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ABSTRACT
This article presents a new hybrid method (combining search based methods and
direct construction methods) to generate all 4� 4 involutory maximum distance
separable (MDS) matrices over F2m . The proposed method reduces the search space
complexity at the level of

ffiffiffi
n
p

, where n represents the number of all 4� 4 invertible
matrices over F2m to be searched for. Hence, this enables us to generate all 4� 4
involutory MDS matrices over F23 and F24 . After applying global optimization
technique that supports higher Exclusive-OR (XOR) gates (e.g., XOR3, XOR4) to the
generated matrices, to the best of our knowledge, we generate the lightest involutory/
non-involutory MDSmatrices known over F23 , F24 and F28 in terms of XOR count. In
this context, we present new 4� 4 involutory MDS matrices over F23 , F24 and F28 ,
which can be implemented by 13 XOR operations with depth 5, 25 XOR operations
with depth 5 and 42 XOR operations with depth 4, respectively. Finally, we denote a
new property of Hadamard matrix, i.e., (involutory and MDS) Hadamard matrix
form is, in fact, a representative matrix form that can be used to generate a small
subset of all 2k � 2k involutory MDS matrices, where k > 1. For k = 1, Hadamard
matrix form can be used to generate all involutory MDS matrices.

Subjects Cryptography, Security and Privacy
Keywords MDSmatrices, Involutory matrices, Diffusion layer, A new hybrid method, Lightweight
Cryptography

INTRODUCTION
Two important properties used in the design of block ciphers and defined by Shannon
(1949) are confusion and diffusion. These properties are respectively satisfied by
substitution boxes (or shortly S-boxes) and linear transformations in a round function of a
block cipher. Maximum distance separable (MDS) matrices are derived from MDS codes
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and provide the maximum diffusion. They are used as the core component of diffusion
layers/linear transformations in the design of cryptographic primitives like block ciphers
and hash functions. MDS matrices have the maximum branch number, which is an
important cryptographic criterion used for defining diffusion rate. Branch number also
helps to measure security against some well-known attacks like differential (Biham &
Shamir, 1991) and linear cryptanalysis (Matsui, 1994). Block ciphers (or a cryptographic
primitive) generally use MDS matrices over F23 , F24 and F28 in their diffusion layers
according to the design strategies and considering implementation issues of a block cipher.
Also, using involutory MDS matrices in the design of a diffusion layer of a block cipher has
the advantage of reusing the same circuit in the decryption process and helps to implement
a block cipher at close encryption and decryption costs. In this context, we present our
experimental results by considering the finite fields F23 , F24 and F28 . Note that our
construction technique can easily be used for designing new involutory MDS matrices over
finite field F2m especially for m � 8.

Generally, the construction techniques of MDS matrices can be categorized into three
groups: direct construction methods, search based methods, and hybrid methods
(combining search based methods and direct construction methods). The direct
construction methods include the methods such as Cauchy matrices (Youssef, Mister &
Tavares, 1997; Cui, Jin & Kong, 2015), Vandermonde matrices (Sajadieh et al., 2012b) and
Companion matrices (Gupta & Ray, 2013). It should also be noted that Cauchy and
Vandermonde matrices are generally not efficient for low-cost implementations (Gupta
et al., 2019). Recently, unlike the other direct construction methods, a new direct
construction method (or a new matrix form) to generate all 3� 3 involutory MDS
matrices has been given in Güzel et al. (2019). On the other hand, search based methods to
find MDS matrices are based on using hybrid structures (Sim et al., 2015), recursive
structures (Sajadieh et al., 2012a, 2012b), and searching some special matrix forms like
circulant and Hadamard matrix forms, which have some advantages in the
implementation phase and have a higher probability of finding MDS matrix when
compared to a randomized square matrix. Moreover, the other special matrix forms used
to find (lightweight) MDS matrices are as follows: circulant-like (Gupta & Ray, 2015),
Toeplitz, Toeplitz-like, and Hankel matrices (Gupta et al., 2019). The search based
construction methods are useful for finding MDS matrices with small orders. But, finding
MDS matrices with higher orders is exactly an NP-complete problem (computation cost
for checking a matrix to be MDS is still too expensive) (Sim et al., 2015). To handle this
problem, the Generalized Hadamard (shortly GHadamard) matrix form, a hybrid
construction method, was proposed in Pehlivanoğlu et al. (2018). Overall, in Sakallı et al.
(2020), the authors proposed a complementary method for the current construction
methods in the literature, which generates isomorphic k� k MDS matrices (new MDS
matrices from the implementation point of view) from any existing k� k MDS matrix
(due to its ground field structure). All these methods can be evaluated within the local
optimization category that focuses on the coefficients of a given matrix. In recent years,
global optimization techniques have been proposed to construct smaller diffusion layer
circuits for involutory/non-involutory MDS matrices. This challenging problem is also
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known as the problem of finding the shortest linear straight-line program (SLP) and
optimizing circuits globally. In this context, two main global optimization techniques can
be given as cancellation-free programs (e.g., Paar’s algorithms (Paar, 1997) and heuristic
techniques (e.g., Boyar-Peralta (BP) algorithm (Boyar & Peralta, 2010; Boyar, Matthews &
Peralta, 2012) RNBP, A1, A2 (Tan & Peyrin, 2019). All these heuristics support 2-input
XOR gates (XOR2) only, but in Baksi et al. (2021) the authors by inspiring the idea given in
Banik, Funabiki & Isobe (2019) proposed a new version of the original BP heuristic, called
BDKCI, that supports higher input XOR gates such as 3-input XOR (XOR3) and 4-input
XOR (XOR4) gates. Utilizing higher input XOR gates can result in a lower cost in specific
ASIC libraries, so in this article, we use BDKCI heuristic for finding the efficient
implementation of a given matrix. Moreover, we consider not only gate count (GC) and
circuit depth but also gate equivalent (GE) metric for lightweight implementations. BDKCI
heuristic directly calculates the total GEs for each ASIC library (STM 90 nm (ASIC1), STM
65nm (ASIC2), TSMC 65 nm (ASIC3), and STM 130 nm (ASIC4)), more technical details
can be found in Baksi et al. (2021).

To the best of our knowledge, there is no known method in the literature to represent/
generate all involutory MDS matrices over F2m . In this study, we present a new hybrid
method to generate all 4� 4 involutory MDS matrices over F2m . We consider the problem
of finding lightweight involutory/non-involutory MDS matrices with low implementation
costs. In this context, we generate all 4� 4 involutory MDS matrices over F23 and F24 and
evaluate these matrices up to a threshold value with respect to naive XOR count (d-XOR)
(Khoo et al., 2014; Jean et al., 2017), and then we look for the lightest hardware circuits
known for 4� 4 involutory MDS matrices in terms of XOR counts and circuit depths by
using BDKCI algorithm. Note that when obtaining the lightest 4� 4 non-involutory MDS
matrix over F24 , we take the benefit of the elements of the lightest 4� 4 involutory MDS
matrix over F24 generated.

In this article, we propose a new hybrid method to generate all 4� 4 involutory MDS
matrices over F2m . The proposed hybrid method consists of two parts: the first part
includes searching for all 4� 4 representative involutory MDS matrices and the second
part includes generating all 4� 4 involutory MDS matrices using all 4� 4 representative
involutory MDS matrices found by search in the first part of the proposed method. Hence,
we present the number of all 4� 4 involutory MDS matrices over F23 and F24 . In addition,
we give the lightest known involutory/non-involutory MDS matrices over F23 , F24 and F28

obtained by using the global optimization algorithm BDKCI, which is an improved version
of BP algorithm.

