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ABSTRACT
The whale optimization algorithm (WOA) is a widely used metaheuristic optimization
approach with applications in various scientific and industrial domains. However,
WOA has a limitation of relying solely on the best solution to guide the population
in subsequent iterations, overlooking the valuable information embedded in other
candidate solutions. To address this limitation, we propose a novel and improved
variant called Pbest-guided differential WOA (PDWOA). PDWOA combines the
strengths of WOA, particle swarm optimizer (PSO), and differential evolution (DE)
algorithms to overcome these shortcomings. In this study, we conduct a comprehensive
evaluation of the proposed PDWOA algorithm on both benchmark and real-world
optimization problems. The benchmark tests comprise 30-dimensional functions from
CEC 2014 Test Functions, while the real-world problems include pressure vessel
optimal design, tension/compression spring optimal design, and welded beam optimal
design. We present the simulation results, including the outcomes of non-parametric
statistical tests including the Wilcoxon signed-rank test and the Friedman test, which
validate the performance improvements achieved by PDWOA over other algorithms.
The results of our evaluation demonstrate the superiority of PDWOA compared to
recent methods, including the original WOA. These findings provide valuable insights
into the effectiveness of the proposed hybrid WOA algorithm. Furthermore, we offer
recommendations for future research to further enhance its performance and open new
avenues for exploration in the field of optimization algorithms. The MATLAB Codes
of FISA are publicly available at https://github.com/ebrahimakbary/PDWOA.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Optimization Theory and
Computation, Scientific Computing and Simulation
Keywords Differential evolution algorithm, Friedman test, Metaheuristic optimization, Pbest-
guided algorithm, Statistical tests, Whale optimization algorithm, Wilcoxon signed-rank test

INTRODUCTION
As optimization problems in various disciplines become increasingly challenging, it
becomes apparent that classical optimization methods suffer from limitations. These
limitations include convergence to local optima, requirements of differentiability and
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continuity, and high computational burdens. Consequently, there is a growing need to
develop more robust tools for optimal problem-solving. In recent years, metaheuristic
methods, such as particle swarm optimization (PSO) (Kennedy & Eberhart, 1995) and
genetic algorithm (GA) (Holland, 1992), have gained popularity and success in solving
optimization problems. Various metaheuristic methods are still being proposed such as
the termite life cycle optimizer (TLCO) (Minh et al., 2023b; Minh et al., 2023a), K-means
optimizer (KO) (Minh et al., 2022), planet optimization algorithm (POA) (Sang-To et al.,
2022), a combination of artificial neural network (ANN) and balancing composite motion
optimization (BCMO) (Tran et al., 2023), and the newmovement strategy of cuckoo search
(NMS-CS) (Cuong-Le et al., 2021).

Researchers tend to utilizemetaheuristicmethods for optimization problems due to their
derivative-free formulation and their ability to escape local optima and find global optima.
However, it is important to consider the No Free Lunch theorem (Wolpert & Macready,
1997), which suggests that no single optimization algorithm performs best for all problems.
Therefore, there is a need to explore and develop new metaheuristic algorithms that are
specifically designed to address the challenges of different optimization problems.

The whale optimization algorithm (WOA) is a recent metaheuristic method suggested
by Mirjalili & Lewis (2016), inspired by the hunting strategy of humpback whales. WOA
has gained significant attention from engineers, designers, and researchers worldwide for
its effectiveness in optimizing various problems. However, the original WOA formulation
has a limitation: it only considers the best solution from each iteration, neglecting valuable
information from other individuals and their best positions. This limitation can hinder the
algorithm’s overall optimization performance.

To address this drawback, our proposed approach introduces an enhanced version of
WOA called the Pbest-guided differential Whale Optimization Algorithm (PDWOA).
PDWOA incorporates efficient features from PSO and differential evolution (DE)
algorithms (Storn & Price, 1997) to improve the algorithm’s ability to avoid local optima
and achieve global optima, particularly in shifted optimization problems. In addition, two
non-parametric statistical tests, including the Wilcoxon signed-rank test and the Friedman
test (Derrac et al., 2011; Buch, Trivedi & Jangir, 2017; Ghasemi et al., 2023), are employed
to validate the performance improvements achieved by PDWOA over the original WOA.

The contributions of this study are outlined as follows:
1. Overview and analysis of the Whale Optimization Algorithm (WOA) to understand its

functionality and limitations, particularly in complex real-world problems.
2. Development of a new enhanced version ofWOAknownas the Pbest-guideddifferential

Whale Optimization Algorithm (PDWOA) to address the identified limitations of the
original algorithm.

3. Evaluation of the performance of PDWOA compared to the original WOA through
experiments on 30 shifted test functions from CEC2014. The results demonstrate
the efficiency of PDWOA in obtaining optimal solutions. Statistical tests, such as
the Wilcoxon signed-rank test and the Friedman test, are employed to validate the
performance improvements.
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4. Application of PDWOA to solve three real-world engineering problems, providing
practical validation of its optimization performance in real-world scenarios.

5. Discussion of potential future improvements by exploring the integration of models
from other powerful optimization algorithms, aiming to expand the range of problems
that can be accurately solved by the proposed algorithm.
The remaining sections of this paper are organized as follows. The ‘‘Related Work’’

section provides an overview of the related work in the field. ‘‘WOA’’ presents a brief
introduction to the WOA. The ‘‘Challenges and Enhanced Hybrid Version of WOA’’
section discusses the main drawbacks of WOA and proposes the Pbest-guided differential
WOA (PDWOA) by incorporating efficient features of PSO and DE algorithms. The
‘‘Simulation Results’’ section presents the simulation results, where extensive experiments
are conducted to evaluate the performance of PDWOA, including the statistical tests.
‘‘Discussion and Future Studies’’ discusses the results and provides potential areas for
future studies. Finally, the paper is concluded in the ‘‘Conclusion’’ section.

RELATED WORKS
A comprehensive overview of the applications of WOA, including various improvements,
has been presented in Gharehchopogh & Gholizadeh (2019). Some notable examples of
these improvements include the use of WOA for detecting weak signals in rotating (He
et al., 2019), analyzing clinical data of anaemic pregnant (Saidala & Devarakonda, 2017),
scheduling tasks in cloud computing (Sreenu & Sreelatha, 2017), and suppressing sidelobe
in multiple input and multiple output radar systems (Yuan et al., 2018). Additionally,
Mohammadi & Mehdizadeh (2020) proposed a novel hybrid model that combines support
vector regression with WOA for the daily estimation of reference evapotranspiration,
demonstrating superior performance compared to support vector regression-only models.

Qais, Hasanien & Alghuwainem (2020a) proposed a new enhanced version of WOA,
called EWOA, specifically designed for maximizing power extraction from variable-speed
wind generators (VSWGs). Instead of using the parameters suggested in the original WOA,
EWOA incorporates a cosine function to control the searching and encircling behavior.
Wang & Chen (2020) proposed a novel approach for medical diagnosis by improving a
support vector machine (SVM) using chaotic WOA with multiple swarms (CMWOA).
Their technique exhibited excellent performance in terms of avoiding local optima and
achieving fast convergence. Cao et al. (2020) incorporated chaos theory to enhance the
exploration ability and convergence characteristics of WOA, resulting in the development
of a new chaotic-based improved version called CIWOA. This approach was specifically
applied to achieve efficient terminal voltage control for proton exchange membrane fuel
cells (PEMFCs).

Akyol & Alatas (2020) applied WOA and social impact theory based optimization for
sentiment classification in online social media. Furthermore, Zeng et al. (2021) proposed
a competitive mechanism enhanced WOA (CMWOA) for effectively addressing multi-
objective optimization problems. Qais, Hasanien & Alghuwainem (2020b) introduced a
novel design of Sugeno fuzzy logic controllers (FLCs) based on WOA (WOA-FLCs) to
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enhance the low voltage ride-through of VSWGs, resulting in improved time response
characteristics surpassing those obtained by GA and grey wolf optimizer (GWO). Jain,
Katarya & Sachdeva (2020) employed a novel social network-based WOA (SNWOA) to
identify opinion leaders in social networks. Rosyadi, Penangsang & Soeprijanto (2017)
applied the WOA to determine the optimal placement and size of filters in distribution
systems. Chen, Li & Yang (2020) utilized chaos mechanism and quasi-opposition to
enhance the convergence speed ofWOA andmitigate the issue of local optima when solving
large-scale problems. Liu et al. (2020) proposed the utilization of WOA for evaluating the
resilience of regional flood disasters, demonstrating improved generalization performance
and remarkable stability. Wang et al. (2019) introduced an opposition-based variant of
WOA for tackling multi-objective optimization problems.

Srivastava et al. (2018) utilized WOA to estimate the parameters of a permanent magnet
synchronous motor. An improved version of WOA optimizer was suggested in Abdel-
Basset, Mohamed & Mirjalili (2021), which comprises three modifications compared to the
original WOA. Firstly, the dynamic distance control factor was used rather than a fixed
one. Secondly, a certain probability was used to achieve a compromise between movement
towards the best solution and its opposite for escaping from local optimal solutions. Finally,
Nelder–Mead was used along with the Pareto archived evolution strategy (PAES) to further
improve WOA. Authors ofMahdad (2018) solved the optimal power flow (OPF) problem
utilizing a new partitioning whale algorithm.

In Chen et al. (2020), an improved WOA named RDWOA was suggested for improving
the convergence and global optimization performance of WOA in solving multi-
dimensional problems. The improvement included two schemes, random spare or random
replacement and double adaptive weight, which were used for advancing the convergence,
exploration at the initial phases, and exploitation at subsequent phases. The proposed
strategies considerably increased the convergence speed and the optimization performance
of WOA. The efficiency of RDWOA was proved by utilizing typical benchmarks and
engineering problems.

