Submitted 9 May 2023
Accepted 14 August 2023
Published 30 November 2023

Corresponding author
Zhongguo Zhang,
zhangzhongguo@tzu.edu.cn

Academic editor
Zeljko Stevic

Additional Information and
Declarations can be found on
page 15

DOI 10.7717/peerj-cs.1573

© Copyright
2023 Zheng and Zhang

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Adaptive tourism forecasting using
hybrid artificial intelligence model: a
case study of Xi’an international tourist
arrivals

Shuxin Zheng' and Zhongguo Zhang’
' School of Economics and Business, Changzhou Vocational Institute of Textile and Garment, Changzhou,

China
% College of Computer Science and Technology, Taizhou University, Taizhou, China

ABSTRACT

Accurate forecasting of tourist demand is important to both business practitioners and
government policymakers. In the past decade of rapid development of deep learning,
many artificial intelligence methods or deep learning models have been built to improve
prediction accuracy. But data-driven end-to-end deep network models usually require
large data sets to support. For tourism forecasting, the sample is insufficient and

many models are difficult to apply. In this article, we propose a novel hybrid model
GM-LSTM, which combines the advantages of gray models and neural networks to

achieve self-adaptive prediction with small samples. Specifically, the overall trend of
tourism demand is captured by a first-order gray model and the non-linear residual
fluctuation is characterized using a long short-term memory (LSTM) network with a
rolling mechanism. The model is validated through a case study of up to 38 years of
data on annual international tourist arrivals in Xi’an, China. The proposed GM-LSTM
model achieved a predicted MAPE value of 11.88%, outperforming other time series
models. The results indicate that our proposed hybrid model is accurate and efficient.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Neural Networks
Keywords Tourist demand, Hybrid gray model, Artificial neural network, Small-sample learning

INTRODUCTION

Tourism of the 21st century has become one of the fastest and largest growing economic
sectors through continuous diversification and expansion in the world (Makoni, Mazuruse
& Nyagadza, 2023). According to the change of tourism trend, both government bodies and
industry practitioners need to adjust their plans considering staff, capacity and resources
(Tang, Xie & Hu, 2022). Therefore, it is of great importance to develop an accurate and
efficient method for tourism demand forecasting. In recent years many forecasting models
have been developed to predict the tourist demand (Andariesta & Wasesa, 2022). These
forecasting models can be classified into three categories: econometric models, time series
models and artificial intelligence (AI) models. The econometric models are based on
the economic variables such as tourist income level, tourism price and geographical
factors. Although econometric models provide insights into the causal factors, it is
sometimes difficult to collect detailed data of explanatory variables for tourism forecasting.
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Alternatively, non-causal forecasting models including time series models and Al models
have gained more popularity in the past decade. They have the ability to forecast the future
tourism demand through learning the trends and patterns in history data.

The most widely used time series models are the different forms of autoregressive
moving average (ARMA) models (Athanasopoulos et al., 2011). Ma et al. (2016) used an
autoregressive integrated moving average (ARIMA) model to perform 36-month-ahead
tourism forecasting and benchmarked eight different ARIMA models. The seasonal
autoregressive integrated moving average model (SARIMA) was proposed by Jungmittag
(2016) to solve the monthly air travel forecasting problem at Frankfurt Airport. Chu (2008)
discussed the application of fractionally integrated ARMA model and forecasted Singapore’s
tourist arrivals. In general, these time series models show good forecasting accuracy for
linear and seasonal modelling. However, they are less capable to characterize non-linear
behaviors such as substantial market volatility (e.g., 2008 global financial crisis) (Sun et al.,
2019). Another difficulty is that the model specification and the data distribution are often
required to follow some assumptions before implementation (e.g., stationary process)
(Song et al., 2012).

With the rapid development of fundamental theory and advanced hardware, AI-based
models have provided more flexibility and capability in characterizing the non-linear
patterns, with a potential to achieve better performance than standard time series models.
They overcome the need of formal specification and are more compatible with various
data distributions. Among the different Al models introduced to tourism forecasting
research, artificial neural networks (ANNs) have drawn major attention by the ability to
characterize non-linear complex systems. Cho (2003) used ANN to forecast the number of
arrivals from different countries to Hong Kong. Constantino, Fernandes ¢ Teixeira (2016)
compared ANN methods with different input, activation methods and nodes in terms of
forecasting tourism demand in Mozambique. A model based on long short-term memory
(LSTM) neural network for predicting tourist traffic was proposed by Li et al. (2018) and
experimentally validated to be effective.