Motivation and our contribution
The demand for low-cost security design targeting resource-constrained devices has
triggered the exploration of lightweight diffusion layers (diffusion layers with low
implementation costs). In particular, the circuit area is a crucial criterion for lightweight
cryptography in terms of hardware. This means that reducing the cost of hardware
implementation is to minimize the number of expensive logical gates (especially XOR
operations) and the depth of the circuit (for low latency), which is the number of gates on
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the longest circuit path. However, it is not an easy task to construct lightweight MDS
matrices, especially involutory ones. Involutory MDS matrices use the same circuit and
have the same implementation costs in the encryption and decryption phases. Therefore,
the designers have considered the problem of building optimal or close to optimal linear
circuits for involutory/non-involutory MDS matrices.

Previous studies mainly focused on the problem of constructing a lightweight MDS
matrix from two perspectives: building a locally optimized implementation of an MDS
matrix consisting of the coefficients that are easy to evaluate or finding the globally
optimized implementation of a given MDS matrix. However, while searching lightweight
MDS matrices, most studies use some heuristic searching methods that cannot find all
MDS matrices especially involutory ones in a specific finite field (except for the matrix
form given inGüzel et al. (2019) used for generating all 3� 3 involutory MDSmatrices). In
this article, for the first time in the literature, we focus on a hybrid method generating all
4� 4 involutory MDS matrices over F2m with the lightest known implementation costs
because many block ciphers use 4� 4 and 8� 8 (in the form of 2k � 2k) MDS matrices.
For example, the Advanced Encryption Standard (AES) (Daemen & Rijmen, 2002) uses a
4� 4 MDS matrix as the main part of its diffusion layer. Moreover, (lightweight) block
ciphers to be designed in the future may likely use 4� 4 involutory/non-involutory MDS
matrices over F2m with nice hardware implementation costs. In this article, we combine
local optimization (new hybrid construction method) and global optimization (BDKCI
algorithm) techniques. The main contributions of this article can be given as follows:

� A new hybrid construction method to generate all 4� 4 involutory MDS matrices over
F2m is proposed. The proposed method reduces the search space complexity (the search
space defining the total number of all invertible 4� 4 matrices over F2m) at the level offfiffiffi
n
p

, where n represents the number of all 4� 4 invertible matrices to be searched for.

� It is shown that the number of all 4� 4 involutory MDS matrices over F2m can be
calculated by the formula#RIM � ð2m � 1Þ3, where #RIM represents the number of all
4� 4 representative involutory MDS matrices. Hence, there are, respectively, 16,464
(¼ 48� ð23 � 1Þ3) and 242,514,000 (¼ 71; 856� ð24 � 1Þ3) 4� 4 involutory and MDS
matrices over F23 and F24 .

� The new lightest involutory/non-involutory MDS matrices over F23 , F24 and F28

achieved by the proposed hybrid construction method are presented:

– A new 4� 4 involutory MDS matrix over F24 which can be implemented by only 25
XOR operations with depth 5 is presented, whereas the previously known lightest one
(Sarkar & Syed, 2016) requires 26 XOR operations to be implemented with the same
depth using XOR2 and XOR3 gates (please see the matrix M4).

– A new 4� 4 involutory MDSmatrix over F23 is presented, which can be implemented
by only 13 XOR operations with depth 5 using XOR3 and XOR4 gates (please see the
matrix M3).

– A new 4� 4 non-involutory MDSmatrix over F24 which can be implemented by only
19 XOR operations with depth 3 is presented, whereas previously known lightest one
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(Sarkar & Syed, 2016) costs 20 XOR operations the same depth using XOR2, XOR3
and XOR4 gates (please see the matrix M5).

– A new 4� 4 involutory MDS matrix over F28 can be implemented by only 52 XOR
operations with depth 5 using XOR2 and XOR3 gates. Moreover, the same matrix
requires only 42 XOR operations with depth 4 using XOR2, XOR3, and XOR4 gates
(please see the matrix M6). While compare to the previous best-known
implementations of linear layers of some block ciphers, it improves the results in GCs
and GEs.

These findings clearly establish that the circuit implementations of matricesM3,M4,M5

andM6 over the specified fields are superior to those given in previous studies. This aspect
also underscores one of the key novelties in our article.

� A new property of Hadamard matrix is denoted, i.e., (involutory and MDS)
Hadamard matrix form is, in fact, a representative matrix form that can be used to
generate a small amount of all 2k � 2k involutory MDSmatrices, where k. 1. For k ¼ 1,
Hadamard matrix form can be used to generate all involutory MDS matrices. For 4� 4
Hadamard matrices, we present the matrix form R1 (which has the generic properties
of Hadamard matrix, i.e., XOR sum of the elements in any row or column of a
Hadamard matrix is equal to 1 and XOR sum of the elements in the main diagonal is
equal to 0) given in “Proposed Method” section for finding all 4� 4 representative
involutory MDS matrices by search. The matrix form R1 can also be adaptable to 2k � 2k

Hadamard matrices for k. 2. Hence, one can generate new representative involutory
MDS matrices over any finite field by using the matrix form R1 or adapted versions of R1

for 2k � 2k Hadamard matrices for k. 2, which may help us find new involutory MDS
matrices (also, with the help of bi parameters given in Theorem 1) with better
implementation properties.

� All the optimization results of matrices are available at https://github.com/
mkurtpehlivanoglu/Hybrid_Method.

Organization
This article is organized as follows: We give some notations, properties of MDS matrices,
and two metrics used for identifying lightweightness of an MDS matrix in the
“Preliminaries” section. In the “Proposed Method” section, we propose a new hybrid
method to generate all 4� 4 matrices over F2m . Experimental results on the number of all
4� 4 involutory MDS matrices and some examples for 4� 4 involutory MDS matrices
over F23 , F24 and F28 with the lowest XOR counts are presented in “Experimental Results”
section. Finally, we conclude the article in the “Conclusion” section.

PRELIMINARIES
In this section, we describe the mathematical background needed throughout the article. In
this context, some notations and definitions are presented.
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The finite field F2m consisting of 2m elements is defined by an irreducible polynomial
pðxÞ of degreem over F2 and is denoted by F2½x�=ðpðxÞÞ. The elements of the finite field F2m

can be represented as polynomials over F2½x�=pðxÞ, i.e.,
Pm�1

i¼0 aiai, where ai 2 F2 and a is a
root (and a primitive element) of F2m . For simplicity, we denote F2m defined by irreducible
polynomial pðxÞ as F2m=pðxÞ (the finite field with 2m elements) and use hexadecimal
notation to represent the elements of F2m and the irreducible polynomial pðxÞ used for
defining F2m . As an example, the four-bit string 1110 which can also be represented by 0xe
in hexadecimal notation corresponds to the polynomial a3 þ a2 þ a in F24 . In the same
manner, 0x13 used when denoting F24=0x13 stands for the irreducible polynomial

pðxÞ ¼ x4 þ x þ 1.
If an ½n; k; d� code C reaches the Singleton bound d ¼ n� kþ 1, then C is called an

MDS code (where d, n, and k represent the length and the number of rows of the
generating matrix of the code C, respectively). Moreover, generator matrices that produce
MDS codes are called MDS matrices. MDS matrices derived from MDS codes provide the
maximum diffusion in a block cipher and have the maximum differential and linear
branch number (kþ 1 for k� k for MDS matrices), which are two important
cryptographic criteria for linear transformations. The followings are the properties of an
MDS matrix:

� Let M be a k� k square matrix. M is an MDS matrix, if and only if every square sub-
matrix of M is non-singular.

� If M is a k� k MDS matrix, the transpose matrix of M (MT) is also an MDS matrix.

� Let c 2 F2m be a non-zero constant and let M be a k� k MDS matrix, then the
multiplication of a row (or column) of M by c does not affect the MDS property of M.

