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Target tracking is an important research in the field of computer vision. Despite the rapid
development of technology, there still remains difficulties in balancing the overall
performance for target occlusion, motion blur, etc. To address the above issue, we propose
an improved kernel correlation filter tracking algorithm with adaptive occlusion judgement
and model updating strategy (called Aojmus) to achieve robust target tracking. Firstly, the
algorithm fuses color-naming (CN) and histogram of gradients (HOG) features as a feature
extraction scheme and introduces a scale filter to estimate the target scale, which reduces
tracking error caused by the variations of target features and scales. Secondly, the Aojmus
introduces four evaluation indicators and a double thresholding mechanism to determine
whether the target is occluded and the degree of occlusion respectively. The four
evaluation results are weighted and fused to a final value. Finally, the updating strategy of
the model is adaptively adjusted based on the weighted fusion value and the result of the
scale estimation. Experimental evaluations on the OTB-2015 dataset are conducted to
compare the performance of the Aojmus algorithm with four other comparable algorithms
in terms of tracking precision, success rate, and speed. The experimental results show that
the proposed Aojmus algorithm outperforms all the algorithms compared in terms of
tracking precision. The Aojmus also exhibits excellent performance on attributes such as
target occlusion and motion blur in terms of success rate. In addition, the processing
speed reaches 74.85 fps, which also demonstrates good real-time performance.
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ABSTRACT13

Target tracking is an important research in the field of computer vision. Despite the rapid development

of technology, there still remains difficulties in balancing the overall performance for target occlusion,

motion blur, etc. To address the above issue, we propose an improved kernel correlation filter tracking

algorithm with adaptive occlusion judgement and model updating strategy (called Aojmus) to achieve

robust target tracking. Firstly, the algorithm fuses color-naming (CN) and histogram of gradients (HOG)

features as a feature extraction scheme and introduces a scale filter to estimate the target scale, which

reduces tracking error caused by the variations of target features and scales. Secondly, the Aojmus

introduces four evaluation indicators and a double thresholding mechanism to determine whether the

target is occluded and the degree of occlusion respectively. The four evaluation results are weighted and

fused to a final value. Finally, the updating strategy of the model is adaptively adjusted based on the

weighted fusion value and the result of the scale estimation. Experimental evaluations on the OTB-2015

dataset are conducted to compare the performance of the Aojmus algorithm with four other comparable

algorithms in terms of tracking precision, success rate, and speed. The experimental results show that

the proposed Aojmus algorithm outperforms all the algorithms compared in terms of tracking precision.

The Aojmus also exhibits excellent performance on attributes such as target occlusion and motion blur in

terms of success rate. In addition, the processing speed reaches 74.85 fps, which also demonstrates

good real-time performance.
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INTRODUCTION31

Motion target tracking (Lu and Xu, 2019; Wang et al., 2021) is one of the most active research areas in32

computer vision. With the continuous improvement of hardware facilities and the rapid development of33

artificial intelligence technology, motion target tracking technology is widely used in intelligent video34

surveillance (Zeng et al., 2020), human-computer interaction (Zhou and Liu, 2021), medical diagnosis (Al-35

Battal et al., 2021) and other fields. In the field of intelligent video surveillance, target tracking technology36

is commonly used in monitoring of vehicle violations and has been proved to be effective. In the field37

of medical diagnosis, tracking technology is frequently used in tracking microscopic items like cells. In38

terms of human-computer interaction, tracking technology is mostly utilized in robot vision and virtual39

environments, which primarily use visual technology to provide the tracking effect similar to human eyes.40

In the past two decades, target tracking technology has made tremendous developments. However, tracking41

targets are often limited by complex application environments, such as different illumination changes,42

interference from complex backgrounds, changes in their own scales, and occlusion by other objects.43

Therefore, improving the precision and robustness of tracking algorithms in complex environments and44

satisfying real-time applications become important research topics in visual target tracking.45
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Nowadays, the mainstream algorithms of target tracking can be classified into two categories. One is46

based on correlation filtering (Wei and Kang, 2017; Meng and Li, 2019), which determines the correlation47

region by establishing a correlation filter to find the maximum response value in the two adjacent frames,48

and then lock the target. Compared with the earlier tracking algorithms based on optical flow method (Xiao49

et al., 2016) and feature matching (Uzkent et al., 2015), the advantages for this category are fast speed and50

good robustness in the case of target occlusion, illumination change and motion blur (Liu et al., 2017).51

