of F1 scores as
well as accuracy and processing speed.

PROPOSED METHOD
This chapter discusses the materials and methods used to improve the accuracy prediction
performance of IDS based on imbalanced datasets using SMOTE. As for more than one
dataset that is the same that we use to see the existing improvisations. In this chapter, we
have prepared a flowchart of the proposed method, which consists of dataset preparation
to model performance evaluation and comparisons for each dataset used.

In conducting this research, we designed the preparation of the dataset to produce the
predicted output in the flowchart of the proposed method as shown in Fig. 1.

Figure 1 illustrates the flow of our proposed method, starting with the preparation of a
dataset consisting of 3 types of datasets namedKDDCUP99with 4 attack categories, CICIDS
2017 with 6 attack categories and UNSW NB15 with 9 attack categories attacks. Next stage
is pre-processing which consists of three stages, namely data cleaning, normalization, and
label encoding. Because the amount of data is imbalanced, SMOTE is needed to balance
the dataset. From here, then the dataset will be split into two 80% for training and 20% for
testing. Next step is to build LightGBM, XGBoost, CatBoost models to make predictions.
After the prediction process is complete, the next step is to create an evaluation matrix to
determine the accuracy of each model for the three datasets. The final step is to collect the
accuracy, precision, recall and F1 score results from each model for the three datasets and
compare one model to another model to find the best model and the impact of SMOTE
on the ability of the three machine learning models to figure out accurate prediction.

Experiment
In this experiment, the dataset that we use is an open dataset, which in detail describes
the real condition of a network that has an IDS. The field in the dataset with the name
KDDCup99 is available at the link: (https://www.kaggle.com/datasets/galaxyh/kdd-cup-
1999-data), CICIDS 2017 is available at the link: (https://www.unb.ca/cic/datasets/ids-
2017.html), and UNSW NB15 is available at the link: (https://research.unsw.edu.au/
projects/unsw-nb15-dataset), describes the conditions of the attack which we mapped into
parts of the attack on IDS. As for this dataset, we make dataset labels as in Tables 1, 2 and
3. We provide labels for each attack name at the label encoding stage in the pre-processing
process. Data pre-processing is the initial technique of machine learning and datamining to
convert raw data or commonly referred to as raw data collected from various sources into
cleaner information and use it for further processing. This process can also be described
as the first step in gathering all available information by cleaning, filtering, and combining

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 4/22

https://peerj.com
https://www.kaggle.com/datasets/galaxyh/kdd-cup-1999-data
https://www.kaggle.com/datasets/galaxyh/kdd-cup-1999-data
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://dx.doi.org/10.7717/peerj-cs.1580

Figure 1 Flowchart proposed method.
Full-size DOI: 10.7717/peerjcs.1580/fig-1

Table 1 KDDCup99 dataset.

Attack Name Label Data Without SMOTE With SMOTE

Training Testing Training Testing

Normal 0 97,277 77,852 19,425 77,702 19,575
Probe 1 4,107 3,310 797 3,283 824
DoS 2 391,458 313,109 78,349 313,273 78,185
U2L 3 52 37 15 800 200
R2L 4 1,126 908 218 918 208

Table 2 CICIDS 2017 dataset.

Attack Name Label Data Without SMOTE With SMOTE

Training Testing Training Testing

BENIGN 0 22,731 18,257 4,474 18,129 4,602
Bot 1 1,966 1,568 398 1,584 382
BruteForce 2 2,767 2,226 541 2,243 524
DoS 3 19,035 15,202 3,833 15,225 3,810
Infiltration 4 36 28 8 1,000 240
PortScan 5 7,946 6,328 1,618 6,382 1,564
WebAttack 6 2,180 1,719 461 1,736 444

this data. Data pre-processing is very important as errors, redundancies, missing values,
and inconsistent data lead to reduced accuracy of analysis results.
Tables 1, 2 and 3 demonstrate the description of the dataset used in this experiment. In

the original dataset, it appears that there is an imbalanced dataset that occurs. To deal with
this problem, SMOTE is used and the number of datasets becomes balanced. Furthermore,
each dataset is split into several training and testing datasets with a proportion of 80:20.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 5/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1580/fig-1
http://dx.doi.org/10.7717/peerj-cs.1580

Table 3 UNSWNB15 dataset.

Attack Name Label Data Without SMOTE With SMOTE

Training Testing Training Testing

Normal 0 37,000 29,616 7,384 29,616 7,384
Analysis 1 677 538 139 1,000 139
Backdoor 2 583 466 117 1,000 117
DoS 3 4,089 3,300 789 3,300 789
Exploits 4 11,132 8,865 2,267 8,865 2,267
Fuzzers 5 6,062 4,824 1,238 4,824 1,238
Generic 6 18,871 5,122 3,749 15,122 3,749
Reconnaissance 7 3,496 2,803 693 2,803 693
Shellcode 8 378 295 83 1,000 100
Worms 9 44 36 8 1,000 100

Normalization
Data normalization is the basic element of machine learning and data mining to ensure the
record stays consistent in the data set. In this study, we changed the name of the column
to a uniform form of initialization, such as the columns \‘‘Flow Duration\’’, \‘‘Total
Fwd Packets\’’, \‘‘Total Backward Packets\’’, etc., we changed it to F1, F2, F3, etc. In the
normalization process, data transformation is required or converts original data into a
format that allows for efficient data processing. The main purpose of data normalization
is to eliminate data redundancy (repetition) and standardize information for better data
workflows. Data normalization is used to spread an attribute’s data to fall within a smaller
range, e.g., −1 to 1 or 0 to 1. This is generally useful for classification algorithms. Data
normalization techniques are very helpful as they offer many advantages as follows:

• The application of machine learning and data mining algorithms is easier
• Machine learning and data mining algorithms become more effective and efficient
• Data can be extracted from the database faster
• Normalized data can be analyzed by specific methods

Data cleaning
Data cleansing or data cleansing is one of the steps in data pre-processing. The purpose
of this cleansing data is to select and eliminate data that has the potential to reduce the
accuracy of machine learning and artificial intelligence. At this stage, we need to overcome
the problematic data on our IDS dataset. In this study, some values are missing from the
KDD Cup 99 dataset, so we manually filled in the missing data by averaging between above
and below themissing value data.With the exception of the CICIDS 2017 andUNSWNB15
datasets, these datasets do not have a missing value. Some common problems encountered
in datasets are as follows:

• Missing value when a value is missing from the record. For example, in a row table’s
data, there is a cell with no value. To get around this, we replace the missing value with

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

the median method. For this purpose, the mean value is determined and missing values
are replaced by the mean value.
• Noisy data when the data contains incorrect or anomalous values. The condition is also
known as an outlier. In this study the KDD Cup 99, CICIDS 2017, and UNSW NB15
datasets had noisy data, these datasets had problems with inaccurate labeling and a large
number of duplicates. To overcome noisy data, there are several techniques that we
performed, including:

– Binning, a method we use that divides data into multiple partitions and then treats
the partitions separately. Then the mean, median or specified limit value is searched
from all data partitions.

– Regression, a method we use that uses the linear regression equation to predict the
value of data. This method can be used when there is only one independent attribute.

– Clustering, a method we use to create a group or cluster of data of similar value.
Values that don’t get into the cluster can be considered noisy data.

• Inconsistent data, which is the condition when the values in the data are inconsistent.
In this study, the data from KDD Cup 99, CICIDS 2017 and UNSW NB 15 showed
inconsistent data. To overcome this inconsistent data, we use noisy data, binning,
regression and clustering methods.

Label encoding
Label encoding is a pre-processing of IDS dataset where we try to change the data type of
the categorical column to numeric (from string to numeric). The columns we changed
include: For the KDD Cup 99 record, the records in the Protocol_type, service, and Flag
columns have string values like tcp, http, sf, etc. We change them to the numbers 1, 2, 3,
etc. For UNSW NB 15 records, in the Protocol, Service, and Status columns, the records
have string values like tcp, ftp, and FIN, etc., we change them to the numbers 1, 2, 3, etc.
Meanwhile contains the CICIDS 2017 dataset doesn’t have a string value in each dataset,
so we won’t change anything. This happens because the machine learning model does not
understand the character of the string, and therefore a provision must be made to convey it
in a format that the machine learning can understand. This is achieved through the coding
label method. In the tagging coding method, the category under the categorical feature
is changed in a manner involving hierarchical separation. That is, if we have categorical
features in which the categorical variables are hierarchically related to each other, then
we need to label those features. When label-encoding is performed on non-hierarchical
features, the accuracy of the model is severely compromised and is therefore not a good
choice for non-hierarchical features. To see more detailed dataset labels, please refer to
Tables 1, 2 and 3.

SMOTE for imbalanced dataset
Imbalanced data is a situation where the target class or category has a significantly different
frequency in the training data. This means that one or more classes are under-represented
in the data set, while one or more classes are over-represented. In this study, the datasets
we used had imbalanced classes, including: In the KDD Cup 99 dataset, some classes in

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

the dataset had a much larger number of samples than others, with the class representing
the attack having a much smaller number of samples compared to normal traffic classes.
In the CICIDS 2017 and UNSW NB 15 datasets, some classes have attack frequencies,
anomalous representation, and consistency that differ from normal classes. This data set
also contains duplicate and irrelevant data. Imbalanced data can cause problems with
machine learning models as they can be biased toward the majority class and have trouble
spotting the minority class. This can lead to poor performance metrics for minority classes,
such as accuracy, precision recall and F1 Score. To overcome this problem, the researcher
proposes first determining the nearest majority data point from the sample selection and
then replacing the nearest neighbour parameter with a safe radius distance. Then the safety
radius becomes a reference in creating synthetic stone data points. The circle formula with
a two-dimensional vector is used to generate data as shown in formula (1).

‖ b
∼
−p ‖≤ r2 (1)

n∑
i=1

(
bij−Pij

)2
≤ r2 (2)

r2=
n∑

j=1

(
pj− tj

)2 (3)

Where the point ‘‘p’’ is the minority sample point which is the center of the circle with(
p1,p2,p3,...,pn

)
as in formula (2). Point ‘‘b’’ is a new generation synthetic point of

interpolation between the two directions with (b1,b2,b3,...,bn) as in formula (2). Point
‘‘t ’’ is the majority point closest to the center of the circle with (t1,t2,t3,...,tn) as in formula
(3). On the other hand, r2 is the distance between p and t can in formula (3).