Trivedi et al. (2016) appliedWOA to solve emission constraint environmental economic
dispatch problems.Tu et al. (2021) proposed another enhanced variant ofWOA to improve
its convergence performance and prevent being trapped in local optimal solutions.
The enhancement employs a new communication mechanism (CM) for improving
the global optimization performance and biogeography-based optimization (BBO) to
compromise between the exploring and exploiting performances. The effectiveness of BBO
was confirmed using benchmark and engineering problems.

Abdel-Basset, Abdle-Fatah & Sangaiah (2018) proposed an enhanced version of WOA
that incorporates Lévy flight (LF) for problem-solving in the cloud computing environment.
Mafarja & Mirjalili (2017) proposed a hybrid approach that combinesWOAwith simulated
annealing for feature selection. In Nazari-Heris et al. (2017), the optimal generations of
combined heat and power units were determined usingWOA.Guo et al. (2020) augmented
WOA by incorporating adaptive social learning (ASL) and wavelet mutation. At first, a
novel exploration probability was formulated for improving the performance of WOA.
Then, an ASL strategy was utilized for constructing the adaptive social network (ASN)
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of the WOA population, to enhance its diverseness. Finally, the suggested procedure was
augmented using the Morlet wavelet mutation strategy. WOA was proposed in Reddy,
Reddy & Manohar (2017) for the solution of optimally identifying the size of renewable
energy resources.

In Samadianfard et al. (2020) a hybridization of themulti-layer perceptron (MLP) neural
network and WOA was roposed for wind speed forecasting. Content-based image retrieval
was solved in Aziz, Ewees & Hassanien (2018) using multi-objective WOA (MOWOA)
algorithm. InWu et al. (2018), the path planning problem for solar-powered UAV in urban
environment was solved using WOA enhanced with adaptive chaos-Gaussian switching
solving strategy and coordinated decision-making mechanism. In Hou et al. (2020), a
hybrid of quantum simultaneous WOA (QSWOA) and a multi-objective economic model
predictive control (MOEMPC) was proposed for controlling gas turbines. A new improved
opposition-based WOA (IOWOA) was used for estimating the parameters of solar cells
diode models (Abd Elaziz & Oliva, 2018). Binary WOA was utilized in Eid (2018) to deal
with feature selection problems. In Liu, Yao & Li (2020) a hybridization of LF-augmented
WOA and DE was suggested for dealing with the job shop scheduling problem (JSSP),
where, LF and DE are used for improving the exploration and exploitation performances,
respectively. Data clustering based on WOA was proposed in Canayaz & Özdağ (2017).
Qiao et al. (2020) employed a novel improved variant of WOA called IWOA for short-term
natural gas consumption forecasting. Khalilpourazari, Pasandideh & Ghodratnama (2018)
proposed the utilization of Whale Optimization Algorithm (WOA) and Water Cycle
Algorithm (WCA) for programming a multi-item economic order quantity model. Pham
et al. (2020) proposed the utilization of WOA for the optimal allocation of resources in
wireless networks.

WOA
The mathematical model of the original WOA, inspired by the hunting strategy of
humpback whales, which consists of the stages of surrounding prey, bubble-net hunting
maneuver, and search for prey, is briefly discussed in this section,Mirjalili & Lewis (2016).

Encircling prey
During the encircling prey stage, the WOA algorithm emulates the ability of humpback
whales to recognize the prey’s position and encircle them. In each iteration, the best
solution, acting as the leader, is considered the target prey. The behavior is defined in
Eqs. (1)–(3):
→

X (t+1)=
→

X Leader (t )−
→

A�
→

D (1)

→

A = 2a.
→
r −a (2)

→

C = 2.
→
r (3)
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where, t represents the iteration number,
→

A and
→

C are the coefficient vectors of WOA,
→

X Leader denotes the position vector of the best solution found so far, and
→

X represents the
position vector of each member in the algorithm population. Furthermore, the � sign
denotes the element-wise multiplication. Notably, to enhance the performance of WOA,
the value of a linearly declines from 2 to zero during the iterations, and

→
r is a vector of

uniformly distributed random numbers between zero and one.

Exploitation stage: bubble-net attacking maneuver
The bubble-net attackingmaneuver, inspired by the hunting behavior of humpback whales,
is modeled using two strategies:
1. Declining surrounding strategy: This strategy is achieved by reducing the value of a in

Eq. (2). Notably, the range of variation in vector
→

A is directly proportional to a, where
→

A
consists of randomly generated values between - a and a.
2. Spiral position update:Thewhale’s displacement towards the prey’s position, simulating
the spiral motion of humpback whales, is formulated as Eq. (4):

→

X (t+1)=
→

X Leader (t )+
→

D′.eB.L.Cos(2πL) (4)

where
→

D′=
∣∣∣∣→X Leader−

→

X
∣∣∣∣ denotes how far is the ith whale from the prey, B is a constant

that describes the logarithmic spiral motion, and L is a random value between −1 and 1.
It is important to mention that the selection between the declining surrounding strategy

and the spiral position update is equally probable.

Search for prey
The search for prey, representing the exploration stage of WOA, can be achieved by

adjusting the vector
→

A . This mechanism facilitates a global search by setting the absolute

value of the vector
→

A to |
→

A|> 1. Mathematically, this stage can be formulated as Eqs. (5)
and (6):

→

D=
∣∣∣∣→C�→X rand−

→

X
∣∣∣∣ (5)

→

X (t+1)=
→

X rand−
→

A�
→

D (6)

where
→

X rand denotes the position vector of an indiscriminately chosen solution. It is

important to note that the WOA method relies on two main parameters,
→

A and
→

C , which
need to be tuned.

CHALLENGES AND ENHANCED HYBRID VERSION OF WOA
In the current section, the challenges of WOA are discussed, followed by the introduction
of a novel improved version of WOA to address those challenges.
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Challenges of WOA
In practical applications, we encounter optimization problems with diverse behaviors
and levels of complexity. Therefore, researchers strive to find an algorithm that is robust,
requiresminimal parameter tuning, and offers simplicity and fast convergence speed (Talbi,
2009). Real-world problems often involve shifted functions, where the global optimal
solutions do not reside at the origin of coordinates and vary across dimensions. It is well-
documented in the literature that many algorithms exhibit reduced performance for shifted
functions (Liang, Qu & Suganthan, 2013), which necessitates appropriate modifications.

To investigate this issue with WOA, we conducted experiments using the conventional
model of the sphere function (Mirjalili & Lewis, 2016) and its shifted counterpart, known as
the Shifted Sphere Function (Suganthan et al., 2005). We aimed to determine the optimal
solutions for these functions with 30 dimensions using WOA, PSO, and DE methods.
Each function was independently evaluated in 25 runs, with 300,000 function evaluations
(Suganthan et al., 2005) and a population size of 30 for the algorithm. The mean values
obtained by WOA for the optimal response of the traditional sphere function and the
shifted sphere function were 0 and 0.478, respectively. Figure 1 illustrates the convergence
characteristics of WOA, DE/best/1, and PSO algorithms for both functions. It is worth
noting that all algorithm parameters were set according to the recommendations in the
original codes, leading to improved average performance across a wide range of problems.
From the figure, it is evident that the original WOA exhibits reduced performance for
shifted functions. Therefore, it is crucial to either tune the key controlling parameters
or modify the WOA formulation to enhance its efficiency in solving a wider range of
engineering and real-world problems.

Another issue with the original WOA is that it only stores the best solution among the
entire population in each iteration. In contrast, algorithms like particle swarm optimization
(PSO) store the personal best position (Pbest) for each member in each iteration, which
enables directing the population members to avoid local optima. Therefore, an enhanced
hybrid model of WOA can be developed by leveraging the advantageous features of
other algorithms as an auxiliary operator. In this study, we present a new efficient hybrid
variant of WOA that incorporates the formulations of PSO (Eberhart & Kennedy, 1995)
and differential evolution (DE) (Storn & Price, 1997). This hybrid variant will be discussed
in detail in the next section.

Pbest-guided differential WOA
The storage of only the best solution in WOA, similar to GA, is identified as a fundamental
weakness of the algorithm based on our investigation. This limitation arises from
eliminating many candidate solutions in each iteration, which could potentially be useful
in subsequent iterations and enhance the algorithm’s optimization capability, as observed
in DE and PSO algorithms. Consequently, we can leverage the models/formulations of
basic DE, PSO, and their advanced variants, which have gained significant popularity in
recent years, to enhance WOA’s performance in locating the global optimum of real-world
optimization problems.
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               (a)                                                             (b) 

 
           (c)                                                             (d) 

 
           (e)                                                              (f) 

Figure 1 The convergence characteristics for the standard test functions. (A) Sphere function solution
obtained by WOA; (B) shifted sphere function solution obtained by WOA (mean is 4.786e−1); (C) sphere
function solution obtained by DE/best/1; (D) shifted sphere function solution obtained by DE/best/1
(mean is 1.510e−06); (E) sphere function solution obtained by PSO; (F) shifted sphere function solution
obtained by PSO (mean is 1.247e3).

