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ABSTRACT
Sleep staging is crucial for assessing sleep quality and diagnosing sleep disorders. Recent
advances in deep learning methods with electroencephalogram (EEG) signals have
shown remarkable success in automatic sleep staging. However, the use of deeper neural
networksmay lead to the issues of gradient disappearance and explosion, while the non-
stationary nature and low signal-to-noise ratio of EEG signals can negatively impact
feature representation. To overcome these challenges, we proposed a novel lightweight
sequence-to-sequence deep learning model, 1D-ResNet-SE-LSTM, to classify sleep
stages into five classes using single-channel raw EEG signals. Our proposed model
consists of two main components: a one-dimensional residual convolutional neural
network with a squeeze-and-excitation module to extract and reweight features from
EEG signals, and a long short-term memory network to capture the transition rules
among sleep stages. In addition, we applied the weighted cross-entropy loss function to
alleviate the class imbalance problem. We evaluated the performance of our model
on two publicly available datasets; Sleep-EDF Expanded consists of 153 overnight
PSG recordings collected from 78 healthy subjects and ISRUC-Sleep includes 100
PSG recordings collected from 100 subjects diagnosed with various sleep disorders,
and obtained an overall accuracy rate of 86.39% and 81.97%, respectively, along
with corresponding macro average F1-scores of 81.95% and 79.94%. Our model
outperforms existing sleep staging models in terms of overall performance metrics
and per-class F1-scores for several sleep stages, particularly for the N1 stage, where it
achieves F1-scores of 59.00% and 55.53%. The kappa coefficient is 0.812 and 0.766
for the Sleep-EDF Expanded and ISRUC-Sleep datasets, respectively, indicating strong
agreement with certified sleep experts. We also investigated the effect of different
weight coefficient combinations and sequence lengths of EEG epochs used as input
to the model on its performance. Furthermore, the ablation study was conducted to
evaluate the contribution of each component to the model’s performance. The results
demonstrate the effectiveness and robustness of the proposed model in classifying sleep
stages, and highlights its potential to reduce human clinicians’ workload, making sleep
assessment and diagnosis more effective. However, the proposed model is subject to
several limitations. Firstly, themodel is a sequence-to-sequence network,which requires
input sequences of EEG epochs. Secondly, the weight coefficients in the loss function
could be further optimized to balance the classification performance of each sleep stage.
Finally, apart from the channel attention mechanism, incorporating more advanced
attention mechanisms could enhance the model’s effectiveness.
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INTRODUCTION
Sleep plays a crucial role in maintaining optimal cognitive and emotional functioning
in daily life. Unfortunately, sleep-related disorders can negatively impact sleep quality,
and pose a significant burden on public health worldwide. Therefore, it is essential
to accurately estimate sleep quality to ensure prompt medical interventions when
necessary. Sleep staging is a critical aspect of evaluating sleep quality and diagnosing sleep
disorders, such as insomnia and obstructive sleep apnea (Wulff, Gatti & Wettstein JG, 2010).
Polysomnography (PSG) is widely regarded as the gold standard for sleep staging, involving
the recording of several electrophysiological signals, such as electroencephalogram (EEG),
electrooculogram (EOG), electromyogram (EMG), and electrocardiogram (ECG) (Keenan,
2005). Duringmanual sleep staging, certified sleep technicians visually examine PSG signals
and label sleep stages in successive 30-second epochs, following either the Rechtschaffen and
Kales (R&K) Rules or the American Academy of Sleep Medicine (AASM) Manual (Moser
et al., 2009). The R&K Rules divide sleep into wake (W), rapid eye movement (REM), and
non-REM (NREM) stages, where the NREM stage is further subdivided into S1, S2, S3,
and S4, based on the depth of sleep (Wolpert, 1969). The AASM standard subsequently
modifies the R&K Rules by merging S3 and S4 into a single stage, N3, and subdividing
N1, N2, and N3 as subdivisions of the NREM. Consequently, the AASM standard classifies
sleep stages into W, N1, N2, N3, and REM (Berry et al., 2017).

However, manual sleep staging is a laborious, time-consuming, and subjective process
with significant inter- and intra-rater variability (Danker-hopfe et al., 2009). It typically
takes up to two hours for a sleep expert to score an overnight PSG recording of eight
hours, with an inter-rater agreement of approximately 83% (Rosenberg & Van Hout,
2013). Thus, developing reliable and accurate automatic sleep-staging algorithms is highly
promising. Furthermore, PSG, which involves recording multiple electrophysiological
signals, is expensive, complicated, and impractical for longitudinal sleep monitoring in
home settings. PSG can also cause physical discomfort and mental stress, leading to poor
sleep quality and disruption of regular sleep patterns (Wang et al., 2021). Consequently,
there is a growing interest in developing portable, wireless, and wearable devices equipped
with low-cost sensors attached to a single location, such as the Fpz channel in the frontal
region of the brain, to acquire single-channel EEG signals, facilitating comfortable and
convenient sleep monitoring (Gao et al., 2022).

Numerous studies have employed a variety of machine learning algorithms with EEG
signals for sleep staging (Vallat & Walker, 2021;Hussain et al., 2022) and other applications,
such as disease detection (Islam et al., 2022). Nevertheless, these approaches involve feature
engineering to extract relevant features in time, frequency, time-frequency, or nonlinear
domains, which requires domain knowledge and may result in information loss.