The next step is to perform calculations to generate new synthetic data. Using Euclidean
formula, the distance between each majority data and each minority sample is calculated.
The smallest distance from the entire selected minority sample is the majority data point.
As shown in formula (4).

rij =min
n∑

i=1

n∑
j=1

√(
pj− ti

)2 (4)

where rij is the smallest distance between majority sample i and minority sample j. The
generation of new synthetic data is carried out on the interpolation line between the
next predetermined majority data points and the minority data sample points. The new
generation of synthetic data based on the safe radius distance from the first direction
interpolation scheme is categorized as ai with (a1,a2,a3,...,bn). In addition, both line
directions are used to generate synthetic rij and −rij , which can be seen in formula (5) and
(6).

aij = Pj+
(
rand0,1×

(
rij−pj

))
(5)

bij = Pj+
(
rand0,1×

(
pj− rij

))
. (6)

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 8/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

The restricted area for creating new synthetic data is then used to reduce the occurrence
of overlapping data in the SMOTE process.

The Synthetic Minority Oversampling Technique (SMOTE),

Algorithm SMOTE (S, M, A)
Input:
A= Number of nearest neighbors
M = Number of samples from minority classes
S= Amount of SMOTE S%
Output: (S

100) *M Samples of synthetic minority classes
(‘‘Identify minority class samples in the data set. If S is less
than 100%, randomize the
minority class samples since only a random percentage of
them will be SMOTE’’)
if S <100
Then determine the minority class sample M randomly
M= (S

100) ∗M
S= 100
endif
S= (int)(S

100) (‘‘determine the number of SMOTE samples
assuming that the number
is an integer with a multiple of 100’’)
A= Number of nearest neighbors
numattrs= Number of attributes
Sample [] []: is a number of original samples in the form
of Arrays from the minority
class
newindex : the resulting number of samples is calculated by
initializing to 0
Synthetic [] []: Array for synthetic samples (‘‘only
calculates the number of nearest
neighbors of A for each sample’’)
for i← 1 toM
nearest neighbor i is calculated using A then store index
into array n
Populate (S, i, n array)
endfor
Populate (S, i, nnarray) (‘‘this is a manufacturing function
with synthetic samples’’)
while S 6= 0
select data one from ‘‘A’’ for nearest neighbor ‘‘i’’ by
randomly selecting 1 and A
for attr← 1 to numattrs
Compute: dif = Sample [nnarray [nn]] [attr]−Sample [i
][attr]

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

Compute: gap= random number between 0 and 1
Synthetic [newindex][attr]= Sample [i][attr]+ gap ∗
dif
endfor
newindex ++
S= S− 1

endwhile
return (∗ End of Populate. ∗)

Splitting data
In this study, the first dataset used was KDDCup99 with a total number of records are
494,020, then the CICIDS 2017 dataset with a total number of records are 56,661 and
finally UNSW NB15 with a total number of records are 540,044. With this split data, the
data from each dataset is divided into two, namely training data and test data, with a ratio
of 80% for training data and 20% for test data. Split data is a more efficient option because
it can split Intrusion Detection System (IDS) datasets into training subsets and test subsets
quickly compared to cross validation because it will take a long time. The use of cross
validation will cause the results of model evaluation to vary depending on how the data is
divided into different subsets. This will lead to a degree of dependence on the data sharing
performed. We want to avoid this dependency and use the data split method to get more
consistent results. After dividing the two data into training data and test data, the amount
of data is: For the KDD Cup 99 dataset, the number of training data is 395,216 and the test
data is 98,804. For CICIDS 2017, the number of training data is 45,328 and the test data is
11,333. For the UNSW NB 15 dataset, the training dataset is 108,009 and the test dataset is
432,035.

Apply the machine learning models
In this research, we use three-boosting machine learning models including: LightGBM,
XGBoost and CatBoost as explained in the previous chapter. These three-boosting machine
learning has its own unique characteristics and learning approach. By using three different
algorithms, we introduce diversity in the models being trained. This helps to capture
different aspects of the imbalanced dataset and potential patterns associated with intrusive
instances. The combination of multiple models can lead to more robust and accurate
predictions. Parameters we use in each model which can be seen below.

LightGBM
LightGBM is a gradient boosting framework that is efficient and distributed, providing
faster training speed, greater efficiency, less memory usage, and better accuracy. It is a
decision tree-based machine learning algorithm that competes with XGBoost, which used
to dominate Kaggle competitions. LightGBM is nowmore popular among Kagglers because
of its high speed, accuracy, and ability to handle large amounts of data. It is also known for
its GPU learning support and its focus on accuracy. However, LightGBM is not advisable
for small datasets and is sensitive to overfitting. In this research of the LightGBM model,

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

the number of leaves per tree we use is 63, the speed iteration control is 0.01, specifies the
fraction of data to use for each iteration, and is generally used to guide training speed up
and avoid overfitting with a value of 0.5. The proportion of features is randomly chosen in
each iteration to create trees with a value of 0.5.

XGBoost
XGBoost is a machine learning algorithm used for regression, classification and ranking
problems. It’s open source and efficient for large and complex datasets. XGBoost can
handle missing values and function interactions, has built-in regularization techniques,
and works by building a series of decision trees that correct the errors of previous trees.
A popular choice among data scientists, XGBoost is used in various applications such
as financial modelling, healthcare, and natural language processing. In the XGBoost
model, n_estimators, which determine the epoch of the model, is set to 100 and
early_stopping_rounds to 10 to check for overfitting. The grid values sought for the
learning rate is 0.01. The max_depth is 4 and the min_child_weight in selected ranges from
1 to 10.

