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We study the problem of combining active learning suggestions to identify informative

training examples by empirically comparing methods on benchmark datasets. Many active

learning heuristics for classification problems have been proposed to help us pick which

instance to annotate next. But what is the optimal heuristic for a particular source of data?

Motivated by the success of methods that combine predictors, we combine active learners

with bandit algorithms and rank aggregation methods. We demonstrate that a combination

of active learners outperforms passive learning in large benchmark datasets and removes

the need to pick a particular active learner a priori. We discuss challenges to finding good

rewards for bandit approaches and show that rank aggregation performs well.

PeerJ Comput. Sci. reviewing PDF | (CS-2017:10:21416:2:0:NEW 10 Jun 2018)

Manuscript to be reviewedComputer Science



Combining Active Learning Suggestions1

Alasdair Tran1, 2, Cheng Soon Ong1, 3, and Christian Wolf4, 5
2

1Research School of Computer Science, Australian National University3

2Data to Decisions Cooperative Research Centre, Australia4

3Machine Learning Research Group, Data61, CSIRO, Australia5

4Research School of Astronomy and Astrophysics, Australian National University6

5ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)7

Corresponding author:8

Alasdair Tran1
9

Email address: alasdair.tran@anu.edu.au10

ABSTRACT11

We study the problem of combining active learning suggestions to identify informative training examples by

empirically comparing methods on benchmark datasets. Many active learning heuristics for classification

problems have been proposed to help us pick which instance to annotate next. But what is the best

heuristic for a particular source of data? Motivated by the success of methods that combine predictors,

we combine active learners with bandit algorithms and rank aggregation methods. We demonstrate that

a combination of active learners outperforms passive learning in large benchmark datasets and removes

the need to pick a particular active learner a priori. We discuss challenges to finding good rewards for

bandit approaches and show that rank aggregation performs well.
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1 INTRODUCTION20

Recent advances in sensors and scientific instruments have led to an increasing use of machine learning21

techniques to manage the data deluge. Supervised learning has become a widely used paradigm in many22

big data applications. This relies on building a training set of labeled examples, which is time-consuming23

as it requires manual annotation from human experts.24

The most common approach to producing a training set is passive learning, where we randomly select25

an instance from a large pool of unlabeled data to annotate, and we continue doing this until the training26

set reaches a certain size or until the classifier makes sufficiently good predictions. Depending on how27

the underlying data is distributed, this process can be quite inefficient. Alternatively we can exploit the28

current set of labeled data to identify more informative unlabeled examples to annotate. For instance we29

can pick examples near the decision boundary of the classifier, where the class probability estimates are30

uncertain (i.e. we are still unsure which class the example belongs to).31

Many active learning heuristics have been developed to reduce the labeling bottleneck without32

sacrificing the classifier performance. These heuristics actively choose the most informative examples to33

be labeled based on the predicted class probabilities. Section 2 describes two families of algorithms in34

detail: uncertainty sampling and version space reduction.35

In this paper, we present a survey of how we can combine suggestions from various active learning36

heuristics. In supervised learning, combining predictors is a well-studied problem. Many techniques such37

as AdaBoost (Freund and Schapire, 1996) (which averages predictions from a set of models) and decision38

trees (Breiman et al., 1984) (which select one model for making predictions in each region of the input39

space) have been shown to perform better than just using a single model. Inspired by this success, we40

propose to combine active learning suggestions with bandit and rank aggregation methods in Section 3.41

The use of bandit algorithms to combine active learners has been studied before (Baram et al., 2004;42

Hsu and Lin, 2015). Borda count, a simple rank aggregation method, has been used in the context of43

multi-task learning for linguistic annotations (Reichart et al., 2008), where we have one active learner44

selecting examples to improve the performance of multiple related tasks (e.g. part-of-speech tagging and45

name entity recognition). Borda count has also been used in multi-label learning (Reyes et al., 2018) to46

combine uncertainty information from multiple labels. As far as we know, other aggregation methods have47
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not been explored and our work is the first time that social choice theory is used to rank and aggregate48

suggestions from multiple active learners.49

This paper makes the following two main contributions:50

1. We empirically compare 4 bandit and 3 rank aggregation algorithms in the context of combining51

active learning heuristics. We apply these algorithms to 11 benchmark datasets from the UCI52

Machine Learning Repository (Lichman, 2013) and a large dataset from the Sloan Digital Sky53

Survey (SDSS) (Alam et al., 2015). The experimental setup and discussion are described from54

Section 4 to 6.55

2. We propose two metrics for evaluation: the mean posterior balanced accuracy (MPBA) and the56

strength of an algorithm. The MPBA extends the metric proposed in Brodersen et al. (2010) from57

the binary to the multi-class setting. This is an accuracy measure that takes class imbalance into58

account. The strength measure is a variation on the deficiency measure used in Baram et al. (2004)59

which evaluates the performance of an active learner or combiner, relative to passive learning. The60

main difference between our measure and that of Baram et al. (2004) is that ours assigns a higher61

number for better active learning methods and ensures that it is upper-bounded by 1 for easier62

comparison across datasets.63

2 OVERVIEW OF ACTIVE LEARNING64

In this paper we consider the binary and multiclass classification settings where we would like to learn a65

classifier h, which is a function that maps some feature space X ⊆ R
d to a probability distribution over a66

finite label space Y:67

h : X → p(Y) (1)

In other words, we require that the classifier produces class probability estimates for each unlabeled68

example. For instance, in logistic regression with only two classes, i.e. Y = {0,1}, we can model the69

probability that an object with feature vector xxx belongs to the positive class with70

h(xxx;θθθ) = P(y = 1 | xxx;θθθ) =
1

1+ e−θθθ T xxx
(2)

and the optimal weight vector θθθ is learned in training. We can further consider kernel logistic regression,71

where the feature space X is the feature space corresponding to a given kernel, allowing for non-linear72

decision functions.73

In active learning, we use the class probability estimates from a trained classifier to estimate a score74

of informativeness for each unlabeled example. In pool-based active learning, where we select an object75

from a pool of unlabeled examples at each time step, we require that some objects have already been76

labeled. In practice this normally means that we label a small random sample at the beginning. These77

become the labeled training set LT ⊂X ×Y and the rest form the unlabeled set U ⊂ X .78

Now consider the problem of choosing the next example in U for querying. Labeling can be a very79

expensive task, because it requires using expensive equipment or human experts to manually examine80

each object. Thus we want to be smart in choosing the next example. This motivates us to come up with a81

rule s(xxx;h) that gives each unlabeled example a score based only on their feature vector xxx and the current82

classifier h. Recall that the classifier produces p(Y), a probability estimate for each class. We use these83

probability estimates from the classifier over the unlabeled examples to calculate the scores:84

s : p(Y)→ R (3)

The value of s(xxx;h) indicates the informativeness of example xxx, where bigger is better. We would then85

label the example with the largest value of s(xxx;h). This will be our active learning rule r:86

r(U ;h) = argmax
xxx∈U

s(xxx;h) (4)

Algorithm 1 outlines the standard pool-based active learning setting.87
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Input: unlabeled set U , labeled training set LT , classifier h(xxx), and active learner r(U ;h).

repeat

Select the most informative candidate xxx∗ from U using the active learning rule r(U ;h).
Ask the expert to label xxx∗. Call the label y∗.

Add the newly labeled example to the training set: LT ←LT ∪{(xxx∗,y∗)}.
Remove the newly labeled example from the unlabeled set: U ← U \{xxx∗}.
Retrain the classifier h(xxx) using LT .

until we have enough training examples.

Algorithm 1: The pool-based active learning algorithm.