If a square matrix A is its own inverse (i.e., A = A�1), then the matrix A is called an
involutory matrix. Equivalently, the matrix A is an involution if and only if A2 = I, where I
is the identity matrix.
Definition 1. A k� k Finite Field Hadamard matrix (simply Hadamard matrix) H over

F2m with k ¼ 2t for t. 0 can be expressed as follows:

H ¼ hadðA0;A1Þ ¼ A0 A1

A1 A0

� �
(1)

where sub-matrices A0 and A1 are also 2t�1 � 2t�1 Hadamard matrices.
When denoting a k� k Hadamard matrix, we use the notation had(a0, a1,…, ak�1),

where ai 2 F2m for 0 � i � k� 1. In this respect, a 4� 4 Hadamard matrixH can be given
as follows:

H ¼ hadða0; a1; a2; a3Þ ¼
a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

2
664

3
775 (2)

Some important properties of a k� k Hadamard matrix H over F2m are as follows
(Pehlivanoğlu et al., 2018):
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� H i;j ¼ ai�j, where ai parameters are the entries of the first row of a k� k Hadamard
matrix H.

� H is a bi-symmetric matrix, namely,H ¼ HT andHJ ¼ JH where J is a k� k exchange
matrix ðJ i;k�iþ1 ¼ 1 and other elements of J are 0),

� H2 ¼ c2 � I, where c ¼ �k�1
i¼0 ai and I is the k� k identity matrix.

If XOR sum of the first row elements of a k� kHadamard matrixH over F2m is equal to
1, then H is involutory matrix, i.e., H2 ¼ I and H ¼ H�1, where I is identity matrix and

H�1 is the inverse of H. On the other hand, GHadamard matrix form presented in
Pehlivanoğlu et al. (2018) satisfies the last property

�
i:e:,H2 ¼ c2 � I, where c ¼ �k�1

i¼0 ai
�

given above for a k� kHadamard matrix and preserves involutory and MDS properties of
a given k� k involutory and MDS Hadamard matrix. The idea in preserving MDS
property of GHadamard matrix form is based on the last property for defining an MDS
matrix. A k� k GHadamard matrix GH is generated by using the combination of non-
zero k� 1 more bi parameters and their inverses with a k� k Hadamard matrix H over
F2m . In this context, a 4� 4 GHadamard matrix GH can be denoted as follows:

GH ¼ Ghad ða0; a1; b1; a2; b2; a3; b3Þ ¼
a0 a1b1 a2b2 a3b3

a1b�11 a0 a3b�11 b2 a2b�11 b3
a2b�12 a3b�12 b1 a0 a1b�12 b3
a3b�13 a2b�13 b1 a1b�13 b2 a0

2
664

3
775 (3)

We estimate the hardware cost of an (involutory) MDS matrix (i.e., linear
transformation) with the number of XOR operations required in hardware
implementation which can be described as xi  xai � xbi with ai; bi, i, where xai and xbi
are inputs and some subset of xis are outputs. In the literature, there are two important
approximations of the implementation cost in terms of XOR count: direct XOR (d-XOR)
count (Khoo et al., 2014) and sequential XOR (s-XOR) count (Beierle, Kranz & Leander,
2016). While d-XOR count is defined as the Hamming weight (the number of 1 bits) of the
corresponding mk�mk binary matrix (transformed from k� k matrix over F2m) minus
mk, s-XOR count is defined as the minimum number of XOR operations needed to
implement the mk�mk binary matrix with in-place operations and without extra
intermediate computations. Although s-XOR count seems like a better approximation, it
causes a high computational cost for optimizing full MDS matrices (Duval & Leurent,
2018).

Local and global optimization techniques are used to find optimized implementations of
MDS matrices in terms of the required number of XOR operations. The main difference
between these two techniques is that the global optimization technique focuses on
the optimization of a linear Boolean function of a whole matrix circuit while the local
optimization technique focuses on the evaluation of diffusion matrix coefficients. Local
optimization techniques do not guarantee finding efficient circuit implementation of an
MDS matrix and therefore, more recently, global optimization techniques have been
addressed to find well optimized circuits. The idea is based on the reduction of XOR count
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which is extracted by the naive implementation of an MDS matrix that contains a lot of
repeated calculations.

In this article, while performing global optimization of an (involutory) MDS matrix, the
circuit constructed by only XOR gates is handled as a linear Boolean function consisting of
n input signals fx0; x1; . . . ; xng and m output signals fy0; y1; . . . ; ymg (also called target
signals). We also use BDKCI algorithm to build a globally optimized implementation of a
4� 4 (involutory) MDS matrix generated by using the proposed new hybrid method. The
aim of BDKCI algorithm is to find efficient circuits with intermediate variables tis
(calculated once) for other computation sequences. These circuits can reuse intermediate
variables tis that lead to reducing the number of gates required. More details about BDKCI
heuristic can be found in Baksi et al. (2021).

PROPOSED METHOD
In this section, we present a new method to generate all 4� 4 involutory MDS matrices
over F2m . The proposed method is a hybrid construction method and is based on the
combination of search based and direct based construction methods. The main idea of the
proposed method is first to generate all 4� 4 representative involutory MDS matrices by
search, and then to obtain all 4� 4 involutory MDS matrices by applying three more non-
zero parameters and their inverses to these representative matrices. When generating
representative involutory MDS matrices, we take the benefit of generic properties of a
Hadamard matrix satisfying the involutory property, i.e., XOR sum of the elements in any
row or column of a Hadamard matrix is equal to 1 and XOR sum of the elements in the
main diagonal is equal to 0. Note that these properties also force XOR sum of the elements
in the anti-diagonal (counter diagonal) to be equal to 0. Then, we can easily define the
matrix form R1 in order to search for all representative involutory MDS matrices over F2m

as follows:

R1 ¼
r11 r12 r13 r11 þ r12 þ r13 þ 1
r21 r22 r12 þ r13 þ r21 þ r31 þ r32 r12 þ r13 þ r22 þ r31 þ r32 þ 1
r31 r32 r33 r31 þ r32 þ r33 þ 1

r11 þ r21 þ r31 þ 1 r12 þ r22 þ r32 þ 1 r12 þ r21 þ r31 þ r32 þ r33 þ 1 r11 þ r22 þ r33

2
664

3
775_

The matrix form R1 above for finding representatives involutory MDS matrix is defined
by eight parameters ðr11; r12; r13; r21; r22; r31; r32; r33Þ over F2m � f0g. Note that when
defining the matrix form R1, the finite field element 0 is not considered because of the fact
that all entries of an MDSmatrix should be non-zero by the first property used for defining
an MDS matrix. Hence, the search space for finding representative involutory MDS
matrices over F2m is approximately obtained as ð2m � 1Þ8 (by omitting non-invertible or
singular matrices). For example, for finding all 4� 4 representative involutory MDS
matrices over F24 , the search space is approximately ð24 � 1Þ8 � 231:25. Before proceeding
with the details on the matrix form R1, we introduce the matrix form A2�2 used for
generating all 2� 2 involutory MDS matrices over F2m in Remark 2 and Lemma 3 from
which the main idea of the article comes.
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Remark 2. Consider 2k � 2k involutory MDS matrices, where k is a positive integer. For
k ¼ 1, we show in Lemma 3 that one can directly generate all 2� 2 involutory MDS
matrices by the following matrix form:

A2�2 ¼ r11 ðr11 þ 1Þb1
ðr11 þ 1Þb�11 r11

� �

where r11 2 F2m � f0; 1g and b1 2 F2m � f0g. Note that the following involutory MDS
Hadamard matrix form RIM2�2:

RIM2�2 ¼ r11 ðr11 þ 1Þ
ðr11 þ 1Þ r11

� �

is also representative involutory MDS matrix form for 2� 2 matrices over F2m with the
restriction r11 2 F2m � f0; 1g. Hence, the representative involutory MDS matrix form
RIM2�2 can be used to generate all involutory MDS matrices over F2m .

