
Submitted 15 December 2022
Accepted 14 August 2023
Published 19 September 2023

Corresponding author
Miguel Angel Fortuna,
fortuna@ebd.csic.es

Academic editor
Xiangjie Kong

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj-cs.1568

Copyright
2023 Ortega and Fortuna

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

avidaR: an R library to perform complex
queries on an ontology-based database of
digital organisms
Raúl Ortega and Miguel Angel Fortuna
Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Seville, Spain

ABSTRACT
Digital evolution is a branch of artificial life in which self-replicating computer
programs—digital organisms—mutate and evolve within a user-defined computa-
tional environment. In spite of its value in biology, we still lack an up-to-date and
comprehensive database on digital organisms resulting from evolution experiments.
Therefore, we have developed an ontology-based semantic database—avidaDB—and
an R package—avidaR—that provides users of the R programming language with
an easy-to-use tool for performing complex queries without specific knowledge of
SPARQL or RDF. avidaR can be used to do research on robustness, evolvability,
complexity, phenotypic plasticity, gene regulatory networks, and genomic architecture
by retrieving the genomes, phenotypes, and transcriptomes of more than a million
digital organisms available on avidaDB. avidaR is already accepted on CRAN (i.e., a
comprehensive collection of R packages contributed by the R community) and will
make biologists better equipped to embrace the field of digital evolution.

Subjects Computational Biology, Data Science, Databases, Digital Libraries,
Scientific Computing and Simulation
Keywords Artificial life, Digital evolution, Digital genetics, Semantic database,
Ontology-based database, Digital organism, R library

INTRODUCTION
Over the past 30 years, digital evolution research has established itself as a valuable approach
in biology, bridging experimental research with computational modelling (Ray, 1991). The
contribution of digital evolution to the development of ecology and evolutionary biology
comprises diverse topics such as robustness and evolvability (Edlund & Adami, 2004; Lenski,
Barrick & Ofria, 2006; Elena et al., 2007; Elena & Sanjuán, 2008; Fortuna et al., 2017),
complexity (Ray, 1997; Lenski et al., 1999; Adami, Ofria & Collier, 2000; Gerlee & Lundh,
2008; Ofria, Huang & Torng, 2008), phenotypic plasticity (Clune, Ofria & Pennock, 2007;
Lalejini et al., 2021; Fortuna, 2022), the role historical contingency in evolution (Hagstrom
et al., 2004; Wagenaar & Adami, 2004; Clune et al., 2012), ecological interactions among
species (Cooper & Ofria, 2003; Johnson & Wilke, 2004; Zaman, Devangam & Ofria, 2011;
Fortuna et al., 2013; Zaman et al., 2014; Dolson & Ofria, 2021), gene regulatory networks
(Lenski et al., 2003;Edlund & Adami, 2004;Covert et al., 2013), genomic architecture (Wilke
et al., 2001; Knibbe et al., 2005; Adami, 2006; Knibbe et al., 2007; Gerlee & Lundh, 2008;
Batut et al., 2013; Gupta et al., 2016), evolution of sex (Chandler, Ofria & Dworkin, 2012),

How to cite this article Ortega R, Fortuna MA. 2023. avidaR: an R library to perform complex queries on an ontology-based database of
digital organisms. PeerJ Comput. Sci. 9:e1568 http://doi.org/10.7717/peerj-cs.1568

https://peerj.com/computer-science
mailto:fortuna@ebd.csic.es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1568
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1568

and evolution of cooperation (Goings et al., 2004; Knoester, McKinley & Ofria, 2007; Clune
et al., 2011), among others.

Avida is the most widely-used software platform for the study of evolution (Ofria
& Wilke, 2004). Within this computational framework of open-ended evolution, digital
organisms, which are self-replicating computer programs, engage in competition for limited
resources such as memory space and central processing unit (CPU) time. The genome of
a digital organism consists of a circular sequence of code instructions that is continuously
executed by a virtual CPU. Certain instructions within the genome facilitate the replication
of the organism, acting as the sole mechanism for transmitting its genetic material to future
generations. However, this replication process is susceptible to errors or mutations. When
an instruction is inaccurately copied, it is replaced in the offspring genome by a randomly
selected instruction from a set of 26 possibilities, distributed uniformly. Other instruction
sets are available, for example when working with parasites (i.e., organisms that steal CPU
cycles from other organisms—their hosts—to speed up their own replication process).
The resulting variation generates competition among organisms as the population grows
and uses up available resources. In order to metabolize these resources and thus replicate,
organisms must compute Boolean logic operations—such asNOT and NAND—on binary
numbers taken from the environment through input–output instructions encoded in their
genomes. The organism that is fittest, in the sense of being the faster replicator while
encoding the phenotype required to metabolize a resource in a specific environment,
comes to dominate the population through natural selection.

