
Submitted 6 March 2023
Accepted 8 August 2023
Published 22 September 2023

Corresponding author
Duong Dinh Tran,
duongtd@jaist.ac.jp

Academic editor
Shengchao Qin

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.1556

Copyright
2023 Tran et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Hybrid post-quantum Transport Layer
Security formal analysis in Maude-NPA
and its parallel version
Duong Dinh Tran1, Canh Minh Do1, Santiago Escobar2 and Kazuhiro Ogata1

1 Japan Advanced Institute of Science and Technology, Nomi, Japan
2Universidad Politécnica de Valencia, Valencia, Spain

ABSTRACT
This article presents a security formal analysis of the hybrid post-quantum Transport
Layer Security (TLS) protocol, a quantum-resistant version of the TLS protocol
proposed by Amazon Web Services as a precaution in dealing with future attacks
from quantum computers. In addition to a classical key exchange algorithm, the
proposed protocol uses a post-quantum key encapsulation mechanism, which is
believed invulnerable under quantum computers, so the protocol’s key negotiation
is called the hybrid key exchange scheme. One of our assumptions about the intruder’s
capabilities is that the intruder is able to break the security of the classical key exchange
algorithm by utilizing the power of large quantum computers. For the formal analysis,
we use Maude-NPA and a parallel version of Maude-NPA (called Par-Maude-NPA) to
conduct experiments. The security properties under analysis are (1) the secrecy property
of the shared secret key established between two honest principals with the classical key
exchange algorithm, (2) a similar secrecy property but with the post-quantum key
encapsulation mechanism, and (3) the authentication property. Given the time limit
T = 1,722 h (72 days), Par-Maude-NPA found a counterexample of (1) at depth 12 in
T, while Maude-NPA did not find it in T. At the same time T, Par-Maude-NPA did
not find any counterexamples of (2) and (3) up to depths 12 and 18, respectively, and
neither did Maude-NPA. Therefore, the protocol does not enjoy (1), while it enjoys (2)
and (3) up to depths 12 and 18, respectively. Subsequently, the secrecy property of the
master secret holds for the protocol up to depth 12.

Subjects Cryptography, Security and Privacy, Software Engineering
Keywords Post-quantum, TLS, Cryptographic protocol, Maude-NPA, Parallel Maude-NPA,
Security analysis

INTRODUCTION
As an early precaution in dealing with future attacks from quantum computers, extensive
research efforts have been spent to construct post-quantum cryptographic protocols,
replacing classical cryptographic protocols. This has been motivated by the fact that most
of the asymmetric cryptosystems used today will be no longer secure under large-scale
quantum computers. The reason is that the computationally hard mathematical problems
on which these cryptosystems are relying can be efficiently solved by a sufficiently large
quantum computer even though they are intractable for conventional computers. For
instance, the integer factorization problem is no longer hard under a large-scale quantum

How to cite this article Tran DD, Do CM, Escobar S, Ogata K. 2023. Hybrid post-quantum Transport Layer Security formal analysis in
Maude-NPA and its parallel version. PeerJ Comput. Sci. 9:e1556 http://doi.org/10.7717/peerj-cs.1556

https://peerj.com/computer-science
mailto:duongtd@jaist.ac.jp
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1556

computer running Shor’s algorithm (Shor, 1994). In recent years, with the involvement of
many giants, such as Intel, IBM, and Google, different and stronger quantum computers
have been introduced, making a practical one closer to reality. That motivates many
cryptography and security research groups to investigate on building new post-quantum
cryptographic protocols as well as analyzing their security.

In 2019, the Amazon Web Services (AWS) team proposed a quantum-resistant version
of the Transport Layer Security (TLS) 1.2 protocol (Rescorla & Dierks, 2008), namely the
hybrid post-quantum TLS Protocol (Campagna & Crockett, 2021), where TLS is known as
one of the most important cryptographic protocols, protecting numerous communications
over the Internet every day. Two parallel key exchange schemes are employed in the
proposed protocol, namely a classical key exchange algorithm and a post-quantum key
encapsulation mechanism (KEM), which is the reason why the word ‘‘hybrid’’ is used in
its name. In the proposal, the classical key exchange algorithm is fixed as Elliptic Curve
Diffie-Hellman (ECDH), while the post-quantum KEM (PQ KEM) can be, for example,
Kyber (Bos et al., 2018) (precisely CRYSTALS-Kyber) and BIKE (Aragon et al., 2019). That
hybrid scheme is expected to make a negotiated secret key at least as secure as ECDH
against a classical attacker and at least as secure as the selected PQ KEM against a quantum
attacker.