Coming up with an optimal rule is itself a difficult problem, but there have been many attempts to88

derive good heuristics. Five common ones, which we shall use in our experiments, are described in89

Section 2.1 and 2.2. They roughly fall into two categories: uncertainty sampling and version space90

reduction.91

There are also heuristics that involve minimizing the variance or maximizing the classifier certainty of92

the model (Schein and Ungar, 2007), but they are computationally expensive. For example, in the variance93

minimization heuristic, the score of a candidate example is the expected reduction in the model variance94

if that example were in the training set. To compute this reduction, we first need to give the example each95

of the possible labels, add it to the training set, and update the classifier. This is expensive to run since in96

each iteration, the classifier needs to be retrained k×U times, where k is the number of classes and U97

is the size of the unlabeled pool. There are techniques to speed this up such as using online training or98

assigning a score to only a small subset of the unlabeled pool. Preliminary experiments showed that these99

heuristics do not perform as well as the simpler ones (Tran, 2015), so we do not consider them in this100

paper.101

A more comprehensive treatment of these active learning heuristics can be found in Settles (2012).102

2.1 Uncertainty Sampling103

Lewis and Gale (1994) introduced uncertainty sampling, where we select the instance whose class104

membership the classifier is least certain about. These tend to be points that are near the decision boundary105

of the classifier. Perhaps the simplest way to quantify uncertainty is the least confidence heuristic (Culotta106

and McCallum, 2005), where we pick the candidate whose most likely label the classifier is most uncertain107

about:108

rLC(U ;h) = argmax
xxx∈U

{

−max
y∈Y

p(y|xxx;h)

}

(5)

where p(y|xxx;h) is the probability that the object with feature vector xxx belongs to class y under classifier h.109

For consistency, we have flipped the sign of the score function so that the candidate with the highest score110

is picked.111

A second option is to calculate the entropy (Shannon, 1948), which measures the amount of informa-112

tion needed to encode a distribution. Intuitively, the closer the class probabilities of an object are to a113

uniform distribution, the higher its entropy will be. This gives us the heuristic of picking the candidate114

with the highest entropy of the distribution over the classes:115

rHE(U ;h) = argmax
xxx∈U

{

−∑
y∈Y

p(y|xxx;h) log
[

p(y|xxx;h)
]

}

(6)

As a third option we can pick the candidate with the smallest margin, which is defined as the difference116

between the two highest class probabilities (Scheffer et al., 2001):117

rSM(U ;h) = argmax
xxx∈U

{

−

(

max
y∈Y

p(y|xxx;h)− max
z∈Y\{y∗}

p(z|xxx;h)

)}

(7)

where y∗ = argmax
y∈Y

p(z|xxx;h) and we again flip the sign of the score function. Since the sum of all118

probabilities must be 1, the smaller the margin is, the harder it is to differentiate between the two most119

likely labels.120
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An extension to the above three heuristics is to weight the score with the information density so that121

we give more importance to instances in regions of high density:122

sID(U ;h) =

(

1

U

E

∑
k=1

sim(xxx,xxx(k))

)

s(xxx;h) (8)

where h is the classifier, s(xxx;h) is the original score function of the instance with feature vector xxx, U is the123

size of the unlabeled pool, and sim(xxx,xxx(k)) is the similarity between xxx and another instance xxx(k) using the124

Gaussian kernel with parameter γ:125

sim(xxx,xxx(k)) = exp(γ||xxx− xxx(k)||2) (9)

The information density weighting was proposed by Settles and Craven (2008) to discourage the active126

learner from picking outliers. Although the class membership of outliers might be uncertain, knowing127

their labels would probably not affect the classifier performance on the data as a whole.128

2.2 Version Space Reduction129

Instead of focusing on the uncertainty of individual predictions, we could instead try to constrain the size130

of the version space, thus allowing the search for the optimal classifier to be more precise. The version131

space is defined as the set of all possible classifiers that are consistent with the current training set. To132

quantify the size of this space, we can train a committee of B classifiers, B = {h1,h2, ...,hB}, and measure133

the disagreement among the members of the committee about an object’s class membership. Ideally,134

each member should be as different from the others as possible but still be in the version space (Melville135

and Mooney, 2004). In order to have this diversity, we give each member only a subset of the training136

examples. Since there might not be enough training data, we need to use bootstrapping and select samples137

with replacement. Hence this method is often called Query by Bagging (QBB).138

One way to measure the level of disagreement is to calculate the margin using the class probabilities139

estimated by the committee (Melville and Mooney, 2004):140

rQBBM(U ;h) = argmax
xxx∈U

{

−

(

max
y∈Y

p(y|xxx;B)− max
z∈Y\{y∗}

p(z|xxx;B)

)}

(10)

where141

y∗ = argmax
y∈Y

p(z|xxx;B) (11)

p(z|xxx;B) =
1

B
∑

b∈B

p(y|xxx;hb) (12)

This looks similar to one of the uncertainty sampling heuristics, except now we use p(y|xxx;B) instead of142

p(y|xxx;h). That is, we first average out the class probabilities predicted by the members before minimizing143

the margin. McCallum and Nigam (1998) offered an alternative disagreement measure which involves144

picking the candidate with the largest mean Kullback-Leibler (KL) divergence from the average:145

rQBBKL(U ;h) = argmax
xxx∈U

{

1

B

B

∑
b=1

DKL(pb‖pB)

}

(13)

where DKL(pb‖pB) is the KL divergence from pB (the probability distribution that is averaged across the146

committee B), to pb (the distribution predicted by a member b ∈ B):147

DKL(pb‖pB) = ∑
y∈Y

p(y|xxx;hb) ln
p(y|xxx;hb)

p(y|xxx;B)
(14)

For convenience, we summarize the five heuristics discussed above in Table 1.148
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Table 1. Summary of active learning heuristics used in our experiments. Notations: p(y|xxx;h) is the

probability of that an object with feature vector xxx has label y under classifier h, B is the set of B classifiers

{h1,h2, ...,hB}, Y is the set of possible labels, y∗ is the most certain label, U is the set of unlabeled

instances, DKL(p‖q) is the Kullback-Leibler divergence of p from q, and pB is the class distribution

averaged across classifiers in B. For consistency, with heuristics that use minimization, we flip the sign of

the score so that we can always take the argmax to get the best candidate.

Abbreviation Heuristic Objective Function

CONFIDENCE Least Confidence argmax
xxx∈U

{

−maxy∈Y p(y|xxx;h)
}

ENTROPY Highest Entropy argmax
xxx∈U

{

−∑y∈Y p(y|xxx;h) log
[

p(y|xxx;h)
]}

MARGIN Smallest Margin argmax
xxx∈U

{

−
(

maxy∈Y p(y|xxx;h)−maxz∈Y\{y∗} p(z|xxx;h)
)}

QBB-MARGIN Smallest QBB Margin argmax
xxx∈U

{

−
(

maxy∈Y p(y|xxx;B)−maxz∈Y\{y∗} p(z|xxx;B)
)}

QBB-KL Largest QBB KL argmax
xxx∈U

{

1

B
∑

B
b=1 DKL(pb‖pB)

}

3 COMBINING SUGGESTIONS149

Out of the five heuristics discussed, which one should we use in practice when we would like to apply150

active learning to a particular problem? There have been some attempts in the literature to do a theoretical151

analysis of their performance. Proofs are however scarce, and when there is one available, they normally152

only work under restrictive assumptions. For example, Freund et al. (1997) showed that the query by153

committee algorithm (a slight variant of our two QBB heuristics) guarantees an exponential decrease in154

the prediction error with the training size, but only when there is no noise. In general, whether any of155

these heuristics is guaranteed to beat passive learning is still an open question.156