In recent years, advances in deep learning methods have shown remarkable success
in many applications using EEG signals. Various automatic sleep-staging models have
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been developed based on end-to-end deep learning methods that use single-channel
raw EEG signals. These models have demonstrated comparable performance to human
sleep experts in terms of scoring accuracy. Many of these models utilize convolutional
neural networks (CNN) (Krizhevsky, Sutskever & Hinton, 2017) to extract relevant features
from raw EEG signals, and various recurrent neural network (RNN) variants to learn
temporal dependencies and transition rules among sleep stages. For instance, Mousavi,
Afghah & Acharya (2019) proposed SleepEEGNet, a sequence-to-sequence model that uses
a CNN architecture with two sections to extract temporal and frequency information from
EEG signals, followed by an encoder–decoder architecture incorporating a bidirectional
recurrent neural network (Bi-RNN) and an attentionmechanism to capture and emphasize
the temporal information. DeepSleepNet, introduced by Supratak et al., (2017), utilizes
two CNNs with different convolutional filter sizes for representation learning, followed
by two bidirectional long short-term memory (Bi-LSTM) layers for sequence residual
learning. TinySleepNet (Supratak & Guo, 2020), another model proposed by Supratak
and his colleagues, uses fewer convolutional layers and one-directional LSTM layers to
reduce computational resources. IITNet, proposed by Seo et al. (2020), employs CNNs
with residual connections to extract distinctive features from EEG signals in an intra-epoch
manner, and adopts Bi-LSTM to model inter-epoch contextual information. AttnSleep,
developed by Eldele et al. (2021), is an attention-based deep learning architecture that
leverages multi-resolution CNNs to extract low- and high-frequency features of EEG
signals, while emplying an adaptive feature recalibration technique to improve the quality
of the extracted features by modeling the inter-dependencies between them, and uses
a multi-head attention mechanism to capture the temporal relationships among sleep
stages. In another study, Liu et al. (2022) employed parallel residual neural networks with
improved channel and spatial feature attention units for multi-scale feature extraction of
EEG sleep signals, while a bi-directional gated recurrent unit (Bi-GRU) was utilized to
determine the dependence between sleep stages.

Among the above-mentioned deep learning models, multi-layer architectures of one-
dimensional convolutional neural networks (1D-CNNs) have been shown to be effective in
extracting informative features from EEG signals for sleep staging. The depth of the CNNs
has a significant positive influence on feature expression ability (Simonyan & Zisserman,
2014). However, deep neural networks are prone to gradient disappearance and explosion
problems (He & Sun, 2015). To address this issue, He et al. (2016) introduced a residual
convolutional neural network (ResNet), which incorporates an identical connection
to alleviate the gradient degradation problem in image recognition tasks effectively.
Therefore, 1D-ResNet is a neural network model specially designed for processing
one-dimensional sequential data, such as EEG signals. Meanwhile, it leverages residual
connections to facilitate the flow of information and alleviate the vanishing gradient
problem. Additionally, EEG signals can be affected by various background noises, and the
non-stationary nature and low signal-to-noise ratio of EEG signals can degrade feature
representation. To overcome these challenges, attention mechanisms can be used for
feature recalibration (Vaswani et al., 2017). In particular, the Squeeze-and-Excitation
(SE) module is a channel-wise attention mechanism that enhances the representational
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power of neural networks by explicitly modeling interdependencies between channels.
It adaptively recalibrates channel-wise feature responses by learning channel-specific
importance weights. This allows the model to dynamically focus on more informative
channels and suppress less relevant ones. Furthermore, the SE module can be integrated
into CNN architectures to improve model performance without changing the shape of
existing models (Hu, Shen & Sun, 2018). When the 1D-ResNet is combined with the
SE module, it leverages the strengths of both architectures. The residual connections
in the 1D-ResNet facilitate the propagation of gradients, enabling efficient training and
reducing the risk of overfitting. Meanwhile, the SE module helps the network to capture
and emphasize important channel-level features, enhancing discriminative capabilities.
Taking together, the integration of the 1D-ResNet block with the SE module demonstrates
promising potential in EEG-based sleep stage classification tasks.

The number of samples for each sleep stage in sleep staging tasks is typically unbalanced
due to variations in the time spent in different sleep stages by individuals (Phan & Mikkelsen,
2022). In addition, the difficulty level of each sleep stage being distinguished varies.
Various approaches have been proposed to address the class imbalance issue in sleep
staging. One common technique is class-balanced random sampling (Tsinalis et al., 2016),
where the dataset is sampled in a manner that ensures each sleep stage is represented
proportionally. Another approach, class-balance training set design (Supratak et al., 2017),
involves designing a balanced training set by carefully selecting and augmenting data
from each sleep stage. Synthetic minority oversampling technique (SMOTE) (Chawla
et al., 2002) has also been utilized to generate synthetic samples for minority classes,
thus re-balancing the dataset. Data augmentation techniques (Fawaz et al., 2018), such
as introducing variations or transformations to existing samples, have been employed as
well. However, applying these methods to sleep staging tasks may introduce challenges in
preserving the actual order of sleep stages and capturing the temporal dependency features
and sleep-stage transition rules. A potential alternative is to utilize a loss function specifically
designed for imbalanced data, such as the weighted cross-entropy loss function (Lin et al.,
2017). This loss function assigns different weights to each class, providing higher emphasis
on the minority classes and effectively addressing the class imbalance issue.

In light of the challenges mentioned earlier and inspired by previous studies, in this
study, we proposed a new lightweight sequence-to-sequence deep learning model, called
1D-ResNet-SE-LSTM, for classifying sleep stages into five categories using single-channel
raw EEG signals. Our proposed model consists of two major components. The first is
the 1D-ResNet-SE block, which extracts and reweights features from EEG signals while
addressing the gradient degradation problem caused by network deepening through its
residual network architecture. The second is the LSTM network, which captures the
temporal dependencies and transition rules among sleep stages. In addition, the weighted
cross-entropy loss function was applied to mitigate the class imbalance problem. The
performance of our model was evaluated on two publicly available datasets, Sleep-EDF
Expanded and ISRUC-Sleep. Overall, our model aims to improve current deep-learning-
based sleep staging models from four perspectives:
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1. A sequence-to-sequence model framework is employed, consisting of three 1D-ResNet
blocks and one LSTM network. The 1D-ResNet block extracts multi-level features from
single-channel raw EEG signals, while the LSTM network captures the transition rules
among sleep stages;

2. The SE module is incorporated into the 1D-ResNet block to recalibrate the extracted
features and emphasize critical information for discriminating between different sleep
stages;

3. The weighted cross-entropy loss function is utilized to address the class imbalance
problem, with weight parameters determined based on the number of samples in each
class and the difficulty level of each class being distinguished, leading to a significant
improvement in the performance of the N1 stage;

4. Our model is designed to be as lightweight as possible, thereby saving computational
resources and making it more practical for real-world applications.

MATERIALS AND METHODS
Data
Portions of this text were previously published as part of a preprint (Li & Gao, 2023).