Lemma 3. Let A ¼ ½rij� ¼ r11 r12
r21 r22

� �
be a 2� 2 matrix over F2m. If the matrix A is

involutory and MDS, then all 2� 2 involutory MDS matrices can be generated by the
following matrix form:

A2�2ðr11; b1Þ ¼ r11 ðr11 þ 1Þb1
ðr11 þ 1Þb1�1 r11

� �

where r22 ¼ r11, r12 ¼ ðr11 þ 1Þb1 and r21 ¼ ðr11 þ 1Þb1�1 for b1 2 F2m � f0g and
r11 2 F2m � f0; 1g .

Proof. Let A ¼ r11 r12
r21 r22

� �
be a 2� 2 involutory matrix with the restriction r11 6¼ 0. Let

cij denote the elements of A2 for i; j 2 f1; 2g, i.e., cij ¼
P2

k¼1 rikrkj. Since A
2 ¼ I, where I is

the 2� 2 identity matrix, we obtain the following equations (by considering if i ¼ j then
cij ¼ 1 and if i 6¼ j then cij ¼ 0):

r211 þ r12r21 ¼ 1 (4)

r11r12 þ r12r22 ¼ 0 (5)

r21r11 þ r22r21 ¼ 0 (6)

r21r12 þ r222 ¼ 1 (7)

After adding the Eqs. (4) and (7) given above, we obtain the equation r211 ¼ r222. The
equation r211 ¼ r222 can be rewritten as ðr11 þ r22Þ2 ¼ 0, and therefore we obtain r11 ¼ r22
because the operations are performed in the finite field F2m . On the other hand, we have

r12r21 ¼ r211 þ 1 ¼ ðr11 þ 1Þ2 from the Eq. (4). Then, r12 and r21 depending on r11 and a

new parameter b1 are respectively obtained as r12 ¼ ð1þ r11Þb1 and r21 ¼ ð1þ r11Þb�11

with the restrictions b1 2 F2m � f0g and r11 2 F2m � f0; 1g so that the matrix form
can also satisfy the MDS property (i.e., the determinant of the matrix form A2�2 is not
equal to 0).
Remark 4 Lemma 3 shows that the parameter b1 and its inverse (b�11 ) are hidden
parameters keeping involutory and MDS property for the matrix form A2�2, and also that
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involutory (MDS) matrices are formed as distinct classes in the search space. Similarly,
generating all 4� 4 involutory MDS matrices becomes an easier problem i.e., the problem is
first to focus on searching for and finding all representative involutory MDS matrices by
using the matrix form R1, and then generate all 4� 4 involutory MDS matrices by using
representative involutory MDS matrices obtained and the hidden parameters (b1, b2 and b3
with their inverses b�11 , b�12 and b�13 ) given in Theorem 8.

In Lemma 6, we give the mathematical background needed to define matrix form R1

used for finding representative involutory MDS matrices, which constitutes the search side
of the proposed method and we give the characteristics of 4� 4 representative involutory
MDS matrices with Definition 5. Then, in Theorem 8, we present the mathematical
background needed for the direct construction side of the proposed method, which is
based on three non-zero parameters preserving involutory and MDS property of a 4� 4
representative involutory MDS matrix given.

By Lemma 6, representative involutory MDS matrices are found by searching through
all possible candidates using the matrix form R1. This allows us to use 8 parameters (r11,
r12, r13, r21, r22, r31, r32 and r33) (instead of 16 parameters needed for defining all 4� 4
matrices over F2m) in the search phase of the matrix R1 and thus enables us to reduce the
search space complexity from ð2m � 1Þ16 to ð2m � 1Þ8, which is approximately at the level
of

ffiffiffi
n
p

, where n represents the number of all invertible 4� 4 matrices over F2m . In this
context, we present the matrix form R1 again below:

R1 ¼
r11 r12 r13 r11 þ r12 þ r13 þ 1
r21 r22 r12 þ r13 þ r21 þ r31 þ r32 r12 þ r13 þ r22 þ r31 þ r32 þ 1
r31 r32 r33 r31 þ r32 þ r33 þ 1

r11 þ r21 þ r31 þ 1 r12 þ r22 þ r32 þ 1 r12 þ r21 þ r31 þ r32 þ r33 þ 1 r11 þ r22 þ r33

2
664

3
775:

Definition 5. A representative involutory MDS matrix (or shortly RIM) is a 4� 4
involutory matrix R and satisfies the following conditions: XOR sum of all elements of its
main diagonal is equal to 0, XOR sum of any rows (and columns) of R is equal to 1 and the
MDS property given in “Preliminaries” section.
Lemma 6. A representative involutory matrix satisfies the first two conditions given in
Definition 5 and these two conditions used to define the matrix form R1 guarantee to find all
4� 4 representative involutory matrices.

Proof. Let R ¼ ½rij� be a 4� 4 involutory and representative matrix such that all rij 6¼ 0
and let cij ¼

P4
k¼1 rikrkj denote the elements of R2 for i; j ¼ 1; 2; 3; 4. Then R2 ¼ I, where I

is the 4� 4 identity matrix. If i ¼ j, then cij ¼ 1. Otherwise, cij ¼ 0. Hence, the following
equations are satisfied:

r11
2 þ r12r21 þ r13r31 þ r14r41 ¼ 1 (8)

r21r12 þ r22
2 þ r23r32 þ r24r42 ¼ 1 (9)

r31r13 þ r32r23 þ r33
2 þ r34r43 ¼ 1 (10)

r41r14 þ r42r24 þ r43r34 þ r44
2 ¼ 1 (11)
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r11r12 þ r12r22 þ r13r32 þ r14r42 ¼ 0 (12)

r11r13 þ r12r23 þ r13r33 þ r14r43 ¼ 0 (13)

r11r14 þ r12r24 þ r13r34 þ r14r44 ¼ 0 (14)

r21r11 þ r22r21 þ r23r31 þ r24r41 ¼ 0 (15)

r21r13 þ r22r23 þ r23r33 þ r24r43 ¼ 0 (16)

r21r14 þ r22r24 þ r23r34 þ r24r44 ¼ 0 (17)

r31r11 þ r32r21 þ r33r31 þ r34r41 ¼ 0 (18)

r31r12 þ r32r22 þ r33r32 þ r34r42 ¼ 0 (19)

r31r14 þ r32r24 þ r33r34 þ r34r44 ¼ 0 (20)

r41r11 þ r42r21 þ r43r31 þ r44r41 ¼ 0 (21)

r41r12 þ r42r22 þ r43r32 þ r44r42 ¼ 0 (22)

r41r13 þ r42r23 þ r43r33 þ r44r43 ¼ 0 (23)

By adding the Eqs. (8)–(11) side by side, the following equation is obtained:

r11
2 þ r22

2 þ r33
2 þ r44

2 ¼ 0 (24)

Because we study in the finite field F2m the Eq. (24) can be rewritten as follows:

r11 þ r22 þ r33 þ r44 ¼ 0 (25)

Hence, we verify the first statement of the lemma. To show the proof of the second
statement, we assume that the sum of elements of any row of R is equal to 1. We prefer to
study with rows instead of columns of R without breaking the generality. Then, the
equations corresponding to our assumption are obtained as follows:

r11 þ r12 þ r13 þ r14 ¼ 1 (26)

r21 þ r22 þ r23 þ r24 ¼ 1 (27)

r31 þ r32 þ r33 þ r34 ¼ 1 (28)

r41 þ r42 þ r43 þ r44 ¼ 1 (29)

By adding the Eqs. (12)–(14) side by side, we get the following equality:

r11 r12 þ r13 þ r14ð Þ þ r12 r22 þ r23 þ r24ð Þ þ r13 r32 þ r33 þ r34ð Þ þ r14 r42 þ r43 þ r44ð Þ ¼ 0 (30)