Another is based on deep learning (Li et al., 2016), which uses convolutional neural networks training to52

extract object features in the last frame and matches the object in the next frame. That is, the object is53

continually tracked during training. For one thing, the former is inferior to the latter when dealing with54

complex scenarios, such as target occlusion, out-of-view, scale variation etc. For another, the latter tracks55

object more slowly. Therefore, finding a solution not only meets the demands of accurate tracking in a56

variety of complex scenarios, but also achieves fast running are still an active research area. In this work,57

a target tracking algorithm based on adaptive occlusion judgment and model updating strategy, called58

Aojmus, is proposed to address the poor tracking performance in complex scenarios mentioned above.59

The Aojmus is designed on the basis of KCF algorithm and integrated with correlation filtering method60

which has the advantage in processing speed.61

The contributions of this work can be summarized in three folds:62

1. We propose to fuse CN and HOG features as the feature representation of the tracked target, which63

improves the discrimination and re-detection ability. Meanwhile, the scale filter is introduced to64

solve the defect of poor tracking precision of the target due to scale change.65

2. We design four kinds of occlusion judgment indicators to solve tracking failure which caused by66

occlusion. These four indicators can adaptively judge the occlusion of the target during tracking. A67

double threshold mechanism is introduced to judge the degree of occlusion, which determines the68

update strategy of the tracker.69

3. We use a weighted fusion strategy to fuse the results of occlusion judgments to ensure that the70

model update rate of the tracker changes dynamically with the judgment results of each frame,71

avoiding the tracking drift problem caused by fixed model update rate of most trackers.72

The rest of this article is organized as follows. In “Literature Review”, related works about target73

tracking are surveyed. In “Preliminaries”, some prerequisites of the methodology are introduced. In74

”Methodology”, we describe the architecture of the proposed algorithm, including statistical analysis,75

algorithm design and related parameter setting. In ”Experiments and analysis”, we compare and analyze76

the performance of the algorithm in quantitative and qualitative aspects. In “Conclusion”, we summarize77

this study and discuss possible future work.78

LITERATURE REVIEW79

Bolme et al. (Bolme et al., 2010) were the first to apply the correlation filtering method to target tracking80

and proposed the MOSSE algorithm, which achieves tracking speed of 669 fps, but with a slightly poor81

precision of 43.1%. To solve the problem of insufficient samples of MOSSE algorithm, Henriques et82

al. (Henriques et al., 2012) proposed CSK algorithm, which acquired a large number of samples through83

the method of cyclic shift. Moreover, the computational complexity is reduced by frequency domain84

processing, and thereby a robust and accurate filter is obtained. Subsequently, Henriques et al. proposed85

the Kernelized Correlation Filter(KCF) (Henriques et al., 2015) tracking algorithm on the basis of CSK,86

which utilized HOG (Histogram of Oriented Gradients) feature instead of grayscale feature and introduced87

a circular matrix to reduce the computational effort. The algorithm also incorporates multi-channel data to88

improve the operation speed and meet the requirement of real-time in the process of tracking. Inspired by89

the scale pooling technique, Li et al. (Yang and Zhu, 2014) and Danelljan et al. (Danelljan et al., 2014a)90

proposed SAMF and DSST algorithms respectively, which solved the problem of scale adaptation of KCF91

algorithm. The SAMF algorithm fused HOG feature and CN (Danelljan et al., 2014b)(Color-Naming)92

feature for the first time on the basis of KCF, which improved the tracking precision, but the speed93

is significantly reduced. Similarly, the DSST algorithm also achieved scale adaption, but the overall94

performance is inferior.Danelljan et al. (Danelljan et al., 2017a) used convolutional neural network (CNN)95

to extract depth features on the feature model of the target while keeping the motion model (cyclic matrix)96
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and observation model (correlation filter) unchanged, achieving a significant increase in precision and97

success rate. The research interest in correlation filtering-based target tracking has declined because the98

precision is difficult to improve further when dealing with target occlusion, disappearance, or non-rigid99

object tracking. In recent years, some representative studies have still emerged, such as ASRCF (Dai100

et al., 2019), ARCF (Huang et al., 2019), and PRCF (Sun et al., 2019).101

Another class of target tracking algorithms is based on deep learning (Li et al., 2016), which uses102

convolutional neural networks for feature extraction and classification of targets to achieve target tracking.103

Some of them incorporate correlation filtering and deep learning, such as the HCF (Ma et al., 2015). The104

