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ABSTRACT
Rician noise removal is an important problem in magnetic resonance (MR) imaging.
Among the existing approaches, the variational method is an essential mathematical
technique for Rician noise reduction. The previous variational methods mainly employ
the total variation (TV) regularizer, which is a first-order term. Although the TV
regularizer is able to remove noise while preserving object edges, it suffers the staircase
effect. Besides, the adaptability has received little research attention. To this end,
we propose a spatially variant high-order variational model (SVHOVM) for Rician
noise reduction. We introduce a spatially variant TV regularizer, which can adjust
the smoothing strength for each pixel depending on its characteristics. Furthermore,
SVHOVM utilizes the bounded Hessian (BH) regularizer to diminish the staircase
effect generated by the TV term. We develop a split Bregman algorithm to solve the
proposedminimization problem. Extensive experiments are performed to demonstrate
the superiority of SVHOVM over some existing variational models for Rician noise
removal.

Subjects Bioinformatics, Computer Vision, Multimedia
Keywords Image denoising, Rician noise, Magnetic resonance imaging, Bounded Hessian, Total
variation, Split Bregman, Variational method

INTRODUCTION
Magnetic resonance (MR) images have been widely used in medical imaging. Due to the
thermal noise caused by patients during the scan process (Nowak, 1999; Aja-Fernández &
Vegas-Sánchez-Ferrero, 2016), theMR images are inevitably degraded. The noises in theMR
images have negative impacts on various tasks of medical image processing and analysis,
such as classification, segmentation, visualization (Aja-Fernández & Vegas-Sánchez-Ferrero,
2016). Hence, noise removal is the fundamental task for processing MR images.

It was shown that the noises in the MR images can be modeled by the Rician distribution
(Henkelman, 1985; Aja-Fernández & Vegas-Sánchez-Ferrero, 2016). The task of Rician
noise removal refers to estimating the clean MR image from a noisy one. Since the Rician
noise is signal-dependent, it is a great challenge to denoise the clean MR image. Next, the
previous works that address the problem of Rician noise removal are reviewed. First, several
denoising methods based on statistics are presented. In (Henkelman, 1985; McGibney &
Smith, 1993; Bernstein, Thomasson & Perman, 1989), the first and second moments of
the Rician distribution were employed to estimate the clean MR images. Using the local
sample statistics, Aja-Fernández & Vegas-Sánchez-Ferrero (2016) derived a closed-form
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solution of the linear minimum mean square error (LMMSE) estimator for the Rician
distribution. Many variants of the non-local means (NLM) algorithm have been developed
for Rician noise reduction to enhance the signal-to-noise ratio and the computational
efficiency (Manjón et al., 2008; Baselice et al., 2019; Granata, Amato & Alfano, 2019; Phan,
2018; Chen et al., 2020; Sharma & Chaurasia, 2021; Zhang et al., 2021). In recent years,
learning-based methods have been applied to Rician noise removal. In You et al. (2019)
proposed a deep convolutional neural network (CNN) for non-blind and blind Rician
denoising. In Manjón & Coupe (2018) studied a two-stage approach which combines the
overcomplete patch-based CNNand theNLM filter to robustly reduce noises inMR images.
Xie et al. (2020) presented a denoising network based on CNN with dilated convolutions
and residual blocks.

Along with the above mentioned approaches, the variational method is a crucial
mathematical technique for Rician noise removal. A variational model usually has two
terms: the data fidelity and the regularizer. The first term measures the fidelity to the
noisy image and the latter term poses constraints for the solution. One of the widely used
regularizer is the total variation (TV), whichwas proposed byRudin, Osher & Fatemi (1992)
for Gaussian denoising. The TV regularizer is able to reduce noise while maintaining object
edges. Based on the framework of maximum a posterior (MAP) estimates, Getreuer, Tong
& Vese (2011) proposed a TV-based variational model with the data fidelity term derived
from the Rician probability distribution. This MAP model, however, is non-convex, and
thus its solution depends on the initialization and numerical methods. To address this
drawback, Getreuer, Tong & Vese (2011) approximated the MAP model by a convexified
one. The author investigated the `2 and Sobolev H 1 gradient descents for the MAP model
and the split Bregman for the convexified model. Considering the statistical property of
the Rician noise, Chen & Zeng (2015) added a quadratic term into the non-convex MAP
model to obtain a strictly convex model. In Yuan (2018) introduced a convex gradient
data fidelity term into the MAP model. Besides, the noise level is iteratively estimated to
improve the denoised results. Unlike the MAP-based approach, Liu, Chang & Duan (2022)
proposed a non-linear model which consists of quadratic terms, a constraint on the field
of spheres, and a TV regularizer. Other variants of variational models for Rician denoising
can be found in Liu et al. (2014), Chen et al. (2018), Lu et al. (2019), Pankaj, Govind &
Narayanankutty (2021) and Phan (2022).