To assess the proposed model’s effectiveness and generalizability, we conducted
evaluations on two publicly available datasets, namely Sleep-EDF Expanded (Goldberger
et al., 2000) and ISRUC-Sleep (Khalighi et al., 2016). These datasets differ in various
aspects, such as recording settings, subject health status, EEG channels, sampling rate,
data preprocessing, and annotation criteria, thereby providing an opportunity to test the
robustness and adaptability of the model.

The Sleep-EDF Expanded dataset comprises 197 whole-night PSG recordings derived
from two studies: one examining the impact of age on sleep in healthy subjects (SC:
Sleep Cassette), and the other investigating the effect of temazepam on sleep (ST: Sleep
Telemetry). For this study, we selected the SC dataset, which consists of 153 overnight PSG
recordings collected from 78 healthy subjects (37 males and 41 females) between the ages
of 25 and 101 years. Each PSG recording includes two EEG signals acquired from Fpz-Cz
and Pz-Oz channels, one horizontal EOG, one chin EMG, and one oro-nasal respiration.
The EEG signals are sampled at a rate of 100 Hz. The PSG recordings were segmented into
non-overlapping 30-second epochs and manually annotated by a certified sleep technician
following the R&K Rules, classifying each epoch into one of eight stages: W, S1, S2, S3, S4,
REM, M (Movement), and UNKNOWN stages.

The ISRUC-Sleep dataset comprises overnight PSG recordings from 118 subjects
diagnosed with various health conditions, including healthy, sick, and under treatment.
Subgroup I, which includes 100 PSG recordings collected from 100 subjects (55 males and
45 females) diagnosed with various sleep disorders aged between 20 and 85 years, was used
in this study. Each PSG recording contains multiple signals from six EEG channels (C3_A2,
C4_A1, F3_A2, F4_A1, O1_A2, and O2_A1), two EOG channels (LOC_A2 and ROC_A1),
and three EMG channels (X1, X2, and X3), with the sampling rate of 200 Hz. Two sleep
experts independently annotated each PSG recording based on the AASM standard, with
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Table 1 Sample sizes and corresponding percentages of each sleep stage for two datasets used in this
study.

Dataset W N1 N2 N3 REM Total

Sleep-EDF Expanded 69,824 21,522 69,132 13,039 25,835 199,352
35.0% 10.8% 34.7% 6.5% 13.0% 100.0%

ISRUC-Sleep 20,098 11,062 27,511 17,251 11,265 87,187
23.0% 12.7% 31.6% 19.8% 12.9% 100.0%

each 30-second epoch categorized into one of five different sleep stages: W, N1, N2, N3,
and REM.

Data preprocess
Regarding the Sleep-EDF Expanded dataset, the M and UNKNOWN stages were excluded
from analysis due to their limited sample sizes and lack of belonging to any specific sleep
stage. Following the AASMManual, the S3 and S4 stages weremerged into a single stage, S3,
resulting in a five-class classification problem for sleep staging, to facilitate a comparison
of the scoring performance with previous studies. To emphasize the sleep stages, only
30 min of wake periods before and after the sleep periods were selected for analysis. The
Fpz-Cz EEG signals were selected for model evaluation due to their high performance
and practicality in home environments (Supratak et al., 2017; Imtiaz, 2021). Notably, no
denoising or filtering preprocessing was applied to the raw EEG signals in line with previous
studies (Supratak et al., 2017; Supratak & Guo, 2020).

On the other hand, for the ISRUC-Sleep dataset, preprocessing steps have already
been performed on the EEG signals to eliminate unwanted noise and DC offset, thereby
improving the quality and signal-to-noise ratio of the data. A notch filter was used to
remove the 50 Hz powerline noise, and the signals were bandpass-filtered between 0.3 Hz
and 35 Hz. The EEG channel F3_A2 was chosen for model evaluation, and the EEG signals
were resampled at 100 Hz.

Table 1 summarizes the sample sizes and corresponding percentages of each sleep stage
for both datasets used in this study. The Sleep-EDF Expanded dataset comprises 199,352
samples, with W, N1, N2, N3, and REM stages accounting for 35.0%, 10.8%, 34.7%, 6.5%,
and 13.0% of the samples, respectively. The ISRUC-Sleep dataset includes 87,187 samples,
withW, N1, N2, N3, and REM stages representing 23.0%, 12.7%, 31.6%, 19.8%, and 12.9%
of the samples, respectively.

The proposed model 1D-ResNet-SE-LSTM
The SE module
The architecture of the SE module is depicted in Fig. 1. The SE module is designed to
calibrate channel-wise features by considering inter-channel dependencies, consisting of
three operations, namely squeezing, excitation, and scaling. Specifically, multiple feature
maps produced by the convolutional operation serve as input to the SE module. In the
squeezing operation, the feature maps are squeezed by the global average pooling (GAP)
layer (Szegedy et al., 2015) to create a weight vector. Next, in the excitation operation, the
weight vector is passed through two successive fully connected (FC) layers, each of which is
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Figure 1 The architecture of the SEmodule.
Full-size DOI: 10.7717/peerjcs.1561/fig-1

activated by a rectified linear unit (ReLU) (Nair & Hinton, 2010) and a sigmoid function,
respectively. These procedures introduce a nonlinear transformation and provide a smooth
gating calculation, resulting in a channel weight vector. Finally, the channel weight vector
is multiplied by the input feature maps to produce the final output in the scaling operation.
In other words, the input feature maps are reweighted by the channel weight vector.

The 1D-ResNet-SE block
The proposed 1D-ResNet-SE block, as illustrated in Fig. 2, consists of two successive
one-dimensional convolutional (Conv1D) layers. The first Conv1D layer is followed by
a batch normalization (BN) layer and a ReLU activation function layer, while the second
Conv1D layer is followed by a BN layer, an SE module, and a ReLU activation function
layer sequentially. The Conv1D layer is utilized to extract relevant features from the raw
data (Kiranyaz et al., 2021), while the BN layer is employed to standardize the data batch
and improve the generalization capability of the model, also addressing the common
issue of vanishing gradient in deep learning (Ioffe & Szegedy, 2015). The ReLU activation
function is a nonlinear function that enhances the model’s expression ability. The SE
module is incorporated after the second BN layer to calibrate the features.