MDNet algorithm proposed by Nam et al. (Nam and Han, 2016) was one of the early algorithms that used105

deep learning alone to implement target tracking. The algorithm trains each domain separately while106

updating the parameters of the shared layer during training so that these parameters can be adapted to all107

datasets. When tracking, MDNet uses a pre-trained CNN network to track the target and thereby locate108

the target. Here are some similar algorithms, such as SiamDW (Zhang and Peng, 2019), SiamCAR (Guo109

et al., 2020) and HiFT (Cao et al., 2021), etc. Despite the superior performance of deep learning-based110

tracking algorithms in achieving tracking precision, they still face the disadvantages of insufficient initial111

training samples and slow tracking speed.112

PRELIMINARIES113

In this section, to help establish an understanding of the essential elements involved in the proposed114

methodology, the Kernelized Correlation Filter (KCF), classifier training, fast detection and model115

updating are illustrated in advance.116

Kernelized correlation filter117

The core idea of the kernel correlation filtering (KCF) algorithm is to calculate the matching degree118

between the predicted region and the target by establishing a kernel function based on the ridge regression.119

By moving the complex calculation to the frequency domain with fast Fourier transform, the fast tracking120

for target is achieved. Similar to most discriminative tracking algorithms, KCF algorithm also performs121

target detection before filter model training. It firstly trains a model of the initial position of the target,122

then detects whether the target exists in the prediction region of the next frame, and finally uses Gaussian123

kernel to calculate the correlation between two adjacent frames and determines the position of the target124

according to its maximum response value in the target region. The basic principles of the kernel correlation125

filtering algorithm, including classifier training, fast detection and model update, are described below.126

Classifier training127

The classifier f (x) = ïw,ϕ(x)ð is obtained by training ridge regression. Let (xi,yi) be the training sample,

where yi is the regression expectation corresponding to sample xi. The ridge regression on the training

sample yields the linear regression function f (x) = wT xi. To prevent the overfitting phenomenon, the

classifier needs to be regularized as follows:

min
w

N

∑
i=1

( f (xi)− yi)
2 +λ∥w∥2

(1)

where w is the classifier parameter and λ is the regularization parameter. The closed-form solution of the

above equation is:

w =
"

XT X +λ I
�−1

XT y (2)

In the process of generating a large amount of information of target and background using the circular

matrix, the feature space formed by the sample set appears nonlinear. Therefore, Gaussian kernel function

ϕ (xi) is introduced for linear transformation, and get f (x) = wT xi = wT ϕ (xi), where w = ∑
N
i=1 αixi. So

far, the solution of w is transformed to the solution of coefficient α , which eventually yields:

α = (K +λ I)−1
y (3)

where K is the kernel correlation matrix. To reduce the complexity of the calculation, Equation (3) is

transformed into the frequency domain with the discrete Fourier transform(DFT). Then the solution
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becomes:

α̂ =
ŷ

kxx +λ
(4)

The purpose of classifier training is to solve the weight coefficient α , where kxx is the first row element of128

the kernel cycle matrix K, andˆdenotes the DFT of vector.129

Fast detection and model updating130

After classifier training, in order to locate the target position of the current frame, the KCF algorithm uses

the target position of the previous frame as a template, then detects it in the candidate region z of the

current frame and determines the target position by finding the maximum value of f (z) = αT ϕ (X)ϕ (z).
To increase the calculation speed, the KCF algorithm transfers the solution from the time domain to the

frequency domain as follows:

f̂ (z) = k̂xz » α̂ (5)

where kxz denotes the kernel correlation between the target sample x and the candidate detection region131

z, f̂ (z) represents the response distribution in the candidate region and the position where its maximum132

value is located indicates the actual position of the target in the current frame.133

To ensure each frame in the video sequence can be processed, the KCF algorithm uses linear interpo-

lation to update the filter template α̂t and the target feature template x̂t as follows:

�

α̂t = (1−η) α̂t−1 +ηα̂
x̂t = (1−η) x̂t−1 +η x̂

(6)

where η denotes the model update rate and t is time stamp.134

METHODOLOGY135

As target occlusion, scale variation, illumination variation affect the performance of tracking, it is of great136

significance to conquer such problems. The KCF algorithm increases the training samples through the137

circular matrix, which in turn improves the tracking accuracy. Meanwhile, by transferring to the frequency138

domain to avoid matrix inversion operations, the computation is greatly reduced.139