Full-size DOI: 10.7717/peerjcs.1557/fig-1

PSO-based Modification: The first modification proposed in this study involves storing the
personal best(Pbest ) position of each member in each iteration, denoted by→Xpbest > 1,
similar to the PSO algorithm. With this Pbest-guided modification, the search equations
can be rewritten as Eqs. (7)–(14):
→

A = 2a.
→
r −a (7)

→

C = 2
→
r (8)

→

D=
∣∣∣∣→C�→X Leader (t )−

→

Xpbest (t )
∣∣∣∣ (9)
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→

X (t+1)=
→

X Leader (t )−
→

A�
→

D (10)

→

D
′′

=

∣∣∣∣→C�→X rand−
→

Xpbest
∣∣∣∣ (11)

→

X (t+1)=
→

X rand−
→

A�
→

D
′′

(12)

→

D′=
∣∣∣∣→X Leader−

→

Xpbest
∣∣∣∣ (13)

→

X (t+1)=
→

X Leader (t )+
→

D′.eBL.Cos(2πL) (14)

where Eqs. (9) and (10) denote the encircling prey phase, Eqs. (11) and (12) model the
search for prey phase, and Eqs. (13) and (14) demonstrate the spiral position update. Note
that in the proposed algorithm, the same as PSO, for each member of the population in

each iteration,
→

Xpbest is updated for each individual as Eq. (15):

→

Xpbest (t+1)=


→

X (t+1);if f
(
→

X (t+1)
)
≤ f

(
→

Xpbest (t )
)

→

Xpbest (t ) ;else
(15)

DE-based modification: In the DE-based modification, we incorporate the best position
found by each individual in all previous iterations. This enables us to leverage themutations
proposed in the DE algorithm to effectively enhance the original WOA. Therefore, in the
second stage of the modification, a mutation phase, as defined in Eq. (16), is added to the
formulation of WOA immediately after the main phases of the algorithm:

→

V (t )=
→

Xpbest (t )+ rand1
(
→

X Leader (t )−
→

Xpbest (t )
)

+rand2
(

→

Xpbestr1(t )−
→

Xpbestr2(t )
) (16)

where
→

Xpbestr1 and
→

Xpbestr2 are the personal best positions of two solutions randomly
chosen from the population for updating each solution. Similarly, rand1 and rand2 are
random vectors with dimensions equal to D (problem’s dimension), where the elements’
values range between 0 and 1. Subsequently, a random variable randj is generated for each
dimension j of each solution, leading to Eq. (17):

→

Xj (t+1)=


→

V j (t ) if randj >Cr

→

Xj (t ) otherwise

. (17)
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Here,Cr represents a control parameter, similar to the crossover rate used in evolutionary
algorithms.

Finally, we want to emphasize that we employed the penalty method, a widely-used
approach for addressing constraints in constrained optimization problems, in our research.
The penalty method utilizes penalty functions to guide the optimization algorithm towards
feasible solutions while penalizing infeasible solutions. To provide a visual representation
of the proposed approach, we have included a flowchart of the Pbest-guided differential
Whale Optimization Algorithm (PDWOA) in Fig. 2.

SIMULATION RESULTS
The verification of the effectiveness of PDWOA is achieved using two sets of experiments,
firstly it was used for solving CEC 2014 Test Functions (Liang, Qu & Suganthan, 2013),
and then it is exploited for solving three engineering problems.

Solving CEC 2014 test functions using PDWOA
In order to compare the performance of PDWOA with that of the original WOA, 30 test
functions with 30 dimensions have been selected from CEC 2014 Test Functions (Liang,
Qu & Suganthan, 2013). These functions include unimodal (F1-F3), multimodal (F4-F16),
hybrid (F17-F22), and composition (F23-F30) functions. For both algorithms, we consider
a population number equal to 30 and iteration numbers equal to 10,000, i.e., the number
of function evaluations (NFEs) done by each algorithm (for each test function) is 300,000.
To find the optimal solution of each function, 25 separate runs have been executed for
each algorithm and then, statistical analysis has been performed on the results.

A comparative study between DE, PSO, the original WOA, and the proposed PDWOA
with three different Cr settings, i.e., a random value and the fixed values of 0.1 and 0.9, is
presented in Table 1. In this table, the terms ‘‘Mean’’ and ‘‘Std’’. represent the average value
and standard deviation, respectively, of the results obtained from 25 independent runs for
optimizing each function using each algorithm. The term ‘‘Rank’’ indicates the ranking
of the algorithm’s Mean index, reflecting its effectiveness in optimizing the considered
function. Additionally, ‘‘NB’’ represents the number of functions for which the algorithm
achieves the best Mean index, while ‘‘MR’’ represents the mean of the Rank indices of the
algorithm across all functions. It is evident from the table that the proposed algorithms,
with two different Cr tunings, outperform the original algorithm significantly. Specifically,
the PDWOA with Cr set to a random value and 0.1 surpasses the performance of the
original WOA for 21 and 24 shifted test functions, respectively. Notably, even in cases
where the suggested algorithm exhibits worse performance, the resulting outcomes do not
deviate significantly from those obtained by the original WOA.

It can be further seen from results in Table 1 the suggested PDWOA could attain results
of a much higher quality for test functions F1, F2, F3, F7, F10, F17, F18, F20, and F30
compared to the original algorithm. Furthermore, the convergence characteristics of the
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Generate the initial population with initializing 

the parameters of PDWOA, t=1 

No

Update a, A, C, l, and p=rand

Stop condition 

satisfied?

End

YesNo

 Compute the initial objective function value of each 

solution and save the best local position for them

t=t +1

Output the best position

Update the position of the current individual  

by Eq. (10)

For each individual

Determine the best individual, XLea der

Update the position of the current individual by 

Eq. (14)

If P<0.5
Yes

If |A|<1

No Yes

Update the position of the current individual  

by Eq. (12)

If rand>Cr
Update the position of the current 

individual by Eq. (16) and Eq. (17)

YesNo

 

Evaluate the fitness of each individual, update 

Xpbest of each individual by Eq. (15) and 

update XLea der if there is a better solution 

 

Figure 2 Flowchart of PDWOA.
Full-size DOI: 10.7717/peerjcs.1557/fig-2

algorithms for some of the test functions are depicted in Fig. 3, which confirms the higher
performance and convergence rate of the suggested PDWOA.

Table 2 presents the average simulation time of 25 runs for each of the CEC 2014 test
functions, with the aim of comparing the computational burden of the proposed PDWOA
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Table 1 Summary of the results of DE, PSO,WOA and different variants of PDWOA for CEC 2014 test functions.

Function DE/best/1 PSO WOA PDWOA/Cr = rand PDWOA/Cr = 0.1 PDWOA/Cr = 0.9
Mean
Std.
Rank

Mean
Std.
Rank

Mean
Std.
Rank

Mean
Std.
Rank

Mean
Std.
Rank

Mean
Std.
Rank

F1 1.11E+08
4.23E+07
6

4.38E+07
1.81E+07
5

3.39E+07
1.96E+07
4

3.15E+06
1.75E+06
1

3.31E+06
2.11E+06
2

4.08E+06
2.92E+06
3

F2 1.28E+10
6.28E+09
6

9.83E+08
5.36E+08
5

3.43E+06
1.38E+06
4

1.42E+04
1.32E+04
1

2.45E+04
1.43E+04
3

1.46E+04
1.26E+04
2

F3 9.32E+04
5.80E+04
6

2.84E+04
1.40E+04
4

4.50E+04
3.03E+04
5

3.51E+03
3.56E+03
2

1.59E+03
2.11E+03
1

1.13E+04
1.85E+04
3

F4 1.27E+03
6.92E+02
6

2.61E+02
8.36E+01
5

1.97E+02
4.93E+01
4

1.23E+02
3.19E+01
2

1.03E+02
4.01E+01
1

1.37E+02
4.45E+01
3

F5 2.09E+01
5.00E−02
6

2.04E+01
6.00E−02
5

2.02E+01
1.70E−01
3

2.02E+01
1.50E−01
2

2.03E+01
2.70E−01
4

2.02E+01
3.30E−01
1

F6 2.04E+01
3.53E+00
1

2.95E+01
2.70E+00
4

3.71E+01
4.11E+00
5

2.63E+01
3.33E+00
2

3.45E+01
4.44E+00
3

4.00E+01
1.86E+00
6

F7 1.33E+02
7.20E+01
6

1.50E+01
1.36E+01
5

1.03E+00
4.00E−02
4

9.00E−02
1.00E−01
1

1.80E−01
3.30E−01
3

1.00E−01
1.20E−01
2

F8 1.08E+02
3.04E+01
2

1.46E+02
2.85E+01
3

1.79E+02
2.34E+01
4

6.64E+01
1.68E+01
1

1.85E+02
2.82E+01
5

2.15E+02
6.27E+01
6

F9 1.76E+02
4.24E+01
1

1.78E+02
2.72E+01
2

2.29E+02
2.83E+01
5

2.05E+02
5.24E+01
3

2.22E+02
6.47E+01
4

2.38E+02
4.51E+01
6

F10 3.07E+03
4.54E+02
2

4.37E+03
6.39E+02
6

3.94E+03
1.05E+03
4

6.27E+02
4.05E+02
1

3.54E+03
7.29E+02
3

4.36E+03
4.04E+02
5

F11 3.15E+03
6.56E+02
1

4.90E+03
9.12E+02
6

4.77E+03
8.17E+02
5

4.11E+03
8.53E+02
2

4.48E+03
5.99E+02
4

4.47E+03
1.11E+03
3

F12 2.13E+00
1.06E+00
6

1.36E+00
3.90E−01
2

1.42E+00
6.10E−01
4

1.15E+00
6.70E−01
1

1.39E+00
6.60E−01
3

1.57E+00
3.80E−01
5

F13 3.03E+00
9.40E−01
6

5.40E−01
7.00E−02
3

5.20E−01
8.00E−02
2

5.10E−01
1.30E−01
1

6.30E−01
1.40E−01
5

5.60E−01
1.20E−01
4

F14 4.99E+01
3.52E+01
6

1.63E+00
2.84E+00
5

2.70E−01
4.00E−02
2

3.00E−01
5.00E−02
3

2.60E−01
5.00E−02
1

4.10E−01
3.30E−01
4

F15 7.41E+04
7.77E+04
6

1.05E+02
6.57E+01
3

7.88E+01
1.87E+01
2

4.55E+01
1.21E+01
1

5.26E+02
6.32E+02
4

7.92E+02
2.71E+02
5

(continued on next page)
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Table 1 (continued)

