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ABSTRACT
Target tracking is an important research in the field of computer vision. Despite the
rapid development of technology, difficulties still remain in balancing the overall
performance for target occlusion, motion blur, etc. To address the above issue, we
propose an improved kernel correlation filter tracking algorithm with adaptive
occlusion judgement and model updating strategy (called Aojmus) to achieve robust
target tracking. Firstly, the algorithm fuses color-naming (CN) and histogram of
gradients (HOG) features as a feature extraction scheme and introduces a scale filter
to estimate the target scale, which reduces tracking error caused by the variations of
target features and scales. Secondly, the Aojmus introduces four evaluation indicators
and a double thresholding mechanism to determine whether the target is occluded
and the degree of occlusion respectively. The four evaluation results are weighted and
fused to a final value. Finally, the updating strategy of the model is adaptively
adjusted based on the weighted fusion value and the result of the scale estimation.
Experimental evaluations on the OTB-2015 dataset are conducted to compare the
performance of the Aojmus algorithm with four other comparable algorithms in
terms of tracking precision, success rate, and speed. The experimental results show
that the proposed Aojmus algorithm outperforms all the algorithms compared in
terms of tracking precision. The Aojmus also exhibits excellent performance on
attributes such as target occlusion and motion blur in terms of success rate. In
addition, the processing speed reaches 74.85 fps, which also demonstrates good real-
time performance.

Subjects Artificial Intelligence, Computer Vision, Real-Time and Embedded Systems, Robotics,
Visual Analytics
Keywords Target tracking, Adaptive occlusion judgment, Four evaluation indicators, Model
updating, Double thresholds

INTRODUCTION
Motion target tracking (Lu & Xu, 2019; Wang et al., 2021) is one of the most active
research areas in computer vision. With the continuous improvement of hardware
facilities and the rapid development of artificial intelligence technology, motion target
tracking technology is widely used in intelligent video surveillance (Zeng et al., 2020),
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human-computer interaction (Zhou & Liu, 2021), medical diagnosis (Al-Battal et al., 2021)
and other fields. In the field of intelligent video surveillance, target tracking technology is
commonly used in monitoring of vehicle violations and has been proved to be effective. In
the field of medical diagnosis, tracking technology is frequently used in tracking
microscopic items like cells. In terms of human-computer interaction, tracking technology
is mostly utilized in robot vision and virtual environments, which primarily use visual
technology to provide the tracking effect similar to human eyes. In the past two decades,
target tracking technology has made tremendous developments. However, tracking targets
are often limited by complex application environments, such as different illumination
changes, interference from complex backgrounds, changes in their own scales, and
occlusion by other objects. Therefore, improving the precision and robustness of tracking
algorithms in complex environments and satisfying real-time applications become
important research topics in visual target tracking.

Nowadays, the mainstream algorithms of target tracking can be classified into two
categories. One is based on correlation filtering (Wei & Kang, 2017; Meng & Li, 2019),
which determines the correlation region by establishing a correlation filter to find the
maximum response value in the two adjacent frames, and then lock the target. Compared
with the earlier tracking algorithms based on optical flow method (Xiao et al., 2016) and
feature matching (Uzkent et al., 2015), the advantages for this category are fast speed and
good robustness in the case of target occlusion, illumination change and motion blur (Liu
et al., 2017). Another is based on deep learning (Li, Li & Porikli, 2016), which uses
convolutional neural networks training to extract object features in the last frame and
matches the object in the next frame. That is, the object is continually tracked during
training. For one thing, the former is inferior to the latter when dealing with complex
scenarios, such as target occlusion, out-of-view, scale variation etc. For another, the latter
tracks object more slowly. Therefore, finding a solution not only meets the demands of
accurate tracking in a variety of complex scenarios, but also achieves fast running are still
an active research area. In this work, a target tracking algorithm based on adaptive
occlusion judgment and model updating strategy, called Aojmus, is proposed to address
the poor tracking performance in complex scenarios mentioned above. The Aojmus is
designed on the basis of KCF algorithm and integrated with correlation filtering method
which has the advantage in processing speed.

The contributions of this work can be summarized in three folds:

1. We propose to fuse CN and HOG features as the feature representation of the tracked
target, which improves the discrimination and re-detection ability. Meanwhile, the scale
filter is introduced to solve the defect of poor tracking precision of the target due to scale
change.