In this article, variational models are mainly investigated. The above overview shows
that most of the existing variational methods focus on the fidelity term. Meanwhile, the
regularization term attracts less attention. The TV regularizer is still widely used for Rician
noise removal. Although the TV term is capable of removing noise and preserving edges,
it produces the staircase effect, that is, the restored image appears jagged. Besides, previous
works were less concerned with the adaptability to the characteristics of pixels. Namely, the
regularization strength of the TV term is the same for all pixels. In this article, a spatially
variant high-order variational model (SVHOVM) for Rician noise removal is presented.
The author introduces a spatially variant TV (SVTV) regularizer which can control its
smoothing strength depending on whether pixels are in flat regions or at object edges.
Besides, the proposed model applies the bounded Hessian (BH) regularizer to reduce the
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staircase effect generated by TV. An efficient split Bregman algorithm is developed to solve
the proposed model. The proposed model is evaluated on a large dataset in comparison
with several existing variational models for Rician noise removal. Experimental results
show the superiority of SVHOVM in Rician denoising.

The main contributions include the following:

• A novel variational model for Rician noise removal is proposed. Particularly, the
common TV regularizer is modified such that it becomes spatially variant according to
the characteristics of pixels. The BH regularizer, which is a high-order term, is utilized
to enhance the denoising results.
• An efficient split Bregman algorithm is developed to solve the proposed problem.
• Extensive experiments are conducted to discuss the effects of the parameters of
SVHOVM and to evaluate its performance. Experimental results show that the proposed
model outperforms some existing variational models for Rician noise reduction.

The rest of the article is organized as follows. In Section ‘Preliminary and related works’,
some preliminaries and a brief overview of relatedworks are presented. The proposedmodel
is described in Section ‘Proposed model’. In Section ‘Numerical implementation’, a split
Bregman algorithm for solving the proposed problem is presented. Section ‘Experimental
results’ discusses experimental results.

PRELIMINARY AND RELATED WORKS
Preliminary
The MR imaging systems use quadrature detectors to produce two- or three-dimensional
complex data. The raw MR data is always perturbed by Gaussian noise. The complex
representation of the raw MR data is given by

F =FR+ iFI = u+η1+ iη2, (1)

where FR and FI are the real and imaginary parts of the raw MR data F ; u∈Rp×q is the
true amplitude of the noise-free image; η1 and η2 ∈Rp×q are Gaussian noise with zero
mean and standard deviation σ .

For clinical analysis, the magnitude MR images are often used. Mathematically, the
magnitude MR image is computed by

f =
√
(u+η1)2+η22. (2)

Since the magnitude MR images are obtained by the non-linear transformation, the
distribution of the overall noises for the magnitude MR image is no longer Gaussian. It
was shown in Henkelman (1985), Aja-Fernández, Alberola-López & Westin (2008) that the
noises in the magnitude MR images have the Rician distribution which is given by

P(f |u)=
f
σ 2 exp(−

u2+ f 2

2σ 2 )I0(
uf
σ 2 ), (3)
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where I0 is the modified Bessel function of the first kind with order zero (Bowman, 2012).
The form of the modified Bessel function of the first kind with real order ν are given by

Iν(z)= (
1
2
z)ν

∞∑
k=0

( 14z
2)k

k!0(ν+k+1)
, (4)

with 0(n)= (n−1)! is the gamma function; ν ∈R.