However, the KCF algorithm often fails to track in the case of target occlusion or target loss because140

the update model learns the features of the occluded object and causes the model to get the wrong target141

features in the accumulation of subsequent frames, which in turn leads to tracking failure. In addition, the142

tracking box of KCF algorithm cannot meet the scale variation of the target, which can also greatly reduce143

the precision of tracking. To address these problems, this paper proposes a target tracking algorithm,144

call Aojmus, based on an adaptive occlusion judgment and model update strategy. The flow chart of the145

algorithm is shown in Fig. 1.146

In this section, we describe the specific implementation of Aojmus, including feature fusion, scale147

estimation, occlusion judgment and model updating.148

Feature fusion design149

The HOG features can effectively depict the local contour and shape information of the target and are150

very robust to illumination changes, but are poorly adapted to target deformation and fast motion.The CN151

features can well represent the global color information of the target and have excellent stability to target152

deformation and fast motion, but are sensitive to illumination and color changes. Therefore, we employ153

linear fusion of HOG feature and CN feature (Xie and Zhao, 2021) to achieve feature complementarity154

and improve tracking precision.155

The process of linear weighted fusion of these two feature vectors is as follows:

vhc=δvhog +(1−δ )vcn (7)

where vhog, vcn, vhc represent HOG feature, CN feature and fused feature respectively, and δ is the156

weighted coefficient of feature fusion. In this paper, set δ = 0.5 to ensure that the advantages of HOG157

and CN feature can be fully utilized.158
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Figure 1. Flow chart of Aojmus algorithm.

Multi-scale estimation159

The scale variation of target is one of the important factors affecting the tracking results. As the position160

change of two consecutive frames is often larger than the scale change, like DSST (Danelljan et al.,161

2014a), this paper first uses a two-dimensional position filter to determine the position information and162

then implements scale evaluation by training a one-dimensional scale filter.163

Let f be the training sample and h be the optimal correlation filter. The minimum cost function is

solved with ridge regression as follows:

ε=

�

�

�

�

�

d

∑
l=1

hl » f l −g

�

�

�

�

�

2

+λ
d

∑
l=1

�

�

�
hl
�

�

�

2

(8)

where l ∈ {1, . . . ,d} is the feature dimension, g represents the regression expectation corresponding to

the training sample f , and λ is the regularization factor. The scaling filter can be obtained by solving the

above equation in Fourier domain:

H l =
ḠF l

d

∑
k=1

FkFk +λ

=
Al

t

Bt

(9)

where Ḡ represents complex conjugate of the DFTs of correlation outputs and λ is introduced to avoid

zero denominator in case of the zero frequency component in f . By detecting the image block z in the

new frame, we can obtain the response of scale filter as:

y = F−1

�

∑
d
l=1 AlZl

B+λ

�

(10)

Up to this point, the response value of the scale filter can be calculated from Equation (10), and a new

scale estimate can be determined based on the result of the maximum value. The selection principle of

target sample size for scale evaluation is as follows:

anP×anR , n ∈
��

−(s−1)
2

�

, . . . ,

�

(s−1)
2

��

(11)

where P and R are respectively the width and height of the target in the previous frame, a = 1.02 is the164

scale factor, s = 33 is the length of the scale filter.165

Adaptive occlusion judgment and model updating strategy166

Target occlusion often occurs during tracking. In this section, we make a detailed analysis and propose an167

adaptive judgment method. Using the original model update rate in the KCF algorithm, the response of168

occlusion is analyzed with the FaceOcc1 image sequence in the OTB2015 (Wu et al., 2015) dataset as an169

example.170

5/17PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77392:2:1:NEW 28 May 2023)

Manuscript to be reviewedComputer Science



Frame 17

O O
OO O

-0.2

OO

60

0 OO OO

0.2

O O

40

O

0.4

O

Z
/R

e
sp

o
n

se

O

40

OO

0.6

OO

Response of frame 17

30

Y/Pixel

OOO O

0.8

O O O

X/Pixel

O

1

2020

OO OOO

10

O

O OO

0 0

Figure 2. Tracking results and response distribution at frame 17 of the FaceOcc1 sequence without

occlusion. Photo credit: Visual Tracker Benchmark.
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sequence. Photo credit: Visual Tracker Benchmark.
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From the response distribution in Fig. 2, it can be seen that the main peak of the response in target171

box during tracking without occlusion is dominated and there is no other obvious peaks. The maximum172

peak response is close to 1. When the occlusion exists, as shown in Fig. 3, the maximum peak response173

decreases significantly, and the rest of the peak responses increase and become more prominent. It can174

be concluded that when the cclusion occurs, the fixed model update strategy learns the features of the175

occlusion and applies this feature to the search of the next frame which leading to the appearance of other176

peaks besides the main peak. Hence, the presence of occlusion can be determined based on the response177

distribution of the target.178

Let Fmax be the maximum peak response in each frame. The number of peak response points that

exceed the maximum peak response by a certain proportion, denoted as N, can be expressed as:

N=∑
��

F
′

max > ζ Fmax

�

∈ S
�

(12)

where F ′
max denotes the peak response other than the maximum peak, S represents the target area, and ζ is179

a proportionality coefficient which is set to 0.1 in this paper.180

Besides the two judgment indicators of Fmax and N, two more judgment indicators, APCE (Average181

Peak-to-Correlation Energy, (Wang et al., 2017)) and RSFM (Ratio between the Second and First Major182

mode, (Lukežic et al., 2017)) are introduced in this paper to ensure the robustness of the occlusion183

judgment.184

The APCE can well reflect the variation of response and changes significantly when the target is

obscured. It can be expressed as follows:

WAPCE=
|Fmax −Fmin|

2

mean

�

∑
w,h

�

Fw,h −Fmin

�2

� (13)

where Fmin denotes the minimum value of the response, and Fw,h denotes the response value of pixel in185

w-th row and h-th column. When occlusion appears, the value of WAPCE will decrease significantly.186

The RSFM reflects the prominence of the main peak in the response map and is defined as follows:

RSFM = 1−min

�

Fsecond

Fmax
,

1

2

�

(14)

where Fsecond represents the response value of the second peak. The larger the value of RSFM is, the more187

prominent the main peak will be and the higher reliability the tracking will have, and vice versa.188

In this paper, we use the four evaluation indicators mentioned above, Fmax, N, WAPCE and RSFM, to189

determine whether the target is occluded or not. To verify the four indicators, we select the first 200190

frames of the video sequence in FaceOcc1 for test. The relevant results of these four indicators for each191

frame are calculated and their cumulative averages are shown in Fig. 4.192

As shown in Fig. 4, the evaluation indicators fluctuate significantly between frame 85 to 100. The193

Fmax, WAPCE , RSFM are relatively low whereas N is relatively high, which indicates the existence of194

severe occlusion. By comparing the moments when occlusion appears in the original video sequence,195

it can be found that the above four indicators satisfy well for the judgment of occlusion as they are196

complementary to some extent.197

In order to accurately determine whether occlusion exists and the degree of occlusion, this paper

implements adaptive evaluation by setting dynamic double thresholds. The thresholds are selected based

on the average value of each evaluation indicator for the previous t −1 frames, namely:

θ(R)n=
κn

t −1

t

∑
i=2

Ri
, R ∈ (Fmax,WAPCE ,RSFM,N) ,n = 1,2 (15)

where, κ denotes the weighted coefficient, and θ (R) denotes the threshold of the corresponding evaluation198

indicator. For every indicator, there are two thresholds. The weighted coefficient κ of each evaluation199

indicator is obtained by analyzing the Cumulative Average curve in Fig. 4, as shown in Table 1.200

As can be seen from Equation (14), the value of Fsecond rises sharply when there is severe occlusion201

in current frame, resulting the output of RSFM to be 0.5. When it occurs, the lower limit of θ (RSFM)2202
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Figure 4. Line graphs of Fmax, WAPCE , RSFM and N for the front 200 frames of FaceOcc1 as an

example. Photo credit: Visual Tracker Benchmark.

Table 1. Weighted coefficients of double thresholds for each evaluation indicator.

κ1 κ2

θ (Fmax)n 1 0.85

θ (WAPCE)n 1 0.7

θ (RSFM)n 1

θ (N)n 1
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Table 2. Output values of the four judgment indicators µn.

µ1 µ2 µ3

ξFmax 1 1.2 1.5

ξWAPCE
1 0.8 0.5

ξRSFM 1 1.2 1.5

ξN 1.2 1

in Table 1 is set to 0.5 particularly. And as N is usually not sensitive to occlusion, it is set to a single203

threshold for simplicity.204

When occlusion appears, the fixed model update rate η will cause the tracker to learn the information

of the occlusion object and lead to tracking drift. In this paper, the Aojmus algorithm adaptively generates

a suitable model update rate according to the degree of occlusion in current frame. When occlusion

occurs, the model update rate is appropriately increased to ensure that the target information of the part

not occluded in the tracking frame is fully learned by the model so as to enhance the model’s recognition

capability, which can be used for accurate localization in next frame. The update strategy is defined as:

ξR=







µ1

µ2

µ3

R g θ(R)1

θ(R)1 > R > θ(R)2

else

(16)

where, R ∈ (Fmax,WAPCE ,RSFM,N), µn(n = 1,2,3) represent the output values of occlusion judgment.205