2. We design four kinds of occlusion judgment indicators to solve tracking failure which
caused by occlusion. These four indicators can adaptively judge the occlusion of the target
during tracking. A double threshold mechanism is introduced to judge the degree of
occlusion, which determines the update strategy of the tracker.
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3. We use a weighted fusion strategy to fuse the results of occlusion judgments to ensure
that the model update rate of the tracker changes dynamically with the judgment results of
each frame, avoiding the tracking drift problem caused by fixed model update rate of most
trackers.

The rest of this article is organized as follows. In “Literature Review”, related works
about target tracking are surveyed. In “Preliminaries”, some prerequisites of the
methodology are introduced. In “Methodology”, we describe the architecture of the
proposed algorithm, including statistical analysis, algorithm design and related parameter
setting. In “Experiments and analysis”, we compare and analyze the performance of the
algorithm in quantitative and qualitative aspects. In “Conclusion”, we summarize this
study and discuss possible future work.

LITERATURE REVIEW
Bolme et al. (2010) were the first to apply the correlation filtering method to target tracking
and proposed the MOSSE algorithm, which achieves tracking speed of 669 fps, but with a
slightly poor precision of 43.1%. To solve the problem of insufficient samples of MOSSE
algorithm, Henriques et al. (2012) proposed CSK algorithm, which acquired a large
number of samples through the method of cyclic shift. Moreover, the computational
complexity is reduced by frequency domain processing, and thereby a robust and accurate
filter is obtained. Subsequently, Henriques et al. (2015) proposed the kernelized correlation
filter (KCF) tracking algorithm on the basis of CSK, which utilized the histogram of
oriented gradients (HOG) feature instead of grayscale feature and introduced a circular
matrix to reduce the computational effort. The algorithm also incorporates multi-channel
data to improve the operation speed and meet the requirement of real-time in the process
of tracking. Inspired by the scale pooling technique, Yang & Zhu (2014) and Danelljan
et al. (2014a) proposed SAMF and DSST algorithms respectively, which solved the
problem of scale adaptation of KCF algorithm. The SAMF algorithm fused HOG feature
and color-naming (CN) (Danelljan et al., 2014b) feature for the first time on the basis of
KCF, which improved the tracking precision, but the speed is significantly reduced.
Similarly, the DSST algorithm also achieved scale adaption, but the overall performance is
inferior. Danelljan et al. (2017a) used convolutional neural network (CNN) to extract
depth features on the feature model of the target while keeping the motion model (cyclic
matrix) and observation model (correlation filter) unchanged, achieving a significant
increase in precision and success rate. The research interest in correlation filtering-based
target tracking has declined because the precision is difficult to improve further when
dealing with target occlusion, disappearance, or non-rigid object tracking. In recent years,
some representative studies have still emerged, such as ASRCF (Dai et al., 2019), ARCF
(Huang et al., 2019), and PRCF (Sun et al., 2019).

Another class of target tracking algorithms is based on deep learning (Li, Li & Porikli,
2016), which uses convolutional neural networks for feature extraction and classification of
targets to achieve target tracking. Some of them incorporate correlation filtering and deep
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learning, such as the HCF (Ma et al., 2015). The MDNet algorithm proposed by Nam &
Han (2016) was one of the early algorithms that used deep learning alone to implement
target tracking. The algorithm trains each domain separately while updating the
parameters of the shared layer during training so that these parameters can be adapted to
all datasets. When tracking, MDNet uses a pre-trained CNN network to track the target
and thereby locate the target. Here are some similar algorithms, such as SiamDW (Zhang
& Peng, 2019), SiamCAR (Guo et al., 2020) and HiFT (Cao et al., 2021), etc. Despite the
superior performance of deep learning-based tracking algorithms in achieving tracking
precision, they still face the disadvantages of insufficient initial training samples and slow
tracking speed.

PRELIMINARIES
In this section, to help establish an understanding of the essential elements involved in the
proposed methodology, the kernelized correlation filter (KCF), classifier training, fast
detection and model updating are illustrated in advance.

Kernelized correlation filter
The core idea of the kernel correlation filtering (KCF) algorithm is to calculate the
matching degree between the predicted region and the target by establishing a kernel
function based on the ridge regression. By moving the complex calculation to the
frequency domain with fast Fourier transform, the fast tracking for target is achieved.
Similar to most discriminative tracking algorithms, KCF algorithm also performs target
detection before filter model training. It firstly trains a model of the initial position of the
target, then detects whether the target exists in the prediction region of the next frame, and
finally uses Gaussian kernel to calculate the correlation between two adjacent frames and
determines the position of the target according to its maximum response value in the target
region. The basic principles of the kernel correlation filtering algorithm, including classifier
training, fast detection and model update, are described below.