Related works
The goal of Rician noise removal is to estimate the noise-free image u from the noisy
magnitude MR image f . Most of variational models utilize the MAP approach to estimate
u by maximizing a posterior given f , that is ũ= arg maxuP(u|f ). In Getreuer, Tong & Vese
(2011), they applied the Bayes’s rule to derive the MAP model as

arg minu

{
1

2σ 2

∫
�

u2dx−
∫
�

logI0(
uf
σ 2 )dx+α

∫
�

|∇u|dx
}
, (5)

where the first two terms form the data fidelity, which is derived from (3) using the MAP
framework; the last term is the TV of u; α is a non-negative regularization parameter; ∇ is
the gradient operator; � is the image domain.

Since the MAP model is non-convex, Getreuer, Tong & Vese (2011) approximated its
data fidelity term by a convex function as follows

Gσ (u)=

{
Hσ (u), if u≥ cσ ,
Hσ (cσ )+H ′σ (cσ )(u− cσ ), if u≤ cσ ,

(6)

where

Hσ (u)=
u2

2σ 2 − logI0(
uf
σ 2 ), (7)

H ′σ (u)=
u
σ 2 −

f
σ 2A(

uf
σ 2 ), (8)

with A(·) is the cubic rational polynomial approximation of I1(·)/I0(·) with I1(·) being the
modified Bessel function of the first kind with first order; c = 0.8426.

By exploring the statistical property of the Rician distribution, Chen & Zeng (2015)
added the quadratic term into the MAP model to obtain a strictly convex model as

arg minu

{
E(u)=

1
2σ 2

∫
�

u2dx−
∫
�

logI0(
uf
σ 2 )dx+

1
σ

∫
�

(
√
u−

√
f )2dx+α

∫
�

|∇u|dx
}
.

(9)

Following the similar idea, Yuan (2018) added a convex gradient data fidelity into the
MAP model as

arg minu

{
1

2σ 2

∫
�

u2dx−
∫
�

logI0(
uf
σ 2 )dx+

1
σ

∫
�

(∇u−∇f )2dx+α
∫
�

|∇u|dx
}
. (10)

For brevity, the following notations are used: GTV for the convexified model derived
by Getreuer, Tong & Vese (2011) (Eqs. (5)–(8)); CZ for the model of Chen & Zeng (2015)
(Eq.(9)); Yuan (2018) for the model proposed by Yuan (Eq. (10)).
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PROPOSED MODEL
As described in ‘Introduction’, existing variational methods for Rician noise removal
mainly utilize TV. Besides, the adaptability received less research attention. To this end, the
author proposes a spatially variant high-order variational model (SVHOVM) for Rician
denoising. The spatially variant TV (SVTV) and the bounded Hessian (BH) regularizers
are introduced by minimizing the following minimization functional

arg minu

{
1

2σ 2 ‖u‖
2
2−

〈
logI0(

uf
σ 2 ),1

〉
+

1
σ
‖
√
u−

√
f ‖

2
2+‖α(f )∇u‖1+β‖∇

2u‖1

}
, (11)

where < ·,·> denotes the Euclidean inner product; ‖ ·‖1 and ‖ ·‖2 stand for the `1- and
`2-norms, respectively; ‖α(f )∇u‖1 is the SVTV regularizer with α(·) being the weighting
function; ‖∇2u‖1 is the BH regularizer where ∇2 denotes the Hessian operators; β are
non-negative regularization parameters.

The BH regularizer is exploited to remove the side effect produced by the TV term.
In Papafitsoros & Schönlieb (2014) showed that the BH regularizer is able to remedy the
staircase effect and to preserve structural details. The SVTV term is the common TV
regularizer weighted by the function α(·) for each pixel. The weighting function is defined
as

α(f )=
α0√

1+ ( |∇Gω∗f |
κ

)2
, (12)

where α0 is a non-negative parameter; Gω stands for the Gaussian filter with zero mean
and standard deviation ω; κ denotes a contrast parameter; ‘‘∗’’ represents the convolution
operator.

The weighting function can adaptively manipulate the smoothing strength of the TV
regularizer. Its values vary depending on the image gradients of pixels. Namely, for a fixed
κ , in flat regions where |∇Gω∗ f |<κ , the weighting function is large, which means a strong
noise reduction. In contrast, at object edges where |∇Gω ∗ f |>κ , the weighting function
is small, which indicates the edge preservation. Thus, the weighting function is effective in
reducing noise while maintaining object edges.