In spite of the extended used of Avida, no effort has been made to build and provide
access within the scientific community to an up-to-date and comprehensive database
on digital organisms. We have developed the avidaR package to provide users of the R
programming language (i.e., an open-source statistical programming language widely used
for data analysis, statistical modeling, and graphical visualization) with easy-to-use tools
for performing complex queries on avidaDB—an ontology-based database containing
the genomes, phenotypes and transcriptomes of more than a million digital organisms
obtained from evolution experiments carried out in Avida.

DIGITAL EVOLUTION
avidaDB
We have built a comprehensive database that encompasses the genomes, phenotypes, and
transcriptomes of over one million digital organisms resulting from evolution experiments
carried out using Avida. A significant portion of the data, more than half, was obtained by
randomly sampling the sequence space of genomes that were 100 instructions long (Fortuna
et al., 2017). These genomes encoded the same phenotype within a single environment.
Furthermore, in a subsequent study (Fortuna, 2022), the phenotype encoded by the
genomes of these 512,000 organisms, as well as their transcriptomes, were computed in a
set of 1000 distinct environments. The database includes the following key data from these
two experiments:

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 2/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1568

• genome instruction sequence: a linear string of letters representing the instruction codes
that make up the genome of a digital organism.
• phenotype: a unique combination of logic operations that a digital organism performs
on 32-bit one- and two-binary input numbers.
• transcriptome instruction sequence: a linear string of letters representing the instruction
codes that make up the transcriptome executed by a digital organism.

In a third study (Rico and Fortuna, unpublished), we extended the analysis by computing
the phenotype and transcriptome of all single-point mutants for 200 digital organisms from
the previous dataset. These single-point mutants were generated by introducing a single
mutation at different positions in the genome. The computations were performed in the
same 1,000 environments as in the previous study. As a result, we obtained an additional
dataset comprising 500,000 digital organisms (2500 single-point mutants for each of the
200 organisms). In this expanded dataset, we have stored the same type of data as in
the previous studies, including genomes, phenotypes, and transcriptomes. Moreover, we
have also included information about the specific genomic locations of all single-point
mutations:

• mutant of: a relation linking two digital organisms if their genomes differ in a single
instruction code.
• position at genome: the position of an instruction code along the digital genome of a
digital organism.

In addition to the genomic, phenotypic, and transcriptomic data, we have also computed
and stored information on the viability and generation time of the 1,012,000 digital
organisms in the same 1,000 environments:

• viable: the ability of a digital organism to produce an offspring able to replicate by
executing its genome.
• generation time: number of instruction codes executed by a digital organism to produce
a viable offspring (i.e., the inverse of fitness in the absence of any selective pressure
other than reducing the number of instructions that must be executed for successful
replication).

Tracing the provenance and reproducibility of data
Clarifying the provenance of data is crucial for traceability and reproducibility in scientific
research. We have added functions into avidaR to trace the context and provenance of the
data obtained from Avida experiments:

• get_experiment_id_from_organism_id() # establishing a connection between a digital
organism and the experiment it was derived from enables researchers to easily retrieve
the relevant experiment information associated with that specific organism.
• get_doi_from_experiment_id() # establishing a connection between an experiment and
the identifier of the scientific publication it was reported in enables researchers to easily
access the publication, which provides additional details on the experimental design.

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 3/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1568

• get_docker_image_from_experiment_id() # establishing a connection between and
experiment and a docker image that contains the configuration files and options used
in the experiment enables researchers to reproduce the experimental conditions and
obtain repeatable results.

Providing semantics to avidaDB
avidaDB has been implemented as an RDF store (also known as graph database or triple
store) to express relationships between resources using subject–predicate–object triples.
The most relevant advantage of RDF stores is that they represent, store and query data as
a graph. The second characteristic is that they are semantic, which means that they can
store not only data but also explicit descriptions of the meaning of that data. These explicit
descriptions are known by the RDF and linked data community as ontologies. An ontology
is a machine-readable description of a domain that typically includes a vocabulary of terms
and some specification of how these terms relate to each other, imposing a structure on
the data for such domain. This is also known as a schema.

We have developed the Ontology for Avida (OntoAvida) to provide semantics to
avidaDB. The semantic relationships between the terms commonly used in Avida are
expressed in theW3C standard ontology language OWL-DL. OntoAvida is part of the Open
Biological and Biomedical Ontologies (https://obofoundry.org/ontology/ontoavida.html)
and is already available to the scientific community. We have also customized
pyLODE to obtain a readable version of OntoAvida, which is also available at
https://owl.fortunalab.org/ontoavida.