Classifier training
The classifier f ðxÞ ¼ w; ’ðxÞh i is obtained by training ridge regression. Let xi; yið Þ be the
training sample, where yi is the regression expectation corresponding to sample xi. The
ridge regression on the training sample yields the linear regression function f xð Þ ¼ wTxi.
To prevent the overfitting phenomenon, the classifier needs to be regularized as follows:

min
w

XN
i¼1

f xið Þ � yið Þ2 þ k kwk2 (1)

where w is the classifier parameter and k is the regularization parameter. The closed-form
solution of the above equation is:

w ¼ XTX þ kI
� ��1

XTy (2)

In the process of generating a large amount of information of target and background
using the circular matrix, the feature space formed by the sample set appears nonlinear.
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Therefore, the Gaussian kernel function ’ xið Þ is introduced for linear transformation, and
the result is f xð Þ ¼ wTxi ¼ wT’ xið Þ, where w ¼PN

i¼1 aixi. So far, the solution of w is
transformed to the solution of coefficient a, which eventually yields:

a ¼ K þ kIð Þ�1y (3)

where K is the kernel correlation matrix. To reduce the complexity of the calculation, Eq.
(3) is transformed into the frequency domain with the discrete Fourier transform (DFT).
Then the solution becomes:

â ¼ ŷ
kxx þ k

(4)

The purpose of classifier training is to solve the weight coefficient a, where kxx is the first
row element of the kernel cycle matrix K, and b denotes the DFT of vector.

Fast detection and model updating
After classifier training, in order to locate the target position of the current frame, the KCF
algorithm uses the target position of the previous frame as a template, then detects it in the
candidate region z of the current frame and determines the target position by finding the
maximum value of f zð Þ ¼ aT’ Xð Þ’ zð Þ. To increase the calculation speed, the KCF
algorithm transfers the solution from the time domain to the frequency domain as follows:

f̂ zð Þ ¼ k̂xz � â (5)

where kxz denotes the kernel correlation between the target sample x and the candidate
detection region z, f̂ zð Þ represents the response distribution in the candidate region and
the position where its maximum value is located indicates the actual position of the target
in the current frame.

To ensure each frame in the video sequence can be processed, the KCF algorithm uses
linear interpolation to update the filter template ât and the target feature template x̂t as
follows:

ât ¼ 1� gð Þ ât�1 þ gâ
x̂t ¼ 1� gð Þ x̂t�1 þ gx̂

�
(6)

where g denotes the model update rate and t is time stamp.

METHODOLOGY
As target occlusion, scale variation, illumination variation affect the performance of
tracking, it is of great significance to conquer such problems. The KCF algorithm increases
the training samples through the circular matrix, which in turn improves the tracking
accuracy. Meanwhile, by transferring to the frequency domain to avoid matrix inversion
operations, the computation is greatly reduced.

However, the KCF algorithm often fails to track in the case of target occlusion or target
loss because the update model learns the features of the occluded object and causes the
model to get the wrong target features in the accumulation of subsequent frames, which in

Cai et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1562 5/21

http://dx.doi.org/10.7717/peerj-cs.1562
https://peerj.com/computer-science/


turn leads to tracking failure. In addition, the tracking box of KCF algorithm cannot meet
the scale variation of the target, which can also greatly reduce the precision of tracking. To
address these problems, this article proposes a target tracking algorithm, call Aojmus,
based on an adaptive occlusion judgment and model update strategy. The flow chart of the
algorithm is shown in Fig. 1.

In this section, we describe the specific implementation of Aojmus, including feature
fusion, scale estimation, occlusion judgment and model updating.

Feature fusion design
The HOG features can effectively depict the local contour and shape information of the
target and are very robust to illumination changes, but are poorly adapted to target
deformation and fast motion. The CN features can well represent the global color
information of the target and have excellent stability to target deformation and fast
motion, but are sensitive to illumination and color changes. Therefore, we employ linear
fusion of HOG feature and CN feature (Xie & Zhao, 2021) to achieve feature
complementarity and improve tracking precision.

The process of linear weighted fusion of these two feature vectors is as follows:

vhc ¼ dvhog þ 1� dð Þvcn (7)

where vhog , vcn, vhc represent HOG feature, CN feature and fused feature respectively, and d
is the weighted coefficient of feature fusion. In this article, set d ¼ 0:5 to ensure that the
advantages of HOG and CN feature can be fully utilized.