However, the training of deep neural network models, which are primarily data-driven,
usually requires a large amount of data. This means that the predictive performance of the
model is greatly reduced when the amount of data is too small or the data annotation is
incomplete. In contrast, the grey model (GM) is an Al method proposed to overcome the
limitation of insufficient data from the perspective of grey theory (Ju-Long, 1982). It offers
a grey dynamics model-based approach to deal with the problems of uncertainty with
few observations or poor information which is “partial known, partial unknown” (Liu ¢
Forrest, 2007). Due to its simplicity and efficiency, the gray model has been successfully
applied to various fields including tourism forecasting. In the existing literatures of Al-based
tourism forecasting, most studies focus on improving the accuracy of a single model. Only
a few studies have explored the combination of different Al models. Sun et al. (2016)
developed a Markov-chain grey model with Cuckoo search optimization algorithm for
forecasting of annual foreign tourist arrivals to China. Hadavandi et al. (2011) presented
a hybrid artificial intelligence model to develop a Mamdani-type fuzzy rule-based system
for tourist arrivals forecasting. Several recent studies have explored to combine the grey
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model and other AI models in other forecasting tasks. Badi ¢ Elghoul (2023) proposed
a Grey-ARAS approach to investigate the role of social media platforms in spreading
fake news during COVID-19 pandemic. Tutak ¢ Brodny (2023) developed grey relational
analysis and multidimensional scaling methods in assessing the level of innovation potential
of European Union member states. Tesic et al. (2023) developed LMAW-grey MARCOS
model for selection of a dump truck. However, it remains a challenge to fuse different Al
models in an optimal way to fully utilize their respective advantages. The combination
of different Al models has shown the potential of more accurate and efficient tourism
forecasting. However, the simple combination of different models does not necessarily
lead to enhanced forecasting performance. More research is needed on the systematic
framework of model fusion, as well as the theoretical justification.

In this article, a new hybrid GM-LSTM model is proposed to solve the tourist demand
forecasting problem with few and non-linear observations. Based on a small-sample dataset
(e.g., annual tourism demand), an adaptive grey model is constructed to capture the main
tourism tendency while the LTSM neural network is trained to characterize the residual
fluctuation. This hybrid model combines the advantage of LSTM neural network for
non-linear modelling and the efficiency of grey model. The rest of the article is organized as
follows. The ‘Method’ presents the GM-LSTM framework and introduces related models.
In ‘Experiments’ and ‘Results’, we apply the GM-LSTM model to the forecasting of annual
international tourist arrivals to Xi’an, China from 1980 to 2018. Finally, conclusions and
future directions are described in ‘Discussion’.

METHOD

Method framework

Annual tourism demand typically exhibits a general trend with fluctuations, which reflect
observations of complex dynamic systems. Factors like tourism price, exchange rate, and
security can influence annual tourism demand. A visual representation of this framework
is shown in Fig. 1. The time sequence is divided into fixed-length segments using a rolling
window. The tendency is then extracted from each segment by a first-order gray model.
The residual fluctuations are decomposed in the time series. The LSTM mechanism is
used to predict the residual fluctuation, which has been learned from historical data. The
prediction is made one step ahead, and this process can be iterated for multi-step ahead
forecasting using a rolling window. To enable adaptive prediction that captures real-time
system characteristics, Fixed-length time series are selected by a rolling window algorithm,
on the basis of which analysis and prediction tasks are implemented. Our hybrid framework
involves several steps. Firstly, we extract the tendency % of the data within the rolling window
using a first-order gray model. Further, the residual fluctuations & are decomposed out in
the time series. In addition to this, these fluctuations are fitted by an LSTM neural network.
Having learned from the historical data, we can then make one-step-ahead predictions,
which can be iterated for multi-step-ahead forecasting using the rolling window approach.
The models and related algorithms involved in this framework are described in detail in
the following subsections.
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Figure 1 Overview framework of hybrid GM-LSTM model. The whole time sequence is sliced into
fixed-length segments using a rolling window. For each segment, the tendency is extracted using first-
order gray model. Then the residual fluctuation is decomposed from the time series and is to be predicted
using LSTM neural network. After learning from the history data, one-step-ahead prediction can be made
and iterated for multistep-ahead forecasting using a rolling window.