From the assumption Eqs. (26)–(28), it is clear that:

r11 þ 1 ¼ r12 þ r13 þ r14 (31)

r21 þ 1 ¼ r22 þ r23 þ r24 (32)

r31 þ 1 ¼ r32 þ r33 þ r34 (33)

r41 þ 1 ¼ r42 þ r43 þ r44 (34)

By replacing the expressions r12 þ r13 þ r14, r22 þ r23 þ r24, r32 þ r33 þ r34 and
r42 þ r43 þ r44 in the Eq. (30) with the expressions r11 þ 1, r21 þ 1, r31 þ 1 and r41 þ 1,
respectively, the Eq. (35) and then the Eq. (36) are obtained:
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r11ðr11 þ 1Þ þ r12ðr21 þ 1Þ þ r13ðr31 þ 1Þ þ r14ðr41 þ 1Þ ¼ 0 (35)

r11
2 þ r11 þ r12r21 þ r12 þ r13r31 þ r13 þ r14r41 þ r14 ¼ 0 (36)

We can rewrite the Eq. (36) as follows:

r11
2 þ r12r21 þ r12 þ r13r31 þ r14r41 ¼ r11 þ r12 þ r13 þ r14 (37)

Then, by using the assumption (26), we can obtain the Eq. (8) as follows:

r11
2 þ r12r21 þ r12 þ r13r31 þ r14r41 ¼ 1 (38)

In a similar manner, the Eqs. (9)–(11) can be obtained by using the equations from (15)
to (23) and the assumptions (26)–(29).

Similar assumptions can be given when proving the second part of the lemma, related to
the sum of the elements of any column, as follows:

r11 þ r21 þ r31 þ r41 ¼ 1 (39)

r12 þ r22 þ r32 þ r42 ¼ 1 (40)

r13 þ r23 þ r33 þ r43 ¼ 1 (41)

r14 þ r24 þ r34 þ r44 ¼ 1 (42)

One can easily show that the Eqs. (8)–(11) can again be obtained by using the equations
from (12) to (23) and the assumption Eqs. (39)–(42). For instance, the Eq. (8) can be
obtained by applying similar operations shown in proving the first part of the lemma and
by using the assumption equations from (39) to (42) and the Eqs. (15), (18) and (21).
Hence, the second part of the lemma is satisfied.
Remark 7. Lemma 6 does not guarantee that any matrix satisfying assumptions is exactly a
representative involutory matrix.
Theorem 8. Let RIM ¼ ½rij� be a 4� 4 representative involutory MDS matrix, then the
matrix form A ¼ ½aij� obtained by the matrix RIM and some parameters (bi parameters) is
also involutory MDS in the following form:

A ¼ ½aij� ¼
r11 r12b1 r13b2 r14b3

r21b�11 r22 r23b�11 b2 r24b�11 b3
r31b�12 r32b�12 b1 r33 r34b�12 b3
r41b�13 r42b�13 b1 r43b�13 b2 r44

2
664

3
775

where bis for i 2 f1; 2; 3g are the elements of F2m � f0g.
Proof. Since the representative MDS matrix RIM is involutory, it satisfies all equations

from (8) to (23) given in Lemma 6. If we square the matrix A ¼ ½aij�, we obtain the
following expressions corresponding to cij’s, where cij denote the elements of A2 for
i; j 2 f1; 2; 3; 4g:
c11 ¼ r11

2 þ r12r21 þ r13r31 þ r14r41 (43)

c22 ¼ r21r12 þ r22
2 þ r23r32 þ r24r42 (44)
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c33 ¼ r31r13 þ r32r23 þ r33
2 þ r34r43 (45)

c44 ¼ r41r14 þ r42r24 þ r43r34 þ r44
2 (46)

c12 ¼ b1ðr11r12 þ r12r22 þ r13r32 þ r14r42Þ (47)

c13 ¼ b2ðr11r13 þ r12r23 þ r13r33 þ r14r43Þ (48)

c14 ¼ b3ðr11r14 þ r12r24 þ r13r34 þ r14r44Þ (49)

c21 ¼ b�11 ðr21r11 þ r22r21 þ r23r31 þ r24r41Þ (50)

c23 ¼ b�11 b2ðr21r13 þ r22r23 þ r23r33 þ r24r43Þ (51)

c24 ¼ b�11 b3ðr21r14 þ r22r24 þ r23r34 þ r24r44Þ (52)

c31 ¼ b�12 ðr31r11 þ r32r21 þ r33r31 þ r34r41Þ (53)

c32 ¼ b�12 b1ðr31r12 þ r32r22 þ r33r32 þ r34r42Þ (54)

c34 ¼ b�12 b3ðr31r14 þ r32r24 þ r33r34 þ r34r44Þ (55)

c41 ¼ b�13 ðr41r11 þ r42r21 þ r43r31 þ r44r41Þ (56)

c42 ¼ b�13 b1ðr41r12 þ r42r22 þ r43r32 þ r44r42Þ (57)

c43 ¼ b�13 b2ðr41r13 þ r42r23 þ r43r33 þ r44r43Þ (58)

The expressions from (43) to (46) are equal to 1 and the expressions from (47) to (58)
are equal to 0 because the expressions from (43) to (46) are, respectively, the same with the
left side of the equations from (8) to (11) given in Lemma 2, the expressions from (47) to
(58) contain the results of multiplying 0 by non-zero finite field element(s) because the
same expressions from (12) to (23) in Lemma 6, which are equal to 0, appear respectively
in the expressions from (47) to (58). Hence, the involutory property of the matrix RIM is
preserved. On the other hand, bi parameters in the matrix form A can be obtained by
multiplying the constant elements c1, c2, c3 and c4 2 F2m � f0g with the first column, the
second column, the third column and the fourth column, respectively, and by multiplying
the inverses of these elements c�11 , c�12 , c�13 and c�14 with the first row, the second row, the
third row and the fourth row respectively. As given in “Preliminaries” section, the MDS
property is invariant under the multiplication of a row/column with a non-zero constant.
Hence, the MDS property of the matrix RIM is also preserved.
Remark 9. By Theorem 8, one can directly obtain only one representative involutory (MDS)
matrix starting from any involutory (MDS) matrix by using bi parameters and their inverses
given in the matrix form A.

The proposed method can be divided into two stages as follows:

� By Lemma 6, representative involutory MDS matrices are found by searching through
all possible candidates using the matrix form R1, which constitutes the search side of the
proposed method. This allows us to use 8 parameters (r11, r12, r13, r21, r22, r31, r32 and r33)
in the search phase of the matrix R1. Hence, the search space for finding representative
involutory MDS matrices over F2m is ð2m � 1Þ8 by excluding the finite field element 0 in
all parameters (the finite field element 0 is ignored in the search space calculation
because all entries of an MDS matrix should be non-zero). However, when searching for
finding all 4� 4 involutory MDS matrices in a conventional manner, 16 parameters are
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needed to define a 4� 4 finite field matrix, which makes the search space of a
conventional search ð2m � 1Þ16. Thus, our hybrid method reduces the search space
complexity from approximately ð2m � 1Þ16 to ð2m � 1Þ8, which is approximately at the
level of

ffiffiffi
n
p

, where n represents the number of all invertible 4� 4 matrices over F2m .

� By Theorem 8, all 4� 4 involutory MDS matrices are generated directly by using
representative involutory MDS matrices found by search in the previous stage and bi
parameters.

In Examples 10 and 11, we obtain 4� 4 involutory MDS matrices over F24 by using the
proposed method, which is also given in the literature.
Example 10. Let F24 be generated by the primitive element a which is a root of the primitive
polynomial x4 þ x þ 1 (0x13). Consider the 4� 4 h-circulant involutory MDS matrix M1

recently given in Cauchois & Loidreau (2019).