Connecting to avidaDB
Semantic databases are databases that store RDFdata and allow the querying of RDFdata via
the SPARQL query language (i.e., a programming language used to retrieve andmanipulate
data stored as subject–predicate–object triples). The library avidaR can connect to triple-
stores that support the RDF4J server REST API such as GraphDB. The SPARQL endpoint
of avidaDB (https://graphdb.fortunalab.org/) allows both basic connection (requiring no
password or requiring basic HTTP user-password authentication) or connection secured
with an API access token. The way avidaR connects avidaDB requires user-password
authentication (i.e., public_avida as both username and password).

avidaR retrieves data from avidaDB without specific knowledge of SPARQL or RDF.
The functions in avidaR can be grouped by the type of data requested: (i) genomes as
sequences of letters representing code instructions (e.g., get genomes encoding specific
phenotypes in particular environments), (ii) phenotypes as a combination of the logic
operations computed (e.g., get the phenotype of organisms that computed specific logic
operations), (iii) transcriptomes executed during the replication cycle as both sequences
of letters representing code instructions and chord diagrams (e.g., get the transcriptomes
of organisms whose genomes encoded specific phenotypes in specific environments), and
(iv) single-point mutants at specific positions on the genome (e.g., get the genome of the
single-point mutant that substituted the instruction coded by letter i by j at a particular
position on the genome of a wild-type organism). Users can build programming workflows

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 4/16

https://peerj.com
https://obofoundry.org/ontology/ontoavida.html
https://owl.fortunalab.org/ontoavida
https://graphdb.fortunalab.org/
http://dx.doi.org/10.7717/peerj-cs.1568

by pipingmultiple functions together so that the output of one becomes the input to another
(e.g., get a genome encoding different phenotypes in distinct environments (i.e., plastic
organism), and retrieve the generation time as a surrogate of fitness in the absence of any
selective pressure other than reducing the number of instructions executed).

R FUNCTIONS
Below are some of the functionalities that can be found in avidaDB:

avidaDB access (required to establish a connection to the database)
• avidaDB <- triplestore_access$new() # create triplestore object.
• avidaDB$set_access_options(url = ‘‘https://graphdb.fortunalab.org’’, user =
‘‘public_avida’’, password = ‘‘public_avida’’, repository = ‘‘avidaDB’’) # set access
options.

avidaDB summary
• get_db_summary(triplestore= avidaDB) # get a summary of the content of the database.

Genetic language used by the organisms in Avida
• instruction_set(inst_set = ‘‘heads’’) # get the default Avida genetic language.

Logic operations computed by digital organisms
• logic_operation() # get the list of logic operations that a digital organism can compute
(i.e., the default logic-9 environment).
• get_logic_operation_from_phenotype_id() # get the list of logic operations computed
by a digital organism whose genome encodes a specific phenotype out of the 512 distinct
phenotypes comprising the entire phenotype space (i.e., ranging from phenotype 0 to
phenotype 511).

Genomes harbored by digital organisms
• get_genome_id_from_logic_operation() # get genome identifiers of organisms that
computed specific logic operations.
• get_genome_id_from_phenotype_id() # get genome identifiers encoding specific
phenotypes in particular environments.
• get_genome_id_from_transcriptome_id() # get genome identifiers of organisms that
executed specific transcriptomes in particular environments.
• get_genome_id_from_genome_seq() # get genome identifiers of genome sequences.
• get_genome_seq_from_genome_id() # get genome sequence from genome identifiers.

Phenotypes encoded by genomes of digital organisms
• get_phenotype_id_from_genome_id() # get the phenotype identifier encoded by a
genome identifier.
• get_phenotype_id_from_genome_seq() # get the phenotype identifier encoded by a
genome sequence.
• get_phenotype_id_from_logic_operation() # get the phenotype identifier of organisms
that computed specific logic operations.

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 5/16

https://peerj.com
https://graphdb.fortunalab.org
http://dx.doi.org/10.7717/peerj-cs.1568

• get_phenotype_id_from_transcriptome_id() # get the phenotype identifier of organisms
that executed specific transcriptomes in specific environments.

Transcriptomes executed by digital organisms
• get_transcriptome_id_from_genome_id() # get the transcriptome identifier encoded
by a genome identifier.
• get_transcriptome_id_from_genome_seq() # get the transcriptome identifier encoded
by a genome sequence.
• get_transcriptome_id_from_logic_operation() # get the transcriptome identifier of
organisms that computed specific logic operations.
• get_transcriptome_id_from_phenotype_id() # get the transcriptome identifier of
organisms whose genomes encoded specific phenotypes in specific environments.
• get_transcriptome_seq_from_transcriptome_id() # get the transcriptome sequence
from the transcriptome identifier.
• plot_transcriptome(inst_set = ‘‘heads’’) = # plot a transcriptome as a chord diagram
using the default instruction set.

Single-point mutants
• get_genome_id_of_wild_type_organisms() # get the genome identifier of the list of
organisms for which genomic, transcriptomic, and phenotypic information of all their
single-point mutants is available (i.e., wild-type organisms).
• get_mutant_at_pos() # get the genome sequence of specific single-point mutants at a
particular position on the genome of a wild-type organism.

CASE STUDIES
We illustrate the use of avidaR by addressing two case studies: (i) quantifying the fitness cost
of phenotypic plasticity, and (ii) identifying mutations with positive effects on replication
time as a surrogate of fitness. The analysis was performed using avidaR version 1.2.0.