They are concluded from experiments, as shown in Table 2.206

There are four judgment results in the improved algorithm. In order to guarantee that ξR can accurately

reflect the degree of occlusion, this paper uses a weighted fusion of the four output ξR to obtain the final

model update rate as follows:

ξ =
ξ 2

Fmax
+ξ 2

WAPCE
+ξ 2

RSFM +ξ 2
N

sum(ξR)
(17)

Finally, we substitute the final model update rate into Equation (6) to obtain:207

�

α̂t = (1−ξ ∗η) α̂t−1 +ξ ∗ηα̂
x̂t = (1−ξ ∗η) x̂t−1 +ξ ∗η x̂

(18)

The proposed algorithm, Aojmus, is presented in Algorithm 1 .208

EXPERIMENTS AND ANALYSIS209

In this section the proposed Aojmus algorithm is compared with the other 4 relatively excellent tracking210

algorithms. We use three metrics to evaluate the performance of the algorithm, and select the representative211

video sequences to compare and analyze the tracking effect.212

Experimental environment and parameters213

The platform for the experiments in this paper is Matlab 2018a, and the hardware environment is a214

computer with Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40GHz and 16GB RAM. The parameters of the215

algorithm are set as follows: the regularization parameter λ = 10−4 and the initial model update rate216

η = 0.02.217

In this paper, 66 video sequences provided by OTB-2015 are used for experimental verification.218

The dataset contains 11 attributes of common scenarios in target tracking, such as occlusion (OCC),219

deformation (DEF), illumination variation (IV), motion blur (MB), out-of-plane rotation (OPR), fast220

motion (FM), out-of-view (OV), in-plane rotation (IPR), low resolution (LR), scale variation (SV), and221

background clutter (BC). The performance evaluations are carried out with quantitative and qualitative222

analysis.223

9/17PeerJ Comput. Sci. reviewing PDF | (CS-2022:09:77392:2:1:NEW 28 May 2023)

Manuscript to be reviewedComputer Science



Algorithm 1 : Aojmus

Input:

Current frame It ; The video for tracking Svideos;

Target position pt−1 and scale st−1 of previous frame;

The target feature template, x̂t−1 and the filter template, α̂t−1;

The scale model Ascale
t−1 , Bscale

t−1 .

Output:

Target position pt and scale st of current frame;

The updated target feature template, x̂t and filter template, α̂t ;

The updated scale model Ascale
t , Bscale

t .

1: for each It ∈ Svideos do

2: Sample the new patch zt from It at pt−1;

3: Extract a scale sample zscale from It at pt and st−1;

4: Extract the HOG and CN features and fused with Equation (7);

5: Calculate the response f̂ (zt) with Equation (5), and get Fmax;

6: Calculate N , WAPCE and RSFM with Equation (12), (13) and (14), and adaptively judge whether

there is occlusion and the scope;

7: Get the ξR and ξ by Equation (16) and (17);

8: Compute the scale correlations yscale using zscale, Ascale
t−1 and Bscale

t−1 in Equation (10);

9: Set st to the maximum of yscale;

10: Use Equation (18) to update x̂t and α̂t with x̂t−1 and α̂t−1 adaptively;

11: Use Equation (9) to update Ascale
t and Bscale

t with Ascale
t−1 and Bscale

t−1 .

12: Return pt and the updated x̂t , α̂t , Ascale
t , Bscale

t .

13: end for

Experimental comparison and analysis224

Quantitative analysis225

In order to evaluate the performance of the algorithm in this paper, MSCF (Zheng et al., 2021), Sta-

ple (Bertinetto et al., 2016), fDSST (Danelljan et al., 2017b) and KCF algorithms with high performance

were selected for comparison. Three statistical criteria of precision (Wu et al., 2013)(shorted as Pr) ,

success rate (Wu et al., 2013)(shorted as Sr) and tracking speed (shorted as T s) were used for evaluation

respectively. The Pr refers to the error of center position, namely the Euclidean distance in pixel unit, Dt ,

between the center of tracking box for each frame and the actual center in the benchmark. The final result

is expressed with the average of errors.

Pr =
Dt

n
(19)

The smaller the value of Pr is, the closer the tracked target center to the actual location is and the226

better the algorithm performs in terms of pricision.227

Let Ot be the overlap between the tracking box in the current frame, Bt , and the actual box in

benchmark, Bbt . It can be expressed as:

Ot =
area(Bt ∩Bbt)

area(Bt ∪Bbt)
(20)

The success rate, Sr, is expressed as the average of Ot whose value is greater than the given threshold

in the whole video sequence.