M1 ¼
a 1 a14 a7

a14 a2 1 a13

a11 a13 a4 1
1 a7 a11 a8

2
664

3
775

over F24=0x13. In fact, the involutory MDS matrix M1 belongs to a class of which
representative involutory MDS matrix is as follows:

RIM1 ¼
a a7 a5 a11

a7 a2 a14 a10

a5 a14 a4 a13

a11 a10 a13 a8

2
664

3
775

which is symmetric and is also 4� 4 h-circulant involutory MDSmatrix. The matrix M1 can
easily be obtained by applying the parameters b1 ¼ a8, b2 ¼ a9 and b3 ¼ a11 (and their
inverses) to representative involutory MDS matrix RIM1.
Example 11. Let F24 be generated by the primitive element a which is a root of the primitive
polynomial x4 þ x þ 1 (0x13). Consider the 4� 4 involutory MDS matrix M2 given in
Pehlivanoğlu et al. (2018).

M2 ¼
1 1 1 1
1 a a2 a5

a7 a10 a a5

a9 a2 a10 1

2
664

3
775

over F24=0x13. In fact, the involutory MDS matrix M2 belongs to a class of which
representative involutory MDS matrix is as follows:

RIM2 ¼
1 a6 a2 a3

a9 a a13 a2

a5 a14 a a6

a6 a5 a9 1

2
664

3
775
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The involutory MDS matrix M2 can easily be obtained by applying the parameters

b1 ¼ a9, b2 ¼ a13 and b3 ¼ a12 (and their inverses) to representative involutory MDS
matrix RIM2.

EXPERIMENTAL RESULTS
In this section, we generate all 4� 4 involutory MDS matrices over F23 and F24 by finding
all representative involutory MDS matrices over these finite fields. In order to generate all
representative involutory MDS matrices, we use the the matrix form R1 given in the
“Proposed Method” section.

The experimental results show that there are 48 and 71,856 representative involutory
and MDS matrices over F23 and F24 , respectively. After applying bi parameters to
representative involutory MDS matrices, we generated totally 48 	 ð23 � 1Þ3 ¼ 16;464 and

71;856 	 ð24 � 1Þ3 ¼ 242;514;000 � 227:85 4� 4 involutory and MDS matrices over F23

and F24 , respectively. Note that one can obtain 24 and 1,512 involutory MDS matrices over
F23 and F24 by searching and using Hadamard matrix form, which are, in fact, a small
amount of representative involutory MDS matrices. Then, by using GHadamard matrix
form given in Pehlivanoğlu et al. (2018), one can totally generate 24 	 ð23 � 1Þ3 ¼ 8;232
and 1;512 	 ð24 � 1Þ3 ¼ 5;103;000 � 222:28 4� 4 involutory and MDS matrices over these
finite fields.

From the experimental results given above, it is shown that (involutory and MDS)
Hadamard matrix form, which is also representative (involutory and MDS) matrix form,
can approximately generate 2.1% of all involutory MDS matrices over F24 . It is likely that
this percentage will reduce for involutory MDS matrices over larger finite fields. Since
Lemma 6 and Theorem 8 given in “Proposed Method” section can be updated for 2k � 2k

involutory matrices, it is clear that (involutory and MDS) Hadamard matrix form can be
used to generate a small subset of all 2k � 2k involutory MDS matrices, where k. 1,
especially over larger finite fields.
Remark 12. As stated above, there are 71,856 4� 4 representative involutory MDS matrices
over F24 , 1,512 of which can also be obtained by 4� 4 Hadamard matrix (by search). Then,
70,344 (¼ 71; 856� 1; 512) 4� 4 representative involutory MDS matrices cannot be
generated by 4� 4 Hadamard matrix form. That means, by using the method given in
Sakallı et al. (2020), one can map these representative involutory MDS matrices in order to
obtain directly isomorphic counterparts over F28 . Note that there are 4 isomorphisms from
the finite field F24 (defined by any irreducible polynomial) to the finite field F28 (defined by
any irreducible polynomial). Hence, by using the parameters b1, b2, b3 2 F2m � f0g and
their inverses, one can directly generate 4,665,600,972,000 (= ð255Þ3 	 70; 344 	 4 � 242:08Þ
4� 4 involutory MDS matrices over F28 (defined by any irreducible polynomial), which
cannot also be generated by GHadamard matrix.

In Tables 1 and 2, we present the number of occurrences of 1s in all 4� 4 involutory
MDS matrices over F23 and F24 , respectively.
Remark 13. In Junod & Vaudenay (2005b), the maximum number of occurrences of 1s in
4� 4 MDS matrices is shown to be 9. In this article, we modify this result by showing that
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the maximum number of occurrences of 1s for 4� 4 involutory and MDS matrices is also 9
(see “Appendix” section).

In this article, we generate the lightest 4� 4 involutory MDS matrices over F23 , F24 and
F28 in terms of XOR count. To do so, we first generate involutory MDS matrices with low
naive XOR counts. In this context, we consider all 4� 4 involutory MDS matrices over F23

and consider 4� 4 involutory MDS matrices over F24 with up to a threshold naive XOR
count. For 4� 4 involutory MDS matrices over F28 , we consider anti-diagonal symmetric
matrices with up to a threshold naive XOR count and choose among them the ones whose
results are up to a maximum of 110 XOR operations after optimizing with PAAR 1.
Finally, 4� 4 involutory MDS matrices suitable for the given criteria are optimized with
BDKCI algorithm.

In Example 14, we present a new 4� 4 involutory MDS matrix over F23 generated by
using the proposed method, which can be implemented by only 13 XOR operations with
depth 6.
Example 14. Let F23 be generated by the primitive element a which is a root of the primitive
polynomial x3 þ x2 þ 1 (0xd). Consider the 4� 4 involutory MDS matrix M3 as given
below:

M3 ¼
1 1 1 1
a5 a a2 1
a3 1 a2 a4

a6 a 1 a4

2
664

3
775

over F23=0xd. In fact, the involutory MDS matrix M3 belongs to a class of which
representative involutory MDS matrix is as follows:

RIM3 ¼
1 a6 a5 a3

a6 a a a4

a5 a a2 a2

a3 a4 a2 a4

2
664

3
775

The involutory MDS matrix M3 with d-XOR count 56 (¼ 20þ 4 	 3 	 3) can easily be
obtained by applying the parameters b1 ¼ a, b2 ¼ a2 and b3 ¼ a4 (and their inverses) to
representative involutory MDS matrix RIM3. After applying BDKCI heuristic to the matrix

Table 1 The number of occurrences of 1s in all 4 � 4 involutory MDS matrices over F23.

0 1 2 3 4 5 6 7 8 9

The number of matrices 1,368 2,424 4,608 3,600 1,944 1,296 720 432 0 72

Table 2 The number of occurrences of 1s in all 4 � 4 involutory MDS matrices over F24.

0 1 2 3 4 5 6 7 8 9

The number of matrices 73,266,816 88,442,736 53,722,608 20,148,576 5,555,760 1,146,768 206,160 21,120 3,264 192
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M3, we find the circuits for the matrix M3 with 13 XORs and depth 5 using XOR3 and XOR4
gates (please see Table 5 for details).