Full-size B DOI: 10.7717/peerjcs.1573/fig-1

Gray model

Gray models are constructed for application to complex systems and short-term tourism
forecasting through differential equation methods. In grey theory, GM (n,m) model is
defined, where n is the order of the difference equation and m is the number of variables. The
GM (1,1) model, which utilizes first-order differential equations for univariate forecasting,
is the most commonly used. Assume that the original time series is

xO=xQ1),x?@),....x?0(j),....x )] (1)

where GM (1,1) procedure forecasts the value x© (¢ + 1) using the gray model, where
x©@ (] ) represents the j-th observation. And ¢ is the total number of training data. The steps
are as follows:

Construction of a sequence of first-order cumulative generation operations (1-AGO):
xW =[x 1), x@2),....xV (), ...V (®)] (2)

where x (k) = Z]]lex(o) (/) , fork=1,2,...,t. With this step we can obtain a smoother
time series for the purpose of predicting the trend of the data.
Calculate the first-order differential equation:

— +axW =y (3)

where a represents the developing coefficient. u is the gray input.
Use ordinary least squares (OLS) to estimate the parameters a and u, with the solution
being:

=(B"B)"'vy (4)
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where
—0.5xP (1) +xP2) 1
—0.5(xP2)+xP3) 1

B= (5)
—0.5(x(1)(t:1)+x(1)(t)) 1

and

Yy =[x©2),x93),....xP®]". (6)
Forecast model.

£0(t+1) = (x“”(l)—Z)e_m-i-Z (7)
and

2O () =20 (k+1) -z (k) (8)

where £ (k) indicates the predicted value at time k.

Rolling window scheme for gray model

Despite its ability to perform well with small samples, GM (1,1) is limited in capturing
real-time trends as it relies on the entire time-series for training. To overcome this issue
and improve forecasting accuracy, a rolling window scheme (Akay ¢ Atak, 2007) can be
implemented. The approach involves training the model using only the most recent |
observations, where 1 is the window size. This means that instead of using the entire time-
series, [x@ (t —1),x@ (t —14+1),...,x@ (¢)] is the basic work of the prediction @ (¢t +1).
The optimal window size 1 is computed by a grid search algorithm. The algorithm measures
and evaluates the prediction performance using different window sizes.

Brief review on LSTM neural network

In 1997, Hochreiter and Schmidhuber proposed LSTM as a solution to the convergence
issues that traditional neural networks face in time sequence prediction (Hochreiter ¢
Schmidhuber, 1997). LSTM is a type of recurrent neural network (RNN) and its general
structure is illustrated in Fig. 2A. RNNs excel in processing sequence data by incorporating
the previous ‘memory’ of each state as input. The LSTM model comprises three parts: the
input layer, the hidden layer, and the output layer. The inputs consist of x data from the
previous T =[x (t —I),x(t —I+1),...,x(¢)] historical moments. The output represents
the target at the (¢t + 1)-th timestep, denoted as y (t + 1). H = (hy, ha, ..., hj, ..., hy,)
represents the neurons in hidden layer, where h; refers to the j-th neuron in the layer. The
weight parameter carried by the hidden layer is represented by Wy;,. Wy, denotes the weight
parameter between the input layer and the hidden layer. By the same token, the weight
between the hidden layer and the input layer is represented by Wj,. The model is iteratively
computed as follows:

hy =0 (Wi T+ Wiphy—1+by) 9)
y(t+1):WhoH+by (10)
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Figure 2 Overview structure of the LSTM model (A) and structure of each LSTM neuron (B) for time
series prediction. LSTM is a type of RNNs consisting of three layers: input layer, hidden layer and out-
put layer. Each neuron of the LSTM network includes input gate, output gate and forget gate to remember
both long-range and short-range memory.

Full-size &l DOI: 10.7717/peerjcs.1573/fig-2

where byrefers to the size of the bias vector in the hidden layer. And the bias vector of the
output layer is indicated as b,.