Function DE/best/1 PSO WOA PDWOA/Cr = rand PDWOA/Cr = 0.1 PDWOA/Cr = 0.9
Mean
Std.
Rank

Mean
Std.
Rank

Mean
Std.
Rank

Mean
Std.
Rank

Mean
Std.
Rank

Mean
Std.
Rank

F16 1.15E+01
4.00E−01
1

1.28E+01
5.60E−01
4

1.24E+01
4.60E−01
3

1.17E+01
4.00E−01
2

1.31E+01
3.30E−01
6

1.30E+01
5.80E−01
5

F17 3.65E+06
2.86E+06
5

1.14E+06
8.15E+05
4

5.02E+06
2.18E+06
6

7.82E+05
3.34E+05
3

6.39E+05
6.53E+05
1

7.74E+05
2.98E+05
2

F18 1.17E+06
2.57E+06
6

5.40E+03
2.45E+03
4

3.32E+04
7.93E+04
5

4.34E+03
4.79E+03
1

4.79E+03
6.86E+03
2

4.80E+03
6.01E+03
3

F19 7.42E+01
4.08E+01
5

3.23E+01
2.50E+01
2

5.66E+01
5.04E+01
3

2.39E+01
2.67E+01
1

6.72E+01
5.07E+01
4

8.91E+01
3.61E+01
6

F20 2.71E+04
3.00E+04
5

1.04E+04
5.33E+03
4

2.90E+04
2.30E+04
6

7.76E+03
4.60E+03
3

2.33E+03
1.82E+03
1

3.56E+03
2.78E+03
2

F21 7.40E+05
7.73E+05
6

1.13E+05
1.27E+05
1

9.29E+05
6.55E+05
5

4.87E+05
2.88E+05
2

5.23E+05
3.45E+05
3

5.55E+05
4.00E+05
4

F22 6.16E+02
1.54E+02
1

7.26E+02
1.21E+02
2

9.17E+02
3.09E+02
4

9.87E+02
1.88E+02
5

8.67E+02
3.04E+02
3

1.34E+03
2.83E+02
6

F23 3.99E+02
7.66E+01
6

3.40E+02
7.70E+00
5

3.34E+02
4.88E+00
4

3.15E+02
2.00E−02
1

3.15E+02
7.00E−02
2

3.16E+02
9.60E−01
3

F24 3.04E+02
2.66E+01
6

2.55E+02
7.98E+00
5

2.06E+02
4.44E+00
1

2.18E+02
1.12E+01
4

2.06E+02
5.36E+00
3

2.06E+02
2.38E+00
2

F25 2.24E+02
6.67E+00
6

2.22E+02
4.31E+00
4

2.18E+02
1.88E+01
2

2.23E+02
1.63E+01
5

2.09E+02
1.31E+01
1

2.21E+02
2.08E+01
3

F26 1.85E+02
4.57E+01
5

1.73E+02
4.93E+01
4

1.00E+02
1.10E−01
1

1.15E+02
3.76E+01
2

1.57E+02
1.13E+02
3

1.87E+02
1.08E+02
6

F27 9.76E+02
2.08E+02
3

9.04E+02
3.26E+02
2

1.20E+03
3.32E+02
5

1.11E+03
8.11E+01
4

7.95E+02
4.61E+02
1

1.32E+03
3.90E+02
6

F28 2.26E+03
5.47E+02
2

3.45E+03
1.67E+03
6

2.51E+03
6.25E+02
4

1.88E+03
8.69E+02
1

2.46E+03
1.21E+03
3

2.83E+03
1.38E+03
5

F29 3.17E+06
4.31E+06
1

2.09E+07
3.46E+07
4

5.21E+06
4.84E+06
2

7.54E+06
5.27E+06
3

3.27E+07
2.74E+07
5

3.79E+07
4.11E+07
6

F30 2.56E+05
1.79E+05
6

5.10E+04
7.03E+04
3

9.98E+04
5.98E+04
4

3.91E+03
1.91E+03
1

8.93E+03
3.30E+03
2

1.07E+05
1.76E+05
5

NB/MR 6/4.3667 1/4.2333 2/3.6667 7/2.8667 13/2.0 1/4.0667
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Figure 3 Convergence curves of optimization algorithms for; (A) F2; (B) F10; (C) F17; (D) F20; (E) F23
and (F) F28 shifted test functions.

Full-size DOI: 10.7717/peerjcs.1557/fig-3

to that of the original WOA, PSO, and DE algorithms. It is important to note that, due to
the small difference in computational burden between different versions of PDWOA, only
the simulation times of PDWOA/Cr = rand are reported in this table. The results indicate
that, for 29 and 25 out of 30 test functions, PDWOA has lower mean simulation times than
DE and PSO algorithms, respectively. However, for 24 out of 30 test functions, PDWOA
has higher mean simulation times than the original WOA. Nonetheless, the maximum
increase in mean simulation times by using the proposed improved version of WOA is
only about 8%, occurring for test function 1. This increase is not too high considering the
degree of improvement in the final solutions.

Table 3 displays a comparative analysis of the performance of the selected variant of
the proposed Pbest-guided differential Whale Optimization Algorithm (i.e., PDWOA/Cr
= rand) and several other state-of-the-art methods, including Arithmetic Optimization
Algorithm (AOA) (Abualigah et al., 2021), Hierarchical Multi-swarm Cooperative TLBO
(HMCTLBO) (Zou et al., 2017), Moth-Flame Optimization algorithm (MFO) (Mirjalili,
2015), Adaptive Weighted Particle Swarm Optimizer (AWPSO) (Liu et al., 2021), Gaussian
bare-bones gradient-based optimization (GOMGBO) (Qiao et al., 2022), and Lévy flight
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Table 2 Mean simulation times (s) of 25 runs of different algorithms in solving each of the CEC 2014
test functions.

Function DE/best/1 PSO WOA PDWOA/Cr = rand

F1 6.47 5.94 4.95 5.35
F2 5.79 5.29 4.41 4.73
F3 5.97 5.18 4.32 4.64
F4 5.92 5.06 4.29 4.62
F5 5.81 5.44 4.59 4.87
F6 30.22 29.1 30.83 30.79
F7 5.89 5.41 4.71 5.02
F8 5.54 5.06 4.18 4.48
F9 5.84 5.43 4.57 4.83
F10 6.7 6.06 5.42 5.7
F11 7.2 6.47 5.88 5.98
F12 10.8 10.03 9.47 9.63
F13 5.61 4.87 4.32 4.57
F14 5.66 5.07 4.39 4.53
F15 6.26 5.49 4.62 4.96
F16 5.99 5.25 4.68 4.98
F17 6.73 5.99 5.16 5.42
F18 6.03 5.59 4.65 4.88
F19 11.21 9.72 9.95 9.95
F20 6.32 5.51 4.67 4.97
F21 6.61 5.9 5.03 5.29
F22 6.88 6.1 5.5 5.7
F23 12.16 11.31 10.76 11.01
F24 10.11 9.23 8.64 8.75
F25 11.29 10.14 9.75 9.94
F26 40.57 36.66 39.06 38.5
F27 38.73 36.78 38.97 38.36
F28 14.18 12.95 12.73 12.7
F29 15.15 13.77 14.4 13.94
F30 11.01 10.1 9.67 9.79

Jaya Algorithm (LJA) (Iacca, dos Santos Junior & Veloso de Melo, 2021), for solving CEC
2014 test functions.

In this table, the symbols ‘=’, ‘−’, and ‘+’ are used to indicate the comparison between
the method under consideration and the proposed PDWOA. The symbol ‘=’ represents an
equal result, ‘−’ indicates that themethod performs worse than the proposed PDWOA, and
‘+’ signifies that the method performs better than the proposed PDWOA. Furthermore,
Nw, Nb, and Ne represent the number of times the considered method performs worse
than, better than, or equal to the proposed PDWOA, respectively. The table presents
a comprehensive comparison of the results achieved by PDWOA in relation to the
benchmarked algorithms, shedding light on the efficacy and competitiveness of PDWOA
in addressing the CEC 2014 test functions.

Rahimnejad et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1557 15/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1557


Table 3 Summary of the results of PDWOA and several state-of-the-art methods for CEC 2014 test functions.

Function AOA HMCTLBO AWPSO GOMGBO MFO LJA PDWOA/Cr = rand
Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.