CatBoost
CatBoost is an open-source gradient boosting library used for classification, regression,
and ranking tasks. It handles categorical variables better than other algorithms, making it
useful for datasets with a mix of numeric and categorical data. It uses ordered boosting to
process categorical variables and handles categorical variables with high cardinality more
effectively. CatBoost can handle missing values without any special pre-processing, saving
time and effort for data scientists. It is powerful, efficient and used in various applications
like web search ranking, recommender systems and computer vision. In the CatBoost, the
grid values sought for the learning rate is 0.01. The iteration is 100 and the maximum depth
of the tree is 10. It is capable of handling model overfitting and the number of l2_leaf_reg
per tree we use is 1.

Evaluation metrics
To evaluate the performance of LightGBM, XGBoost, and CatBoost on the three datasets
we use, the metrics we use are as follows:

Precision=TP/(TP+FP) (7)

Recall=TP/(TP+FN) (8)

Accuracy= (TP+TN)/(TP+TN +FP+FN) (9)

F1-Score= (2×Precision×Recall)/(Precision+Recall). (10)

Precision is the ratio of positive correct predictions compared to the overall positive
predicted results in the IDS dataset used. Recall is the ratio of correctly positive predictions
compared to all the correctly positive data. Is the ratio of correct predictions (positive and
negative) with all the IDS data that we use. The F1-score is a comparison of the average
precision and recall which is weighted. Finally, accuracy answers the question ‘‘how

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 11/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

Table 4 Performance of 3 models with and without SMOTE.

Model Evaluation KDDCup99 CICIDS 2017 UNSW_NB15

Without SMOTE With SMOTE Without SMOTE With SMOTE Without SMOTE With SMOTE

accuracy 0.878 0.977 0.653 0.996 0.845 0.893
Precision 0.920 0.975 0.721 0.996 0.857 0.899
Recall 0.878 0.977 0.653 0.996 0.845 0.893

LightGBM

F1-Score 0.887 0.976 0.657 0.996 0.850 0.895
accuracy 0.878 0.999 0.998 0.995 0.899 0.893
Precision 0.920 0.999 0.998 0.995 0.901 0.901
Recall 0.878 0.999 0.998 0.995 0.899 0.893

XGBoost

F1-Score 0.887 0.999 0.998 0.994 0.897 0.896
accuracy 1.000 0.999 0.997 0.996 0.892 0.887
Precision 1.000 0.999 0.997 0.996 0.893 0.889
Recall 1.000 0.999 0.997 0.996 0.892 0.887

CatBoost

F1-Score 1.000 0.999 0.997 0.996 0.888 0.887

accurately are the predictions of the types of attacks processed by LightGBM, XGBoost,
and CatBoost’’.

RESULTS
In Table 4, we present the experimental results obtained with SMOTE on LightGBM. We
also compare these results to those of other boosting algorithms, such as XGBoost and
CatBoost, to see how the algorithm performs when SMOTE is used.

Next, to see the performance comparison of the three types of boost algorithms, we
present them in graphical form in Figs. 2–4.

Figure 2 shows that when the KDDCup99 dataset was oversampled using SMOTE, the
results improved. This is evident from the tables and graphs. The accuracy of the LightGBM
model without SMOTE is 0.878, and the accuracy after SMOTE is 0.977. This demonstrates
that SMOTE can improve the LightGBMmodel’s capability by 0.098, or 9.8%. The accuracy
obtained before using SMOTE in the 2017 CICIDS dataset was 0.653, and the accuracy
obtained after using SMOTE was 0.996. This demonstrates that the SMOTE oversampling
method can improve the performance of the LightGBM model by 0.343, or 34.3%, in the
2017 CICIDS data. The accuracy obtained without using SMOTE in the UNSW NB15
dataset is 0.845, and the accuracy obtained after using SMOTE is 0.893, demonstrating that
there is a 0.048 or 4.8% improvement in performance in the LightGBM model.

Furthermore, based on the accuracy of the LightGBM model on the data from the three
IDS datasets mentioned above, it appears that the oversampling method using SMOTE
can improve the performance of the LightGBM model, which can also be attributed to
increasing precision, recall, and F1-score on the LightGBM model when processing the
three IDS datasets.

Figure 3 demonstrated that in the KDDCup99 dataset, the accuracy obtained on the
XGBoost model before SMOTE was 0.878, and the accuracy obtained after SMOTE was
0.999, demonstrating that the performance of the XGBoost model improved by 0.121, or

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 12/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

Figure 2 LightGBM performance without and with SMOTE.
Full-size DOI: 10.7717/peerjcs.1580/fig-2

12.1%. In the 2017 CICIDS dataset, using SMOTE reduced XGBoost performance slightly
but not significantly. The accuracy obtained by the XGBoost model without SMOTE was
0.998, while the accuracy obtained after using SMOTE was 0.995. This demonstrates that
the performance of the XGBoost model decreased by 0.003 or 0.3%. Moreover, The UNSW
NB15 dataset experienced the same thing as the CICCIDS 2017 dataset, namely a small
but significant decrease in accuracy. This is demonstrated by the accuracy obtained on the
XGBoost model without SMOTE, which is 0.899, and the accuracy obtained after using
SMOTE, which is 0.893, demonstrating that there is a decrease in accuracy but it is not
too significant, namely equal to 0.006 or 0.6%. Based on the experimental results of testing
the performance of the XGBoost model on the three IDS datasets mentioned above, it is
demonstrated that SMOTE can improve the performance of the XGBoost model on the
KDDCup99 dataset but not on the CICIDS 2017 or UNSW NB15 datasets.