Sr =
1

n

n

∑
t=1

Ot (21)

The value of Sr reflect the number of frames whose tracking box is closer to the real rectangle box.228

Obviously, the greater the Sr is, the better the performance of the algorithm will be.229

The tracking speed, T s, refers to the number of video frames processed by the algorithm in each

second, also known as frame rate with the unit of FPS (frames per second). It is defined as follows :

T s =
Ftotal

ttotal

(22)
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Figure 5. The tracking precision plots (a) and success rate plots (b) of our algorithm and others on

OTB-2015.
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Figure 6. Precision plots (above) and success rate plots (below) under OCC (a), MB (b), OV (c), FM (d)

where, Ftotal indicates the total number of frames of the video sequence, and ttotal is the time taken by the230

algorithm to run the whole video sequence.231

To evaluate the performance of the proposed algorithm, Aojmus, we make a comparison with other232

four algorithms, MSCF, Staple, fDSST and KCF on OTB-2015 as shown in Fig. 5-Fig. 6 and Table 3233

-Table 5. The evaluation method is OPE (One-Pass Evaluation), which means that after initializing the234

target, the whole video sequence is run at once. The location error threshold for precision plots and the235

overlap threshold for success rate plots are set as 20 pixels and 0.5, respectively.236

Fig. 5 illustrates the precision and success rate of these five algorithms for running the whole sequences237

at once on the OTB-2015 dataset, from which the precision and success rate of Aojmus can be obtained238

are 0.909 and 0.749, respectively. Compared with others, the Aojmus performs the best in terms of239

precision and has improved 0.5% than the second ranked MSCF algorithm. Though the success rate is not240

outstanding, the Aojmus still shows high performance for OCC, MB, OV, and FM as shown in Fig. 6.241

Table 3 and Table 4 respectively show the precision and success rate of the five algorithms under 11242

attributes. As it can be seen that the Aojmus algorithm performs best on 10 of these attributes. In terms of243

success rate, the Aojmus appears more robust in dealing with fast motion, motion blur and out of view244

problems. Despite the disadvantages in other aspects, the Aojmus is not much inferior to other excellent245

algorithms. For the tracking speed, though the Aojmus is inferior to fDSST and KCF as shown in Table 5,246

it outperforms others in other aspects as shown in Fig. 5 and Fig. 6. From the above comparisons, the247

Aojmus exhibits good overall performance.248
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Table 3. Comparison of precision on different attributes.

Algorithms OCC DEF FM IPR MB OV OPR SV IV BC LR

Aojmus 0.878 0.900 0.830 0.916 0.911 0.753 0.895 0.992 0.906 0.892 0.996

MSCF 0.839 0.941 0.771 0.878 0.864 0.674 0.881 0.868 0.876 0.877 0.988

Staple 0.799 0.878 0.779 0.860 0.852 0.696 0.816 0.851 0.863 0.860 0.797

fDSST 0.722 0.777 0.771 0.799 0.838 0.544 0.759 0.796 0.876 0.891 0.731

KCF 0.722 0.813 0.744 0.818 0.832 0.604 0.803 0.805 0.863 0.882 0.785

Table 4. Comparison of success rate on different attributes.

Algorithms OCC DEF FM IPR MB OV OPR SV IV BC LR

Aojmus 0.732 0.727 0.794 0.762 0.853 0.795 0.718 0.651 0.684 0.744 0.662

MSCF 0.790 0.891 0.757 0.805 0.852 0.664 0.799 0.794 0.851 0.863 0.931

Staple 0.736 0.798 0.719 0.765 0.801 0.575 0.724 0.726 0.793 0.787 0.604

fDSST 0.656 0.710 0.753 0.733 0.801 0.550 0.678 0.715 0.815 0.827 0.705

KCF 0.599 0.661 0.681 0.662 0.783 0.620 0.628 0.520 0.644 0.750 0.285

Table 5. Comparison of tracking speed of our algorithm and others.

Algorithms Frames Per Second (FPS)

Aojmus 74.85

MSCF 16.01

Staple 9.28

fDSST 83.29

KCF 219.03
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(a) Bird2

(b) Lemming

(c) Jogging1

(d) Gym

Aojmus MSCF fDSST Staple KCF

Figure 7. Tracking results of different algorithms on Bird2, Lemming, Jogging1 and Gym. Photo credit:

Visual Tracker Benchmark.