To tackle the challenges of gradient dispersion and explosion, a shortcut connection is
established between the input x and output of the SE module. The shortcut path involves
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Figure 2 The architecture of the 1D-ResNet-SE block.
Full-size DOI: 10.7717/peerjcs.1561/fig-2

a Conv1D layer with a convolutional kernel size of one to match the input and output
dimensions, followed by a BN layer. For a network with input x , the underlying mapping
is denoted as H (x), and the residual mapping is F (x)=H (x)−x . The rationale behind
the residual network is to enable the neural network to fit the residual mapping instead of
learning the underlying mapping. The output y from the shortcut operation is computed
as y = F (x)+x .

LSTM network
The LSTM network, a variant of RNNs, was proposed byHochreiter & Schmidhuber (1997).
This network is specifically designed to capture long-term dependencies and address the
issues of vanishing and exploding gradients commonly encountered during long-sequence
learning. In contrast to ordinary RNNs, the LSTM network includes the memory cell
instead of the recurrent node.

At each time step, the LSTM network inputs the current time step input Xt and the
hidden state of the previous time step Ht−1. The network comprises three gates, namely
forget, input, and output gates, responsible for information selection. These gates produce
output values, Ft , It , and Ot , respectively, using a fully connected layer with the sigmoid σ
activation function, ranging between 0 and 1. Among these gates, the forget gate decides
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Figure 3 The architecture of the LSTM network.
Full-size DOI: 10.7717/peerjcs.1561/fig-3

which information from the previousmemory cell’s internal stateCt−1 needs to be removed
or retained. The input gate determines which information in the input node C̃t should be
added to the current memory cell’s internal state Ct , where the input node is obtained from
a fully connected layer with the tanh activation function that ranges between −1 and 1.
The output gate decides which information in the updated cell state should be included in
the output hidden state at the current time step Ht . Figure 3 illustrates the LSTM network
and its internal architecture.

The proposed model
The proposed model, 1D-ResNet-SE-LSTM, aims to predict a sequence of sleep stages in a
many-to-many scheme from a series of EEG epochs. The input to the model consists of an
ordered set of N single-channel EEG epochs, denoted by {x1,...,xN }, where xi ∈REs×Fs , xi
represents the i-th EEG epoch, and 1≤ i≤N , with Es representing the duration of the EEG
epoch in seconds, and Fs denoting the EEG signals’ sampling rate. The model generates an
equally long sequence of predicted sleep stages

{
ŷ1,...,ŷN

}
, where ŷi corresponds to the

predicted sleep stage for xi, and ŷi ∈ {0,1,2,3,4} denotes the five sleep stages W, N1, N2,
N3, and REM, respectively. The value of N is set to 15, Es is 30, and Fs is 100 for this study.

Themodel’s architecture consists of three sequential 1D-ResNet-SE blocks, each with 32,
64, and 128 convolutional kernels, and convolutional kernel sizes of 3, 5, and 7, respectively.
The strides are set to 1, and no padding is applied. The first two blocks are followed by
a max-pooling layer that reduces the feature map size by a factor of four and preserves
essential features, while the last block is followed by a GAP layer that averages each feature
map. A dropout layer with a regularization probability of 50% is applied to improve the
model’s generalization ability (Srivastava et al., 2014). The 1D-ResNet-SE blocks serve as
the epoch-wise feature extractor to convert the EEG epoch xi into the feature vector ai
using learnable parameters θr , as given by Eq. (1).

ai=ResNetθr (xi) (1)
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As a result, an input sequence of EEG epochs is transformed into a sequence of feature
vectors, which is then fed into the LSTM layer as a series of inputs, where each feature
vector corresponds to a specific time step in the sequence. The LSTM layer has 64 hidden
units and is responsible for learning transition rules among sleep stages. Given N feature
vectors {a1,...,aN } arranged sequentially, the LSTM layer processes the i-th feature vector
ai using Eq. (2):

hi,ci= LSTMθs (hi−1,ci−1,ai) (2)

where LSTMθs represents the LSTM layer processing the sequence of feature vectors ai, θs
is the learnable parameters of the LSTM, hi and ci are vectors of hidden and cell states of
the LSTM layer after processing the feature vector ai, hi−1, and ci−1 are the hidden and cell
states from the previous time step, h0 and c0 are the initial hidden and cell states that are
set to 0.

Lastly, a Softmax layer is employed for the five-class classification, producing a five-
dimensional output vector corresponding to the probabilities of each class (W, N1, N2,
N3, and REM) that the given EEG epoch belongs to. The sleep stage label for each epoch is
determined by the maximum class probability using the argmax function, resulting in the
model generating a predictive sleep stage sequence. The model’s schematic representation
is shown in Fig. 4.

Training
Loss function
To address the issue of imbalanced class distribution in the dataset, the weighted cross-
entropy loss function was utilized in this study. The weight coefficients are determined
based on the number of samples in each class and the difficulty level of distinguishing
each class. The N1 and N3 stages, which have fewer samples than the other stages, are
considered minority classes. Moreover, the N1 stage is particularly challenging to classify
due to its transitional nature from wakefulness to sleeping (Phan et al., 2018), whereas the
N3 stage has distinctive characteristics, such as significantly higher amplitude, making it
easier to identify. To account for these imbalances, a weight coefficient of 1.5 was assigned
to the N1 stage, while the weight coefficients for the remaining four stages were set to 1.
The weighted cross-entropy loss function is formulated as Eq. (3).

Loss=−
C∑
i

wi ∗yi ∗ log
(
ŷi
)

(3)

where yi and ŷi represent the actual and predicted labels, respectively, for each class i in C
classes, and wi denotes the weight coefficient assigned to each class.

Training setup
The dataset was partitioned into training and test sets with proportions of 90% and 10%,
respectively, while 10% of the training set was extracted as the validation set. To minimize
the loss function, the adaptive moment estimation (Adam) optimizer (Kingma & Ba, 2014)
was employed, with an initial learning rate of 0.001. The step size was reduced by a factor
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Figure 4 The overall architecture of the proposed model.
Full-size DOI: 10.7717/peerjcs.1561/fig-4

of 10 after every 10 epochs if the validation loss did not decrease. To prevent overfitting,
early stopping was implemented when the validation loss remained unchanged for 20
epochs (Basheer & Hajmeer, 2000). The model with the highest validation accuracy was
selected as the final model based on the model checkpoints. A training batch size of 16 was
used, and the model was trained for 100 epochs. Finally, the performance of the model was
assessed using the test set.