The experimental results on the three IDS datasets show that the SMOTE method
has no effect on the performance of the CatBoost model (Fig. 4). The accuracy of the
CatBoost model obtained without SMOTE is 1,000 in the KDDCup99 dataset, and the
accuracy obtained after using SMOTE is 0.999, demonstrating that there is a decrease in
the performance of the CatBoost model, but only by 0.001 or 0.1%. The accuracy obtained
without SMOTE in the 2017 CICIDS dataset was 0.997, and the accuracy obtained after
using SMOTE was 0.996, indicating that there was a decrease in the performance of the
CatBoost model, but not significantly by 0.001 or 0.1%. Furthermore, in the UNSW NB15
dataset, the accuracy obtained without SMOTE is 0.892, and the accuracy obtained after
using SMOTE is 0.887, demonstrating that the performance of the CatBoost model has
decreased but not significantly by 0.005 or 0.5%. Based on the results of the analysis of the
experimental results of the CatBoost model on the three IDS datasets, it is demonstrated
that the SMOTE method cannot significantly improve the performance of the CatBoost
model.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 13/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1580/fig-2
http://dx.doi.org/10.7717/peerj-cs.1580

Figure 3 XGBoost performance without and with SMOTE.
Full-size DOI: 10.7717/peerjcs.1580/fig-3

Figure 4 CatBoost performance without and with SMOTE.
Full-size DOI: 10.7717/peerjcs.1580/fig-4

In addition to the performance in the previous discussion, in this experiment we
tried to see the performance of time efficiency in carrying out the training process. Our
experimental results are presented in Table 5.

Based onTable 5 and Fig. 5 it shows that in the KDDCup99 dataset, the computation time
required for the LightGBM model without using SMOTE is 2.74 s, and the computation
time required using SMOTE is 2.51, this proves that computing using SMOTE is 0.23 s
faster. In CICIDS 2017 data, the computation time required for the LightGBM model
without using SMOTE is 1.85, and the computation time required using SMOTE is 1.91,

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 14/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1580/fig-3
https://doi.org/10.7717/peerjcs.1580/fig-4
http://dx.doi.org/10.7717/peerj-cs.1580

Table 5 Computing time.

Model KDDCup99 CICIDS 2017 UNSWNB15

Without SMOTE With SMOTE Without SMOTE With SMOTE Without SMOTE With SMOTE

LightGBM 2.74 s 2.51 s 1.85 s 1.91 s 2.38 s 2.43 s

XGBoost 4.74 s 21.1 s 7.51 s 7.8 s 13.5 s 14.7 s

CatBoost 104 s 52.7 s 31 s 31.2 s 48.3 s 49.8 s

Figure 5 Time consumed three models without and with SMOTE.
Full-size DOI: 10.7717/peerjcs.1580/fig-5

this proves that computing using SMOTE is 0.13 s slower. Whereas in the UNSW NB15
data, the computation time required by the LightGBMmodel without SMOTE is 2.38, and
the computation time using SMOTE is 2.43, this proves that computing using SMOTE is
0.04 s slower.

In the XGBoost model, when using the KDDCup99 dataset, the computation time
required without using SMOTE is 4.74, and the computation time required using SMOTE
is 21.1, this proves that the computation time using SMOTE is 16.36 s slower. When using
the CICIDS 2017 dataset, the computation time required without using SMOTE is 7.51,
and the computation time required using SMOTE is 7.8, this proves that the computation
time using SMOTE is 0.34 s slower. When using the UNSWNB15 dataset, the computation
time required without using SMOTE is 13.5, and the computation time required using
SMOTE is 14.7, this proves that the computation time using SMOTE is 1 s slower.

In the CatBoost model, when using the KDDCup99 dataset, the computation time
required without using SMOTE is 104 s, and the computation time required using SMOTE
is 52.7 s, this proves that the computation time required using SMOTE is 51.3 s faster.
When using the CICIDS 2017 dataset, the computation time required without using
SMOTE is 31 s, and the computation time required using SMOTE is 31.2, this proves that

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 15/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1580/fig-5
http://dx.doi.org/10.7717/peerj-cs.1580

the computation time using SMOTE is 1.2 s slower. When using the UNSW NB15 dataset,
the computation time required without using SMOTE is 48.3, and the computation time
required using SMOTE is 49.8 s, this proves that the computation time using SMOTE is
0.1 s slower.

Based on the experimental results, it shows that the SMOTE method can improve the
performance of the LightGBM model on the three IDS datasets, namely the KDDCup99,
CICIDS 2017, andUNSWNB15 datasets. In the XGBoostmodel, in the KDDCup99 dataset,
the SMOTE method was able to improve the performance of the XGBoost model, while in
the other two datasets, namely CICIDS 2017 and UNSW NB15, the SMOTE method was
not able to improve the performance of the XGBoost model but the difference between
the method without SMOTE and using SMOTE was not too significant. In the CatBoost
model, the experimental results show that SMOTE is not able to improve the performance
of the three Boosting models on the three IDS datasets, but the difference between the
three Boosting models without SMOTE and using SMOTE is not too significant.

Based on the analysis of the computational time required for the three Boosting models
on the three IDS datasets, it shows that the average computation time required for the
LightGBM model is 2.29 s, the average computation time required for the XGBoost model
is 11.58 s, and the average computation time required for the CatBoost model is 52.9 s. This
shows that the LightGBM model is faster compared to the XGBoost and CatBoost models.
The computation time required for the three Boosting models on the three IDS datasets in
the experimental results shows that the computation time without SMOTE is longer than
the computation time using SMOTE except for the LightGBM and CatBoost models on the
KDDCup99 dataset. This is because the amount of data processed by the three Boosting
models using SMOTE on the three IDS datasets is greater than the processing of the three
Boosting models on the three IDS datasets without using SMOTE.