Even though we do not know which one is the best, we can still combine suggestions from all of the157

heuristics. This can be thought of as the problem of prediction with expert advice, where each expert is an158

active learning heuristic. In this paper we explore two different approaches: we can either consider the159

advice of only one expert at each time step (with bandit algorithms), or we can aggregate the advice of all160

the experts (with social choice theory).161

3.1 Combining Suggestions with Bandit Theory162

First let us turn our attention to the multi-armed bandit problem in probability theory (Berry and Fristedt,163

1985). The colorful name originates from the situation where a gambler stands in front of a slot machine164

with R levers. When pulled, each lever gives out a reward according to some unknown distribution. The165

goal of the game is to come up with a strategy that can maximize the gambler’s lifetime rewards. In the166

context of active learning, each lever is a heuristic with a different ability to identify the candidate whose167

labeling information is most valuable.168

The main problem in multi-armed bandits is the trade-off between exploring random heuristics and169

exploiting the best heuristic so far. There are many situations in which we find our previously held beliefs170

to be completely wrong. By always exploiting, we could miss out on the best heuristic. On the other hand,171

if we explore too much, it could take us a long time to reach the desired accuracy.172

Bandit algorithms do not need to know the internal workings of the heuristics, but only the reward173

received from using any of them. At each time step, we receive a reward from a heuristic, and based on174

the history of all the rewards, the bandit algorithm can decide on which heuristic to pick next. Formally,175

we need to learn the function176

b : (JR× [0,1])n→ JR (15)

where b is the bandit algorithm, [0,1] is a normalized reward between 0 and 1, JR is the index set over the177

set of heuristicsR, and n is the time horizon.178

What would be an appropriate reward w in this setting? We propose using the incremental increase in179

the performance of the test set after the candidate is added to the training set. This, of course, means that180
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we need to keep a separate labeled test set around, just for the purpose of computing the rewards. We181

could, as is common practice in machine learning, use cross validation or bootstrap on LT to estimate the182

generalization performance. However for simplicity of presentation we use a separate test set LS.183

Figure 1 and Algorithm 2 outline how bandits can be used in pool-based active learning. The only184

difference between the bandit algorithms lies in the SELECT function that selects which heuristic to use,185

and the UPDATE function that updates the algorithm’s selection parameters when receiving a new reward.186

There have been some attempts to combine active learning suggestions in the literature. Baram et al.187

(2004) used the EXP4 multi-armed bandit algorithm to automate the selection process. They proposed a188

reward called the classification entropy maximization, which can be shown to grow at a similar rate to189

the true accuracy in binary classification with support vector machines (SVMs). We will not compare190

our results directly with those in Baram et al. (2004) since we would like to evaluate algorithms that can191

work with both binary and multi-class classification. Our experiments also use logistic regression which192

produces probability estimates directly, rather than SVMs which can only produce unnormalized scores.193

Hsu and Lin (2015) studied an improved version of EXP4, called EXP4.P, and used importance weighting194

to estimate the true classifier performance using only the training set. In this paper, we empirically195

compare the following four bandit algorithms: Thompson sampling, OC-UCB, kl-UCB, and EXP3++.196

3.1.1 Thompson Sampling197

The oldest bandit algorithm is Thompson sampling (Thompson, 1933) which solves the exploration-198

exploitation trade-off from a Bayesian perspective.199

Let Wi be the reward of heuristic ri ∈R. Observe that even with the best heuristic, we still might not200

score perfectly due to having a poor classifier trained on finite data. Conversely, a bad heuristic might be201

able to pick an informative candidate due to pure luck. Thus there is always a certain level of randomness202

in the reward received. Let us treat the reward Wi as a normally distributed random variable with mean νi203

and variance τ2
i :204

(Wi | νi)∼N (νi,τ
2
i ) (16)

If we knew both νi and τ2
i for all heuristics, the problem would become trivially easy since we just205

need to always use the heuristic that has the highest mean reward. In practice, we do not know the true206

mean of the reward νi, so let us add a second layer of randomness and assume that the mean itself follows207

a normal distribution:208

νi ∼N (µi,σ
2
i ) (17)

To make the problem tractable, let us assume that the variance τ2
i in the first layer is a known constant.209

The goal now is to find a good algorithm that can estimate µi and σ2
i .210

We start with a prior on µi and σ2
i for each heuristic ri. The choice of prior does not usually matter211

in the long run. Since initially we do not have any information about the performance of each heuristic,212

the appropriate prior value for µi is 0, i.e. there is no evidence (yet) that any of the heuristics offers an213

improvement to the performance.214

In each round, we draw a random sample ν ′i from the normal distribution N (µi,σ
2
i ) for each i and215

select heuristic r∗ that has the highest sampled value of the mean reward:216

r∗ = argmax
i

ν ′i (18)

We then use this heuristic to select the object that is deemed to be the most informative, add it to the217

training set, and retrain the classifier. Next we use the updated classifier to predict the labels of objects in218

the test set. Let w be the reward observed. We now have a new piece of information that we can use to219

update our prior belief about the mean µ∗ and the variance σ2
∗ of the mean reward. Using Bayes’ theorem,220

we can show that the posterior distribution of the mean reward remains normal,221

(ν∗ |W∗ = w)∼N (µ ′∗,σ
′
∗

2
) (19)

with the following new mean and variance:222

µ ′∗ =
µ∗τ

2
∗ +wσ2

∗

σ2
∗ + τ2

∗
σ ′∗

2
=

σ2
∗ τ2
∗

σ2
∗ + τ2

∗
(20)

Algorithm 3 summarizes the SELECT and UPDATE functions used in Thompson sampling.223
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Train with classifier h Assign scores with s
Select candidate
with highest score

Label candidateAdd to training pool

Select heuristic with b chosen heuristic r

LT

p(Y)

x∗(x∗, y∗)

LS

U

reward w

R

Figure 1. Active learning pipeline with bandit algorithms. We need to collect rewards w from the test set

LS in order to decide which heuristic to choose at each time step. This routine is indicated by the red

arrows. Notations: R is the set of heuristics {r1, ...,rR}, LT is the training set, LS is the test set, U is the

unlabeled set, and p(Y) is the predicted class probabilities on the unlabeled data U .

Input: unlabeled set U , labeled training set LT , labeled test set LS, classifier h, desired training

size n, set of active learning heuristicsR, and bandit algorithm b with two functions

SELECT and UPDATE.

while |LT |< n do

Select a heuristic r∗ ∈R according to SELECT.

Select the most informative candidate xxx∗ from U using the chosen heuristic r∗(U ;h).
Ask the expert to label xxx∗. Call the label y∗.

Add the newly labeled example to the training set: LT ←LT ∪{(xxx∗,y∗)}.
Remove the newly labeled example from the unlabeled set: U ← U \{xxx∗}.
Retrain the classifier h(xxx) using LT .

Run the updated classifier on the test set LS to compute the increase in the performance w.