The fitness cost of phenotypic plasticity
In the first case study, we investigate the impact of phenotypic plasticity on the fitness
of digital organisms. Phenotypic plasticity is not only a pervasive feature of biological
organisms but also of digital ones (Fortuna, 2022). Specifically, the environment can
modify the sequence of instructions executed from a digital organism’s genome (i.e., its
transcriptome), which results in changes in its phenotype (i.e., the ability of the digital
organism to perform Boolean logic operations). This epigenetic pathway for plasticity
comes at a fitness cost to an organism’s viability and replication time: the longer the
replication time (higher fitness cost), the more chances for the environment to modify the
genetic execution flow control, and the higher the likelihood for the genome to encode
novel phenotypes.

We obtain a set of genomes that exhibit phenotypic plasticity, where organisms can
switch between different phenotypes in response to changes in their environment. We
also collect a set of genomes that do not exhibit plasticity and maintain a fixed phenotype

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 6/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1568

across all environments. By comparing the replication times of organisms with and without
plasticity in different environments, we quantify the fitness cost associated with phenotypic
plasticity. Here is the code to retrieve the data and perform the analysis.

load required libraries:

library(avidaR)

library(tidyverse)

data reproducibility:

set.seed(1000)

create triplestore object:

avidaDB <- triplestore_access$new()

set access options:

avidaDB$set_access_options(

url = "https://graphdb.fortunalab.org",

user = "public_avida",

password = "public_avida",

repository = "avidaDB"

)

define function to get the data:

data <- function(boolean_func, seeds, plastic) {

get_genome_id_from_logic_operation(

logic operations that the target organisms must perform:

logic_operation = boolean_func,

number of distinct environments where that phenotype will be computed:

seed_id = 1:seeds,

triplestore = avidaDB) %>%

show data for each genome that computes those logic operations:

group_by(genome_id) %>%

number of environments where the phenotype was encoded:

summarize(n_seeds = n()) %>%

classify the genome as plastic or no plastic:

filter(if (plastic == TRUE) n_seeds == seeds else n_seeds == 1) %>%

randomly select 10 organisms from those that meet the requirements:

sample_n(10) %>%

select(genome_id) %>%

get the transcriptome from the genome of each selected organisms:

get_transcriptome_id_from_genome_id(

genome_id = as.integer(gsub("genome_", "", .$genome_id)),

transcriptome_seq = TRUE,

seed_id = 1:seeds,

triplestore = avidaDB) %>%

select(genome_id, transcriptome_id, transcriptome_seq) %>%

distinct %>%

get the number of instructions that the organism executed to replicate as a surrogate for fitness:

mutate(generation_time = nchar(transcriptome_seq),

phen_group = boolean_func, plastic_group = plastic) %>%

select(-transcriptome_seq)

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 7/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1568

}

get the data and join them in a single dataframe:

select 10 non-plastic organisms performing the logic function NOT:

data_NOT_non_plastic <-

data(boolean_func = "not", seeds = 10, plastic = FALSE)

select 10 plastic organisms performing the logic function NOT:

data_NOT_plastic <-

data(boolean_func = "not", seeds = 10, plastic = TRUE)

select 10 non-plastic organisms performing the logic function EQUALS:

data_EQU_non_plastic <-

data(boolean_func = "equals", seeds = 10, plastic = FALSE)

select 10 plastic organisms performing the logic function EQUALS:

data_EQU_plastic <-

data(boolean_func = "equals", seeds = 10, plastic = TRUE)

provide data as a single data frame:

df <- rbind(

data_NOT_non_plastic, data_NOT_plastic,

data_EQU_non_plastic, data_EQU_plastic)

plot the results:

ggplot(df, aes(x = phen_group, y = generation_time, fill = plastic_group)) +

geom_boxplot()

This preliminary finding suggests that plasticity may incur a fitness cost for simple
phenotypes, but not for complex phenotypes. This is evidenced by an increased time for
digital organisms to replicate, indicating a decrease in fitness (Fig. 1).

The fitness effects of single-point mutations
In the second case study, we retrieve data from avidaDB to identify the single-point
mutation that has the largest positive effect on replication rate. We consider the replica-
tion rate as a surrogate for fitness, where a higher replication rate corresponds to higher
fitness. Replication in digital organisms involves the copying of the genome instruction
by instruction into a new memory region, a process that can occasionally result in errors
known as mutations. Mutations occur when an instruction is inaccurately copied,
leading to its replacement in the offspring genome with a randomly selected instruction.
Mutations can have different effects on fitness, including being lethal (resulting in non-
viable offspring), neutral (no change in phenotype or fitness), deleterious (decreasing
fitness), or beneficial (increasing fitness).