Figure 2A illustrates that each neuron is comprised of three gates: the input gate, forget
gate, and output gate, as depicted in Fig. 2B. The input gate selects the input information
for the current cell state ¢; from x (), ¢;—1, and h;(t —1). The forget gate decides which
information should be discarded based on the current input x (¢), the previous cell state
ci—1, and the previous output of the j-th neuron h;(t —1). The value of the current cell
output gate is determined by the input size of ¢;, h;j(t —1) and x (¢). The input gate i; and
forget gate f; are computed as follows:

ir =0 (Wixx (t — 1) 4+ Wiccr—1 + Wighj (t — 1) + b;) (11)
fr =0 (Wgx (t) + Wrer—1 +Wahi (t — 1)+ by). (12)
The calculation of the neuron’s updated state is performed as follows:
o =fi-coo1+1-g(Wax (t) + Wahj (t = 1)+ Weeeo—1 +be). (13)
The computation of the output gate is:
0r = 0 (Woxx (t) + Winhj (t — 1) + Woec,—1 4 bo) (14)
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where W, represents the value of the weight matrix from layer a to layer b. In addition to
that, o (.) denotes the sigmoid activation function, and each bias term with subscript is the
bias vector. The weights of LSTM model are updated using back-propagation algorithms
with training samples of the time series. LSTM networks utilize a gating mechanism to
implement a selective memory function, which enables them to better handle time sequence
prediction tasks compared to conventional neural networks.

GM-LTSM hybrid model

The primary objective is to capture the general trend using the gray model and represent the
non-linear residual fluctuations with the LSTM model. For the training phase, we utilize

the complete time series data [x(1),x(2),...,x(¢)]. In line with ‘Gray Model’, we start by
extracting training samples Sy using a rolling window of length 1, for one-step prediction.

Sp=[xk),xk+1),....x(k+D],k=1,2,....,t ——1. (15)

where Sy is the k-th training sample.

To forecast the next data point x (k 41+ 1) for each sample, a hybrid model combining
GM(1,1) and LSTM is employed. The time series data within the rolling window is first
fitted using the GM (1,1) model described in ‘Method Framework’, which produces a
prediction % (k414 1). However, as the gray model fails to capture fluctuations, a LSTM
model is used to refine the prediction by incorporating the fluctuation. To calculate the
residual error of the one-step-ahead prediction by the gray model for the k-th rolling
window, we employ the following formula:

etk+I+)=xk+D)—x(k+14+1),k=1,2,....,t —1—1. (16)

During the prediction stage, we first collect the time series S;—; =[x (t —1),x(t =1+ 1),
...,x(t)] for the latest rolling window to predict the next data point X(t 4+ 1) using gray
model. Additionally, we use LSTM to predict the corresponding residual fluctuation
&(t + 1) based on the latest sample series. Thus, the predictions of these two machine
learning models are properly combined and we obtain reasonable predictions.

R+ =2+ +E(t+1). (17)

The same process used for prediction can be iteratively applied to make predictions for
subsequent time series at multiple time steps ahead while reducing their weight.

ARIMA model

In order to evaluate the performance of our hybrid AI model, we have included this linear
model for comparison purposes. When it comes to forecasting annual tourism demand, a
non-seasonal ARIMA model with the form ARIMA(p,d, q) is typically employed. Among
them, p represents the auto-regressive term, d is the integrated term and q is the moving-
average term. The general formula can be expressed as follows:

(1—¢1B—B... — $pB") (1—B)x, = (1—0,B—6,B> — ... — 0,B) ¢,. (18)

The data and random error terms at time t are represented as x; and &, respectively. The
backward shift operator is denoted as B, and it is used to shift a time series backward by one
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period. Specifically, Bx; = x;_;. The difference levels are denoted as d. The autoregressive
coefficients are represented as ¢, ¢, ...,$,, and they capture the effect of previous values
of the time series on its current value. The moving-average coefficients are represented as
61,0, ...,64, and they capture the effect of past forecast errors on the current value of the
time series.