In Example 15, we present a new 4� 4 involutory MDS matrix over F24 by using the
proposed method, which is better than the matrices given in the literature. It can be
implemented by only 25 XOR operations with depth 5, whereas the previously known
lightest one (Sarkar & Syed, 2016) requires 26 XOR operations with the same depth using
XOR2 and XOR3 gates.
Example 15. Let F24 be generated by the primitive element a which is a root of the primitive
polynomial x4 þ x þ 1 (0x13). Consider 4� 4 involutory MDS matrix M4 as given below:

M4 ¼
1 a4 a14 a
1 a14 a a14

a8 a a14 a4

a2 a8 1 1

2
664

3
775

over F24=0x13. In fact, the involutory MDS matrix M4 belongs to a class of which
representative involutory MDS matrix is as follows:

RIM4 ¼
1 1 a9 a7

a4 a14 1 a9

a13 a2 a14 1
a11 a13 a4 1

2
664

3
775

The involutory MDS matrix M4 with d-XOR count 79 ð¼ 31þ 4� 3� 4Þ can easily be
obtained by applying the parameters b1 ¼ a4, b2 ¼ a5 and b3 ¼ a9 (and their inverses) to
representative involutory MDS matrix RIM4. After applying BDKCI heuristic to the matrix
M4, we find the circuits for the matrix M4 with 25 XORs and depth 5 using XOR2 and XOR3
gates (please see Table 6 for details).

In Example 16, we present a new 4� 4 non-involutory MDS matrix over F24 . We have
found this matrix by searching through all anti-diagonal symmetric matrices with the same
elements of the 4� 4 involutory MDS matrix presented in Example 15. This non-
involutory MDS matrix can be implemented by only 19 XOR operations with depth 3.
Example 16. Let F24 be generated by the primitive element a which is a root of the primitive
polynomial x4 þ x þ 1 (0x13). Consider the 4� 4 anti-diagonal symmetric non-involutory
MDS matrix M5 as given below:

M5 ¼
a14 1 a2 1
1 a8 a a2

1 a14 a8 1
1 1 1 a14

2
664

3
775

over F24=0x13. The non-involutory MDS matrix M5 is with d-XOR count 68
ð¼ 20þ 4� 3� 4Þ. After applying BDKCI heuristic to M5, we find the circuits with 19
XORs and depth 3 using XOR2, XOR3 and XOR4 gates.
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Table 3 Comparison of 4 � 4 involutory and non-involutory MDS matrices in view of XOR counts with different depths obtained by using
BDKCI heuristic.

Over F2m/Poly Cost Ref.

# XOR2 # XOR3 # XOR4 Depth GC ASIC1(GE) ASIC2(GE) ASIC3(GE) ASIC4(GE)

Involutory

F24 /0x13 10 20 – 4 30 85 94.11 109 126.5 Sim et al. (2015)

F24/0x13 4 22 – 5 26 79.5 89.654 102.4 115.84 Sarkar & Syed (2016)

F24 /0x13 5 23 – 4 28 84.75 95.35 109.1 123.83 Jean et al. (2017)

F24 /0x13 4 21 – 5 25 76.25 85.939 98.2 111.18 Exam. 15

F23 /0xd – 2 11 3 13 61.5 67.93 77.15 75.21 Pehlivanoğlu et al. (2023)

F23 /0xd – 5 8 5 13 56.25 62.575 71 71.22 Exam. 14

Non-involutory

F24 /0x13 – 10 12 5 22 92.5 103.15 117 118.48 Sim et al. (2015)

F24 /0x13 – 6 14 4 20 89.5 99.29 112.7 111.82 Liu & Sim (2016)

F24 /0x13 4 1 15 4 20 86.25 94.139 107.95 107.83 Beierle, Kranz & Leander (2016)

F24 /0x19 – 6 14 4 20 89.5 99.29 112.7 111.82 Beierle, Kranz & Leander (2016)

F24 /0x19 2 5 13 3 20 85.25 94.037 107.25 107.83 Sarkar & Syed (2016)

F24 /0x13 2 5 13 5 20 85.25 94.037 107.25 107.83 Jean et al. (2017)

F24 /0x13 3 3 13 9 19 80.75 88.588 101.35 101.84 Sajadieh & Mousavi (2021)

F24 /0x19 1 2 15 10 18 83.5 91.911 104.65 102.5 Sajadieh & Mousavi (2021)

F24 /0x13 1 8 10 3 19 78 86.701 98.6 100.51 Exam. 16

Bold values indicate the best results.

Table 4 Comparison of best known implementation cost of few 32 � 32 matrices (linear layers of block ciphers) in ASIC libraries.

Matrix Cost

# XOR2 # XOR3 # XOR4 GC ASIC1(GE) ASIC2(GE) ASIC3(GE) ASIC4(GE)

AES 31 26 4 61 166.5 Liu et al. (2022) – – –

22 21 12 55 – – – 243 Liu et al.
(2022)

ANUBIS Barreto & Rijmen
(2000)

28 26 7 61 175.5 Liu et al. (2022) – – –

21 24 12 57 – – – 253.6 Liu et al.
(2022)

CLEFIA M0 Shirai et al. (2007) 32 32 2 66 178 Liu et al. (2022) – – –

23 16 18 57 – – – 258.9 Liu et al.
(2022)

CLEFIA M1 Shirai et al. (2007) 35 31 3 69 185.7 Liu et al. (2022) – – –

20 27 13 60 – – – 270.2 Liu et al.
(2022)

FOX MU4 Junod & Vaudenay
(2005a)

46 43 – 89 231.7 Banik, Funabiki &
Isobe, 2021

– – –

32 26 20 78 – – – 347.5 Liu et al.
(2022)

Exam. 17 8 44 – 52 (depth 5) 159 179.308 204.8 231.68

3 10 29 42 (depth 4) 183.5 202.593 230.75 230.3

Bold values indicate the best results.
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As shown in Table 3, our proposed method leads to better results than the best-known
XOR GCs and GEs given in the literature. In the case of involutory 4� 4 MDS matrices
over F24 with depth 5, the matrix M4 presented in Example 15 offers 1 XOR operations
improvement from the best-known result given in Sarkar & Syed (2016). On the other
hand, the lightest 4� 4 involutory MDS matrix M3 over F23 with the lowest known XOR
count 13 (the lowest XOR count known so far) with depth 5 is presented in Table 3. In
non-involutory MDS matrices section in Table 3, we compare the matrixM5 presented in
Example 16 with the best known XOR count results in the literature. The matrix M5 as
depth 3 is the lightest XOR count result with 19 XOR operations offering 1 XOR
operations improvement.

Table 5 The global optimization result of M3 with 13 XORs and depth 5, where xis [ðx0; x1; . . . ; x11Þ], yis [ðy0; y1; . . . ; y11Þ] and tjs represent
input bits, output bits, and temporary variables, respectively.

No. Operation No. Operation

1 y1 ¼ x1 þ x4 þ x7 þ x10 8 y7 ¼ x5 þ x11 þ y11

2 y0 ¼ x0 þ x3 þ x6 þ x9 9 y5 ¼ y2 þ y8 þ y11

3 y2 ¼ x2 þ x5 þ x8 þ x11 10 y9 ¼ x8 þ x11 þ y1 þ y5

4 t3 ¼ x0 þ x1 þ x5 þ x8 11 y6 ¼ x4 þ x10 þ y7 þ y10

5 y8 ¼ x3 þ x7 þ y0 þ t3 12 y3 ¼ x0 þ x6 þ y8

6 y10 ¼ x3 þ x6 þ y2 þ y8 13 y4 ¼ x1 þ x7 þ y6

7 y11 ¼ x4 þ x9 þ t3

Table 6 The global optimization result ofM4 with 25 XORs and depth 5, where xis [ðx0; x1; . . . ; x15Þ],
yis [ðy0; y1; . . . ; y15Þ] and tjs represent input bits, output bits, and temporary variables, respectively.