The process of identifying the most significant single-point mutation on replication
rate involves multiple steps:

• randomly sampling the genome sequence of a single organism (wild-type organism).
• retrieving the transcriptome of the wild-type organism and its single-point mutants in
a specific environment.
• selecting the mutant with the highest fitness based on generation time as a surrogate
measure.

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 8/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1568

1000

2000

3000

EQUALS
(complex)

NOT
(simple)

Phenotype

G
en

er
at

io
n

T
im

e

non−plastic organisms
plastic organisms

Figure 1 Simple analysis to illustrate the use of avidaR to quantify the fitness costs of phenotypic plas-
ticity.We suggest that plastic organisms whose genomes encode a simple phenotype (i.e., digital organ-
isms able to compute the Boolean operation NOT) have longer generation times (i.e., lower fitness) than
non-plastic ones. In contrast, organisms whose genomes encode complex phenotypes (i.e., digital organ-
isms able to compute the Boolean operation EQUALS) show the opposite. Generation time was measured
as the number of instructions that a digital organism must execute to produce an offspring.

Full-size DOI: 10.7717/peerjcs.1568/fig-1

• comparing the genome sequences of the wild-type organism and the fittest mutant to
identify the specific mutated instruction and its position in the genome.
• finally, plotting the transcriptomes of the wild-type organism and the fittest mutant for
comparison (Fig. 2).

Here is the code to retrieve the data and perform the analysis.

load required libraries:

library(avidaR)

library(tidyverse)

data reproducibility:

set.seed(10)

create triplestore object:

avidaDB <- triplestore_access$new()

set access options:

avidaDB$set_access_options(

url = "https://graphdb.fortunalab.org",

user = "public_avida",

password = "public_avida",

repository = "avidaDB"

)

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 9/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1568/fig-1
http://dx.doi.org/10.7717/peerj-cs.1568

get data:

data_wild_type <-

get_genome_id_of_wild_type_organisms(

triplestore = avidaDB) %>%

randomly select the genome of an organism for which all of its single-point mutants are known:

sample_n(1) %>%

get the transcriptome from the genome of the selected organism:

get_transcriptome_id_from_genome_id(

genome_id = as.integer(gsub("genome_", "", .$genome_id_wild_type)),

transcriptome_seq = TRUE,

seed_id = 1,

triplestore = avidaDB) %>%

get the number of instructions that the organism executed to replicate as a surrogate for fitness:

mutate(generation_time = nchar(transcriptome_seq)) %>%

select(genome_id, transcriptome_id, generation_time) %>%

arrange(generation_time)

get all single-point mutants from the selected organism:

data_mutant <-

specificy the position of the mutation along the genome of the organism:

get_mutant_at_pos(

genome_id = as.integer(

gsub("genome_", "", data_wild_type$genome_id)),

triplestore = avidaDB) %>%

select(genome_id_mutant) %>%

get the transcriptome from the genome of the mutant organisms:

get_transcriptome_id_from_genome_id(

genome_id = as.integer(gsub("genome_", "", .$genome_id_mutant)),

transcriptome_seq = TRUE,

seed_id = 1,

triplestore = avidaDB) %>%

select(genome_id, transcriptome_id, transcriptome_seq) %>%

distinct %>%

get the number of instructions that the mutant executed to replicate as a surrogate for fitness:

mutate(generation_time = nchar(transcriptome_seq)) %>%

select(-transcriptome_seq) %>%

sort the mutants by the number of instructions that the mutant executed to replicate:

arrange(generation_time) %>%

select a single mutant organism, i.e., the one with the highest fitness:

head(1)

join data for both organisms in a single dataframe:

df <- inner_join(

rbind(data_wild_type, data_mutant),

get_genome_seq_from_genome_id(

genome_id = c(as.integer(

gsub("genome_", "", data_wild_type$genome_id)),

as.integer(

gsub("genome_", "", data_mutant$genome_id))),

triplestore = avidaDB),

by = "genome_id")

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 10/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1568

get the relative fitness of the mutant compared to that of the wildtype:

df$generation_time[1] / df$generation_time[2]

get the position of the mutation in the genome of the mutant:

pos <- mapply(function(x, y) which(x != y)[1],

strsplit(df$genome_seq[1], ""), strsplit(df$genome_seq[2], ""))

get the mutated instruction:

substr(df$genome_seq[1], pos, pos)

substr(df$genome_seq[2], pos, pos)

plot the transcriptomes of both organisms:

plot_transcriptome(

inst_set = "heads",

transcriptome_id = as.integer(

gsub("transcriptome_", "", df$transcriptome_id[1])),

seed_id = 1,

save = TRUE, save_path = getwd(), format = "pdf",

triplestore = avidaDB)

A single-point mutation has the potential to significantly impact fitness by altering the
execution flow of the instructions within a digital organism’s genome. In our analysis, we
observed a notable fitness improvement resulting from a specific mutation. Specifically,
the substitution of the math instruction n (dec) at position 54 in the genome with the
control-flow instruction h (jump-head) led to a 29% increase in the replication rate of the
digital organism (Fig. 2). This finding highlights the important influence that individual
mutations can have on the performance and fitness of digital organisms.