Qualitative analysis249

Like our previous work in (Wang et al., 2022), in order to better verify the advantages of the proposed250

algorithm, four groups of representative video sequences are selected for analysis, as shown in Fig. 7.251

The video sequence of Bird2 contains OCC, DEF, FM, IPR, and OPR attributes. In frame 10, all252

the five tracking algorithms work properly. With the progress of tracking, the MSCF, fDSST, and KCF253

algorithms begin to show significant tracking drift at frame 51 affected by occlusion, deformation, and254

rotation problems. From frame 73, only the Aojmus and Staple can track accurately after the target(bird)255

flips.256

The video sequence of Lemming contains IV, SV, OCC, FM, OPR, and OV attributes. From frame 10257

to frame 370, as the target is not significantly affected by occlusion, fast motion and illumination changes,258

and the position of the target does not change after the occlusion, all the algorithms can track the target259

accurately. After the 370th frame, the occluded target reappears. As the tracking models of the other260

algorithms use fixed update rate and learn non-target information, they are unable to locate the target261

again in the subsequent frames, while the Aojmus can maintain accurate localization until the end of262

tracking. In addition, comparing the tracking boxes at 900th frame, it can be shown the Aojmus is also263

well adaptive to the scale change of the target.264

The video sequence of Jogging1 contains OCC, DEF, and OPR attributes. The target is heavily265

occluded at frames 70 to 80. When the target reappears, the Aojmus is able to accurately locate the target266

using adaptive occlusion judgment and continue the model update to ensure that tracking is performed267
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reliably. The other algorithms except MSCF fail to cope with the occlusion problem.268

The video sequence of Gym contains SV, DEF, IPR, and OPR attributes. At frame 19, the target269

begins to rotate and deform, and all algorithms can basically guarantee normal tracking. When it comes to270

440th frame, the fDSST algorithm shows obvious drift, and fails to track the target. With the increase of271

target deformation and rotation, only the Aojmus, MSCF and KCF can keep tracking properly till frame272

680. The Aojmus can adjust the tracking box with the scale of target dynamically whereas the MSCF and273

KCF fail to do so.274

The above experimental results show that the Aojmus proposed in this paper can cope well with a275

variety of influence appearing in the tracking process, especially in the aspects of occlusion, scale change276

and deformation. On the whole, the Aojmus is robust for target tracking in complex scenes, and typically277

provides a new idea to deal with occlusion problems.278

CONCLUSIONS279

In target tracking, scholars have conducted in-depth research in many aspects to be able to predict the280

position of moving targets more accurately. However, due to the variability of the tracked target and281

scene, it is not easy to develop an algorithm that takes into account the above 11 influencing factors282

simultaneously, especially in solving the problems of target occlusion, deformation and scale variation.283

The previous researches, which typically uses one judgment indicator to address the occlusion problem,284

can’t obtain outstanding overall performance. In this study, considering the complex scenarios and the285

requirement of mutual-complementarity of technologies, we propose four indicators, Fmax, N, WAPCE286

and RSFM as conditions to make the occlusion judgment more accurate. Moreover, we introduce an287

adaptive model updating strategy, fuse the results of the occlusion judgement and apply them into the288

model updating, which improves the precision in predicting the target position. As tracking is processed289

frame by frame where different influence factors may be encountered, this study presents a dynamic290

dual thresholds to compose the update strategy and achieves an accurate judgment of the existence and291

degree of occlusion, which solves the problem of tracking drift. In order to make full use of the feature292

information of target and reduce the influence of scale variation, we also incorporate a multi-feature293

fusion scheme and a scale estimation model in the backbone of the algorithm, which provides a good294

basis for later obscuration judgments and model updates.295

The experimental results show that the Aojmus precedes the other typical tracking algorithms in296

terms of tracking precision, which has been increased by 0.6% and 3.8% respectively compared with the297

excellent algorithms, MSCF and Staple. Despite the Aojmus is not the best in terms of success rate, it298

surpasses the other four compared algorithms with respect to target occlusion, scale variation, fast motion,299

out-of-plane rotation and deformation. As the Aojmus is based on the kernel correlation filtering method,300

it runs well in real-time with high tracking speed of 74.85 frames per second, striking a good balance301

between tracking effectiveness and speed. It can be concluded that the kernel correlation filter-based302

multi-indicator occlusion judgement mechanism and adaptive model updating strategy can solve the303

common problems of target tracking while maintaining the overall performance. In future, we plan to304

investigate the feasibility of synthesizing our method with convolutional neural networks to improve the305

overall performance further and extend the application to indoor mobile robot and vehicle violation.306
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