EXPERIMENTS

Dataset description

According to the latest data, Xi’an is one of the most famous historical and cultural cities
in China and one of the world’s most famous tourist destinations. Xi’an has a very large
number of visitors every year, reaching over 360 million in 2019. For the dataset, we
collected the number of international visitors to Xi’an from 1980 to 2018 as raw data. This
information, which has been collected by the government of Xi’an and is presented in
Table 1, will be used to assess the accuracy of our forecasting model. The data from 1980
to 2013 are used as the training set and the data from 2014 to 2018 are test set. Test data
are {Year: Arrivals}: {2014: 124.23; 2015: 110.72; 2016:133.88; 2017:175.13; 2018:202.75}.

Evaluation
In this study, the data spanning from 1980 to 2013 was utilized as the training set, while the
most recent five years from 2014 to 2018 were reserved as the test set to assess the efficacy
of various models.

To evaluate the models’ performance, three commonly employed metrics were
employed: mean square error (MSE), absolute mean error (MAE), and mean absolute
percentage error (MAPE). These metrics are defined as follows:

1 n

MSE = —Z(xi —%)2 (19)
ni:l
1 n

MAE = —Z |x; — %; (20)
ni:l
1o x— %

MAPE = - L % 100%. 21
)] s 6 (21)

i=1

Model implementation
The models were coded and assessed in Python 3.7, which is open-source software. Here
are the implementation details for each model:

Gray Model. First, the classical GM (1, 1) gray model was used to adaptively train the entire
training dataset and to make predictions on the test set. Then we base again on the rolling
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Table 1 International tourist arrivals in Xi’an from 1980-2018 (Unit: ten thousand). The data from
1980 to 2013 are used as the training set and the data from 2014 to 2018 are the test set.

Year Arrivals
1980 4
1981 6.71
1982 9.09
1983 12.38
1984 15.13
1985 21.15
1986 25.78
1987 30.15
1988 36.58
1989 21.2
1990 25.88
1991 31
1992 40.16
1993 43.5
1994 41.49
1995 41.35
1996 45.39
1997 48.53
1998 47.98
1999 55.41
2000 65.03
2001 67.2
2002 74.13
2003 33.66
2004 65.03
2005 77.56
2006 86.73
2007 100.01
2008 63.2
2009 67.29
2010 84.18
2011 100.23
2012 115.35
2013 121.11

gray model implemented on the training dataset using the rolling window method. The
optimal window length was set to [4, 15], which was accurately determined in this step by
performing a grid search based on the MAPE predicted in the previous step of the training
set. Finally, the rolling window was slid to make predictions on the test set.

GM-LSTM Model: The GM-LSTM model is implemented through the original deep
learning algorithm technology library in PyTorch 1.0, which operates through interface
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calls. After training to obtain the gray model, we calculate the residual fluctuations of the
training set. In addition to this, the same rolling window as the gray model is used to divide
it into fixed length time series. This led to the generation of 22 samples for LSTM model
training. One of the thankful things is that the LSTM model itself includes LSTM layers with
128 hidden neurons and an additional linear layer. This configuration is better suited for
learning the mapping between historical time series and residual fluctuations. The Adam
optimizer was employed with a learning rate of 0.0005 to update the weights of the LSTM
network. And 200 epochs of training were conducted until the training error stabilized.
Additionally, we also trained an LSTM model without GM components to directly predict
tourism demand, following the same training process for LSTM networks, as a control
model.

ARIMA Model: The ARIMA model can be implemented with the statsmodels library in
Python. Checking the smoothness of time series data: ARIMA model requires the time
series data to be smooth, i.e., the mean and variance remain constant. If the data is not
smooth, it needs to be differenced to make it a smooth series. The ARIMA model consists
of three parameters: (p,d,q). The combination of (p,d,q) was determined by conducting
a grid search within the range of 0 to 10 for each parameter. Determining the optimal
values of these parameters can be identified using ACF (autocorrelation function) and
PACEF (partial autocorrelation function) plots. The parameter combination that resulted
in the best Akaike information criterion (AIC) on the training set was selected, and the
coefficients were fitted using the OLS algorithm. These selected parameters and the resulting
coefficients from the fit will be used to predict the demand for tourism in the test set.