Update the parameters of b with UPDATE(w).

end

Algorithm 2: Pool-based active learning with bandit theory. Note that in addition to the set of

active learning heuristicsR and the test set LS, some bandit algorithms also need to know n, the

maximum size of the training set, in the advance.

function SELECT()

for i ∈ {1,2, ...,R} do

ν ′i ← draw a sample from N (µi,σ
2
i )

end

Select the heuristic with the highest sampled value: r∗← argmax
i

ν ′i

function UPDATE(w)

µ∗←
µ∗τ

2
∗ +wσ2

∗

σ2
∗ + τ2

∗
σ2
∗ ←

σ2
∗ τ2
∗

σ2
∗ + τ2

∗

Algorithm 3: Thompson sampling with normally distributed rewards. Notations: R is the set

of R heuristics, µ is the mean parameter of the average reward, σ2 is the variance parameter of

the average reward, τ2 is the known variance parameter of the reward, and w is the actual reward

received.
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3.1.2 Upper Confidence Bounds224

Next we consider the Upper Confidence Bound (UCB) algorithms which use the principle of “optimism225

in the face of uncertainty”. In choosing which heuristic to use, we first estimate the upper bound of the226

reward (that is, we make an optimistic guess) and pick the one with the highest bound. If our guess turns227

out to be wrong, the upper bound of the chosen heuristic will decrease, making it less likely to get selected228

in the next iteration.229

There are many different algorithms in the UCB family, e.g. UCB1-TUNED & UCB2 (Auer et al.,230

2002a), V-UCB (Audibert et al., 2009), OC-UCB (Lattimore, 2015), and kl-UCB (Cappé et al., 2013).231

They differ only in the way the upper bound is calculated. In this paper, we only consider the last232

two. In Optimally Confident UCB (OC-UCB), Lattimore (2015) suggests that we pick the heuristic that233

maximizes the following upper bound:234

r∗ = argmax
i

(

wi +

√

α

Ti(t)
ln
(ψn

t

)

)

(21)

where wi is the average of the rewards from ri that we have observed so far, t is the time step, Ti(t) is the235

number times we have selected heuristic ri before step t, and n is the maximum number of steps that we236

are going to take. There are two tunable parameters, α and ψ , which the author suggests setting to 3 and237

2, respectively.238

In kl-UCB, Cappé et al. (2013) suggest that we can instead consider the KL-divergence between239

the distribution of the current estimated reward and that of the upper bound. In the case of normally240

distributed rewards with known variance σ2, the chosen heuristic would be241

r∗ = argmax
i

(

wi +

√

2σ2
ln
(

Ti(t)
)

t

)

(22)

Algorithms 4 and 5 summarize these two UCB approaches. Note that the size of the reward w is not used242

in UPDATE(w) of UCB, except to select the best arm.243

function SELECT()

r∗← argmax
i

wi +

√

3

Ti(t)
ln
(2n

t

)

function UPDATE(w)

t← t +1

T∗(t)← T∗(t−1)+1

Algorithm 4: Optimally Confident UCB. Notations: n is the time horizon (maximum number of

time steps), t is the current time step, Ti(t) counts of how many times heuristic i has been selected

before step t, w is the reward received, and wi is the average of the rewards from ri so far.

function SELECT()

r∗← argmax
i

wi +

√

2σ2
ln
(

Ti(t)
)

t

function UPDATE(w)

t← t +1

T∗(t)← T∗(t−1)+1

Algorithm 5: kl-UCB with normally distributed rewards. Notations: σ is the variance of the

rewards, t is the current time step, Ti(t) counts of how many times heuristic i has been selected

before step t, w is the reward received, and wi is the average of the rewards from ri so far.
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3.1.3 EXP3++244

The exponential-weight algorithm for exploration and exploitation (EXP3) was first developed by Auer245

et al. (2002b) to solve the non-stochastic bandit problem where we make no statistical assumptions about246

the reward distribution. This is also often known as the adversarial setting, where we have an adversary247

who generates an arbitrary sequence of rewards for each heuristic in advance. Like Thompson sampling,248

the algorithm samples from a probability distribution at each step to pick a heuristic. Here however, we249

construct the distribution with exponential weighting (hence the name EXP3). We shall test Seldin and250

Slivkins (2014)’s EXP3++ algorithm (see Algorithm 6). This is a generalization of the original EXP3 and251

it has been shown to perform well in both the stochastic (where the reward of each heuristic follows an252

unknown reward distribution) and the adversarial regime.253

function SELECT()

β =
1

2

√

lnR

tR
for i ∈ {1,2, ...,R} do

ξi =
18ln(t)2

t min(1,
1

t
(Li−min(L)))2

εi = min(
1

2R
,β ,ξi)

ρi =
e−β∗Li

∑ j e−β∗L j

end

r∗← draw a sample fromR with probability distribution ρ .

function UPDATE(w)

t← t +1

T∗(t)← T∗(t−1)+1

L∗←
L∗+(1−w)

(1−∑ j ε j)W∗+ ε∗

Algorithm 6: EXP3++ algorithm. Notations: R is the set of R heuristics, t is the current time

step, β is a parameter used to weight the heuristics for selection, ξi and εi are used to compute the

loss Li, ρ is the distribution from which a heuristic is sampled, and w is the reward received.

3.2 Combining Suggestions with Social Choice Theory254

A drawback of the above bandit methods is that at each iteration, we could only use one suggestion from255

one particular heuristic. EXP4 and EXP4.P algorithms can take advice from all heuristics by maintaining256

a weight on each of them. However, being a bandit method, they require designing a reward scheme.257

If the reward is the performance on a test set, we would need to keep around a separate subset of the258

data, which is expensive and sometimes impossible to obtain in practice. This leads us to social choice259

theory, which can combine suggestions like EXP4 and EXP4.P, while not needing the concept of a reward.260

Originally developed by political scientists like Nicolas de Condorcet and Jean-Charles de Borda, this261

field of study is concerned with how we aggregate preferences of a group of people to determine, for262

example, the winner in an election (List, 2013). It has the nice property that everyone (or in our context,263

every active learning heuristic) has a voice.264

For each heuristic, we assign a score to every candidate with the score function s(xxx,h) like before.265

We are neither interested in the actual raw scores nor the candidate with the highest score. Instead, we266

only need a ranking of the candidates, which is achieved by a function k(s,U) that provides a ranking267

of the unlabeled examples according to their scores. For example, k could assign the candidate with the268

highest score a rank of 1, the next best candidate a rank of 2, and so on. An aggregation function c will269

then combine all the rankings into a combined ranking,270

c : σ(JU )
R→ σ(JU ) (23)
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where σ(JU ) is a permutation over the index set of the unlabeled pool U and R is the number of heuristics.271

From these we can pick the highest-ranked candidate to annotate. See Table 2 for an example.272

Table 2. An example of how to convert raw scores into a ranking.

Score s(xxx;h) 0.1 0.9 0.3 0.8

Rank k(s,U) 4 1 3 2

The main difference between this approach and the bandit algorithms is that we do not consider the273

reward history when combining the rankings. Here each heuristic is assumed to always have an equal274

weight. A possible extension, which is not considered in this paper, is to use the past performance to275

re-weight the heuristics before aggregating at each step. Figure 2 and Algorithm 7 provide an overview of276

how social choice theory is used in pool-based active learning.277

The central question in social choice theory is how we can come up with a good preference aggregation278

rule. We shall examine three aggregation rules: Borda count, the geometric mean, and the Schulze method.279

In the simplest approach, Borda count, we assign an integer point to each candidate. The lowest-ranked280

candidate receives a point of 1, and each candidate receives one more point than the candidate below. To281

aggregate, we simply add up all the points each candidate receives from every heuristic. The candidate282

with the most points is declared the winner and is to be labeled next. We can think of Borda count, then,283

as ranking the candidate according to the arithmetic mean.284

An alternative approach is to use the geometric mean, where instead of adding up the points, we285

multiply them. Bedő and Ong (2016) showed that the geometric mean maximizes the Spearman correlation286

between the ranks. Note that this method requires the ranks to be scaled so that they lie strictly between 0287

and 1. This can be achieved by simply dividing the ranks by (U +1), where U is the number of candidates.288

The third approach we consider is the Schulze method (Schulze, 2011). Out of the three methods289

considered, this is the only one that fulfills the Condorcet criterion, i.e. the winner chosen by the algorithm290

is also the winner when compared individually with each of the other candidates. However, the Schulze291

method is more computationally intensive since it requires examining all pairs of candidates. First we292

compute the number of heuristics that prefer candidate xi to candidate x j, for all possible pairs (xi,x j).293

Let us call this d(xi,x j). Let us also define a path from candidate xi to x j as the sequence of candidates,294