F1 3.026E+07
9.066E+06
–

2.659E+07
1.490E+07
–

1.356E+07
1.417E+07
–

3.238E+07
2.218E+07
–

7.59E+07
9.77E+07
–

6.31E+07
1.87E+07
–

3.15E+06
1.75E+06

F2 1.077E+07
1.500E+07
–

1.332E+06
9.362E+05
–

6.615E+07
1.141E+08
–

9.280E+07
1.260E+08
–

1.36E+10
8.42E+09
–

4.77E+09
6.03E+08
–

1.42E+04
1.32E+04

F3 2.730E+04
1.121E+04
–

1.303E+04
1.654E+03
–

2.669E+04
1.650E+04
–

1.994E+04
3.669E+03
–

8.99E+04
4.98E+04
–

6.91E+04
1.07E+04
–

3.51E+03
3.56E+03

F4 1.887E+02
1.036E+02
–

2.434E+02
1.483E+02
–

5.777E+02
5.774E+02
–

2.207E+02
5.991E+01
–

1.14E+03
1.13E+03
–

4.08E+02
5.38E+01
–

1.23E+02
3.19E+01

F5 2.06E+01
5.865E−02
–

2.084E+01
2.306E−01
–

2.061E+01
9.313E−02
–

2.041E+01
1.266E−01
–

2.04E+01
1.75E−01
–

2.09E+01
4.97E–02
–

2.02E+01
1.50E−01

F6 4.217E+01
1.739E+00
–

3.871E+01
2.091E+00
–

4.103E+01
1.144E+00
–

4.231E+01
1.126E+00
–

2.40E+01
3.33E+00
+

3.39E+01
1.29E+00
–

2.63E+01
3.33E+00

F7 8.071E−01
2.439E−01
–

6.374E−01
5.306E−01
–

9.228E−01
2.835E−01
–

5.078E−01
1.841E−01
–

1.17E+02
6.91E+01
–

1.58E+01
2.80E+00
–

9.00E−02
1.00E−01

F8 1.775E+02
2.291E+01
–

1.979E+02
5.195E+01
–

2.096E+02
1.096E+01
–

2.413E+02
6.580E+01
–

1.43E+02
3.81E+01
–

2.24E+02
9.93E+00
–

6.64E+01
1.68E+01

F9 2.346E+02
5.240E+01
–

2.933E+02
1.168E+02
–

2.188E+02
9.356E+01
–

1.952E+02
2.288E+01
+

2.23E+02
6.06E+01
–

2.61E+02
1.47E+01
–

2.05E+02
5.24E+01

F10 4.937E+03
9.675E+02
–

5.549E+03
5.726E+02
–

4.533E+03
9.972E+02
–

4.475E+03
3.306E+02
–

3.47E+03
8.85E+02
–

5.68E+03
3.95E+02
–

6.27E+02
4.05E+02

F11 5.683E+03
5.618E+02
–

5.416E+03
1.132E+03
–

4.937E+03
1.579E+03
–

6.548E+03
9.790E+02
–

4.15E+03
6.90E+02
–

6.88E+03
3.12E+02
–

4.11E+03
8.53E+02

F12 2.585E+00
3.545E−02
–

2.816E+00
4.494E−01
–

2.124E+00
1.109E−01
–

1.788E+00
6.116E−01
–

4.33E−01
2.64E−01
+

2.49E+00
2.73E–01
–

1.15E+00
6.70E−01

F13 7.508E−01
1.365E−01
–

5.184E−01
9.286E−02
–

5.725E−01
3.004E−02
–

6.601E−01
1.276E−01
–

2.21E+00
1.34E+00
–

1.08E+00
1.19E−01
–

5.10E−01
1.30E−01

F14 1.919E−01
2.441E−02
+

5.586E−01
5.275E−01
–

2.635E−01
4.831E−02
+

2.515E−01
1.881E−02
+

3.54E+01
2.47E+01
–

4.33E+00
1.70E+00
–

3.00E−01
5.00E−02

F15 1.084E+03
1.878E+02
–

2.292E+03
1.454E+03
–

1.119E+03
5.438E+02
–

3.462E+03
1.196E+03
–

2.23E+05
5.77E+05
–

5.05E+01
9.36E+00
–

4.55E+01
1.21E+01

(continued on next page)

Rahimnejad et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1557 16/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1557


Table 3 (continued)

Function AOA HMCTLBO AWPSO GOMGBO MFO LJA PDWOA/Cr = rand
Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.
-/+/=

Mean
Std.

F16 1.392E+01
6.834E−01
–

1.262E+01
4.312E−01
–

1.322E+01
3.863E−01
–

1.381E+01
9.966E−01
–

1.27E+01
5.33E−01
–

1.28E+01
1.78E−01
–

1.17E+01
4.00E−01

F17 1.179E+06
8.704E+05
–

1.935E+06
1.618E+06
–

3.150E+06
3.673E+06
–

1.573E+06
7.309E+05
–

3.39E+06
4.07E+06
–

2.63E+06
9.76E+05
–

7.82E+05
3.34E+05

F18 6.615E+03
4.575E+03
–

8.758E+03
1.307E+04
–

2.412E+03
2.713E+03
+

4.646E+03
5.907E+03
–

5.19E+06
3.61E+07
–

1.26E+07
1.06E+07
–

4.34E+03
4.79E+03

F19 1.944E+02
3.741E+01
–

3.112E+02
1.479E+02
–

1.433E+02
1.725E+01
–

1.533E+02
6.006E+01
–

7.36E+01
5.32E+01
–

3.78E+01
3.45E+01
–

2.39E+01
2.67E+01

F20 1.214E+04
5.535E+03
–

9.243E+03
7.954E+03
–

3.171E+04
3.588E+04
–

1.631E+04
1.192E+04
–

5.67E+04
4.34E+04
–

9.92E+03
3.69E+03
–

7.76E+03
4.60E+03

F21 6.694E+05
1.892E+05
–

9.029E+05
5.565E+05
–

2.959E+05
1.836E+05
+

1.346E+06
3.493E+05
–

7.83E+05
1.18E+06
–

6.94E+05
2.03E+05
–

4.87E+05
2.88E+05

F22 9.721E+02
1.592E+02
+

1.358E+03
4.080E+02
–

1.276E+03
2.694E+02
–

1.064E+03
1.124E+02
–

8.67E+02
2.29E+02
+

5.47E+02
1.05E+02
+

9.87E+02
1.88E+02

F23 2.801E+02
6.936E+01
+

3.231E+02
4.920E+00
–

3.208E+02
2.654E+00
–

3.194E+02
7.377E−01
–

3.71E+02
3.98E+01
–

3.43E+02
3.41E+00
–

3.15E+02
2.00E−02

F24 2.094E+02
5.532E+00
+

2.052E+02
3.837E+00
+

2.115E+02
2.001E+00
+

2.065E+02
3.504E+00
+

2.76E+02
2.73E+01
–

2.57E+02
4.04E+00
–

2.18E+02
1.12E+01

F25 2.406E+02
3.567E+01
–

2.293E+02
2.535E+01
–

2.187E+02
1.509E+01
+

2.149E+02
2.588E+01
+

2.14E+02
7.65E+00
+

2.16E+02
2.58E+00
+

2.23E+02
1.63E+01

F26 1.625E+02
2.418E−01
–

1.775E+02
7.831E−02
–

1.669E+02
5.742E+01
–

3.383E+02
1.202E+02
–

1.03E+02
1.50E+00
+

1.01E+02
1.02E−01
+

1.15E+02
3.76E+01

F27 1.259E+03
5.684E+02
–

1.434E+03
1.252E+02
–

1.423E+03
7.397E+01
–

1.501E+03
1.540E+01
–

9.21E+02
2.23E+02
+

9.86E+02
2.48E+02
+

1.11E+03
8.11E+01

F28 3.454E+03
5.202E+02
–

3.811E+03
5.758E+02
–

3.228E+03
9.435E+02
–

2.205E+03
1.751E+03
–

1.12E+03
1.57E+02
+

1.13E+03
6.63E+01
+

1.88E+03
8.69E+02

F29 7.767E+07
9.097E+07
–

8.864E+07
7.061E+07
–

1.572E+08
1.001E+08
–

1.117E+08
7.572E+07
–

3.06E+06
3.62E+06
+

9.82E+05
2.07E+06
+

7.54E+06
5.27E+06

F30 8.012E+04
3.813E+04
–

9.153E+04
8.882E+04
–

8.800E+04
1.611E+04
–

3.903E+05
5.016E+05
–

5.89E+04
5.40E+04
–

1.09E+04
4.24E+03
–

3.91E+03
1.91E+03

Nw/Nb/Ne 24/4/0 29/1/0 25/5/0 26/4/0 22/8/0 24/6/0
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Table 4 Average ranking of different algorithms according to the Friedman test.

Algorithm RankT Mean rank

PDWOA/Cr = rand 1 3.0167
PDWOA/Cr = 0.1 2 3.9
PSO 3 5.9
PDWOA/Cr = 0.9 4 5.9667
WOA 5 6.1333
MFO 6 7
LJA 7 7.4333
AOA 8 7.4667
AWPSO 9 7.5333
GOMGBO 10 7.7667
DE/best/1 11 7.8833
HMCTLBO 12 8

Statistical analysis
In this subsection, we present the results of two non-parametric statistical tests conducted
to assess the performance of the proposed improved versions of the whale optimization
algorithm (WOA), namely ‘‘PDWOA/Cr= rand’’, ‘‘PDWOA/Cr= 0.1’, and ‘‘PDWOA/Cr
= 0.9’. The tests include the Wilcoxon signed-rank test and the Friedman test, which
provide insights into the algorithm rankings and pairwise comparisons.

The Friedman test was used to rank the algorithms based on their mean performance
across all benchmark functions. The results of the Friedman test are presented in Table 4. In
this table, the mean rank index represents the average of the Rank indices of each algorithm
for all test functions, while the RankT index shows the rank of each algorithm in the list of
sorted mean rank indices. Specifically, PDWOA/Cr = rand achieved the best performance
with the lowest mean rank of 3.0167, followed by PDWOA/Cr= 0.1 (mean rank: 3.9), PSO
(mean rank: 5.9), and PDWOA/Cr = 0.9 (mean rank: 5.9667).