DISCUSSION
After all the processing is done, we compare our experimental results with some classic
methods in the following lines: At the beginning of the first line, we compare them
with naive Bayes and decision tree (Ben Amor, Benferhat & Elouedi, 2004), these two
models are known for very low additional costs and high ones. The performance of
these models is satisfactory. Also, Random Forest (Zhang, Zulkernine & Haque, 2008), a
learning method that consists of many decision trees and is stronger in its generalization
abilities than decision trees. Next comes the support vector machine (SVM) (Wang,
Wong & Miner, 2004), a classic and efficient learning method, but it cannot handle big
data (Abdullah Alfrhan, Hamad Alhusain & Ulah Khan, 2020). In addition, multilayer
perceptron (MLP) (Amato et al., 2017) is a fundamental, classification-stable deep learning
method.We also compare several class-balancingmethods, such as randomunder sampling
(RUS), random oversampling (ROS) (Puri & Gupta, 2019) and SMOTE (Chawla et al.,
2011), which are identical in ensemble, with two methods, namely SVM and MLP, which
produce samples concretely. All methods are divided into several sections, including RUS
+MLP, RUS + SVM, ROS + SVM, SMOTE + SVM, ROS + MLP and SMOTE +MLP.
We also compare our method to one of the learning convolution neural network (CNN)

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 16/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

Table 6 Comparison results between three boosting and different methods (%).

Model KDDCup99 UNSWNB15 CICIDS 2017

Accuracy F1 Score Accuracy F1 Score Accuracy F1 Score

Naïve Bayes 73.55 72.31 61.8 65.27 93.90 93.53
Decicision Tree 77.89 75.25 73.25 76.36 99.62 99.57
Random Forest 77.20 73.23 74.35 77.28 99.79 99.78
SVM 72.85 68.84 68.49 70.13 96.97 96.99
MLP 78.97 75.40 78.32 76.98 99.48 99.39
RUS+ SVM 73.57 70.11 67.16 70.45 96.45 96.55
RUS+MLP 76.66 72.38 77.27 76.21 99.46 99.42
ROS+ SVM 73.34 69.90 68.32 70.00 96.98 97.04
ROS+MLP 78.10 74.18 76.13 76.97 99.55 99.55
SMOTE+ SVM 79.23 78.36 71.5 73.77 97.00 97.04
SMOTE+MLP 77.47 75.18 79.59 80.10 99.33 99.34
CNN 78.33 74.75 80.52 76.61 99.48 99.44
Fuzziness-based NN 75.33 70.58 81.21 78.58 99.61 99.57
LSSVM+MIFS (β = 0.3) 78.20 72.76 76.83 77.43 98.76 98.67
LSSVM+ FMIFS 75.67 73.67 77.18 77.65 99.51 99.48
IGAN-IDS 84.45 84.17 82.53 82.86 99.79 99.98
SMOTE+ LightGBM 97.68 97.61 89.32 89.54 99.63 99.62
SMOTE+ XGBoost 99.92 99.91 89.32 89.64 99.46 99.44
SMOTE+ CatBoost 99.90 99.89 88.66 88.73 99.57 99.56

methods (Li et al., 2017). In addition, fuzziness-based neural network (NN) (Ashfaq et al.,
2017), a semi-supervised learning approach method that can increase the generalization
of IDS. Furthermore, our method is compared with Mutual Information Based Feature
Selection (MIFS) before least square SVM (LSSVM) with an optimal value of= 0.3 (Amiri
et al., 2011). Furthermore, we compare our proposed method with flexible MIFS (FMIFS)
based on LSSVM+MIFS (Ambusaidi et al., 2016). Finally, our proposedmethod compares
the IGAN-IDS (Huang & Lei, 2020) generalization method. all comparisons are shown in
the Table 6.

From Table 6, Figs. 6 and 7, it can be seen that overall, the method we proposed has a
higher level of accuracy and F1 score compared to other methods, except for the calculation
of the CICIDS dataset, our proposed method is always even lower than the random and
IGAN-IDS. This happens because the selection of the parameters is not entirely correct, so
it is necessary to count on the selection of the appropriate parameters, so that the accuracy
of the three models of shoes can be increased.

CONCLUSIONS
We proposed STB (SMOTE on Tree Boosting) in this research to deal with imbalanced data
sets on three IDS dates. Based on the method we propose, it has been proven to increase
the capabilities of tree-boosting methods like LightGBM, XGBoost, and CatBoost. We used

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1580

Figure 6 Comparison STB and different methods based on accuracy.
Full-size DOI: 10.7717/peerjcs.1580/fig-6

Figure 7 Comparison STB and different methods based on F1 score.
Full-size DOI: 10.7717/peerjcs.1580/fig-7

three types of unbalanced IDS datasets, so this might be a good comparison to see how
model tree enhancement works with and without SMOTE.

Using SMOTE also helps to better predict computational processes. proven by the value
of the accuracy and the F1 score, which, with an average of 99%, is higher than several
previous studies that tried to solve the same problem, namely imbalanced IDS dataset.