NUMERICAL IMPLEMENTATION
In this section, a split Bregman algorithm is developed to solve the proposed problem (11).
Following (Goldstein & Osher, 2009), two auxiliary variables are introduced to obtain the
following constrained problem:

arg minu,d,z

{
1

2σ 2 ‖u‖
2
2−

〈
logI0(

uf
σ 2 ),1

〉
+

1
σ
‖
√
u−

√
f ‖

2
2+‖α(f )d‖1+β‖z‖1

}
(13)

such that d =∇u,z =∇2u,

where d and z are auxiliary variables.
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Applying the Bregman iteration gives the following unconstrained problem:

arg minu,d,z

{
1

2σ 2 ‖u‖
2
2−

〈
logI0(

uf
σ 2 ),1

〉
+

1
σ
‖
√
u−

√
f ‖

2
2+‖α(f )d‖1+β‖z‖1+

θ1

2
‖d−∇u−b1‖22+

θ2

2
‖z−∇2u−b2‖

2
2

}
, (14)

where b1 and b2 are the Bregman iteration variables; θ1 and θ2 are the penalty parameters.
The problem Eq. (14) is solved by an alternating direction method (Gabay & Mercier,

1976; Bertsekas, 2014). In each step, either u, d or z is minimized while keeping other
variables fixed. With u and z fixed, the d-subproblem is obtained as:

arg mind

{
‖α(f )d‖1+

θ1

2
‖d−∇uk−bk1‖

2
2

}
, (15)

which has the following solution:

dk+1=
∇uk+bk1
|∇uk+bk1|

max(|∇uk+bk1|−
α(f )
θ1

,0), (16)

Similarly, the z-subproblem and its solution are given by

arg minz

{
β‖z‖1+

θ2

2
‖z−∇2uk−bk2‖

2
2

}
, (17)

zk+1=
∇

2uk+bk2
|∇2uk+bk2|

max(|∇2uk+bk2|−
β

θ2
,0). (18)

By fixing d and z , the u-subproblem is obtained as

arg minu

{
1

2σ 2 ‖u‖
2
2−

〈
logI0(

uf
σ 2 ),1

〉
+

1
σ
‖
√
u−

√
f ‖

2
2+

θ1

2
‖dk+1−∇u−bk1‖

2
2+

θ2

2
‖zk+1−∇2u−bk2‖

2
2

}
. (19)

Let E(u) denote the functional of (19). The Newton’s method is applied to solve the
u-subproblem (19) as follows:

uk+1= uk−
E ′(uk)
E ′′(uk)

, (20)

with

E ′(uk)=
uk

σ 2 −
f
σ 2

I1
I0
+

1
σ
(1−

√
f
uk

)+θ1div(dk+1−∇uk−bk1)−θ2div
2(zk+1−∇2uk−bk2),

(21)

E ′′(uk)=
1
σ 2 −

f 2

σ 4 [1−
σ 2

f
1
uk

I1
I0
− (

I1
I0
)2]+

√
f

2σ
1

(uk)3/2
, (22)
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Initialize: 𝑢0 = 𝑓, 𝑑0 = 𝟎, 𝑧0 = 𝟎,
𝑏1
0 = 𝟎, 𝑏2

0 = 𝟎; 𝑘 = 0, 𝑛 = 1

Begin

Input: 𝑓

Compute 𝛼 𝑢𝑘 using (12)

Compute 𝑑𝑘+1 using (16)

Compute 𝑧𝑘+1 using (18)
Compute 𝑢𝑘+1 using 

20 − (22)

𝑛 < 𝑛𝑚𝑎𝑥𝑛 = 𝑛 + 1

Update 𝑏1
𝑘+1 and 𝑏2

𝑘+1 using 

(23) and (24)

𝑘 < 𝑘𝑚𝑎𝑥

Input: 𝛼0, 𝜅, 𝛽, 𝜃1, 𝜃2

End

𝑛 = 1

𝑘 = 𝑘 + 1

True

False

True

False

Figure 1 The flowchart of the split Bregman algorithm for solving the proposed problem (11). The pa-
rameters kmax and nmax denote the outer and inner iteration numbers, respectively.