Input Video
Frames

Get the First Frame 
Target Informa�on

And Train the Ini�al Filter

Fmax

Extract HOG, CN
Extrac�ng the next

Frame of
Candidate samples

Fmax

WAPCE

RSFM

Weighted
Fusion

*η

Update 
Target Scale

Model
UpdateLast Frame

End of
Tracking

Target
Loca�on

No

Yes

Get Response 
Distribu�on F

N

Scale Filter

Feature Fusion

Model Upda�ng Strategy

Occlusion Judgment

Figure 1 Flow chart of Aojmus algorithm. Full-size DOI: 10.7717/peerj-cs.1562/fig-1
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Multi-scale estimation
The scale variation of target is one of the important factors affecting the tracking results. As
the position change of two consecutive frames is often larger than the scale change, like
DSST (Danelljan et al., 2014a), this article first uses a two-dimensional position filter to
determine the position information and then implements scale evaluation by training a
one-dimensional scale filter.

Let f be the training sample and h be the optimal correlation filter. The minimum cost
function is solved with ridge regression as follows:

e ¼
Xd
l¼1

hl � f l � g

�����
�����
2

þk
Xd
l¼1

k hl k2 (8)

where l 2 1; . . . ; df g is the feature dimension, g represents the regression expectation
corresponding to the training sample f , and k is the regularization factor. The scaling filter
can be obtained by solving the above equation in Fourier domain:

Hl ¼
�GFlPd

k¼1
FkFk þ k

¼ Al
t

Bt
(9)

where �G represents complex conjugate of the DFTs of correlation outputs and k is
introduced to avoid zero denominator in case of the zero frequency component in f . By
detecting the image block z in the new frame, we can obtain the response of scale filter as:

y ¼ F�1

Pd
l¼1 A

lZl

Bþ k

( )
(10)

Up to this point, the response value of the scale filter can be calculated from Eq. (10),
and a new scale estimate can be determined based on the result of the maximum value. The
selection principle of target sample size for scale evaluation is as follows:

anP � anR; n 2 � s� 1ð Þ
2

� �
; . . . ;

s� 1ð Þ
2

� �� �
(11)

where P and R are respectively the width and height of the target in the previous frame,
a ¼ 1:02 is the scale factor, s ¼ 33 is the length of the scale filter.

Adaptive occlusion judgment and model updating strategy
Target occlusion often occurs during tracking. In this section, we make a detailed analysis
and propose an adaptive judgment method. Using the original model update rate in the
KCF algorithm, the response of occlusion is analyzed with the FaceOcc1 image sequence in
the OTB2015 (Wu, Lim & Yang, 2015) dataset as an example.

From the response distribution in Fig. 2, it can be seen that the main peak of the
response in target box during tracking without occlusion is dominated and there is no
other obvious peaks. The maximum peak response is close to 1. When the occlusion exists,
as shown in Fig. 3, the maximum peak response decreases significantly, and the rest of the
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peak responses increase and become more prominent. It can be concluded that when the
occlusion occurs, the fixed model update strategy learns the features of the occlusion and
applies this feature to the search of the next frame which leading to the appearance of other
peaks besides the main peak. Hence, the presence of occlusion can be determined based on
the response distribution of the target.

Let Fmax be the maximum peak response in each frame. The number of peak response
points that exceed the maximum peak response by a certain proportion, denoted as N, can
be expressed as:

N ¼
X

F0
max . fFmax

� � 2 S
� �

(12)

where F0
max denotes the peak response other than the maximum peak, S represents the

target area, and f is a proportionality coefficient which is set to 0.1 in this article.

l l

Figure 2 Tracking results and response distribution at frame 17 of the FaceOcc1 sequence without
occlusion. Photo credit: Visual Tracker Benchmark. Full-size DOI: 10.7717/peerj-cs.1562/fig-2

l l

Figure 3 Tracking results and response distribution when occlusion appears at frame 91 of FaceOcc1
sequence. Photo credit: Visual Tracker Benchmark. Full-size DOI: 10.7717/peerj-cs.1562/fig-3
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Besides the two judgment indicators of Fmax and N, two more judgment indicators,
average Peak-to-Correlation energy (APCE) (Wang, Liu & Huang, 2017) and ratio
between the second and first major mode (RSFM) (Lukevic et al., 2017) are introduced in
this article to ensure the robustness of the occlusion judgment.