{xi,x1,x2, ...,x j}, that starts with xi and ends with x j, where, as we move along the path, the number of295

heuristics that prefer the current candidate over the next candidate must be strictly decreasing. Intuitively,296

the path is the rank of a subset of candidates, where xi is the highest-ranked candidate and x j is at the297

lowest-ranked.298

Associated with each path is a strength p, which is the minimum of d(xi,x j) for all consecutive xi299

and x j along the path. The core part of the algorithm involves finding the path of the maximal strength300

from each candidate to every other. Let us call p(xi,x j) the strength of strongest path between xi and301

x j. Candidate xi is a potential winner if p(xi,x j)≥ p(x j,xi) for all other x j. This problem has a similar302

flavor to the problem of finding the shortest path. In fact, the implementation uses a variant of the303

Floyd–Warshall algorithm to find the strongest path. This is the most efficient implementation that we304

know of, taking cubic time in the number of candidates.305

We end this section with a small illustration of how the three aggregation algorithms work in Table 3.306

4 EXPERIMENTAL PROTOCOL307

We use 11 classification datasets taken from the UCI Machine Learning Repository1 (Lichman, 2013),308

with a large multiclass classification dataset which we extracted from the SDSS project2 (Alam et al.,309

2015). The code for the experiments can be found on our GitHub repository3. Table 4 shows the size and310

the number of classes in each dataset, along with the proportion of the samples belonging to the majority311

class and the maximum achievable performance using logistic regression. These datasets were chosen312

such that we have an equal number of binary and multiclass datasets, and a mixture of small and large313

datasets.314

1https://archive.ics.uci.edu/ml/
2https://doi.org/10.5281/zenodo.58500
3https://github.com/chengsoonong/mclass-sky
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Train with classifier h Assign scores with s1,.., sR Convert to rankings with k

Aggregate rankings with c
Select highest
ranked candidate

Add to training pool Label candidate

LT U

p(Y)

σ1(JU ), ..., σR(JU )

σ(JU )x∗(x∗, y∗)

R

Figure 2. Active learning pipeline with rank aggregation methods. Unlike the bandit pipeline, there is

only one cycle in which we aggregate information from all heuristics. Additional notation: σ(JU ) is a

permutation (i.e. rank) on the index set of the unlabeled data.

Input: unlabeled set U , labeled training set LT , classifier h, set of active learning suggestionsR,

ranking function k, and rank aggregator c.

repeat

for r ∈R do

Rank all the candidates in U with k.

end

Aggregate all the rankings into one ranking using the aggregator c.

Select the highest-ranked candidate xxx∗ from U .

Ask the expert to label xxx∗. Call the label y∗.

Add the newly labeled example to the training set: LT ←LT ∪{(xxx∗,y∗)}.
Remove the newly labeled example from the unlabeled set: U ← U \{xxx∗}.
Retrain the classifier h(xxx) using LT .

until we have enough training examples.

Algorithm 7: Pool-based active learning with social choice theory.
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Table 3. An example of how social choice theory algorithms rank candidates by aggregating three

heuristics: r1, r2, and r3. There are four candidates in the unlabeled pool: A, B, C, and D.

Heuristic Ranking

r1 B A C D

r2 A C B D

r3 B D C A

(a) An example of how the three heuristics rank four candidates A,B,C, and D. For instance, heuristic r1 considers B

to be the highest rank candidate, followed by A, C, and D.

Candidate Borda count Geometric mean

A 3+4+1 = 8 3×4×1 = 12

B 4+2+4 = 10 4×2×4 = 32

C 2+3+2 = 7 2×3×2 = 12

D 1+1+3 = 5 1×1×3 = 3

(b) Aggregated ranking with Borda count and geometric mean. The scores are determined by the relative ranking in

each heuristic. For example, A is ranked second by r1, first by r1, and last by r3, thus giving us a score of 3, 4 and 1,

respectively. In both methods, candidate B receives the highest aggregated score.

From / To A B C D

A – 1 2 2

B 2 – 2 3

C 1 1 – 2

D 2 0 1 –

(c) Aggregated ranking with the Schulze method. The table shows the strongest path strength p(xi,x j) between all

pairs of candidates. For example, p(B,D) = 3 because the path B→ D is the strongest path from B to D, where three

heuristics prefer B over D. Candidate B is the winner since p(B,A)> p(A,B), p(B,C)> p(C,B), and

p(B,D)> p(D,B).

Table 4. Overview of datasets. The following datasets are from the UCI Machine Learning Repository:

glass, ionosphere, iris, magic, miniboone, pageblock, pima, sonar, vehicle, wine, and wpbc. In particular,

the vehicle dataset comes from the Turing Institute, Glasgow, Scotland. The sdss dataset was extracted

from Data Release 12 of SDSS-III.

Dataset Size No. of No. of Majority Max Performance

Classes Features Class (MPBA)

glass 214 6 10 33% 65%

ionosphere 351 2 34 64% 89%

iris 150 3 4 33% 90%

magic 19 020 2 11 65% 84%

miniboone 129 596 2 50 72% 88%

pageblock 5 473 5 10 90% 79%

pima 733 2 8 66% 71%

sdss 2 801 002 3 11 61% 90%

sonar 208 2 60 53% 78%

vehicle 846 4 18 26% 81%

wine 178 3 13 40% 94%

wpbc 194 2 34 76% 58%
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For each dataset, we use Scikit-learn (Pedregosa et al., 2011) to train a logistic regression model using315

a 10-fold stratified shuffled cross-validation. Here ‘stratified’ means that the proportion of the classes316

remains constant in each split. We standardize all features to have zero mean and unit variance. Although317

all examples have already been labeled, we simulate the active learning task by assuming that certain318

examples do not have any labels. For each fold, the unlabeled pool size is 70% of data up to a maximum319

of 10,000 examples, and the test pool consists of the remaining examples up to a maximum of 20,000. We320

assume all test examples are labeled. We initialize the classifier by labeling 10 random instances and using321

them as the initial training set. The heuristics are fast enough such that we can assign a score to every322

unlabeled instance at every time step. We use logistic regression with a Gaussian kernel approximation323

and an L2 regularizer. In the binary case, the loss function is324

L =
1

2
θθθ T θθθ +C

n

∑
i=1

ln
(

1+ exp(−yi(θθθ
T f (xxxi)))

)

(24)

where xxxi is the feature vector of the ith example, yi ∈ {0,1} is the label of xxxi, and n is the training size.325

The term
1

2
θθθ T θθθ is the regularization term to ensure that the weight vector θθθ is not too large, and C is a326

regularization hyperparameter in [10−6,106] which we find using grid search. To speed up the training327

time while using the Gaussian kernel, we approximate the feature map of the kernel with Random Kitchen328

Sinks (Rahimi and Recht, 2008), transforming the raw features xxxi into a fixed 100-dimensional feature329

vector f (xxxi). In the multiclass case, we use the One-vs-Rest strategy, where for every class we build a330

binary classifier that determines whether a particular example belongs to that class or not. For the QBB331

algorithms, we train a committee of 7 classifiers, where each member is given a sample of maximum 100332

examples that have already been labeled.333

For the bandit algorithms, we use the increase in the mean posterior balanced accuracy (MPBA) on the334

test set as the reward. The MPBA can be thought of as the expected value of the average recall, where we335

treat the recall as a random variable that follows a Beta distribution. Compared to the raw accuracy score,336

this metric takes into account class imbalance. This is because we first calculate the recall in each class337

and then take the average, thus giving each class an equal weight. Refer to Appendix A for the derivation338

of the MPBA, which extends Brodersen et al. (2010)’s formula from the binary to the multiclass setting.339

In total, we test 17 query strategies. This includes passive learning, 8 active learning heuristics,340

5 bandit algorithms, and 3 aggregation methods. The bandit algorithms include the four described in341