FUTURE DIRECTIONS
Digital evolution presents a highly promising avenue within the field of ecology and
evolution, offering an intermediary level of complexity between real-life systems and
traditional mathematical models. By studying digital organisms, researchers gain un-
precedented insights into evolutionary processes that are otherwise challenging to explore
using natural systems alone. Consequently, digital organisms offer a complementary
approach to studying natural or experimental evolution. It is important to note, however,
that while predictions from evolving digital organisms can provide valuable insights,
there may exist substantial differences in the underlying mechanisms between digital
and biological organisms. Nonetheless, the fundamental operational processes, such as
Darwinian evolution, remain equivalent. Thus, studies using digital organisms can help us
elucidate the principles governing evolutionary dynamics across various scales.

The avidaR library was developed as part of a larger project aimed at providing
semantics to the data generated from experiments carried out on the Avida software
platform. It represents the first R package that enables users to perform advanced queries
on an ontology-based semantic database, which stores the genomes, phenotypes, and

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 11/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1568

1

34

50

75

91

n*

1

34

50

h*

91

wild-type
organism

single-point mutant
organism

Figure 2 Changes in transcription as a consequence of a single-point mutation. The transcriptomes
of a wild-type digital organism (left) and its single-point mutant with the largest positive effect on fitness
(right) are represented as chord diagrams. The instructions of the 100-length genome that were actually
executed are represented as segments around the circle. The size of each segment is proportional to the
number of times that the instruction was executed, and its color depicts the type of instruction. Gaps be-
tween segments indicate parts of the genome that were not executed. The first instruction of the genome
that is executed is placed at the top center of the chord diagram. Some numbers indicating genome posi-
tions were placed along the genome to illustrate the changes in the execution flow that took place when
the math-instruction labelled as n at position 54 was substituted by the control-flow instruction labelled as
h. This single-point mutation, depicted in bold and marked with an asterisk, increases 29% the replication
time of the mutant organism.

Full-size DOI: 10.7717/peerjcs.1568/fig-2

transcriptomes of over a million digital organisms resulting from evolution experiments.
This integrated framework empowers biologists by equipping them with the necessary
tools to explore and analyze the field of digital evolution more effectively. By leveraging
the functionalities of avidaR, researchers can gain deeper insights into the evolutionary
processes and dynamics of digital organisms. The power of avidaR as a tool for evo-
lutionary analysis is exemplified by two case studies that highlight its capabilities in
addressing complex questions related to fitness, plasticity, and genetic variation. The
Jupyter Notebook available at the following URL https://gitlab.com/fortunalab/avidaR/-
/blob/main/avidaR.ipynb, provides additional examples of the versatile applications of
avidaR. In this notebook, you will find detailed examples and code snippets showcasing
various features and functionalities of avidaR. It serves as a comprehensive resource for
users to explore and understand the capabilities of the package. By working through the
provided examples, researchers can gain practical insights into how to effectively utilize
avidaR for their own evolutionary analyses and experiments.

We will expand avidaDB by including the genomes of parasite organisms from our
previous and ongoing research. Parasitic digital organisms are almost identical to any
other organism, and as such they compute Boolean logic operations and self-replicate
by copying their genome instruction-by-instruction into a new memory space. But they

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 12/16

https://peerj.com
https://doi.org/10.7717/peerjcs.1568/fig-2
https://gitlab.com/fortunalab/avidaR/-/blob/main/avidaR.ipynb
https://gitlab.com/fortunalab/avidaR/-/blob/main/avidaR.ipynb
http://dx.doi.org/10.7717/peerj-cs.1568

operate inside hosts, stealing CPU cycles from them to execute their own genome’s
instructions and, hence, reduce their host fitness.

avidaR is a valuable tool to perform studies that lie at the intersection of evolutionary
biology and computer science. Its potential transcends traditional academic boundaries
and will definitely provide fertile ground for new collaborations bridging these disciplines.
Our R package will appeal not only to students of evolutionary biology and computer
science, but also to synthetic biologists, systems engineers, students of the origin of life,
and philosophers.

ACKNOWLEDGEMENTS
We would like to thank the Bioinformatics and Computational Biology (BCB) lab
(bcb.ebd.csic.es) at the Doñana Biological Station (EBD-CSIC), for the computational
support and services provided.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Spanish Ministry of Science and Innovation through
the Ramon y Cajal Program (RyC2018-024115-1) and the Knowledge Generation Grant
Program (PID2019-104345GA-I00), as well as by the Plan Andaluz de Investigacion,
Desarrollo e Innovacion (PAIDI 2020) of Junta de Andalucía (PY20_00765). The funders
had no role in study design, data collection and analysis, decision to publish, or preparation
of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
SpanishMinistry of Science and Innovation through the Ramon yCajal Program: RyC2018-
024115-1.
Knowledge Generation Grant Program: PID2019-104345GA-I00.
Plan Andaluz de Investigacion, Desarrollo e Innovacion (PAIDI 2020) of Junta de
Andalucía: PY20_00765.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Raúl Ortega performed the experiments, analyzed the data, performed the computation
work, prepared figures and/or tables, and approved the final draft.
• Miguel Angel Fortuna conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 13/16