The analysis revealed that using SMOTE is beneficial for the LightGBM model in all
three IDS datasets. For XGBoost, using SMOTE is good for KDDCup99, but requires
re-experimentation with other methods, such as feature selection, for CICIDS 2017 and
UNSW NB15 datasets. The use of SMOTE on the three boosting models and IDS data sets

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 18/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1580/fig-6
https://doi.org/10.7717/peerjcs.1580/fig-7
http://dx.doi.org/10.7717/peerj-cs.1580

for CatBoost needs to be improved by adding the feature selection method. These insights
can help network administrators anticipate cyberattacks on IDS. To improve accuracy
performance, future studies should supplement this method with future detection.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Li-Hua Li conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.
• Ramli Ahmad conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.
• Radius Tanone conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, and approved the final
draft.
• AlokKumar Sharma performed the experiments, analyzed the data, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at:
- KDD Cup 1999 Data: https://www.kaggle.com/datasets/galaxyh/kdd-cup-1999-data.
- Intrusion Detection Evaluation Dataset (CIC-IDS2017): https://www.unb.ca/cic/

datasets/ids-2017.html.
- The UNSW-NB15 Dataset: https://research.unsw.edu.au/projects/unsw-nb15-dataset.
The code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1580#supplemental-information.

REFERENCES
Abdullah Alfrhan A, Hamad Alhusain R, Ulah Khan R. 2020. SMOTE: class imbalance

problem in intrusion detection system. In: 2020 International conference on computer
and information techno logy. ICCIT 2020
DOI 10.1109/ICCIT-144147971.2020.9213728.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 19/22

https://peerj.com
https://www.kaggle.com/datasets/galaxyh/kdd-cup-1999-data
https://www.unb.ca/cic/datasets/ids-2017.html
https://www.unb.ca/cic/datasets/ids-2017.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://dx.doi.org/10.7717/peerj-cs.1580#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1580#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1580#supplemental-information
http://dx.doi.org/10.1109/ICCIT-144147971.2020.9213728
http://dx.doi.org/10.7717/peerj-cs.1580

Alshamy R, GhurabM, Othman S, Alshami F. 2021. Intrusion detection model for
imbalanced dataset using SMOTE and random forest algorithm. Communications
in Computer and Information Science 1487:361–378
DOI 10.1007/978-981-16-8059-5_22.

Amato F, Mazzocca N, Vivenzio E, Moscato F. 2017.Multilayer perceptron: an intel-
ligent model for classification and intrusion detection. In: 2017 31st International
conference on advanced information networking and applications workshops (WAINA).
686–691 DOI 10.1109/WAINA.2017.134.

Ambusaidi MA, He X, Nanda P, Tan Z. 2016. Building an intrusion detection system
using a filter-based feature selection algorithm. IEEE Transactions on Computers
65(10):2986–2998 DOI 10.1109/TC.2016.2519914.

Amiri F, Rezaei Yousefi M, Lucas C, Shakery A, Yazdani N. 2011.Mutual information-
based feature selection for intrusion detection systems. Journal of Network and
Computer Applications 34(4):1184–1199 DOI 10.1016/J.JNCA.2011.01.002.

Ashfaq RAR,Wang XZ, Huang JZ, Abbas H, He YL. 2017. Fuzziness based semi-
supervised learning approach for intrusion detection system. Information Sciences
378:484–497 DOI 10.1016/J.INS.2016.04.019.

Ben Amor N, Benferhat S, Elouedi Z. 2004. Naive Bayes vs decision trees in intrusion
detection systems. Proceedings of the Symposium on Applied Computing 1:420–424
DOI 10.1145/967900.967989.

Chawla NV, Bowyer KW, Hall LO, KegelmeyerWP. 2011. SMOTE: Synthetic Minority
Over-sampling Technique. Journal of Artificial Intelligence Research 16:321–357
DOI 10.1613/jair.953.

Das R, Biswas SK, Devi D, Sarma B. 2020. An oversampling technique by integrating
reverse nearest neighbor in SMOTE: Reverse-SMOTE. In: Proceedings of the
international conference on smart technologies in computing, electrical and electronics,
ICSTCEE 2020. 1239–1244 DOI 10.1109/ICOSEC49089.2020.9215387.

El Houda ZA, Brik B, Khoukhi L. 2022. ‘Why Should I Trust Your IDS?’: an ex-
plainable deep learning framework for intrusion detection systems in internet of
things networks. IEEE Open Journal of the Communications Society 3:1164–1176
DOI 10.1109/OJCOMS.2022.3188750.

GhanemWAHM, S. Ghaleb AA, Jantan A, Nasser AB. 2022. Cyber intrusion detection
system based on a multiobjective binary bat algorithm for feature selection and
enhanced bat algorithm for parameter optimization in neural networks. IEEE Access
10:76318–76339 DOI 10.1109/ACCESS.2022.3192472.

Huang S, Lei K. 2020. IGAN-IDS: an imbalanced generative adversarial network towards
intrusion detection system in ad-hoc networks. Ad Hoc Networks 105:102177
DOI 10.1016/J.ADHOC.2020.102177.