Full-size DOI: 10.7717/peerjcs.1579/fig-1

where the variable (uf /σ 2) of I0 and I1 is omitted for brevity.
Finally, the b1 and b2 variables are updated by:

bk+11 = bk1+∇u
k+1
−dk+1, (23)

bk+12 = bk2+∇
2uk+1−zk+1. (24)

In summary, the denoised image is found by iteratively computing u, d and z via the
sequence of Eqs. (16), (18), (20), (21), and (22). The number of iterations is used as the
stopping criterion. It is worthy of note that the weighting function is iteratively refined by
computing (12) using the restored image of the previous iteration. This refinement offers
an enhanced weighting function, resulting in better denoised images. The overall split
Bregman algorithm for solving the proposed problem (11) is summarized in Fig. 1.

EXPERIMENTAL RESULTS
In this section, numerical experiments are conducted to discuss the affects of the
parameters of SVHOVM and to evaluate the proposed model in comparison with
existing variational methods for Rician noise removal. The experiments are performed
on the IXI and SB datasets. The IXI dataset (Information eXtraction from Images:
https://brain-development.org/ixi-dataset/.) contains real MR images. The SB dataset
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Figure 2 Sample MR images. Image source credit: IXI dataset, CC BY-SA 3.0 (https://brain-
development.org/ixi-dataset/).

Full-size DOI: 10.7717/peerjcs.1579/fig-2

contains simulated MR images generated by BrainWeb (Simulated Brain Database:
http://www.bic.mni.mcgill.ca/brainweb/.) (Cocosco, 1997; Kwan, Evans & Pike, 1999;
Kwan, Evans & Pike, 1996; Collins et al., 1998). It consists of three-dimensional T1w, T2w,
and PDw volumes of 181×217×181 voxels with zero noise. The MR images are perturbed
by Rician noise with three noise levels σ = 5,15 and 25. Sample MR images of the datasets
are shown in Fig. 2.

The PSNR and SSIM (Wang et al., 2004) are used tomeasure the performance of models.
Besides, visual quality is also employed for qualitative evaluation. Let u and ũ denote the
noise-free and the denoised images. The PSNR and SSIM indices are defined as:

PSNR= 10log10

(
2552

1
MN ‖ũ−u‖2

)
, (26)

SSIM=
(2µũµu+ c1)(2σũ,u+ c2)

(µ2
ũ+µ

2
u+ c1)(σ

2
ũ +σ

2
u + c2)

, (27)

where M and N are the sizes of images; µũ, σũ and µu, σu are the means and standard
deviations of ũ and u, respectively; c1 and c2 are constants.

Ablation study
In this section, numerical experiments are conducted to discuss the influence of various
parameters on the proposed algorithm (Fig. 1). The regularization parameters α0 and β,
the contrast parameter κ , and the inner iteration number nmax are considered. Note that
the inner iteration corresponds to the loop of the Newton’s method (Eqs. 20–22).

Regularization parameters
The effects of the parameters α0 and β on the performance of SVHOVM are investigated.
These parameters determine the weights of the SVTV and BH regularizers. One of these
parameters is varied while keeping the other fixed.

The effects of α0 are shown in Figs. 3C–3E. The parameter β is fixed to a low value
(particularly, β = 1) in order to diminish the influence of this parameter. The parameter
α0 is set to 1,10 and 20 to show its effects. One can see that the parameter α0 controls the
smoothness of denoising results. As α0 increases, more noise is reduced but the staircase
effect becomes more obvious. Then, the influence of the parameter β is examined. The
parameterα0 is fixed by a large value (particularly,α0= 15) in order to generate the staircase
effect. The parameter β is gradually increased to demonstrate its effects. Figures 3F–3H
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Figure 3 The effects of the paramerters α0 and β for an image of the IXI dataset at the noise level σ =
15: (C)–(E) for the fixed β= 1; (F)–(H) for the fixed α0 = 15. Image source credit: IXI dataset, CC BY-SA
3.0 (https://brain-development.org/ixi-dataset/).

Full-size DOI: 10.7717/peerjcs.1579/fig-3

show that as β gets larger, the BH regularizer diminishes the staircase effect more effectively,
producing smooth transition between flat regions. However, the large values of β result in
blurred images. Thus, the regularization parameter β should be not too large so that the
artifacts generated by the TV term are diminished without generating any serious blur in
the denoised images.