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1568

Data Availability
The following information was supplied regarding data availability:

avidaR is available at GitLab and at Zenodo:
- https://gitlab.com/fortunalab/avidaR.
- Ortega, Raúl, & Fortuna, Miguel A. (2023). avidaR: an R library to perform complex

queries on an ontology-based database of digital organisms. https://doi.org/10.5281/zenodo.
8094788.

REFERENCES
Adami C. 2006. Digital genetics: unravelling the genetic basis of evolution. Nature

Reviews Genetics 7:109–118.
Adami C, Ofria C, Collier TC. 2000. Evolution of biological complexity. Proceedings of

the National Academy of Sciences of the United States of America 97:4463–4468.
Batut B, Parsons DP, Fischer S, Beslon G, Knibbe C. 2013. In silico experimental

evolution: a tool to test evolutionary scenarios. BMC Bioinformatics 14:S11.
Chandler CH, Ofria C, Dworkin I. 2012. Runaway sexual selection leads to good genes.

Evolution 67:110–119.
Clune J, Goldsby HJ, Ofria C, Pennock RT. 2011. Selective pressures for accurate

altruism targeting: evidence from digital evolution for difficult-to-test aspects
of inclusive fitness theory. Proceedings of the Royal Society B 278:666–674
DOI 10.1098/rspb.2010.1557.

Clune J, Ofria C, Pennock RT. 2007. Investigating the emergence of phenotypic plasticity
in evolving digital organisms. In: Proceedings of the European Conference on Artificial
Life. 74–83.

Clune J, Pennock RT, Ofria C, Lenski RE. 2012. Ontogeny tends to recapitulate phy-
logeny in digital organisms. The American Naturalist 180:E54–E63.

Cooper T, Ofria C. 2003. Evolution of stable ecosystems in populations of digital
organisms. In: Proceedings of the International Conference on Artificial Life. 227–232.

Covert AW, Lenski RE,Wilke CO, Ofria C. 2013. Experiments on the role of deleterious
mutations as stepping stones in adaptive evolution. Proceedings of the National
Academy of Sciences of the United States of America 110:E3171–E3178.

Dolson E, Ofria C. 2021. Digital evolution for ecology research: a review. Frontiers in
Ecology and Evolution 9:750779 DOI 10.3389/fevo.2021.750779.

Edlund JA, Adami C. 2004. Evolution of robustness in digital organisms. Artificial Life
10:167–179 DOI 10.1162/106454604773563595.

Elena SF, Sanjuán R. 2008. The effect of genetic robustness on evolvability in digital
organisms. BMC Evolutionary Biology 8:284 DOI 10.1186/1471-2148-8-284.

Elena SF,Wilke CO, Ofria C, Lenski RE. 2007. Effects of population size and mu-
tation rate on the evolution of mutational robustness. Evolution 61:666–674
DOI 10.1111/j.1558-5646.2007.00064.x.

FortunaMA. 2022. The phenotypic plasticity of an evolving digital organism. Royal
Society Open Science 9(9):220852 DOI 10.1098/rsos.220852.

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 14/16

https://peerj.com
https://gitlab.com/fortunalab/avidaR
https://doi.org/10.5281/zenodo.8094788
https://doi.org/10.5281/zenodo.8094788
http://dx.doi.org/10.1098/rspb.2010.1557
http://dx.doi.org/10.3389/fevo.2021.750779
http://dx.doi.org/10.1162/106454604773563595
http://dx.doi.org/10.1186/1471-2148-8-284
http://dx.doi.org/10.1111/j.1558-5646.2007.00064.x
http://dx.doi.org/10.1098/rsos.220852
http://dx.doi.org/10.7717/peerj-cs.1568

FortunaMA, Zaman L,Wagner A, Bascompte J. 2017. Non-adaptive origins of
evolutionary innovations increase network complexity in interacting digital
organisms. Philosophical Transactions of the Royal Society B 372:20160431
DOI 10.1098/rstb.2016.0431.

FortunaMA, Zaman L,Wagner A, Ofria C. 2013. Evolving digital ecological networks.
PLOS Computational Biology 9:e1002928 DOI 10.1371/journal.pcbi.1002928.

Gerlee P, Lundh T. 2008. The emergence of overlapping scale-free genetic architecture in
digital organisms. Artificial Life 14:265–275 DOI 10.1162/artl.2008.14.3.14303.

Goings S, Clune J, Ofria C, Pennock RT. 2004. Kin-selection: the rise and fall of kin-
cheaters. In: Proceedings of the International Conference on Artificial Life. 303–308.