Jemmali M, DendenM, BoulilaW, Srivastava G, Jhaveri RH, Gadekallu TR. 2022.
A novel model based on window-pass preferences for data emergency aware
scheduling in computer networks. IEEE Transactions on Industrial Informatics
18(11):7880–7888 DOI 10.1109/TII.2022.3149896.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 20/22

https://peerj.com
http://dx.doi.org/10.1007/978-981-16-8059-5_22
http://dx.doi.org/10.1109/WAINA.2017.134
http://dx.doi.org/10.1109/TC.2016.2519914
http://dx.doi.org/10.1016/J.JNCA.2011.01.002
http://dx.doi.org/10.1016/J.INS.2016.04.019
http://dx.doi.org/10.1145/967900.967989
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/ICOSEC49089.2020.9215387
http://dx.doi.org/10.1109/OJCOMS.2022.3188750
http://dx.doi.org/10.1109/ACCESS.2022.3192472
http://dx.doi.org/10.1016/J.ADHOC.2020.102177
http://dx.doi.org/10.1109/TII.2022.3149896
http://dx.doi.org/10.7717/peerj-cs.1580

LeonM,Markovic T, Punnekkat S. 2022. Comparative evaluation of machine
learning algorithms for network intrusion detection and attack classification.
In: Proceedings of the international joint conference on neural networks 2022.
DOI 10.1109/IJCNN55064.2022.9892293.

Li Z, Qin Z, Huang K, Yang X, Ye S. 2017. Intrusion detection using convolutional
neural networks for representation learning. In: Lecture notes in computer science
(LNCS). 858–866.

Lin YD, Liu ZQ, Hwang RH, Nguyen VL, Lin PC, Lai YC. 2022.Machine learning with
variational AutoEncoder for imbalanced datasets in intrusion detection. IEEE Access
10:15247–15260 DOI 10.1109/ACCESS.2022.3149295.

Liu L,Wang P, Lin J, Liu L. 2021. Intrusion detection of imbalanced network traf-
fic based on machine learning and deep learning. IEEE Access 9:7550–7563
DOI 10.1109/ACCESS.2020.3048198.

Madhavi M, Nethravathi DR. 2022. Gradient boosted decision tree (GBDT) AND Grey
Wolf Optimization (GWO) based intrusion detection model. Journal of Theoretical
and Applied Information Technology 100(16):4937–4951.

Puri A, Gupta MK. 2019. Comparative analysis of resampling techniques under noisy
imbalanced datasets. In: IEEE Int. Conf. Issues Challenges Intell. Comput. Tech. ICICT
2019. DOI 10.1109/ICICT46931.2019.8977650.

Raharjo DHK, Nurmala A, Pambudi RD, Sari RF. 2022. Performance evaluation of
intrusion detection system performance for traffic anomaly detection based on active
IP reputation rules. IAES International Conference on Electrical Engineering, Computer
Science and Informatics 2022:75–79 DOI 10.1109/ICONEEI55709.2022.9972298.

Rani M, Gagandeep DR. 2022. An efficient network intrusion detection system based on
feature selection using evolutionary algorithm over balanced dataset. Lecture Notes in
Networks and Systems 339:179–193 DOI 10.1007/978-981-16-7018-3_15.

ShahMSM, Leau Y-B, Anbar M, Bin-Salem AA. 2023. Security and integrity attacks in
named data networking: a survey. IEEE Access 11:7984–8004
DOI 10.1109/access.2023.3238732.

Shukla AK, Srivastav S, Kumar S, Muhuri PK. 2023. UInDeSI4.0: an efficient Un-
supervised Intrusion Detection System for network traffic flow in Industry
4.0 ecosystem. Engineering Applications of Artificial Intelligence 120:105848
DOI 10.1016/J.ENGAPPAI.2023.105848.

Wang J, Wu Y, Qi J, Chen Z. 2022. An efficient reference-point based k neighbors
algorithm for imbalanced data. In: 2022 7th International conference on cloud
computing and big data analytics. ICCCBDA. 513–517
DOI 10.1109/ICCCBDA55098.2022.9778895.

Wang Y,Wong J, Miner A. 2004. Anomaly intrusion detection using one class SVM. In:
Proceedings from the fifth annual IEEE SMC information assurance workshop, 2004.
358–364 DOI 10.1109/IAW.2004.1437839.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 21/22

https://peerj.com
http://dx.doi.org/10.1109/IJCNN55064.2022.9892293
http://dx.doi.org/10.1109/ACCESS.2022.3149295
http://dx.doi.org/10.1109/ACCESS.2020.3048198
http://dx.doi.org/10.1109/ICICT46931.2019.8977650
http://dx.doi.org/10.1109/ICONEEI55709.2022.9972298
http://dx.doi.org/10.1007/978-981-16-7018-3_15
http://dx.doi.org/10.1109/access.2023.3238732
http://dx.doi.org/10.1016/J.ENGAPPAI.2023.105848
http://dx.doi.org/10.1109/ICCCBDA55098.2022.9778895
http://dx.doi.org/10.1109/IAW.2004.1437839
http://dx.doi.org/10.7717/peerj-cs.1580

Xu C, ZhaoW, Zhao J, Guan Z, Song X, Li J. 2023. Uncertainty-aware multiview
deep learning for internet of things applications. IEEE Transactions on Industrial
Informatics 19(2):1456–1466 DOI 10.1109/TII.2022.3206343.

Zhang J, ZulkernineM, Haque A. 2008. Random-forests-based network intrusion
detection systems. IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews) 38(5):649–659 DOI 10.1109/TSMCC.2008.923876.

Li et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1580 22/22

https://peerj.com
http://dx.doi.org/10.1109/TII.2022.3206343
http://dx.doi.org/10.1109/TSMCC.2008.923876
http://dx.doi.org/10.7717/peerj-cs.1580