Additionally, the results of the Wilcoxon signed-rank test with a significance level of
0.05 are presented in Table 5, showing the p-values and confidence intervals for pairwise
comparisons between PDWOA/Cr = rand and other algorithms. In this table, SoPR and
SoNR represent the combined positive and negative ranks. Similarly, MoPR and MoNR
represent the average positive and negative ranks, respectively. The notation F(i)<F(j)
indicates how many times the first algorithm performs better than the second one, while
F(j)<F(i) signifies the opposite scenario. It’s important to highlight that in the Wilcoxon
test, positive ranks correspond to cases where the first algorithm surpasses the second
one. The test results reveal statistically significant differences in performance between
PDWOA/Cr = rand and several other algorithms.

PDWOA/Cr = rand was found to have significantly better performance compared to
DE/rand/1, PSO, WOA, PDWOA/Cr = 0.9, AOA, AWPSO, GOMGBO, MFO, and LJA,
as indicated by the low p-values obtained. The confidence intervals further support this
finding, showing that PDWOA/Cr = rand consistently outperformed these algorithms
over a wide range of objective function values.
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Table 5 TheWilcoxon signed-rank test results between PDWOA/Cr=rand and other algorithms.

i j MoPR MoNR SoPR SoNR F(i) <F(j) F(j) <F(i) p-value 0.95 Confidence interval

DE/rand/1 16.261 13 374 91 23 7 2.766e−03 −126499.9 −40.05
PSO 15.52 15.4 388 77 25 5 8.718e−04 -23442 −22.7
WOA 16.087 10.833 370 65 23 6 1.014e−03 −47945.13 −24.0
PDWOA/Cr= 0.1 15.15 14.667 303 132 20 9 6.607e−02 −2503.0 5.3
PDWOA/Cr= 0.9 14.88 15.75 372 63 25 4 8.685e−04 −3895.5 −36.05
AOA 16.808 7 437 28 26 4 2.762e−06 −91195.7 −86.36
HMCTLBO 15.69 10 455 10 29 1 8.009e−08 −207950.13 −193.25
AWPSO 16.04 12.8 401 64 25 5 2.563e−04 −42041.75 −69.45
GOMGBO 16.808 7 437 28 26 4 2.762e−06 −395495.95 −153.21
MFO 16.682 12.25 367 98 22 8 4.665e−03 -147940 −25.35

PDWOA/Cr
= rand

LJA 15.375 16 369 96 24 6 4.032e−03 −103125 −8.97

However, when comparing PDWOA/Cr = rand with PDWOA/Cr = 0.1, the obtained
p-value (0.0661) suggests that the difference in performance between these two algorithms is
not statistically significant at the 0.05 significance level. It is worth noting that PDWOA/Cr
= rand still exhibits a slightly better performance trend.

Overall, the results of the statistical tests support the superiority of PDWOA/Cr =
rand compared to the other algorithms tested. It demonstrates consistent and competitive
performance, as evidenced by its lower mean rank in the Friedman test and its significant
performance advantages in the pairwise comparisons based on the Wilcoxon signed-rank
test.

PDWOA for solving constrained engineering optimization
So as to further demonstrate the optimization power of the suggested algorithm, we
have selected three renowned engineering problems and solved them with the proposed
method. To solve these problems, the population sizes selected for each algorithm is 60
and the number of iterations of each algorithm for each run is 1,000. For each problem,
optimization was performed in 30 independent runs. All parameters of the algorithms used
here are exactly according to the main references suggested by the algorithm designers.

Pressure vessel optimal design (engineering problem 1)
The problem is focused on optimally finding two discrete (x1 and x2) and two continuous
(x3 and x4) decision variables for the minimization of the cost of a pressure vessel (Fig. 4)
subject to three linear and one nonlinear inequality constraint. The optimization variables
are the thickness of the shell (x1 or Ts), the thickness of the head (x2 or Th), the inner
radius (x3 or R), and the length of the cylindrical part of the vessel (x4 or L) (Askarzadeh,
2016).
Minimize:

f (X)= 0.6224x1x3x4+1.7781x2x23+3.1661x
2
1x4+19.84x

2
1x3 (18)

subject to:

g1(X)=−x1+0.0193x3≤ 0, (19)
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Figure 4 Schematic of the pressure vessel design problem.
Full-size DOI: 10.7717/peerjcs.1557/fig-4

g2(X)=−x2+0.00954x3≤ 0, (20)

g3(X)=−πx23x4−
4
3
πx33+1,296,000≤ 0, (21)

g4(X)= x4−240≤ 0, (22)

where x1,x2 ∈ [0,100], and x3,x4 ∈ [10,200].
Table 6 presents the results of PDWOA in solving this problem compared to several new

algorithms, including quantum-behaved PSO (QPSO) (Coelho L dos, dos Santos Coelho &
Coelho L dos, 2010), ABC (Akay & Karaboga, 2012), GA enhanced with dominance-based
tournament selection (GA4) (Coello Coello et al., 2002), co-evolutionary PSO (CPSO)
(He &Wang, 2007), co-evolutionary DE (CDE) (Huang, Wang & He, 2007), gaussian
quantum-behaved PSO (G-QPSO) (Coelho L dos, dos Santos Coelho & Coelho L dos, 2010),
Unified PSO (UPSO) (Parsopoulos & Vrahatis, 2005), Crow search algorithm (CSA)
(Askarzadeh, 2016), hybrid GA and artificial immune system (HAIS-GA) (Coello & Cortés,
2004), bacterial foraging optimization algorithm (BFOA) (Mezura-Montes & Hernández-
Ocana, 2008), evolution strategies (ES) (Mezura-Montes & Coello, 2008), modified T-Cell
Algorithm (Aragón, Esquivel & Coello, 2010), GA enhanced with self-adaptive penalty
approach (GA3) (Coello Coello, 2000), Queuing search (QS) algorithm (Zhang et al., 2018),
and automatic dynamic penalization (ADP) for GA (BIANCA) (Montemurro, Vincenti
& Vannucci, 2013), K-means optimizer (KO) (Minh et al., 2022), and termite life cycle
optimizer (TLCO) (Minh et al., 2023b; Minh et al., 2023a). The best solutions for the
considered problem found using the original and proposed versions of WOA are presented
in Table 7. The results demonstrate the effectiveness of the proposed PDWOA in achieving
high-quality solutions for the optimization problem.

Tension/compression spring optimal design (engineering problem 2)
The problem involves finding three continuous decision variables to minimize the weight
of the spring (Fig. 5). The optimization variables are the wire diameter (d or x1), mean
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Table 6 Best statistical results of various algorithms for engineering problem 1.

Methods Best Mean Worst Std.

QPSO (Coelho L dos, dos Santos Coelho & Coelho L dos,
2010)

6059.7209 6440.3786 8017.2816 479.2671

ABC (Akay & Karaboga, 2012) 6059.714339 6245.308144 N.A. 2.05e+02
GA4 (Coello Coello et al., 2002) 6059.9463 6177.2533 6469.3220 130.9297
CPSO (He &Wang, 2007) 6061.0777 6147.1332 6363.8041 86.4545
CDE (Huang, Wang & He, 2007) 6059.7340 6085.2303 6371.0455 43.013
G-QPSO (Coelho L dos, dos Santos Coelho & Coelho L dos,
2010)

6059.7208 6440.3786 7544.4925 448.4711

UPSO (Parsopoulos & Vrahatis, 2005) 6154.70 8016.37 9387.77 745.869
ES (Mezura-Montes & Coello, 2008) 6059.746 6850.00 7332.87 426
T-Cell (Aragón, Esquivel & Coello, 2010) 6390.554 6737.065 7694.066 357
GA3 (Coello Coello, 2000) 6288.7445 6293.8432 6308.4970 7.4133
HAIS-GA (Coello & Cortés, 2004) 6832.584 7187.314 8012.615 276
CSA (Askarzadeh, 2016) 6059.71436343 6342.49910551 7332.84162110 384.94541634
BFOA (Mezura-Montes & Hernández-Ocana, 2008) 6060.460 6074.625 N.A. 156
BIANCA (Montemurro, Vincenti & Vannucci, 2013) 6059.9384 6182.0022 6447.3251 122.3256
QS (Zhang et al., 2018) 6059.714 6060.947 6090.526 N.A.
KO 6059.71475731827 6059.72453197228 N.A. 0.005942
TLCO 6059.71433504844 N.A. N.A. N.A.
WOA 6059. 823537 6115.250471 6314.025148 62.35
PDWOA/Cr = 0.9 6059.714335 6064.922632 6084.003815 12.94
PDWOA/Cr = rand 6059.714335 6063.175326 6090.742650 24.65
PDWOA/Cr = 0.1 6059.714335 6060.789025 6064.324186 1.83

Table 7 The best solutions for engineering problem 1.