Section 3.1 and a baseline called EXPLORE which simply selects a random heuristic at each time step. In342

other words, we ignore the rewards and explore 100% of the time. For all bandit and rank aggregation343

methods, we take advice from six representative experts: PASSIVE, CONFIDENCE, MARGIN, ENTROPY,344

QBB-MARGIN, and QBB-KL. We have not explored how adding the heuristics with information density345

weighting to the bandits would impact the performance. See Table 5 for a list of abbreviations associated346

with the methods.347

Given that there are 12 datasets, each with 17 learning curves, we need a measure that can summarize348

in one number how well a particular heuristic or policy does. Building on Baram et al. (2004)’s deficiency349

measure, we define the strength of an active learner or a combiner relative to passive learning as350

Strength(h;m) = 1−
∑

n
t=1

(

m(max)−m(h, t)
)

∑
n
t=1

(

m(max)−m(passive, t)
) (25)

where m is a chosen metric (e.g. accuracy rate, MPBA), m(max) is the best possible performance4, and351

m(h, t) is the performance achieved using the first t examples selected by heuristic h. We can think of the352

summation as the area between the best possible performance line and the learning curve of h. The better353

the heuristic is, the faster it would approach this maximum line, and thus the smaller the area. Finally, so354

that we can compare the performance across datasets, we normalize the measure with the area obtained355

from using just passive learning. Refer to Figure 3 for a visualization of the strength measure.356

We evaluate the algorithm performance with two metrics: the accuracy score and the MPBA. The357

accuracy score is the percentage of instances in the test set where the predicted label matches the true358

label. If a dataset has a dominant class, then the accuracy score of instances within that class will also359

4The best possible performance in each trial is obtained by the higher of: 1) the performance achieved by using all the labeled

examples in the training set; and 2) the maximum value of the learning curves of all the methods.
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Table 5. Summary of active learning heuristics and combiners used in the experiments.

Abbreviation Type Description

PASSIVE Heuristic Passive learning

CONFIDENCE Heuristic Least confidence heuristic

W-CONFIDENCE Heuristic Least confidence heuristic with information density weighting

MARGIN Heuristic Smallest margin heuristic

W-MARGIN Heuristic Smallest margin heuristic with information density weighting

ENTROPY Heuristic Highest entropy heuristic

W-ENTROPY Heuristic Highest entropy heuristic with information density weighting

QBB-MARGIN Heuristic Smallest QBB margin heuristic

QBB-KL Heuristic Largest QBB KL-divergence heuristic

EXPLORE Bandit Bandit algorithm with 100% exploration

THOMPSON Bandit Thompson sampling

OCUCB Bandit Optimally Confidence UCB algorithm

KLUCB Bandit kl-UCB algorithm

EXP3++ Bandit EXP3++ algorithm

BORDA Aggregation Aggregation with Borda count

GEOMETRIC Aggregation Aggregation with the geometric mean

SCHULZE Aggregation Aggregation with the Schulze method
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Figure 3. An illustration of the MPBA strength measure. It is proportional to the shaded area between

the (red) passive learning curve and the (blue) active learning curve. The bigger the area is, the more the

active learner outperforms the passive learner. The top dotted line indicates the maximum performance

achieved.
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dominate the overall accuracy score. The MPBA, on the other hand, puts an equal weight on each class360

and thus favors algorithms that can predict the label of all classes equally well.361

The heuristics with information density weighting and Thompson sampling have a few additional362

hyperparameters. To investigate the effect of these hyperparameters, we pick one binary dataset (glass)363

and one multiclass dataset (ionosphere) to investigate. Both of these are small enough to allow us to iterate364

through many hyperparameter values quickly. With W-CONFIDENCE, W-MARGIN, and W-ENTROPY, we365

set γ in the Gaussian kernel to be the inverse of the 95th percentile of all pairwise distances. This appears366

to work well, as shown in Figure 4. For THOMPSON, the prior values for µ , σ2 and the value of τ2 seem367

to have little effect on the final performance (see Figure 5). We set the initial µ to 0.5, the initial σ2 to368

0.02, and τ2 to 0.02.369

5 RESULTS370

Figures 6 and 7 show the strengths of all methods that we consider, while Figures 8 and 9 provide selected371

learning curves. Plots for the 6 small datasets with fewer than 500 examples (glass, ionosphere, iris, sonar,372

wine, and wpbc) are shown in Figures 6 and Figure 8. Plots for the 2 medium-sized datasets (pima and373

vehicle) and the 4 large datasets (magic, miniboone, pageblocks, and sdss) are shown in Figure 7 and374

Figure 9. Each figure contains two subfigures, one reporting the raw accuracy score, while the other375

showing the MPBA score.376

Active learning methods generally beat passive learning in four of the six small datasets—glass,377

ionosphere, iris, and wine. This can be seen by the fact that the boxplots are mostly above the zero line in378

Figure 6. For sonar and wpbc, the results are mixed—active learning has little to no effect here. The wpbc379

dataset is particularly noisy—our classifier cannot achieve an MPBA score greater than 60% (see Figure380

8). Thus it is not surprising that active learning does not perform well here since there is not much to381

learn to begin with.382

The advantage of active learning becomes more apparent with the larger datasets like magic, mini-383

boone, pageblocks, and sdss. Here there is a visible gap between the passive learning curve and the active384

learning curve for most methods. For instance, using a simple heuristic such as CONFIDENCE in the385

pageblocks dataset results in an average MPBA score of 74% after 1,000 examples, while passive learning386

can only achieves 67% (see Figure 9F).387

Out of the 8 active learning heuristics tested, the heuristics with the information density weighting388

(W-CONFIDENCE, W-MARGIN, and W-ENTROPY) generally perform worse than the ones without the389

weighting. QBB-KL performs the best in pageblocks while it can barely beat passive learning in other390

datasets. The remaining heuristics—CONFIDENCE, MARGIN, ENTROPY, and QBB-MARGIN—perform391

equally well in all datasets.392

We find no difference in performance between the bandit algorithms and the rank aggregation methods.393

Combining active learners does not seem to hurt the performance, even if we include a poorly performing394

heuristic such as QBB-KL.395

For bandit algorithms, it is interesting to note that THOMPSON favors certain heuristics a lot more than396

others, while the behavior of EXP3++, OCUCB, and KLUCB is almost indistinguishable from EXPLORE,397

where we explore 100% of the time (see Figure 10). Changing the initial values of µ , σ2, and τ2 changes398

the order of preference slightly, but overall, which heuristics THOMPSON picks seems to correlate with399

the heuristic performance. For example, as shown in Figure 11, PASSIVE and QBB-KL tend to get chosen400

less often than others in the ionosphere dataset.401

6 DISCUSSION402

The experimental results allow us to answer the following questions:403

1. Can active learning beat passive learning? Yes, active learning can perform much better than404

passive learning, especially when the unlabeled pool is large (e.g. sdss, miniboone, pageblock).405

When the unlabeled pool is small, the effect of active learning becomes less apparent, as there406

are now fewer candidates to choose from. This can be seen in Figure 12, where we show that407

artificially reducing the unlabeled pool results in a reduction in the final performance. At the same408

time, having a small test set also makes the gap between the active learning curve and the passive409

learning curve smaller (see the rightmost subplots of Figure 12). This further contributes to the410
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Figure 4. Effect of γ on W-CONFIDENCE and W-MARGIN using the glass and ionosphere datasets. We

examine six different values for γ : the 50th, 60th, 70th, 90th, 95th, and 99th percentile of the of the pairwise