Next, the dependence of the PSNR measure on the parameters α0 and β is considered.
The parameter α0 is fixed at different values while β is varied. Figure 4A shows that the
PSNR values change in a continuous manner. For a fixed α0, the PSNR measures initially
increase with the value of β, reaching the maximum value and then decreasing. When α0
increases, the PSNRmeasure rises to the global maximum, followed by a decrease. One can
see from Fig. 4A that an optimal denoised result can be attained by alternatively adjusting
the two regularization parameters α0 and β.

Contrast parameter
Figure 4B shows the dependence of the weighting function α(·) on the gradient magnitude
for different values of the contrast parameter κ . As can be seen, the weighting function
is monotonically decreasing with the increase of the gradient magnitude. As the gradient
magnitude becomes larger, α(·) goes to 0 and the strength of the TV term is down-weighted.
Thus, the weighting function controls the regularization strength of the TV term. Figure 4B
also demonstrates that the parameter κ adjusts the range in which the weighting function
receives low values. As κ declines, this range is extended. It means that when κ decreases,
the more image details as well as noise are preserved. Therefore, an optimal value of κ
needs to be determined to achieve a balance between noise reduction and image detail
preservation. The parameter κ is set to 0.8 empirically.

Phan (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1579 9/17

https://peerj.com
https://brain-development.org/ixi-dataset/
https://doi.org/10.7717/peerjcs.1579/fig-3
http://dx.doi.org/10.7717/peerj-cs.1579


Figure 4 The effects of the parameters α0,β, and κ. (A) The PSNR values under different α0 and β set-
tings at the noise level σ= 15; (B) The effect of the contrast parameter κ on the weighting function α(·).

Full-size DOI: 10.7717/peerjcs.1579/fig-4

Figure 5 The dependence of SVHOVM’s performance on the inner iteration number for: (A) The
PSNR values; (B) The average time per iteration. The outer iteration number kmax is fixed by 500; the
inner iteration number nmax is set to 1,2,..,5. The noise levels σ = 5,15, and 25 are considered.

Full-size DOI: 10.7717/peerjcs.1579/fig-5

Inner iteration number
The impacts of the inner iteration number nmax on the performance of the proposed
algorithm are examined. Figure 5A shows that the proposed algorithm is less sensitive
to the number of inner iterations. Meanwhiles, the computational time per iteration of
the proposed algorithm increases by about 25% on average when the number of inner
loops is increased by one (Fig. 5B). Thus, one inner iteration is used in order to reduce the
computational complexity of the proposed algorithm without affecting the quality of the
denoised images.

Comparative study
Next, SVHOVM is compared with some existing variational models for Rician noise
removal. The models GTV, CZ, and Yuan are used as references. The regularization
parameters of models are tuned using a simple alternating optimization method to achieve
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Table 1 Average PSNR and SSIM results of different methods on the IXI and SB datasets with different
noise levels. The values highlighted in bold represent the best results for each volume and noise level.

Dataset Method σ= 5 σ= 15 σ= 25

PSNR SSIM PSNR SSIM PSNR SSIM

GTV 35.31 0.6458 29.13 0.5016 25.76 0.4179
CZ 34.98 0.6312 28.74 0.4895 25.19 0.4003
Yuan 35.34 0.6468 29.01 0.4927 25.45 0.41

IXI

SVHOVM 36.23 0.6797 29.72 0.5066 26.09 0.5094
T1w

GTV 35.5 0.7459 29.54 0.65 25.98 0.5914
CZ 35.37 0.734 28.96 0.5959 24.43 0.5186
Yuan 35.48 0.7464 29.26 0.6356 25.48 0.5332
SVHOVM 36.78 0.7758 30.4 0.6488 26.74 0.5807

PDw
GTV 35.44 0.8173 29.53 0.7239 25.86 0.6392
CZ 35.21 0.8013 28.84 0.6632 24.67 0.5761
Yuan 35.46 0.8174 29.29 0.7053 25.48 0.5915
SVHOVM 36.82 0.8498 30.22 0.7246 26.15 0.6456

T2w
GTV 35.63 0.8338 28.51 0.7222 24.56 0.6082
CZ 35.37 0.8167 27.89 0.6771 23.54 0.5923
Yuan 35.64 0.834 28.25 0.7275 24.28 0.6201

SB

SVHOVM 36.65 0.8581 29.3 0.7415 24.74 0.655

the best PSNR measures. Following Getreuer (2012), Glowinski, Pan & Tai (2016), the
penalty parameters θ1 and θ2 are set by 5 and 5, respectively. The number of iterations is
fixed to 500. Beyond this, the performance of models is nearly unchanged.