The APCE can well reflect the variation of response and changes significantly when the
target is obscured. It can be expressed as follows:

WAPCE ¼ Fmax � Fminj j2

mean
P
w;h

Fw;h � Fmin
� �2 ! (13)

where Fmin denotes the minimum value of the response, and Fw;h denotes the response
value of pixel in w-th row and h-th column. When occlusion appears, the value of WAPCE

will decrease significantly.
The RSFM reflects the prominence of the main peak in the response map and is defined

as follows:

RSFM ¼ 1�min
Fsecond
Fmax

;
1
2

	 

(14)

where Fsecond represents the response value of the second peak. The larger the value of
RSFM is, the more prominent the main peak will be and the higher reliability the tracking
will have, and vice versa.

In this article, we use the four evaluation indicators mentioned above, Fmax, N, WAPCE

and RSFM, to determine whether the target is occluded or not. To verify the four
indicators, we select the first 200 frames of the video sequence in FaceOcc1 for test. The
relevant results of these four indicators for each frame are calculated and their cumulative
averages are shown in Fig. 4.

As shown in Fig. 4, the evaluation indicators fluctuate significantly between frame 85 to
100. The Fmax, WAPCE, RSFM are relatively low whereas N is relatively high, which
indicates the existence of severe occlusion. By comparing the moments when occlusion
appears in the original video sequence, it can be found that the above four indicators satisfy
well for the judgment of occlusion as they are complementary to some extent.

In order to accurately determine whether occlusion exists and the degree of occlusion,
this article implements adaptive evaluation by setting dynamic double thresholds. The
thresholds are selected based on the average value of each evaluation indicator for the
previous t � 1 frames, namely:

h Rð Þn ¼
jn

t � 1

Xt
i¼2

Ri;R 2 Fmax ;WAPCE;RSFM;N
� �

; n ¼ 1; 2 (15)

where, j denotes the weighted coefficient, and h Rð Þ denotes the threshold of the
corresponding evaluation indicator. For every indicator, there are two thresholds. The
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weighted coefficient j of each evaluation indicator is obtained by analyzing the cumulative
average curve in Fig. 4, as shown in Table 1.

As can be seen from Eq. (14), the value of Fsecond rises sharply when there is severe
occlusion in current frame, resulting the output of RSFM to be 0.5. When it occurs, the
lower limit of h RSFMð Þ2 in Table 1 is set to 0.5 particularly. As N is usually not sensitive to
occlusion, it is set to a single threshold for simplicity.

When occlusion appears, the fixed model update rate gwill cause the tracker to learn the
information of the occlusion object and lead to tracking drift. In this article, the Aojmus
algorithm adaptively generates a suitable model update rate according to the degree of

Table 1 Weighted coefficients of double thresholds for each evaluation indicator.

j1 j2

h Fmaxð Þn 1 0.85

h WAPCEð Þn 1 0.7

h RSFMð Þn 1 —

h Nð Þn 1 —

0 50 100 150 200
Frame

0.4

0.6

0.8

1
Fmax
Cumulative Average

0 50 100 150 200
Frame

50

100

150
APCE
Cumulative Average

0 50 100 150 200
Frame

0.6

0.7

0.8

0.9

1

RSFM
Cumulative Average

0 50 100 150 200
Frame

0

2

4

6

8
N
Cumulative Average

Figure 4 Line graphs of Fmax , WAPCE, RSFM and N for the front 200 frames of FaceOcc1 as an
example. Photo credit: Visual Tracker Benchmark. Full-size DOI: 10.7717/peerj-cs.1562/fig-4
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occlusion in current frame. When occlusion occurs, the model update rate is appropriately
increased to ensure that the target information of the part not occluded in the tracking
frame is fully learned by the model so as to enhance the model’s recognition capability,
which can be used for accurate localization in next frame. The update strategy is defined as:

nR ¼
l1 R � hðRÞ1
l2 hðRÞ1.R. hðRÞ2
l3 else

8<: (16)

Table 2 Output values of the four judgment indicators ln.

l1 l2 l3

nFmax
1 1.2 1.5

nWAPCE
1 0.8 0.5

nRSFM 1 1.2 1.5

nN 1.2 — 1

Algorithm 1 Aojmus

Input:

Current frame It; The video for tracking Svideos;

Target position pt�1 and scale st�1 of previous frame;

The target feature template, x̂t�1 and the filter template, ât�1;

The scale model Ascale
t�1 , B

scale
t�1 .