Design variables WOA PDWOA/Cr = 0.9 PDWOA/Cr = rand PDWOA/Cr = 0.1

x1 0.8125 0.8125 0.8125 0.8125
x2 0.4375 0.4375 0.4375 0.4375
x3 42.09765834 42.09844559 42.09844559 42.09844559
x4 176.6469213 176.63659592 176.63659592 176.63659592
g 1(X) −1.519403799987718e−05 −1.130000537585829e−10 −1.130000537585829e−10 −1.130000537585829e−10
g 2(X) −0.0358883394364 −0.035880829071400 −0.035880829071400 −0.035880829071400
g 3(X) −3.172713808366098 −2.788752317428589e−05 −2.788752317428589e−05 −2.788752317428589e−05
g 4(X) −63.353078699999998 −63.363404080000009 −63.363404080000009 −63.363404080000009
Best 6059. 823537 6059.714335 6059.714335 6059.714335

coil diameter (D or x2), and the number of active coils (P or x3), subject to one linear and
three nonlinear inequality constraints (Askarzadeh, 2016).
Minimize:

f (X)= (x3+2)x2x21 (23)
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Figure 5 The tension/compression spring optimal design problem.
Full-size DOI: 10.7717/peerjcs.1557/fig-5

subject to:

g1(X)= 1−
x32x3

71,785x41
≤ 0, (24)

g2(X)=
4x22−x1x2

12,566
(
x31x2−x

4
1
)+ 1

5,108x21
−1≤ 0,x3 ∈ [2,15] (25)

g3(X)= 1−
140.45x1
x22x3

≤ 0, (26)

g4(X)=
x1+x2
1.5
−1≤ 0. (27)

In which x1 ∈ [0.05,2], x2 ∈ [0.25,1.3], and x2 ∈ [2,15].
Table 8 compares the results of the proposed method for solving the engineering

problem 2 with several other algorithms, including BFOA (Mezura-Montes & Hernández-
Ocana, 2008), T-Cell (Aragón, Esquivel & Coello, 2010), CDE (Huang, Wang & He, 2007),
CPSO (He &Wang, 2007), a cultural algorithm (CA) (Coello Coello & Becerra, 2004),
GA4 (Coello Coello et al., 2002), GA3 (Coello Coello, 2000), TEO (Kaveh & Dadras, 2017),
G-QPSO (Coelho L dos, dos Santos Coelho & Coelho L dos, 2010), SBO (Ray & Liew, 2003),
evolutionary algorithms ((l + k)-ES) (Mezura-Montes & Coello, 2005), UPSO (Parsopoulos
& Vrahatis, 2005), Grey wolf optimizer (GWO) (Mirjalili, Mirjalili & Lewis, 2014), SDO
(Zhao, Wang & Zhang, 2019), QS (Zhang et al., 2018), Water cycle algorithm (WCA)
(Eskandar et al., 2012), BIANCA (Montemurro, Vincenti & Vannucci, 2013), KO (Minh et
al., 2022), TLCO (Minh et al., 2023b; Minh et al., 2023a), planet optimization algorithm
(POA) (Sang-To et al., 2022), Cuckoo Search Algorithm (CS) (Cuong-Le et al., 2021), and
the new movement strategy of cuckoo search (NMS-CS) (Cuong-Le et al., 2021). Table 9
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Table 8 Best statistical results of various algorithms for engineering problem 2.

Methods Best Mean Worst Std.

CA (Coello Coello & Becerra, 2004) 0.012721 0.013568 0.0151156 8.4e−04
BFOA (Mezura-Montes & Hernández-Ocana, 2008) 0.012671 0.012759 N.A. 1.36e−04
T-Cell (Aragón, Esquivel & Coello, 2010) 0.012665 0.012732 0.013309 9.4e−05
CDE (Huang, Wang & He, 2007) 0.012670 0.012703 0.012790 2.07e−05
CPSO (He &Wang, 2007) 0.0126747 0.012730 0.012924 5.19e−05
TEO (Kaveh & Dadras, 2017) 0.012665 0.012685 0.012715 4.4079e−06
G-QPSO (Coelho L dos, dos Santos Coelho & Coelho L dos,
2010)

0.012665 0.013524 0.017759 1.268e−03

SBO (Ray & Liew, 2003) 0.012669249 0.012922669 0.016717272 5.92e−04
GA4 (Coello Coello et al., 2002) 0.012681 0.012742 0.012973 9.5e−05
GA3 (Coello Coello, 2000) 0.0127048 0.012769 0.012822 3.93e−05
(l + k)-ES (Mezura-Montes & Coello, 2005) 0.012689 0.013165 N.A. 3.9e−04
UPSO (Parsopoulos & Vrahatis, 2005) 0.01312 0.02294 N.A. 7.2e−03
GWO (Mirjalili, Mirjalili & Lewis, 2014) 0.0126660 N.A. N.A. N.A.
WCA (Eskandar et al., 2012) 0.012665 0.012746 0.012952 8.06e−05
BIANCA (Montemurro, Vincenti & Vannucci, 2013) 0.012671 0.012681 0.012913 5.1232e−05
SDO (Zhao, Wang & Zhang, 2019) 0.0126663 0.0126724 0.0126828 6.1899e−06
QS (Zhang et al., 2018) 0.012665 0.012666 0.012669 N.A.
KO 0.012665994 0.012917292 N.A. 0.00030139
TLCO 0.0126652328 N.A. N.A. N.A.
POA 0.01266588 N.A. N.A. N.A.
CS 0.012665871 N.A. N.A. N.A.
NMS-CS 0.012665233 N.A. N.A. N.A.
WOA 0.012667 0.013586 0.018416 5.05e−03
PDWOA/Cr = 0.9 0.012665 0.012695 0.012842 8.75e−06
PDWOA/Cr = rand 0.012665 0.012706 0.012907 1.18e−05
PDWOA/Cr = 0.1 0.012665 0.012665 0.012666 9.22e−08

Table 9 The best solutions for engineering problem 2.

Design variables WOA PDWOA/Cr = 0.9 PDWOA/Cr = rand PDWOA/Cr = 0.1

x1 0.0517315934 0.0515902788 0.0516488707 0.0516911532
x2 0.3577231396 0.3543444741 0.3557507777 0.3567674033
x3 11.2318481822 11.4295493851 11.3460406066 11.2862994555
g 1(X) −8.105263015556474e−05 −2.067013876949631e−06 −1.124305991995200e−05 −1.953083625561014e−05
g 2(X) −4.202663105634663e−05 −3.336199576375876e−06 −1.936754291387288e−06 −1.509602815197297e−06
g 3(X) −4.055129747949155 −4.049044297898749 −4.051804364878148 −4.053776839282882
g 4(X) −0.727030178 −0.729376831400 −0.7284002344 −0.727694295666667
Best 0.012667 0.012665 0.012665 0.012665

provides the best solutions obtained by the original and proposed versions of WOA for
this problem. The findings indicate that the suggested PDWOA is successful in attaining
excellent solutions for the optimization issue.
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Figure 6 Schematic of welded beam optimal design problem.
Full-size DOI: 10.7717/peerjcs.1557/fig-6

Welded beam optimal design (engineering problem 3)
The problem is focused on optimally finding four continuous decision variables for
minimizing the cost of a welded beam (Fig. 6) subject to two linear and five nonlinear
inequality constraints. The optimization variables are x1 or h, x2 or l, x3 or t, and x4 or b
(Askarzadeh, 2016).
Minimize:

f (X)= 1.10471x2x21+0.04811x3x4(14+x2) (28)

subject to:

g1(X)= τ (x)−τmax≤ 0, (29)

g2(X)= σ (x)−σmax≤ 0, (30)

g3(X)= x1−x4≤ 0, (31)

g4(X)= 0.10471x21+0.04811x3x4(14+x2)−5≤ 0. (32)

g5(X)= 0.125−x1≤ 0, (33)

g6(X)= δ(x)−δmax≤ 0, (34)

g7(X)= P−Pc (x)≤ 0, (35)
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τ (x)=
√(
τ
′
)2
+2τ ′τ ′′

x2
2R
+(τ ′′)2 (36)

τ
′

=
P

√
2x1x2

,τ ′′=
MR
J
, (37-38)

M = P
(
L+

x2
2

)
,R=

√
x22
4
+

(
x1+x3

2

)2

, δ(x)=
4PL3

Ex33x4
(39-41)

J = 2

[
√
2x1x2

{
x22
12
+

(
x1+x3

2

)2
}]
,σ (x)=

6PL
x4x23

, (42-43)

Pc (x)=
4.013E

√
x64 x

2
3

36

L2

(
1−

x3
2L

√
E
4G

)
, (44)

where P = 6,000 lb; L= 14 in; E = 30e6 psi; G= 12e6 psi; τmax =13,000 psi; σmax =30,000
psi; δmax= 0.25 in; x1 ∈ [0.1,2]; x2 ∈ [0.1,10]; x3 ∈ [0.1,10]; and x4 ∈ [0.1,2].

Table 10 presents the results of the proposed method for solving the engineering
problem 3 in comparison to several other algorithms, including a cooperative PSO
with stochastic movements (EPSO) (Ngo, Sadollah & Kim, 2016), BFOA (Mezura-Montes
& Hernández-Ocana, 2008), T-Cell Algorithm (Aragón, Esquivel & Coello, 2010), CDE
(Huang, Wang & He, 2007), CPSO (He &Wang, 2007), Derivative-Free Filter Simulated
Annealing Method (FSA) (Hedar & Fukushima, 2006), TEO (Kaveh & Dadras, 2017), SBO
(Ray & Liew, 2003), GA4 (Coello Coello et al., 2002), (l + k)-ES (Mezura-Montes & Coello,
2005), UPSO (Parsopoulos & Vrahatis, 2005), GWO (Mirjalili, Mirjalili & Lewis, 2014),
SFO (Shadravan, Naji & Bardsiri, 2019), HGSO (Hashim et al., 2019), WCA (Eskandar
et al., 2012), BIANCA (Montemurro, Vincenti & Vannucci, 2013), SBO (Ray & Liew, 2003),
KO (Minh et al., 2022), TLCO (Minh et al., 2023b;Minh et al., 2023a), POA (Sang-To et al.,
2022), CS (Cuong-Le et al., 2021), and NMS-CS (Cuong-Le et al., 2021). Table 11 presents
the best solutions found by the original and proposed versions of WOA for this problem.
The outcomes exhibit the efficacy of the suggested PDWOA in attaining top-notch solutions
for the optimization issue.