Table 1 shows the PSNR and SSIM results of different models on the IXI and SB datasets.
The figures highlighted in bold represent the best results for each volume and noise level.
From Table 1, the following observations are made. First, the proposed model attains the
best results formost of the cases. SVHOVM fails to achieve the best performance in SSIM for
the T1w volume of the SB dataset with σ = 15 and 25. On average, SVHOVM outperforms
GTV, CZ, and Yuan models by 0.76,1.39,0.95 in PSNR and 0.0232,0.0561,0.00346 in
SSIM, respectively. Second, as the noise level increases, the improvement of SVHOVM
over competitive models declines. The proposed model gives the average gains in PSNR
of 1.23,0.99, and 0.87 for σ = 5,15, and 25, respectively; the corresponding figures in
SSIM are 0.0349,0.0233, and 0.0561. It can be explained that large noises reduce the
effectiveness of the weighting function. Third, SVHOVM yields the best performance on
the T1w volume, followed by the PDw volume and then the T2w volume.

The advantages of SVHOVM are further confirmed by Figs. 6–8. Figure 6 shows
denoising results of different models on an image of the IXI dataset with σ = 5. The parts
of the denoised images are enlarged for visual comparison. Besides, the curves of 1D
intensity values are shown. One can see from Fig. 6 that SVHOVM yields the best denoised
image. For the results of SVHOVM, the flat regions are smoother and the object edges are
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Figure 6 Denoising results of different models on an image of the IXI dataset with the noise level σ =
5. The parts of the denoised images, which are framed by green boxes, are enlarged for visual comparison.
The 1D curves of intensity value are shown below the denoised images. Image source credit: IXI dataset,
CC BY-SA 3.0 (https://brain-development.org/ixi-dataset/).

Full-size DOI: 10.7717/peerjcs.1579/fig-6

sharper compared with those of other models. The intensity curve of SVHOVM fits to the
ground truth better than those of the competitive models.

Figures 7 and 8 demonstrate the restored images of different models on the images of the
IXI dataset for the higher noise levels. The residual images, which are the image difference
between the noisy images and the denoised images, are shown. It can be seen that the
structural information exists in the residual images of all models. It is due to the fact that
the Rician noise is signal-dependent. One can observe that fewer information is left in the
residual images of SVHOVM over the cases of the competitive models. In summary, the
quantitative and qualitative results show superior performance of SVHOVM compared
with other existing variational models for Rician noise removal.

CONCLUSION
In this article, the author presented a spatially variant high-order variational model for
Rician noise removal. The SVTV regularizer was proposed in order to adjust the smoothing
strength according to the characteristics of pixels. In addition, the proposedmodel employs
the BH regularizer to reduce the staircase effect. The split Bregman algorithm was derived
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Figure 7 Denoising results of different models on an image of the IXI dataset with the noise level σ =
15 and the associated residual images Image source credit: IXI dataset, CC BY-SA 3.0 (https://brain-
development.org/ixi-dataset/).

Full-size DOI: 10.7717/peerjcs.1579/fig-7

to solve the minimization problem efficiently. Extensive numerical experiments showed
that the proposed model outperforms the existing variational models in terms of both
quantitative and qualitative criteria.

The author hopes that the proposed method can serve as a tool for clinical analysis.
One limitation of the proposed method is that it depends on parameters, especially the
regularization parameters. On the one hand, the parameters allow the clinical experts
to adjust the level of noise reduction to observe the image details. On the other hand, a
parameter-dependentmethod requires the users to understand the effects of the parameters
in order to obtain the optimal results. In the future, the author will investigate a method
to automatically search for the optimal parameters of the proposed model.
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Figure 8 Denoising results of different models on an image of the IXI dataset with the noise level σ =
25 and the associated residual images. Image source credit: IXI dataset, CC BY-SA 3.0 (https://brain-
development.org/ixi-dataset/).

Full-size DOI: 10.7717/peerjcs.1579/fig-8
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