Model implement environment
We implemented our model using the TensorFlow and Keras frameworks in a Python 3
environment running on an Ubuntu 20.04 system. The computation was performed on
an NVIDIA GRID T4-4Q GPU with 4GB of GPU memory, hosted on the Alibaba Cloud
Elastic Compute Service.

Performance evaluation
Per class evaluation
The model’ performance was evaluated by calculating precision, recall, and F1-score for
each class on the test set. These metrics are defined as follows:

Precision=
TP

TP+FP
, (4)
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Recall =
TP

TP+FN
, (5)

F1− score =
2×TP

2×TP+FP+FN
, (6)

where TP, FP, TN, and FN refer to the number of true positive, false positive, true negative,
and false negative predictions, respectively.

Overall evaluation
The model’s overall performance was evaluated using the overall accuracy (Acc), as defined
in Eq. (7), where C = 5 represents the number of target classes, TPi denotes the number of
true positives in class i, andM is the total number of EEG epochs.

Acc =
∑C

i=1TPi
M

(7)

To account for the imbalanced nature of the datasets, the macro average F1-score (MF1)
was also used, which is defined in Eq. (8), where F1i is per-class F1-score for class i.

MF1=
∑C

i=1F1i
C

(8)

Moreover, Cohen’s kappa coefficient (κ) (Cohen, 1960) was computed to assess the
degree of agreement between the model’s classification results and those of human sleep
experts, as given by Eq. (9):

κ =
po−pe
1−pe

(9)

where po denotes the number of samples the raters agree on and is divided by the total
number of samples, pe represents the probability of chance agreement.

In addition, the confusion matrix and its normalized version were generated to provide
insight into the classification performance.

RESULTS
Classification performance
Table 2 presents the results of the model’s classification performance on the Sleep-EDF
Expanded dataset. The table lists the per-class precision, recall, and F1-score for each
sleep stage, and the overall Acc, MF1, and κ coefficient. The model exhibits the highest
precision, recall, and F1-score of 94.90%, 94.33%, and 94.62%, respectively, for the W
stage. In contrast, the lowest precision, recall, and F1-score of 59.08%, 58.92%, and 59.00%,
respectively, are observed for the N1 stage. These findings suggest that the model better
identifies the W stage and struggles with recognizing the N1 stage. The model exhibits
intermediate performance for N2, N3, and REM stages, with F1-scores of 87.95%, 82.79%,
and 85.38%, respectively. The overall Acc and MF1 are 86.39% and 81.95%, respectively,
indicating the model’s promising performance in sleep staging. Furthermore, the κ value of
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Table 2 Classification performance on the Sleep-EDF Expanded dataset.

Class Per-class performance Overall performance

Precision Recall F1-score Acc MF1 κ

W 94.90 94.33 94.62
N1 59.08 58.92 59.00
N2 86.54 89.42 87.95
N3 87.78 78.34 82.79
REM 86.20 84.58 85.38

86.39 81.95 0.812

Notes.
1The numerical values in this table and subsequent ones are expressed in percentage, with the exception of the κ index.

Table 3 Classification performance on the ISRUC-Sleep dataset.

Class Per-class performance Overall performance

Precision Recall F1-score Acc MF1 κ

W 93.06 85.25 88.98
N1 55.30 55.76 55.53
N2 80.92 84.15 82.50
N3 90.59 87.94 89.25
REM 80.49 86.65 83.46

81.97 79.94 0.766

0.812, which falls within the almost perfect agreement range of 0.8 to 1 (Hassan & Subasi,
2017), indicates strong agreement between the model’s classification results and those of
certified sleep experts, further validating the model’s accuracy.

Furthermore, the model’s performance was evaluated on the ISRUC-Sleep dataset,
and the results are presented in Table 3. The model achieves high F1-scores of 88.98%,
82.50%, 89.25%, and 83.46% for W, N2, N3, and REM stages, respectively, while the
F1-score for the N1 stage is relatively low at 55.53%. The overall Acc and MF1 are 81.97%
and 79.94%, respectively, with the κ value of 0.766. It should be noted that the model’s
classification performance on the ISRUC-Sleep dataset is lower than that of the Sleep-EDF
Expanded dataset, which could be attributed to the presence of sleep disorder cases in the
ISRUC-Sleep dataset. This finding suggests that sleep staging may be more challenging for
individuals with sleep disorders.

Confusion matrix
The classification results on the Sleep-EDF Expanded dataset are presented using a
confusion matrix on the left side of Fig. 5A, where each row corresponds to the true
sleep stage label, and each column represents the predicted sleep stage label. The diagonal
elements signify the correctly classified instances, while the off-diagonal elements indicate
misclassifications. The results reveal that the diagonal elements are much larger than
other values in the same rows or columns. The normalized confusion matrix displays
the same results but in percentage form, where each cell represents the proportion of
instances classified into that cell, as illustrated on the right side of Fig. 5B). It provides
additional information on the relative proportions of correctly classified instances and
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Figure 5 (A) Confusionmatrix; (B) Normalized confusionmatrix on the Sleep-EDF Expanded dataset.
Full-size DOI: 10.7717/peerjcs.1561/fig-5

Figure 6 (A) Confusionmatrix; (B) Normalized confusionmatrix on the ISRUC-Sleep dataset.
Full-size DOI: 10.7717/peerjcs.1561/fig-6

misclassifications, facilitating a more detailed assessment of the model’s performance.
The results indicate that the model performs well in identifying the W stage, achieving
an accuracy of 94%, while its recognition of the N1 stage is limited, with an accuracy of
only 59%. The model exhibits moderate performance in identifying the N2, N3, and REM
stages, with an accuracy ranging from 78% to 89%. Notably, the N1 stage is frequently
misclassified as the W and N2 stages, potentially due to its transitional nature between
wakefulness and sleep. Additionally, several samples in the N3 stage are misclassified as the
N2 stage.