L1-distance between the data points. For the glass dataset, changing value of γ has minimal effect on the

results, while for the ionosphere dataset, using the 90th percentile and above seems to work well.
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Figure 5. Effect of the initial values of the parameters in THOMPSON. We test 16 combinations of µ , σ2,

and τ2 on the glass and ionosphere dataset. Varying these values does not seem to affect the final

performance.
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Figure 6. Boxplots of the accuracy and MPBA strength of the 16 active learning strategies, relative to

passive learning, using the small datasets (glass, ionosphere, iris, sonar, wine, and wpbc). The more

positive the strength is, the better the heuristic/combiner is. Gray boxes represent individual heuristics;

blue boxes represent bandit algorithms, and red boxes are for rank aggregation methods. A strategy that is

above the zero line is better than passive learning. Each boxplot contains 10 trials. The accuracy score is

a simple metric that simply counts up the number of correct predictions. The MPBA score, being the

weighted average of the recall and precision, gives an equal representation to each class. The boxes

represent the quartiles and the whiskers extend to 1.5 times of the interquartile range.
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Figure 7. Boxplots of the accuracy and MPBA strength of the 16 active learning strategies, relative to

passive learning, using medium to the large datasets (magic, miniboone, pageblocks, pima, sdss, and

vehicle). The more positive the strength is, the better the heuristic/combiner is. Gray boxes represent

individual heuristics; blue boxes represent bandit algorithms, and red boxes are for rank aggregation

methods. A strategy that is above the zero line is better than passive learning. Each boxplot contains 10

trials. The accuracy score is a simple metric that simply counts up the number of correct predictions. The

MPBA score, being the weighted average of the recall and precision, gives an equal representation to each

class. The boxes represent the quartiles and the whiskers extend to 1.5 times of the interquartile range.
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Figure 8. Selected accuracy and MPBA learning curves for the small datasets (glass, ionosphere, iris,

sonar, wine, and wpbc). As it would get too cluttered to plot 17 learning curves, we only show the

learning curve for PASSIVE, CONFIDENCE, EXP3++, and BORDA. The learning curves are averaged over

10 trials. The dotted horizontal line shows the performance obtained from using the whole training data.

19/29

PeerJ Comput. Sci. reviewing PDF | (CS-2017:10:21416:2:0:NEW 10 Jun 2018)

Manuscript to be reviewedComputer Science



200 400 600 800 1000

68%

70%

73%

75%

78%

80%

82%

85%

A
cc

ur
ac

y

(A) magic, accuracy

passive
confidence
borda
exp3++

200 400 600 800 1000
65%

68%

70%

72%

75%

78%

80%

82%

M
P

B
A

(B) magic, mpba

passive
confidence
borda
exp3++

200 400 600 800 1000

80%

82%

84%

86%

88%

A
cc

ur
ac

y

(C) miniboone, accuracy

passive
confidence
borda
exp3++

200 400 600 800 1000

73%

75%

78%

80%

82%

85%

88%

M
P

B
A

(D) miniboone, mpba

passive
confidence
borda
exp3++

200 400 600 800 1000

86%

88%

90%

92%

94%

96%

A
cc

ur
ac

y

(E) pageblocks, accuracy

passive
confidence
borda
exp3++

200 400 600 800 1000

50%

55%

60%

65%

70%

75%

M
P

B
A

(F) pageblocks, mpba

passive
confidence
borda
exp3++

100 200 300 400 500

66%

68%

70%

72%

74%

A
cc

ur
ac

y

(G) pima, accuracy

passive
confidence
borda
exp3++

100 200 300 400 500
Training Size

64%

66%

68%

70%

M
P

B
A

(H) pima, mpba

passive
confidence
borda
exp3++

200 400 600 800 1000
75%

78%

80%

82%

85%

88%

90%

92%

A
cc

ur
ac

y

(I) sdss, accuracy

passive
confidence
borda
exp3++

200 400 600 800 1000
Training Size

70%

75%

80%

85%

90%

M
P

B
A

(J) sdss, mpba

passive
confidence
borda
exp3++

100 200 300 400 500

45%

50%

55%

60%

65%

70%

75%

80%

A
cc

ur
ac

y

(K) vehicle, accuracy

passive
confidence
borda
exp3++

100 200 300 400 500
Training Size

45%

50%

55%

60%

65%

70%

75%

80%

M
P

B
A

(L) vehicle, mpba

passive
confidence
borda
exp3++

Figure 9. Selected accuracy and MPBA learning curves for the medium to large datasets (magic,

miniboone, pageblocks, pima, sdss, and vehicle). As it would get too cluttered to plot 17 learning curves,

we only show the learning curve for PASSIVE, CONFIDENCE, EXP3++, and BORDA. The learning curves

are averaged over 10 trials. The dotted horizontal line shows the performance obtained from using the

whole training data.
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Figure 10. Selection frequencies of heuristics in THOMPSON and EXP3++, with the large datasets

(magic, miniboone, pageblocks, pima, sdss, and vehicle). The plots show how often each of the heuristics

gets selected over time. The selection frequencies are averaged over 10 trials. THOMPSON favors certain

heuristics more strongly than others. In contrast, EXP3++ favors uniform exploration more, sampling

each heuristic with roughly equal weights. The plots for OCUCB and KLUCB are not shown here, but they

are similar to EXP3++.
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Figure 11. The effect of the initial values of the parameters in THOMPSON on the heuristic selection

frequencies. We test 16 combinations of µ , σ2, and τ2 on the glass and ionosphere dataset. Which

heuristics THOMPSON picks seems to correlate with the heuristic performance. For example, in

ionosphere, PASSIVE (the dotted purple line) and QBB-KL (the dashed dark blue line) tend to get picked

less often than others.
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Figure 12. Effect of the pool size on the learning curves. We pick two large datasets—pageblocks and

sdss—to investigate how the size of the pool affects the performance. The leftmost figures (A and D) are

the original learning curves from Figures 9F and 9J (we only show the first 200 examples so that all

figures have the same scale). For the middle figures, we use the same test pool, but the unlabeled pool

now only has a maximum of 300 candidates. Finally for the rightmost figures, the combined test pool and

training pool have a size of 300.
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poorer performance on the smaller datasets. In any case, when a dataset is small, we can label411

everything so active learning is usually not needed.412

2. Can active learning degrade performance? Yes, there is no guarantee that active learning will413

always beat passive learning. For example, W-ENTROPY actually slows down the learning in the414

many datasets. However, this only happens with certain heuristics, like those using the information415

density weighting.416

3. What is the best single active learning heuristic? All of CONFIDENCE, MARGIN, ENTROPY,417

and QBB-MARGIN have a similar performance. However CONFIDENCE is perhaps the simplest to418

compute and thus is a good default choice in practice.419

4. What are the challenges in using bandit algorithms?420

(a) Designing a good reward scheme is difficult. This paper uses the increase in the classifier421

performance as the reward. However this type of reward is non-stationary (i.e. it gets smaller422

after each step as learning saturates) and the rewards will thus eventually go to zero.423

(b) In practice, we do not have a representative test set that can be used to compute the reward.424

As a workaround, Hsu and Lin (2015) computed the reward on the training set and then used425

importance weighting to remove any potential bias. For this to work, we need to ensure that426

every training example and every active learning suggestion have a non-zero probability of427

being selected in each step.428

(c) Finally, some bandit algorithms such as Thompson sampling assumes that the reward follows429

a certain distribution (e.g. Gaussian). However, this assumption is unrealistic.430

5. What are the challenges in using rank aggregation algorithms?431

(a) We need to compute the scores from all heuristics at every time step. This might not be432

feasible if there are too many heuristics or if we include heuristics that require a large amount433

of compute power (e.g. variance minimization).434

(b) The Schulze method uses O(n2) space, where n is the number of candidates. This might lead435

to memory issues if we need to rank a large number of candidates from the unlabeled pool.436

(c) Before aggregating the rankings, we throw away the score magnitudes, which could cause a437

loss of information.438

(d) Unlike bandit algorithms, all of the rank aggregators always give each heuristic an equal439

weight.440

6. Which method should I use in practice to combine active learners? Since there is no difference441

in performance between various combiners, we recommend using a simple rank aggregator like442