No. Operation No. Operation

1 t0 ¼ x7 þ x15 14 t13 ¼ x1 þ t0 þ y7

2 y6 ¼ x2 þ x9 þ t0 15 y9 ¼ x2 þ x13 þ t13

3 t2 ¼ x3 þ x4 þ x10 16 y1 ¼ x3 þ x5 þ t13

4 y7 ¼ x12 þ t2 17 t16 ¼ x2 þ x4 þ x8

5 t4 ¼ x5 þ x11 þ x13 18 y0 ¼ x0 þ y6 þ t16

6 y2 ¼ x2 þ x6 þ t4 19 y12 ¼ x6 þ x12 þ t16

7 t6 ¼ x3 þ x6 þ x14 20 t19 ¼ x4 þ x12

8 y10 ¼ x0 þ y2 þ t6 21 y8 ¼ x2 þ y0 þ t19

9 y3 ¼ x7 þ x8 þ t6 22 y4 ¼ x0 þ t4 þ t19

10 y11 ¼ x1 þ t0 þ y3 23 t22 ¼ x11 þ y11

11 t10 ¼ x3 þ x7 þ y2 24 y15 ¼ x5 þ y3 þ t22

12 y13 ¼ x9 þ x11 þ t10 25 y5 ¼ x3 þ x15 þ t22

13 y14 ¼ t2 þ y10 þ t10
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Example 17. Let F28 be generated by the primitive element a which is a root of the primitive
polynomial x8 þ x5 þ x3 þ x2 þ 1 (0x12d). Consider the 4� 4 involutory MDS matrix M6

as given below:

M6 ¼
1 a36 a254 a38

a254 1 a a254

1 a39 1 a36

a2 1 a254 1

2
664

3
775

over F28=0x12d. In fact, the involutory MDS matrix M6 belongs to a class of which
representative involutory MDS matrix is as follows:

RIM6 ¼
1 a145 a127 a20

a145 1 a20 a127

a127 a20 1 a145

a20 a127 a145 1

2
664

3
775

The involutory MDS matrix M6 with d-XOR count 162 (¼ 66þ 4 	 3 	 8) can easily be
obtained by applying the parameters b1 ¼ a146, b2 ¼ a127 and b3 ¼ a18 (and their inverses)

Table 7 The global optimization result of M6 with 42 XORs and depth 4, where xis [ðx0; x1; . . . ; x31Þ], yis [ðy0; y1; . . . ; y31Þ] and tjs represent
input bits, output bits, and temporary variables, respectively.

No. Operation No. Operation

1 y8 ¼ x1 þ x8 þ x23 þ x25 23 y4 ¼ y14 þ t5 þ t18

2 y24 ¼ x6 þ x8 þ x17 þ x24 24 y20 ¼ x14 þ x20 þ t15 þ t18

3 y14 ¼ x7 þ x14 þ x21 þ x31 25 t24 ¼ x15 þ x19 þ x26 þ x29

4 y31 ¼ x5 þ x15 þ x16 þ x31 26 y12 ¼ y16 þ y31 þ t24

5 y15 ¼ x0 þ x15 þ x22 þ x24 27 y26 ¼ x16 þ y0 þ y24 þ t24

6 t5 ¼ x7 þ x9 þ x16 þ x28 28 y2 ¼ x2 þ x26 þ t12 þ t24

7 y21 ¼ y14 þ y31 þ t5 29 t28 ¼ x3 þ x10þ x13þ x24

8 y25 ¼ x25 þ x18 þ x28 þ t5 30 y29 ¼ x15 þ y22 þ t28

9 y7 ¼ x14 þ t5 31 y10 ¼ x0 þ y8 þ y17 þ t28

10 t9 ¼ x10 þ x15 þ x24 þ x29 32 y19 ¼ x12 þ x31 þ t24 þ t28

11 y22 ¼ x6 þ x22 þ t9 33 t32 ¼ x7 þ x28 þ t24 þ y2

12 y0 ¼ x0 þ x8 þ x17 þ t9 34 y9 ¼ t5 þ y16 þ t32

13 t12 ¼ x12 þ x16 þ x26 þ x31 35 y28 ¼ x21 þ x31 þ t32

14 y5 ¼ x5 þ x16 þ x22 þ t12 36 y18 ¼ x14 þ x25 þ y25 þ t32

15 y16 ¼ x0 þ x24 þ t12 37 t36 ¼ x8 þ x20 þ x27 þ x30

16 t15 ¼ x8 þ x13 þ x27 38 y27 ¼ x6 þ y8 þ y23 þ t36

17 y6 ¼ x6 þ x23 þ t15 39 y13 ¼ y6 þ t36

18 y17 ¼ x1 þ x17 þ x25 þ t15 40 y3 ¼ x15 þ x29 þ t28 þ t36

19 t18 ¼ x4 þ x11 þ x25 þ x30 41 t40 ¼ x23 þ x30 þ y25 þ t18

20 y23 ¼ x4 þ x7 þ x23 þ t18 42 y11 ¼ t5 þ t40

21 y30 ¼ x14 þ x30 þ t18 þ y23

22 y1 ¼ x8 þ y8 þ y25 þ y23
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to representative involutory MDS matrix RIM6. After applying BDKCI heuristic to the
matrix M6, we find the circuit for the matrix M6 with 52 XOR operations and depth 5 using
XOR2 and XOR3 gates. Moreover, the same matrix M6 requires only 42 XOR operations
with depth 4 using XOR2, XOR3 and XOR4 gates (please see Table 7 for details).

In Table 4, we compare the matrixM6 with the circuit implementations of ciphers given
in the literature. When comparing the matrix M6 with the previous best-known
implementations of linear layers of some block ciphers, the involutory MDS matrix M6

improves the results in GCs and GEs with the minimum circuit depths.
Note that in Tables 3 and 4 we do not only consider the construction of circuits with

minimum GCs (i.e., XOR gate counts) and GEs but also take into account the minimum
circuit depth for low latency criterion. Since we stopped the algorithm after four hours of
runtime for each matrix, lighter circuits can be found because the proposed new hybrid
method allows us to generate all 4� 4 involutory MDS matrices over F2m . For further
improvements, more runtime may be required.

CONCLUSION AND FUTURE WORKS
In this article, we proposed a new hybrid method to generate all 4� 4 involutory MDS
matrices over F2m . The proposed method reduces the search space complexity at the level
of

ffiffiffi
n
p

by searching and finding representative involutory MDS matrices, where n
represents the number of all invertible 4� 4 matrices over F2m . In this respect, we were
able to generate all 4� 4 involutory MDS matrices over F23 and F24 . For the finite field F28 ,
the search space to generate all representative involutory MDS matrices is approximately

264, which is still too high to be searched for. Nevertheless, one can easily generate 4� 4
involutory and MDS matrices over F28 by focusing on representative involutory MDS
matrices. In the future, if the number of parameters in R1 presented in the “Proposed
Method” section is reduced by eliminating some parameters and a new search form is
obtained, then the search space for finding representative involutory MDS matrices for
larger finite fields can be reduced. However, this new form is highly possible to be a more
complex structure than R1. As a result, we believe that our proposed method is not only
useful for generating all involutory MDS matrices over F2m , but it is also useful for other
methods in the literature like the methods used for constructing lightweight involutory
MDS matrices over the general linear groups GL (m,F2).
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APPENDIX
Let F24 be generated by the primitive element a which is a root of the primitive polynomial

x4 þ x þ 1 (0x13). Consider 4� 4 representative involutory MDS matrix as given below:
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RIM7 ¼
1 a4 a11 a13

a11 a12 a11 a11

a3 a8 a12 a4

a5 a3 a11 1

2
664

3
775

over F24=0x13. Then, one can generate 4� 4 involutory and MDS matrixM7 by applying
the parameters b1 ¼ a11, b2 ¼ a4 and b3 ¼ 1 (and their inverses) to RIM7 as follows:

M7 ¼
1 1 1 a13

1 a12 a4 1
a14 1 a12 1
a5 a14 1 1

2
664

3
775:

The number of 1s in the matrixM7 is 9, which is the maximum number of occurrences
of 1s in 4� 4 MDS matrices.
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