Output:

Target position pt and scale st of current frame;

The updated target feature template, x̂t and filter template, ât ;

The updated scale model Ascale
t , Bscale

t .

1: for each It 2 Svideos do

2: Sample the new patch zt from It at pt�1;

3: Extract a scale sample zscale from It at pt and st�1;

4: Extract the HOG and CN features and fused with Eq. (7);

5: Calculate the response f̂ ztð Þ with Eq. (5), and get Fmax;

6: Calculate N , WAPCE and RSFM with Eqs. (12)–(14), and adaptively judge whether there is occlusion and the scope;

7: Get the nR and ξ by Eqs. (16) and (17);

8: Compute the scale correlations yscale using zscale, Ascale
t�1 and Bscale

t�1 in Eq. (10);

9: Set st to the maximum of yscale;

10: Use Eq. (18) to update x̂t and ât with x̂t�1 and ât�1 adaptively;

11: Use Eq. (9) to update Ascale
t and Bscale

t with Ascale
t�1 and Bscale

t�1 .

12: Return pt and the updated x̂t , ât , Ascale
t , Bscale

t .

13: end for
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where, R 2 Fmax;WAPCE;RSFM;Nð Þ, lnðn ¼ 1; 2; 3Þ represent the output values of
occlusion judgment. They are concluded from experiments, as shown in Table 2.

There are four judgment results in the improved algorithm. In order to guarantee that
nR can accurately reflect the degree of occlusion, this article uses a weighted fusion of the
four output nR to obtain the final model update rate as follows:

n ¼ n2Fmax
þ n2WAPCE

þ n2RSFM þ n2N
sumðnRÞ

(17)

Finally, we substitute the final model update rate into Eq. (6) to obtain:

ât ¼ 1� n � gð Þ ât�1 þ n � gâ
x̂t ¼ 1� n � gð Þ x̂t�1 þ n � gx̂

�
(18)

The proposed algorithm, Aojmus, is presented in Algorithm 1.

EXPERIMENTS AND ANALYSIS
In this section the proposed Aojmus algorithm is compared with the other four relatively
excellent tracking algorithms. We use three metrics to evaluate the performance of the
algorithm, and select the representative video sequences to compare and analyze the
tracking effect.

Experimental environment and parameters
The platform for the experiments in this article is Matlab 2018a, and the hardware
environment is a computer with Intel(R) Xeon(R) CPU E5-2620 v3 @ 2.40 GHz and 16 GB
RAM. The parameters of the algorithm are set as follows: the regularization parameter

k ¼ 10�4 and the initial model update rate g ¼ 0:02.
In this article, 66 video sequences provided by OTB-2015 are used for experimental

verification. The dataset contains 11 attributes of common scenarios in target tracking,
such as occlusion (OCC), deformation (DEF), illumination variation (IV), motion blur
(MB), out-of-plane rotation (OPR), fast motion (FM), out-of-view (OV), in-plane rotation
(IPR), low resolution (LR), scale variation (SV), and background clutter (BC). The
performance evaluations are carried out with quantitative and qualitative analysis.

Experimental comparison and analysis
Quantitative analysis
In order to evaluate the performance of the algorithm in this article, MSCF (Zheng et al.,
2021), Staple (Bertinetto et al., 2016), fDSST (Danelljan et al., 2017b) and KCF algorithms
with high performance were selected for comparison. Three statistical criteria of precision
(Pr) (Wu, Lim & Yang, 2013), success rate (Sr) (Wu, Lim & Yang, 2013) and tracking speed
(Ts) were used for evaluation respectively. The Pr refers to the error of center position,
namely the Euclidean distance in pixel unit, Dt , between the center of tracking box for each
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frame and the actual center in the benchmark. The final result is expressed with the average
of errors.

Pr ¼ Dt

n
(19)

The smaller the value of Pr is, the closer the tracked target center to the actual location is
and the better the algorithm performs in terms of pricision.

Let Ot be the overlap between the tracking box in the current frame, Bt , and the actual
box in benchmark, Bbt . It can be expressed as:

Ot ¼ areaðBt \ BbtÞ
areaðBt [ BbtÞ (20)

The success rate, Sr, is expressed as the average of Ot whose value is greater than the
given threshold in the whole video sequence.

Sr ¼ 1
n

Xn
t¼1

Ot (21)

The value of Sr reflect the number of frames whose tracking box is closer to the real
rectangle box. Obviously, the greater the Sr is, the better the performance of the algorithm
will be.