Borda count or geometric mean if we do not want to select a heuristic a priori. Rank aggregators do443

not need a notion of a reward—we simply give all suggestions an equal weight when combining.444

Thus we neither need to a keep a separate test set, nor do we need to worry about designing a good445

reward scheme.446

Our investigation has a few limitations. Firstly, we empirically compare algorithms that only work447

with single-label classification problems. Nowadays, many problems require multi-label learning, in448

which each example is allowed to be in more than one class. Our methods can be extended to work with449

multi-label datasets with the following modifications. We first need a multi-label classifier. This can be450

as simple as a collection of binary classifiers, each of which produces the probability that an example451

belongs to a particular class. For each class, we can use an active learning heuristic to assign a score to452

each unlabeled example as before. However now we need to aggregate the scores among the classes. As453

suggested by Reyes et al. (2018), we can use any aggregation method like Borda count to combine these454

scores. In effect, the multi-label learning problem adds an extra layer of aggregation into the pipeline.455
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Another limitation of our methods is that our active learning methods are myopic. That is, in each456

iteration, we only pick one instance to give to a human expert for labeling. In many practical applications457

like astronomy, batch-mode active learning is preferred, as it is much more cost efficient to obtain multiple458

labels simultaneously. One naive extension is to simply choose the m highest ranked objects using our459

current methods. However, it is possible to have two unlabeled objects whose class membership we are460

currently uncertain about, but because they have very similar feature vectors, labeling only one of them461

would allow us to predict the label of the other one easily. More sophisticated batch-mode active learning462

approaches have been proposed to take into account other factors such as the diversity of a batch and463

the representiveness of each batch example. These approaches include looking at the angles between464

hyperplanes in support vector machines (Brinker, 2003), using cluster analysis (Xu et al., 2007), and465

using an evolutionary algorithm (Reyes and Ventura, 2018). How to aggregate suggestions from these466

approaches is an interesting problem for future work.467

7 CONCLUSION468

In this paper we compared 16 active learning methods with passive learning. Our three main findings are:469

active learning is better than passive learning; combining active learners does not in general degrade the470

performance; and social choice theory provides more practical algorithms than bandit theory since we do471

not need to design a reward scheme.472
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M., Lorenzo-Oliveira, D., Lucatello, S., Lundgren, B., Lupton, R. H., III, C. E. M., Mahadevan, S.,491

Maia, M. A. G., Majewski, S. R., Malanushenko, E., Malanushenko, V., Manchado, A., Manera, M.,492

Mao, Q., Maraston, C., Marchwinski, R. C., Margala, D., Martell, S. L., Martig, M., Masters, K. L.,493

McBride, C. K., McGehee, P. M., McGreer, I. D., McMahon, R. G., Ménard, B., Menzel, M., Merloni,494
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APPENDIX A: POSTERIOR BALANCED ACCURACY593

Most real-world datasets are unbalanced. In the SDSS dataset, for example, there are 4.5 times as many594

galaxies as quasars. The problem of class imbalance is even more severe in the pageblocks dataset, where595

one class makes up 90% of the data and the remaining four classes only make up 10%. An easy fix is to596

undersample the dominant class when creating the training and test sets. This, of course, means that the597

size of these sets are limited by the size of the minority class.598

When we do not want to alter the underlying class distribution or when larger training and test sets are599

desired, we need a performance measure that can correct for the class imbalance. Brodersen et al. (2010)600

show that the posterior balanced accuracy distribution can overcome the bias in the binary case. We now601

extend this idea to the multi-class setting.602

Suppose we have k classes. For each class i between 1 and k, there are Ni objects in the universe.603

Given a classifier, we can predict the label of every object and compare our prediction with the true label.604

Let Gi be the number of objects in class i that are correctly predicted. Then we define the recall Ai of605

class i as606

Ai =
Gi

Ni

(26)

The problem is that it is not feasible to get the actual values of Gi and Ni since that would require us to607

obtain the true label of every object in the universe. Thus we need a method to estimate these quantities608

when we only have a sample. Initially we have no information about Gi and Ni, so we can assume that609

each Ai follows a uniform prior distribution between 0 and 1. This is the same as a Beta distribution with610

shape parameters α = β = 1:611

Ai ∼ Beta(1,1) (27)

The probability density function (PDF) of Ai is then612

fAi
(a) =

Γ(α +β )

Γ(α)Γ(β )
aα−1(1−a)β−1 (28)

∝ a1−1(1−a)1−1

where Γ(α) is the gamma function.613

After we have trained the classifier, suppose we have a test set containing ni objects in class i. Running614

the classifier on this test set is the same as conducting k binomial experiments, where, in the ith experiment,615

the sample size is ni and the probability of success is simply Ai. Let gi be the number of correctly labeled616

objects belonging to class i in the test set. Then, conditional on the recall rate Ai, gi follows a binomial617

distribution:618

(gi | Ai)∼ Bin(ni,Ai) (29)

The probability mass function of (gi | Ai = a) is thus619

pgi|Ai
(gi) =

(

ni

gi

)

agi(1−a)ni−gi (30)

∝ agi(1−a)ni−gi

In the Bayesian setting, Eq. (28) is the prior and Eq. (30) is the likelihood. To get the posterior PDF, we620

simply multiply the prior with the likelihood:621

fAi|ggg(a) ∝ fAi
(a)× fgi|Ai

(gi) (31)

∝ a1−1(1−a)1−1×agi(1−a)ni−gi (32)

= a1+gi−1(1−a)1+ni−gi−1 (33)

Thus, with respect to the binomial likelihood function, the Beta distribution is conjugate to itself. The622

posterior recall rate Ai also follows a Beta distribution, now with parameters623

(Ai | gi)∼ Beta(1+gi,1+ni−gi) (34)
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Our goal is to have a balanced accuracy rate, A, that puts an equal weight in each class. One way to624

achieve this is to take the average of the individual recalls:625

A =
1

k

k

∑
i=1

Ai (35)

=
1

k
AT (36)

Here we have defined AT to be the sum of the individual recalls. We call (A | ggg) the posterior balanced626

accuracy, where ggg = (g1, ...,gk). Most of the time, we simply want to calculate its expected value:627

E[A |ggg] =
1

k
E[AT |ggg] (37)

=
1

k

∫

a · fAT |ggg(a)da (38)

Let us call this the mean posterior balanced accuracy (MPBA). Note that there is no closed form solution628

for the PDF fAT |ggg(a). However assuming that AT is a sum of k independent Beta random variables, fAT |ggg(a)629

can be approximated by numerically convolving k Beta distributions. The independence assumption is630

reasonable here, since there should be little to no correlation between the individual recall rates. For631

example, knowing that a classifier is really good at recognizing stars does not tell us much about how632

well that classifier can recognize galaxies.633

Having the knowledge of fA|ggg(a) will allow us to make violin plots, construct confidence intervals and634

do hypothesis tests. To get an expression for this, let us first rewrite the cumulative distribution function635

(CDF) as636

FA|ggg(a) = P(A≤ a | ggg) (39)

= P

(1

k
AT ≤ a

∣

∣

∣
ggg
)

(40)

= P(AT ≤ ka |ggg) (41)

= FAT |ggg(ka) (42)

Differentiating (42) with respect to a, we obtain the PDF of (A | ggg):637

fA|ggg(a) =
∂

∂a
FA|ggg(ka) (43)

=
∂

∂a
(ka) ·

∂

∂ka
FAT |ggg(ka) (44)

= k · fAT |ggg(ka) (45)

A Python implementation for the posterior balanced accuracy can be found on our GitHub repository5.638

5https://github.com/chengsoonong/mclass-sky
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