The confusion matrix and its normalized version for the ISRUC-Sleep dataset are
presented in Fig. 6. The results indicate that the model achieves high accuracy for the W,
N2, N3, and REM stages, ranging from 84% to 88%. However, the accuracy in identifying
the N1 stage is relatively low, with a score of only 56%.
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Figure 7 (A) Accuracy curve; (B) Error curve across training epochs in training and validation set on
the Sleep-EDF Expanded dataset.

Full-size DOI: 10.7717/peerjcs.1561/fig-7

Accuracy and loss curves across epochs
The evaluation of the model’s performance on the Sleep-EDF Expanded dataset during the
training process is based on the accuracy and loss curves presented in Fig. 7. The accuracy
curve, displayed in the left panel of Fig. 7A, illustrates the model’s accuracy across the
training epochs. The solid blue and dashed red curves represent the training and validation
sets, respectively. The model’s accuracy increases gradually with the number of epochs
and stabilizes after around 20 epochs, indicating stable convergence. On the other hand,
the loss curve, shown in the right panel of Fig. 7B, depicts the training and validation
losses, with the solid blue and dashed red curves representing the training and validation
sets, respectively. The loss value continuously decreases as the number of epochs increases
and flattens after approximately 20 epochs. To prevent overfitting, the training process is
terminated at the 72nd epoch using the callback of early stopping, as the validation loss
stabilized for 20 epochs. Notably, the similarity between the final accuracy of the training
and validation sets indicates the absence of overfitting, which is consistent with the loss
curve.

Figure 8 displays the training accuracy and loss curves for the ISRUC-Sleep dataset.
The accuracy increases progressively with the number of epochs and becomes stable after
about 30 epochs, while the loss value decreases consistently and flattens out after around
30 epochs. To avoid overfitting, the training process is stopped at the 82nd epoch.

Loss function parameter
The study investigated the impact of different weight coefficient combinations on the
performance of the proposed model using the Sleep-EDF Expanded dataset. Four weight
coefficient combinations were evaluated: [1, 1, 1, 1, 1], [1, 3, 1, 5, 3], [1, 1.5, 1, 1, 1], and
[1, 2, 1, 1, 1], with the first assigning equal weight coefficients of 1 to all classes and the
second assigning weight coefficients based on the number of samples in each class. The
third and fourth combinations assign a weight coefficient of 1.5 and 2 to the N1 stage,
respectively, while assigning a weight coefficient of 1 to the remaining sleep stages. The
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Figure 8 (A) Accuracy curve; (B) Error curve across training epochs in training and validation set on
the ISRUC-Sleep dataset.

Full-size DOI: 10.7717/peerjcs.1561/fig-8

Table 4 Different weight coefficient combinations applied on the Sleep-EDF Expanded dataset.

Coefficient Overall performance Per-class performance (F1-score)

Acc MF1 κ W N1 N2 N3 REM

1,1,1,1,1 86.34 81.13 0.809 94.56 55.01 87.82 83.27 84.97
1,3,1,5,3 83.23 79.33 0.775 93.93 57.93 83.41 76.94 84.43
1,1.5,1,1,1 86.39 81.95 0.812 94.62 59.00 87.95 82.79 85.38
1,2,1,1,1 85.86 82.15 0.806 94.53 60.22 87.45 83.37 85.18

Notes.
1The highest performing indices are indicated in bold font in this and subsequent tables.

results of these weight coefficient combinations applied to the Sleep-EDF Expanded dataset
are presented in Table 4. Comparing the first and second combinations, it can be observed
that assigning weights based solely on the number of samples per class may result in a
performance deficit for both overall and per-class performance, although the performance
of the N1 stage improves. In contrast, the third and fourth combinations outperform the
first combination in both overall and per-class performance to the same extent. Specifically,
the third combination, which assigns a weight coefficient of 1.5 to the N1 stage and 1 to the
remaining four stages, balances high N1 performance and acceptable overall performance.
Consequently, the study adopted this weight coefficient combination in its analysis.

Regarding the ISRUC-Sleep dataset, four different weight coefficient combinations were
evaluated: : [1, 1, 1, 1, 1], [1.5, 2.5, 1, 1.5, 2.5], [1, 1.5, 1, 1, 1], and [1, 2, 1, 1, 1]. The
second combination assigns weight coefficients based on the number of samples in each
class. The results are presented in Table 5, where it can be observed that the highest overall
metrics and per-class F1-score of N2, N3, and REM stage are achieved by assigning a weight
coefficient of 1.5 to the N1 stage and a weight coefficient of 1 to the remaining four stages.

Sequence length
We investigated the influence of varying sequence lengths of EEG epochs used as input to
the model on its performance concerning the Sleep-EDF Expanded dataset. Specifically,
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Table 5 Different weight coefficient combinations applied on the ISRUC-Sleep dataset.

Coefficient Overall performance Per-class performance (F1-score)

Acc MF1 κ W N1 N2 N3 REM

1,1,1,1,1 81.86 78.96 0.764 89.85 52.00 81.99 88.89 82.07
1.5,2.5,1,1.5,2.5 79.88 78.20 0.742 88.16 54.97 78.95 88.08 80.86
1,1.5,1,1,1 81.97 79.94 0.766 88.98 55.53 82.50 89.25 83.46
1,2,1,1,1 80.57 78.93 0.749 88.57 55.67 80.91 88.86 80.63

Notes.
The highest performing indices are indicated in bold font.

Table 6 Different sequence lengths applied on the Sleep-EDF Expanded dataset.

Length Overall performance Per-class performance (F1-score)

Acc MF1 κ W N1 N2 N3 REM

3 84.64 79.76 0.788 94.06 54.52 86.36 80.95 82.91
5 84.86 80.35 0.792 94.12 55.37 86.47 82.62 83.18
10 84.93 80.25 0.793 93.71 54.75 86.85 81.34 84.61
15 86.39 81.95 0.812 94.62 59.00 87.95 82.79 85.38
20 85.97 81.66 0.808 94.61 56.63 87.18 85.30 84.57

Notes.
The highest performing indices are indicated in bold font.

Table 7 Different sequence lengths applied on the ISRUC-Sleep dataset.