The tracking speed, Ts, refers to the number of video frames processed by the algorithm
in each second, also known as frame rate with the unit of FPS (frames per second). It is
defined as follows:

Ts ¼ Ftotal
ttotal

(22)

where, Ftotal indicates the total number of frames of the video sequence, and ttotal is the time
taken by the algorithm to run the whole video sequence.

To evaluate the performance of the proposed algorithm, Aojmus, we make a
comparison with other four algorithms, MSCF, Staple, fDSST and KCF on OTB-2015 as
shown in Figs. 5 and 6 and Tables 3–5. The evaluation method used is a one pass
evaluation (OPE), which means that after initializing the target, the whole video sequence
is run at once. The location error threshold for precision plots and the overlap threshold
for success rate plots are set as 20 pixels and 0.5, respectively.

Figure 5 illustrates the precision and success rate of these five algorithms for running the
whole sequences at once on the OTB-2015 dataset, from which the precision and success
rate of Aojmus can be obtained are 0.909 and 0.749, respectively. Compared with others,
the Aojmus performs the best in terms of precision and has improved 0.5% than the
second ranked MSCF algorithm. Though the success rate is not outstanding, the Aojmus
still shows high performance for OCC, MB, OV, and FM as shown in Fig. 6.

Tables 3 and 4 respectively show the precision and success rate of the five algorithms
under 11 attributes. As it can be seen that the Aojmus algorithm performs best on 10 of
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these attributes. In terms of success rate, the Aojmus appears more robust in dealing with
fast motion, motion blur and out of view problems. Despite the disadvantages in other
aspects, the Aojmus is not much inferior to other excellent algorithms. For the tracking
speed, though the Aojmus is inferior to fDSST and KCF as shown in Table 5, it
outperforms others in other aspects as shown in Figs. 5 and 6. From the above
comparisons, the Aojmus exhibits good overall performance.
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Figure 5 The tracking precision plots (A) and success rate plots (B) of our algorithm and others on
OTB-2015. Full-size DOI: 10.7717/peerj-cs.1562/fig-5
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Figure 6 Precision plots (above) and success rate plots (below) under OCC (A), MB (B), OV (C), FM (D).
Full-size DOI: 10.7717/peerj-cs.1562/fig-6
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Qualitative analysis
Like our previous work inWang et al. (2022), in order to better verify the advantages of the
proposed algorithm, four groups of representative video sequences are selected for
analysis, as shown in Fig. 7.

The video sequence of Bird2 contains OCC, DEF, FM, IPR, and OPR attributes. In
frame 10, all the five tracking algorithms work properly. With the progress of tracking, the
MSCF, fDSST, and KCF algorithms begin to show significant tracking drift at frame 51
affected by occlusion, deformation, and rotation problems. From frame 73, only the
Aojmus and Staple can track accurately after the target (bird) flips.

The video sequence of Lemming contains IV, SV, OCC, FM, OPR, and OV attributes.
From frame 10 to frame 370, as the target is not significantly affected by occlusion, fast
motion and illumination changes, and the position of the target does not change after the
occlusion, all the algorithms can track the target accurately. After the 370th frame, the
occluded target reappears. As the tracking models of the other algorithms use fixed update

Table 3 Comparison of precision on different attributes.

Algorithms OCC DEF FM IPR MB OV OPR SV IV BC LR

Aojmus 0.878 0.900 0.830 0.916 0.911 0.753 0.895 0.992 0.906 0.892 0.996

MSCF 0.839 0.941 0.771 0.878 0.864 0.674 0.881 0.868 0.876 0.877 0.988

Staple 0.799 0.878 0.779 0.860 0.852 0.696 0.816 0.851 0.863 0.860 0.797

fDSST 0.722 0.777 0.771 0.799 0.838 0.544 0.759 0.796 0.876 0.891 0.731

KCF 0.722 0.813 0.744 0.818 0.832 0.604 0.803 0.805 0.863 0.882 0.785

Note:
The best results are in bold.

Table 4 Comparison of success rate on different attributes.