Gupta A, LaBar T, Miyagi M, Adami C. 2016. Evolution of genome size in asexual digital
organisms. Scientific Reports 6:25786 DOI 10.1038/srep25786.

HagstromGI, Hang DH, Ofria C, Torng E. 2004. Using Avida to test the effects of
natural selection on phylogenetic reconstruction methods. Artificial Life 10:157–166
DOI 10.1162/106454604773563586.

Johnson TJ, Wilke CO. 2004. Evolution of resource competition between mutually
dependent digital organisms. Artificial Life 10:145–156
DOI 10.1162/106454604773563577.

Knibbe C, Beslon G, Lefort V, Chaudier F, Fayard JM. 2005. Self-adaptation of genome
size in artificial organisms. In: Proceedings of the European Conference on Artificial
Life. 423–432.

Knibbe C, Coulon A, Mazet O, Fayard JM, Beslon G. 2007. A long-term evolutionary
pressure on the amount of noncoding DNA.Molecular Biology and Evolution
24:2344–2353 DOI 10.1093/molbev/msm165.

Knoester DB, McKinley PK, Ofria C. 2007. Using group selection to evolve leadership
in populations of self-replicating digital organisms. In: Proceedings of the Annual
Conference on Genetic and Evolutionary Computation. 293–300.

Lalejini A, Ferguson AJ, Grant NA, Ofria C. 2021. Adaptive phenotypic plasticity
stabilizes evolution in fluctuating environments. Frontiers in Ecology and Evolution
9:715381 DOI 10.3389/fevo.2021.715381.

Lenski RE, Barrick JE, Ofria C. 2006. Balancing robustness and evolvability. PLOS
Biology 12:E428.

Lenski RE, Ofria C, Collier TC, Adami C. 1999. Genome complexity, robustness and
genetic interactions in digital organisms. Nature 400:661–664 DOI 10.1038/23245.

Lenski RE, Ofria C, Pennock RT, Adami C. 2003. The evolutionary origin of complex
features. Nature 423:139–144 DOI 10.1038/nature01568.

Ofria C, HuangW, Torng E. 2008. On the gradual evolution of complexity and the
sudden emergence of complex features. Artificial Life 14:255–263
DOI 10.1162/artl.2008.14.3.14302.

Ofria C,Wilke CO. 2004. Avida: a software platform for research in computational
evolutionary biology. Artificial Life 10:191–229 DOI 10.1162/106454604773563612.

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 15/16

https://peerj.com
http://dx.doi.org/10.1098/rstb.2016.0431
http://dx.doi.org/10.1371/journal.pcbi.1002928
http://dx.doi.org/10.1162/artl.2008.14.3.14303
http://dx.doi.org/10.1038/srep25786
http://dx.doi.org/10.1162/106454604773563586
http://dx.doi.org/10.1162/106454604773563577
http://dx.doi.org/10.1093/molbev/msm165
http://dx.doi.org/10.3389/fevo.2021.715381
http://dx.doi.org/10.1038/23245
http://dx.doi.org/10.1038/nature01568
http://dx.doi.org/10.1162/artl.2008.14.3.14302
http://dx.doi.org/10.1162/106454604773563612
http://dx.doi.org/10.7717/peerj-cs.1568

Ray TS. 1991. An approach to the synthesis of life. In: Langton C, Taylor C, Farmer
JD, Rasmussen S, eds. Artificial Life II, Santa Fe Institute Studies in the Sciences of
Complexity, vol. XI. Redwood City: Addison-Wesley, 371–408.

Ray TS. 1997. Evolving complexity. Artificial Life Robotics 1:21–26
DOI 10.1007/BF02471107.

Wagenaar DA, Adami C. 2004. Influence of change, history, and adaptation on digital
evolution. Artificial Life 10:181–190 DOI 10.1162/106454604773563603.

Wilke CO,Wang JL, Ofria C, Lenski RE, Adami C. 2001. Evolution of digital organ-
isms at high mutation rates leads to survival of the flattest. Nature 412:331–333
DOI 10.1038/35085569.

Zaman L, Devangam S, Ofria C. 2011. Rapid host-parasite coevolution drives the
production and maintenance of diversity in digital organisms. In: Proceedings of the
Annual Conference on Genetic and Evolutionary Computation. 219–226.

Zaman L, Meyer JR, Devangam S, Bryson DM, Lenski RE, Ofria C. 2014. Coevolution
drives the emergence of complex traits and promotes evolvability. PLOS Biology
12:e1002023 DOI 10.1371/journal.pbio.1002023.

Ortega and Fortuna (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1568 16/16

https://peerj.com
http://dx.doi.org/10.1007/BF02471107
http://dx.doi.org/10.1162/106454604773563603
http://dx.doi.org/10.1038/35085569
http://dx.doi.org/10.1371/journal.pbio.1002023
http://dx.doi.org/10.7717/peerj-cs.1568