Length Overall performance Per-class performance (F1-score)

Acc MF1 κ W N1 N2 N3 REM

3 79.51 78.09 0.736 90.34 56.19 78.91 84.74 80.28
5 79.39 77.15 0.732 89.65 51.65 79.62 85.52 79.34
10 79.78 77.04 0.739 90.42 50.73 78.11 88.69 77.24
15 81.97 79.94 0.766 88.98 55.53 82.50 89.25 83.46
20 81.81 79.55 0.766 91.51 54.88 79.84 88.10 83.41

Notes.
The highest performing indices are indicated in bold font.

epoch lengths of 3, 5, 10, 15, and 20 were evaluated, and the results are presented in Table 6.
The findings suggest that increasing the input sequence length provides the model with
more temporal information, improving overall and per-class performance. However, using
longer epochs may reduce the number of available samples for model training. Given this
trade-off, a sequence length of 15 was recommended for the current study.

We also examined the impact of different EEG epoch sequence lengths on the model’s
performance in the ISRUC-Sleep dataset. The results are presented in Table 7.

Ablation study
The proposed model incorporates ResNet, LSTM, and SE components with the weighted
cross-entropy (WCE) loss function. To evaluate the contribution of each component to
the model’s performance, we conducted the ablation study on the Sleep-EDF Expanded
dataset, as detailed in Table 8. Specifically, we compared the classification performance of
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Table 8 Ablation study conducted on the Sleep-EDF Expanded dataset.

Combination Overall performance Per-class performance (F1-score)

Acc MF1 κ W N1 N2 N3 REM

ResNet+LSTM 85.61 79.84 0.799 93.93 50.88 87.62 82.39 84.35
ResNet+LSTM+SE 86.34 81.13 0.809 94.56 55.01 87.82 83.27 84.97
ResNet+LSTM+WCE 85.70 80.77 0.801 94.19 55.51 87.68 82.13 84.35
Our model 86.39 81.95 0.812 94.62 59.00 87.95 82.79 85.38

Notes.
The highest performing indices are indicated in bold font.

Table 9 Ablation study conducted on the ISRUC-Sleep dataset.

Combination Overall performance Per-class performance (F1-score)

Acc MF1 κ W N1 N2 N3 REM

ResNet+LSTM 80.56 77.36 0.746 88.71 48.35 80.95 87.67 81.10
ResNet+LSTM+SE 81.86 78.96 0.764 89.85 52.00 81.99 88.89 82.07
ResNet+LSTM+WCE 80.95 78.86 0.753 88.74 54.71 81.16 88.19 81.50
Our model 81.97 79.94 0.766 88.98 55.53 82.50 89.25 83.46

Notes.
The highest performing indices are indicated in bold font.

four different combinations of components, namely ResNet+LSTM, ResNet+LSTM+SE,
ResNet+LSTM+WCE, and ResNet+LSTM+SE+WCE (our model). By comparing the
ResNet+LSTM combination with the ResNet+LSTM+SE combination, the results suggest
that the SE component enhances the model’s classification performance in both overall and
per-class metrics, indicating the importance of feature recalibration or reweighting for the
sleep staging task. Additionally, the comparison between the ResNet+LSTM combination
and the ResNet+LSTM+WCE combination demonstrates that using theWCE loss function
effectively mitigates the class imbalance problem, resulting in improved performance for
the N1 stage while maintaining acceptable performance for other sleep stages and overall
performance. Our proposed model outperforms the other three combinations in most
performance metrics, except for the performance of the N3 stage. These findings suggest
that integrating the ResNet, LSTM, and SE components along with the WCE loss function
can effectively improve the accuracy of sleep staging.

Additionally, the ablation study was conducted on the ISRUC-Sleep dataset, as shown
in Table 9. Similarly, the results suggest that the SE component effectively improves overall
and per-class performance, while using the WCE loss function effectively mitigates the
class imbalance problem.

Comparative analysis with existing sleep staging models
We carried out the comparative analysis between the proposed model and several other
deep learning-based sleep staging models, namely SleepEEGNet (Mousavi, Afghah &
Acharya, 2019), DeepSleepNet (Supratak et al., 2017), TinySleepNet (Supratak & Guo,
2020), IITNet (Seo et al., 2020), and AttnSleep (Eldele et al., 2021), using the EEG channel
Fpz-Cz in the Sleep-EDF Expanded dataset. Table 10 presents the results of our analysis,
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Table 10 Comparison between our model and existing sleep staging models on the Sleep-EDF Ex-
panded dataset.

Model Overall performance Per-class performance (F1-score)

Acc MF1 κ W N1 N2 N3 REM

SleepEEGNet 80.0 73.6 0.73 91.7 44.1 82.5 73.5 76.1
DeepSleepNet 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4
TinySleepNet 83.1 78.1 0.77 92.8 51.0 85.3 81.1 80.3
IITNet 83.9 77.7 0.79 87.9 44.7 88.0 85.7 82.1
AttnSleep 82.9 78.1 0.77 92.6 47.4 85.5 83.7 81.5
Our Model 86.39 81.95 0.812 94.62 59.00 87.95 82.79 85.38

Notes.
The highest performing indices are indicated in bold font.

Table 11 Comparison between our model and existing sleep staging models on the ISRUC-Sleep
dataset.

Model Overall performance Per-class performance (F1-score)

Acc MF1 κ W N1 N2 N3 REM

U-Time – 77 – 88 55 79 87 83
Our Model 81.97 79.94 0.766 88.98 55.53 82.50 89.25 83.46

Notes.
The highest performing indices are indicated in bold font.

which indicate that the proposed model surpasses the other models in terms of all three
overall performance metrics and per-class F1-score for the W, N1, and REM stages.
Notably, our model exhibits improved performance in the N1 stage, which indicates the
effectiveness of the proposed WCE loss function in addressing the class imbalance issue.

Furthermore, our model has a significantly lower number of parameters (0.28 m)
compared to other models, such as DeepSleepNet (24.7 m), SleepEEGNet (2.6 m), and
TinySleepNet (1.3 m), resulting in reduced computational resources and lower risks of
overfitting the training data. This is further supported by the accuracy and error curves
observed during training epochs, as illustrated in Figs. 7 and 8.