Algorithms OCC DEF FM IPR MB OV OPR SV IV BC LR

Aojmus 0.732 0.727 0.794 0.762 0.853 0.795 0.718 0.651 0.684 0.744 0.662

MSCF 0.790 0.891 0.757 0.805 0.852 0.664 0.799 0.794 0.851 0.863 0.931

Staple 0.736 0.798 0.719 0.765 0.801 0.575 0.724 0.726 0.793 0.787 0.604

fDSST 0.656 0.710 0.753 0.733 0.801 0.550 0.678 0.715 0.815 0.827 0.705

KCF 0.599 0.661 0.681 0.662 0.783 0.620 0.628 0.520 0.644 0.750 0.285

Note:
The best results are in bold.

Table 5 Comparison of tracking speed of our algorithm and others.

Algorithms Frames per second (FPS)

Aojmus 74.85

MSCF 16.01

Staple 9.28

fDSST 83.29

KCF 219.03
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rate and learn non-target information, they are unable to locate the target again in the
subsequent frames, while the Aojmus can maintain accurate localization until the end of
tracking. In addition, comparing the tracking boxes at 900th frame, it can be shown the
Aojmus is also well adaptive to the scale change of the target.

The video sequence of Jogging1 contains OCC, DEF, and OPR attributes. The target is
heavily occluded at frames 70 to 80. When the target reappears, the Aojmus is able to
accurately locate the target using adaptive occlusion judgment and continue the model
update to ensure that tracking is performed reliably. The other algorithms except MSCF
fail to cope with the occlusion problem.

The video sequence of Gym contains SV, DEF, IPR, and OPR attributes. At frame 19,
the target begins to rotate and deform, and all algorithms can basically guarantee normal
tracking. When it comes to 440th frame, the fDSST algorithm shows obvious drift, and
fails to track the target. With the increase of target deformation and rotation, only the
Aojmus, MSCF and KCF can keep tracking properly till frame 680. The Aojmus can

(a) Bird2

(b) Lemming

(c) Jogging1

(d) Gym

Figure 7 Tracking results of different algorithms on (A) Bird2, (B) Lemming, (C) Jogging1 and
(D) Gym. Photo credit: Visual Tracker Benchmark. Full-size DOI: 10.7717/peerj-cs.1562/fig-7
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adjust the tracking box with the scale of target dynamically whereas the MSCF and KCF
fail to do so.

The above experimental results show that the Aojmus proposed in this article can cope
well with a variety of influence appearing in the tracking process, especially in the aspects
of occlusion, scale change and deformation. On the whole, the Aojmus is robust for target
tracking in complex scenes, and typically provides a new idea to deal with occlusion
problems.

CONCLUSIONS
In target tracking, scholars have conducted in-depth research in many aspects to be able to
predict the position of moving targets more accurately. However, due to the variability of
the tracked target and scene, it is not easy to develop an algorithm that takes into account
the above 11 influencing factors simultaneously, especially in solving the problems of
target occlusion, deformation and scale variation. The previous researches, which typically
uses one judgment indicator to address the occlusion problem, can’t obtain outstanding
overall performance. In this study, considering the complex scenarios and the requirement
of mutual-complementarity of technologies, we propose four indicators, Fmax, N, WAPCE

and RSFM as conditions to make the occlusion judgment more accurate. Moreover, we
introduce an adaptive model updating strategy, fuse the results of the occlusion judgement
and apply them into the model updating, which improves the precision in predicting the
target position. As tracking is processed frame by frame where different influence factors
may be encountered, this study presents a dynamic dual thresholds to compose the update
strategy and achieves an accurate judgment of the existence and degree of occlusion, which
solves the problem of tracking drift. In order to make full use of the feature information of
target and reduce the influence of scale variation, we also incorporate a multi-feature
fusion scheme and a scale estimation model in the backbone of the algorithm, which
provides a good basis for later obscuration judgments and model updates.

The experimental results show that the Aojmus precedes the other typical tracking
algorithms in terms of tracking precision, which has been increased by 0.6% and 3.8%
respectively compared with the excellent algorithms, MSCF and Staple. Despite the
Aojmus is not the best in terms of success rate, it surpasses the other four compared
algorithms with respect to target occlusion, scale variation, fast motion, out-of-plane
rotation and deformation. As the Aojmus is based on the kernel correlation filtering
method, it runs well in real-time with high tracking speed of 74.85 frames per second,
striking a good balance between tracking effectiveness and speed. It can be concluded that
the kernel correlation filter-based multi-indicator occlusion judgement mechanism and
adaptive model updating strategy can solve the common problems of target tracking while
maintaining the overall performance. In future, we plan to investigate the feasibility of
synthesizing our method with convolutional neural networks to improve the overall
performance further and extend the application to indoor mobile robot and vehicle
violation.
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