RESULTS

After grid searching the AIC through the training set, we can determine the best
combination of (p, d, q) for the ARIMA model as (2,2,4). The model’s diagnostic figures
are depicted in Fig. 3, demonstrating a favorable fitting outcome. To achieve this result,
the text has been condensed and rephrased for clarity. Figure 3 is the diagnostics plots
of (2,2,4) performance on the training set. The standardized residual plot (top-left), the
histogram (top-right) and the normal Q-Q plot (bottom-left) show that the residual error
distributes around zero and follow a Gaussian distribution. The correlogram shows the
values fall into the confidence interval. These observations suggest that the assumption of
noise is appropriate.

The model performed well by accurately capturing both trend and fluctuations, with
a low MAPE of 15.73%. However, it did not perform well on the test data, with a large
forecasting error resulting in a high MAPE of 19.31%. The above results indicate that the
ARIMA model is not suitable for generalization using only small samples. In contrast, the
GM (1,1) model fitted on the entire training set effectively captures the overall trend needed
for forecasting. Although no fluctuations are captured, this also leads to a higher MAPE
on the training set with a value of 25.57%. Nonetheless, the GM (1, 1) model demonstrated
good generalization ability on the test set, with a lower forecasting error of 12.40%, as
shown in Fig. 4. This suggests that the gray model may be a more suitable choice when
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Figure 3 Diagnostics plots of performance on the training set. The standardized residual plot (top-left),
the histogram (top-right) and the normal Q-Q plot (bottom-left) show that the residual error distributes
around zero and follow a Gaussian distribution. The correlogram shows the values fall into the confidence

interval. These observations suggest that the assumption of noise is appropriate.
Full-size &l DOI: 10.7717/peerjcs.1573/fig-3

working with limited data. Models are trained using data from 1980 to 2013 and the
performance is tested on the unseen data from 2014 to 2018. The original data is in plotted
in black dot line. The results of ARIMA is plotted in blue dot line while the GM model is
in red dot line. We conducted a comparison of the MAPE performance for one-step-ahead
prediction on the training set using different rolling window lengths in the context of the
rolling GM (1, 1) model.

Based on the results in Fig. 5, 12 was determined to be the optimal window length for this
time series. Figure 6 is the comparison of one-step-ahead prediction of rolling GM (1, 1)
and GM-LSTM hybrid model on training set and five-year-ahead prediction on the test
set. A rolling window includes 12 successive time points. GM-LSTM model is trained
using data from 1980 to 2013 and the performance of five-year-ahead prediction on test
data from 2014 to 2018 is compared to GM model. The performance of one-step-ahead
predication are also compared on the training set. Compared with the classical GM (1, 1)
model, our proposed adaptive model exhibits superior performance. It obtains a predicted
MAPE value of 11.88% and captures an enhanced growth trend. Nevertheless, our study
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Figure 4 Comparison of ARIMA (2,2,4)and GM (1,1)on the training and test set. Models are trained us-
ing data from 1980 to 2013 and the performance is tested on the unseen data from 2014 to 2018. The orig-
inal data is plotted in the black dot line. The results of ARIMA is plotted in the blue dot line while the GM
model is in the red dot line.

Full-size &l DOI: 10.7717/peerjcs.1573/fig-4

of the prediction results in Fig. 6 shows that the GM (1, 1) model still does not effectively
characterize the fluctuations. Therefore, we need to innovate and improve the model.

DISCUSSION

We can conclude from the experimental results that the LSTM mechanism in the GM-
LSTM hybrid model can effectively represent the fluctuation trend of the training data. In
addition, our proposed hybrid model approach outperforms the rolling GM (1, 1) model
in both prediction of the training set and five-year prediction of the test set because it
combines the advantages of the gray model and the neural network. This suggests that our
hybrid AI model is both accurate and efficient. Interestingly, when we used a single LSTM
model to predict tourism demand, we observed a significant drop in performance on the
test set. Although the LSTM model was well-trained on the training set with a 13% MAPE
for one-step-ahead prediction, it resulted in a much higher MAPE of 22% on the test set,
indicating overfitting issues when the training data is limited. Table 2 presents a detailed
performance comparison of the different models.
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one-step-ahead prediction of rolling GM (1.1) on the training set. The MAPE is lowest when choosing
the rolling window length as 12.
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Table 2 Forecasting performance of different models on the training and test set. The methods with
best evaluation metric are in bold.