We conducted the comparison between our proposed model and a state-of-the-art deep
learning-based sleep staging model, U-Sleep (Perslev et al., 2019), on the ISRUC-Sleep
dataset. The results of this comparison are shown in Table 11, which demonstrate that our
proposed model achieves superior performance over the U-Sleep model in terms of the
MF1 and per-class F1-score for each sleep stage.

DISCUSSION
Sleep staging is a critical part of sleep medicine as it involves classifying sleep into distinct
stages using EEG signals, which enables the evaluation of sleep quality and the identification
of sleep disorders. The application of deep learning techniques to automate sleep staging
has gained significant attention in recent times owing to its potential to enhance the
accuracy and efficiency of the process.
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This study introduced a novel sleep staging model called 1D-ResNet-SE-LSTM, which
predicts sleep stages in amany-to-many fashion from a sequence of EEG epochs. Themodel
utilizes ResNet blocks as an epoch-wise feature extractor to extract relevant features from
the raw EEG signals within each EEG epoch, while the LSTM network captures temporal
dependencies and transition rules among EEG epochs. Moreover, the SE module was
incorporated to enhance the feature representation and improve classification performance.
The model was designed to be lightweight to conserve computational resources and is
suitable for real-world applications. The WCE loss function was employed to address
the performance imbalance, with the weight coefficients for each class determined by the
number of samples and class complexity. The effectiveness and robustness of the model
were verified using two datasets, namely the Sleep-EDF Expanded dataset and ISRUC-Sleep,
to ensure generalizability.

The proposed model exhibits high performance for the W, N2, N3, and REM stages,
with relatively low performance observed for the N1 stage. These results are consistent
with the human interrater agreement, which has been found to lower performance in
detecting the N1 stage compared to other sleep stages (Malhotra et al., 2013). The N1 stage
is often misclassified as theW and N2 stages, possibly due to its transitional nature between
wakefulness and sleep. In addition, some samples in the N3 stage may be inaccurately
classified as the N2 stage. Nonetheless, the model demonstrates relatively high overall Acc
and MF1, indicating its promise in sleep staging. Furthermore, the high κ value indicates
almost perfect agreement with certified sleep experts, further validating the model’s
accuracy. Notably, the similarity between the accuracy of the training and validation
sets suggests that overfitting is absent, which is consistent with the loss curve. It is worth
mentioning that sleep staging may be more challenging for individuals with sleep disorders.

To evaluate the effectiveness of the WCE loss function, we conducted experiments to
compare the model’s performance with different weight coefficient combinations. The
results indicate that assigning weights solely based on the number of samples may result in
an overall and per-class performance deficit, despite improving the N1 stage’s performance.
Thus, simply adjustingweight coefficients based on the number of samples in each classmay
not be sufficient to obtain optimal performance. Assigning the highest weight coefficient of
1.5 to the N1 stage while setting the weight coefficients for the other four stages to 1 achieves
high N1 performance with acceptable overall performance. However, it is essential to note
that some samples within a sleep stage may have varying difficulty levels for recognition.
For instance, transitional epochs during sleep pose a more significant challenge for accurate
classification as they exhibit features of both preceding and succeeding sleep stages, making
them more ambiguous to categorize correctly (Phyo et al., 2022). Therefore, assigning
different weights to individual samples may be beneficial better to reflect their significance
in the sleep staging task.

Furthermore, we investigated the influence of varying sequence lengths of EEG epochs
as input to the model’s performance. Our findings reveal that increasing the input sequence
length provides the model with more temporal information, resulting in improved overall
and per-class performance. However, using longer epochs decreases the number of available
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samples for training the model. As a result, we selected a sequence length of 15 for this
study, given the trade-off between temporal information and available training data.

The ablation study was performed to evaluate the contribution of each component
to the model’s performance. The results suggest that the SE component improves the
model’s classification performance across overall and per-class metrics, underscoring
the importance of feature recalibration or reweighting. Moreover, adopting the WCE loss
function effectivelymitigates the class imbalance problem, improvingN1 stage performance
while maintaining satisfactory performance for other sleep stages and overall accuracy.

Compared to other cutting-edge models, the proposed model yields superior overall
performance metrics and per-class F1-scores for some sleep stages. Furthermore, the
proposed model possesses considerably fewer parameters than other models, which lowers
the computational resources required and minimizes the risk of overfitting the training
data.

However, the proposed model is subject to several limitations. Firstly, the model is a
sequence-to-sequence network, which requires input sequences of EEG epochs. Secondly,
the weight coefficients in the loss function could be further optimized to balance the
classification performance of each sleep stage, such as adjusting the weight coefficient for
the N3 stage, or gradient re-weighting based on the difficulty level of each EEG epoch
sample to classify (Liao et al., 2021). Finally, apart from the channel attention mechanism,
incorporating spatial attention mechanisms could enhance the model’s effectiveness (Woo,
Park & Lee, 2018).

Future studies could enhance the proposed model by incorporating additional
modalities, like EOG and EMG signals. Since the REM stage is characterized by the
movement of the eyes and loss in muscle tone of the body core, EOG and EMG signals may
provide critical information to separate the REM stage from other sleep stages (Loh et al.,
2020). Additionally, further studies are necessary to validate the model’s generalizability on
larger datasets and diverse populations. Moreover, exploring alternative loss functions and
architectures may further improve the accuracy of sleep staging. Furthermore, the model’s
interpretability needs to be explored to comprehend how it arrives at its classification
decisions and identify potential errors or biases (Phan et al., 2022; Jany et al., 2022; Horie
et al., 2022). Meanwhile, addressing the relatively low performance for the N1 stage could
be an area of focus for future research.

CONCLUSIONS
In summary, this study introduced a novel approach for sleep staging that utilizes deep
learning techniques such as ResNet, LSTM, and SE components, along with the WCE
loss function. The results demonstrate the effectiveness and robustness of the proposed
model in classifying sleep stages. The high degree of agreement between the model’s
predictions and those of human sleep experts highlights its potential as a valuable tool for
improving the diagnosis and treatment of sleep disorders. The proposed model can help
reduce human clinicians’ workload, making sleep assessment and diagnosis more effective.
Furthermore, this research contributes to the emerging deep learning-based sleep staging
field and provides essential insights for the sleep medicine community.
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