DISCUSSION AND FUTURE STUDIES
Table 12 presents the best solutions found by the proposed and original versions of WOA.
The results indicate that optimizing the algorithm’s parameters, particularly the value of
Cr , can significantly enhance the optimization performance. For example, when comparing
the final results for F29 (shown in Table 1), the original WOA yielded the best mean value
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Table 10 Best statistical results of various algorithms for engineering problem 3.

Methods Best Mean Worst Std.

EPSO (Ngo, Sadollah & Kim, 2016) 1.7248530 1.7282190 1.7472200 5.62e−03
BFOA (Mezura-Montes & Hernández-Ocana, 2008) 2.3868 2.4040 N.A. 1.6e−02
T-Cell (Aragón, Esquivel & Coello, 2010) 2.3811 2.4398 2.7104 9.314e−02
CDE (Huang, Wang & He, 2007) 1.73346 1.768158 1.824105 2.2194e−02
CPSO (He &Wang, 2007) 1.728024 1.748831 1.782143 1.2926e−02
FSA (Hedar & Fukushima, 2006) 2.3811 2.4041 2.4889 N.A.
TEO (Kaveh & Dadras, 2017) 1.725284 1.768040 1.931161 5.81661e−02
SBO (Ray & Liew, 2003) 2.3854347 3.0025883 6.3996785 9.59e−01
GA4 (Coello Coello et al., 2002) 1.728226 1.792654 1.993408 7.47e−02
(l + k)-ES (Mezura-Montes & Coello, 2005) 1.724852 1.777692 N.A. 8.8e−02
UPSO (Parsopoulos & Vrahatis, 2005) 1.92199 2.83721 N.A. 6.83e−01
GWO (Mirjalili, Mirjalili & Lewis, 2014) 1.72624 N.A. N.A. N.A.
SFO (Shadravan, Naji & Bardsiri, 2019) 1.73231 N.A. N.A. N.A.
HGSO (Hashim et al., 2019) 1.7260 1.7265 1.7325 7.66e−03
WCA (Eskandar et al., 2012) 1.724856 1.726427 1.744697 4.29e−03
BIANCA (Montemurro, Vincenti & Vannucci, 2013) 1.725436 1.752201 1.793233 2.3001e−02
KO 1.725344872 1.75727933 N.A. 0.029125
TLCO 1.724852433 N.A. N.A. N.A.
POA 1.72564 N.A. N.A. N.A.
CS 1.73139841 N.A. N.A. N.A.
NMS-CS 1.72620872 N.A. N.A. N.A.
WOA 1.7273929 2.2852435 3.2784166 2.62
PDWOA/Cr = 0.9 1.7248523 1.7310629 1.7491305 9.83e−04
PDWOA/Cr = rand 1.7248523 1.7588375 1.7709064 2.06e−03
PDWOA/Cr = 0.1 1.7248523 1.7259521 1.7340485 5.93e−05

Table 11 The best solutions for engineering problem 3.

Design variables WOA PDWOA/Cr = 0.9 PDWOA/Cr = rand PDWOA/Cr = 0.1

x1 0.2053718352 0.2057296398 0.20572963980 0.20572963980
x2 3.4771582193 3.470488670 3.4704886655 3.4704886655
x3 9.0472014495 9.0366239108 9.0366239101 9.0366239101
x4 0.2057779509 0.2057296398 0.2057296398 0.2057296398
g 1(X) −9.453362733127506 −1.514258474344388e−05 −2.265333023387939e−07 −2.265333023387939e−07
g 2(X) −77.134747837790201 −4.967081622453407e−06 −3.193272277712822e−07 −3.193272277712822e−07
g 3(X) −4.061157000000149e−04 0.0 0.0 0.0
g 4(X) −3.43020541215535 −3.432983784788387 −3.432983785311915 −3.432983785311915
g5(X) −0.08037183520 −0.08072963980 −0.080729639800 −0.080729639800
g6(X) −0.235594362774535 −0.235540322587856 −0.235540322584496 −0.235540322584496
g7(X) −8.845720840467948 −1.411061930411961e−06 −1.105492628994398e−06 −1.105492628994398e−06
Best 1.7273929 1.7248523 1.7248523 1.7248523
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Table 12 Summary of the best results for CEC 2014 test functions forWOA algorithms.

Function WOA PDWOA/ Cr = rand PDWOA/ Cr = 0.1 PDWOA/ Cr = 0.9
Best Best Best Best

F1 19833281.23 680089.84 1348332.9 1288387.42
F2 1994653.36 1105.87 1.24 93.08
F3 15105.52 101.54 48.61 1950.79
F4 132.74 67.85 78.74 73.05
F5 20.08 20 20 19.99
F6 31.78 28.38 21.54 37.93
F7 0.97 1.94e−5 2.55e−6 1.28e−3
F8 137.4 156.99 38.8 128.35
F9 176.36 143.27 138.3 190.04
F10 2543.45 2428.22 44.13 3793.69
F11 3809.73 3456.96 2876.84 2874.24
F12 0.43 0.69 0.18 1.17
F13 0.4 0.45 0.39 0.44
F14 0.21 0.23 0.22 0.25
F15 50.75 191.85 22.36 375.04
F16 11.81 12.65 11.14 12.12
F17 2514752.92 211439.89 477893.91 420326.09
F18 483.1 270.89 92.49 215.83
F19 24.86 17.97 10.33 36.43
F20 8808.02 350.79 635.06 958.96
F21 290044.26 126426.49 213375.89 44587.71
F22 451.24 446.64 580.79 896.22
F23 324.86 315.26 315.25 315.3
F24 201.88 201.38 202.81 202.16
F25 200 200 205.68 200
F26 100.35 100.57 100.23 100.49
F27 459.35 409.61 1015.92 444.06
F28 1576.31 200 200 200
F29 38445.29 1364.48 1141.58 1123.79
F30 52816 5011.8 2201.07 5668.48

with a slight difference, whereas the proposed algorithm with Cr equal to 0.1 achieved
the best final value, as demonstrated in Table 12. As part of future work, an efficient
modification can be explored to improve the Mean obtained by PDWOA and align it with
the best value.

Figure 7 illustrates the average performance of the suggested algorithm across multiple
test functions in 30 runs. These results demonstrate the significant improvement achieved
by the suggested algorithm in enhancingWOA. Although the suggested algorithm is robust
and effective in many cases, further development can be pursued by exploring numerous
enhanced versions of PSO or DE. In future work, we will present some examples of these
enhanced versions. For instance, we can draw inspiration from the colonial competitive
differential evolution algorithm (Ghasemi et al., 2016), which suggests distributing the
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Figure 7 The mean index obtained for different test functions by PDWOA having different Cr values;
(A) F1 (unimodal); (B) F9 (simple multimodal); (C) F18 (hybrid); (D) F30 (composition).

Full-size DOI: 10.7717/peerjcs.1557/fig-7

population into several groups and conducting colonial competition between these groups
using a specific mutation for each group. To enhance the proposed version, we can
implement a similar mechanism by dividing the WOA population into multiple groups,
where the bestmember of each group serves as the leader, and conduct colonial competition
among these groups.

Additionally, instead of using the specific mutation equation defined in Eq. (17), we
can employ alternative mutations (or crossover coefficients) for each group of whales. By
leveraging the efficient operators from various evolutionary algorithms, we can increase the
population diversity during iterations. This approach, guided by multiple leaders within
distinct groups, allows the population to explore several different areas in the search space,
effectively avoiding local optima. In this context, several new optimization algorithms
that involve population division into multiple groups (Mallipeddi et al., 2011; Zhang, 2015;
Chen et al., 2018; Band et al., 2022) can be applied to enhance the proposed version of
WOA.

Furthermore, a highly effective and adaptive method for selecting Cr was proposed
in Zhang & Sanderson (2009), which is recognized as one of the most powerful versions
of DEs. The mutation equation presented in Eq. (17) has drawn inspiration from this
method. In future studies, we can explore the application of this strategy to enhance the
performance of the suggested method. Additionally, other efficient adaptive techniques
proposed in Brest et al. (2006) and Zhu et al. (2013) can be further investigated as
potential avenues to improve the proposed algorithm. Additionally, there are several
new models of DE proposed in the literature that extend beyond the scope of this study but
warrant further investigation. These models include fuzzy adaptive differential evolution
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(Al-Dabbagh et al., 2014), Gaussian bare-bones differential evolution (Wang et al., 2013),
and parallel DE with self-adapting control parameters and generalized opposition-based
learning (Wang, Rahnamayan &Wu, 2013). Future studies can delve into these models in
more detail to explore their potential implications.

CONCLUSIONS
In this study, we addressed the limitations of the original WOA, such as susceptibility to
getting trapped in locally optimal solutions, particularly in complex real-world problems.
To overcome these drawbacks, we proposed a new and high-performing version of WOA
called PDWOA. The performance of PDWOA was evaluated by comparing it with the
original WOA on 30 shifted test functions from CEC2014, each with a dimension of
30, under identical conditions. The simulation results demonstrated the efficiency of
the suggested algorithm in achieving optimal solutions for the test cases. Moreover, the
proposed PDWOA algorithm was evaluated using two non-parametric statistical tests,
including the Friedman test and the Wilcoxon signed-rank test, which confirmed its
superior performance compared to other algorithms. Furthermore, PDWOA was applied
to three real-world engineering problems, providing additional evidence of its optimization
performance. Additionally, we discussed models of powerful algorithms from the literature
that could be explored in future studies to further enhance the proposed algorithm.
By integrating these models into the proposed formulation, we aim to achieve accurate
solutions for a wider range of real-world optimization problems.
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