Models MSE MAE MAPE MSE MAE MAPE
Training set (1980-2013) Test set (2014-2018)

ARIMA (2,2,4) 83.10 5.70 15.73 1267.95 32.10 19.31

GM (1,1) 115.55 7.80 25.57 711.69 20.39 12.40
One-step-ahead prediction Test set (2014-2018)

Rolling GM 219.36 10.20 16.77 453.34 18.08 11.88

LSTM 120.99 8.11 12.99 2786.00 35.88 22.33

GM-LSTM 123.23 6.69 12.43 290.65 14.17 10.24

The ARIMA and LSTM models are both data-driven and optimized based on the
training data. However, in the case of forecasting tourism demand, the lack of training
data limits the generalization ability of these models. On the other hand, the rolling GM
model is model-based and training-free, as it is based on differential equations for dynamic

evolution. This model performs well when the training sample is small, thanks to its

assumptions and prior knowledge. Our hybrid method decomposes the non-linear signal

into trend and fluctuation components, combining the strengths of both model-based and

data-driven approaches. To our knowledge, this is the first hybrid intelligence method that

addresses the small-sample problem in tourism demand forecasting. Furthermore, this

framework can be extended with different model-based and data-driven techniques.

Zheng and Zhang (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1573

13/17


https://peerj.com
https://doi.org/10.7717/peerjcs.1573/fig-5
http://dx.doi.org/10.7717/peerj-cs.1573

PeerJ Computer Science

220 T T T T T T T T T T T T T T T T T
—e— Original data
200 |- | —=— Rolling GM(1,1)
—%— GM-LSTM

180

160 [

2
. 4

120

100 |-

%01 Rolling window

40 -

International arrivals (Unit: 10,000)

20 |
Test

1 1

1
INFATIIA SR R S VA S <<}
PSPPI HISH OO HS
FEFEFFFLIFTTTSS

1

|
» S O » b © O
S SISO
FETTTTSSS

Figure 6 Comparison of one-step-ahead prediction of rolling GM (1.1) and GM-LSTM hybrid model
on training set and five-year-ahead prediction on the test set. A rolling window includes 12 successive
time points. GM-LSTM model is trained using data from 1980 to 2013 and the performance of five-year-
ahead prediction on test data from 2014 to 2018 is compared to GM model. The performance of one-step-
ahead predication are also compared on the training set.
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While the proposed GM-LSTM model demonstrates promising results, there remain
several limitations and directions for future improvement. First, the current model only
incorporates monthly tourist arrival data, while other potentially relevant factors like
GDP, population, and seasonality are excluded. Expanding the model to multivariate
inputs could enhance accuracy and provide more practical insights (Doborjeh et al., 2022).
Secondly, the model hyperparameters and architecture are manually configured based on
empirical analysis, which is suboptimal. Applying neural architecture search or Bayesian
hyperparameter optimization may find better model configurations (Kalliola, Kapociiite
Dzikiené & Damasevicius, 2021). Thirdly, the prediction interval of the hybrid model is not
quantified, reducing its capability to deal with uncertainties. Developing the probabilistic
version of GM-LSTM could generate predictive distributions rather than point estimates
(Liu et al., 2019). Lastly, interpretability and transparency need to be considered when
deploying black-box Al models. Techniques like attention mechanism (Hsu, Liu ¢ Tseng,
2019) and model agnostic interpretation can improve model explanability (Ismail et al.,
2020). The proposed GM-LSTM model provides a proof of concept for combining model-
based and data-driven methods in tourism forecasting. Further research on multivariate
modeling, automatic architecture design, uncertainty quantification, and interpretability
will help transform this hybrid approach into a robust and practical forecasting tool.
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CONCLUSIONS

To address the challenge of predicting tourist demand in Xi’an, China with limited and
complex data, this study introduces a novel approach—a hybrid GM-LSTM model. The
proposed model demonstrates superior accuracy and real-time performance for forecasting
tourist demand with sparse and nonlinear data. However, current research is still only based
on univariate time series data predictions. Thus the models are not robust and generalizable
enough and lack the ability to fully explain visitor behavior. Future studies should focus
on developing multivariate forecasting models and conducting comprehensive analysis to
gain a deeper understanding of tourist behavior prediction.
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