Our previous work (Tran et al., 2022) presented the Maude-NPA formal specification
of the hybrid post-quantum TLS protocol, where Maude-NPA (Escobar, Meadows &
Meseguer, 2006) is a powerful tool for analyzing cryptographic protocols. Maude-NPA
is implemented in Maude (Durán et al., 2020), a specification/programming language
based on rewriting logic, and supports an unbounded number of session executions
as well as protocol participants. For modeling intruders’ capabilities, the tool uses the
Dolev-Yao intruder model (Dolev & Yao, 1983) and the strand model (Thayer, Herzog &
Guttman, 1998). In this manner, the intruder is given the capability of fully controlling
the network, for example, intercepting & modifying messages and impersonating some
protocol participants to send some messages to other participants. Maude-NPA is based
on narrowing and backward search. Narrowing is a generalization of term rewriting
that allows variables in subject terms and replaces pattern matching by unification. The
backward search starts from a given insecure pattern, i.e., an attack pattern, representing
insecure states, and runs backwardly to check whether it is reachable from an initial state.
If an initial state is found, the attack concerned is a valid attack on the protocol; otherwise,
the protocol is secure against the attack. Several optimization techniques to reduce the
search space have been developed (see the article by Escobar, Meadows & Meseguer (2008)).

This article presents a formal analysis of the hybrid post-quantum TLS protocol
with Maude-NPA. This is an extended version of our previous work (Tran et al., 2022),
which provided a first attempt at formally specifying the protocol in Maude-NPA. The
analysis belongs to the symbolic approach, which is typically preferred by formal method
researchers. Whereas, its complementary, namely the computational approach, is often
used by cryptographers. A computational proof gives a tighter security guarantee because
it takes probability and complexity into account, but it is not easy to understand for
non-experts in cryptography, and hard to mechanize the proof. A symbolic verification

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

is easier to understand, computer-verified, and suitable for automation, but it often
needs to make some idealizing assumptions. We conduct the formal analysis with not
only Maude-NPA but also a parallel version of Maude-NPA (called Par-Maude-NPA for
short) (Do et al., 2022) to make the best use of multicore architectures.

In summary, our contributions in this work include theMaude-NPA formal specification
of the Hybrid PQ TLS and the formal analysis of three security properties:
(1) The secrecy property of the ECDH shared secret key established between two honest

principals. Par-Maude-NPA found a counterexample of this property at depth 12 in
the time T = 1722 h (72 days), while Maude-NPA did not find it in T.

(2) The secrecy property of the PQ KEM shared secret key established between two honest
principals. As the same time T, Par-Maude-NPA did not find any counterexample of
this property up to depth 12, and neither did Maude-NPA up to depth 10.

(3) The authentication property, which states that if client A has completed the handshake,
apparently with server B, then B is the actual principal who has communicated with
A. As the same time T, Par-Maude-NPA did not find any counterexample up to depth
18, and neither did Maude-NPA up to depth 17.
The analysis results confirm that the protocol enjoys (2) and (3) up to depths 12 and 18,

respectively, while it does not enjoy (1). Subsequently, the secrecy property of the master
secret holds for the protocol up to depth 12. By using Par-Maude-NPA, we achieve a better
running performance than the original tool in terms of analysis time. Hybrid PQ TLS is
one large case study formalized in Maude-NPA. Through this work, we also would like to
show a case in which Par-Maude-NPA is capable of detecting an attack, while Maude-NPA
fails to do so due to an excessively long analysis time, which has not been demonstrated
in Do et al. (2022). The complete protocol specification and the attack patterns reported in
this article can be found at https://doi.org/10.5281/zenodo.7919153.

In the remainings, we give some preliminaries related to Maude-NPA and Maude in
Section ‘Preliminaries’. We describe the exchange messages in the Hybrid PQ TLS protocol
in Section ‘Hybrid Post-Quantum TLS 1.2’ and the Maude-NPA formal specification
of the protocol in Section ‘Protocol formal specification in Maude-NPA’. Afterward,
Section ‘Analysis experiments’ reports the results of the experiments we have conducted
with Maude-NPA and Par-Maude-NPA. Finally, Section ‘Related work’ mentions some
related case studies and Section ‘Conclusion’ summarizes our article.

PRELIMINARIES
Maude-NPA (Escobar, Meadows & Meseguer, 2006) is implemented in Maude (Durán et
al., 2020), a declarative language and high-performance rewriting logic tool for specifying,
programming, and verifying programs/systems, especially concurrent programs/systems.
Maude supports both order-sorted equational logic and rewriting logic (Meseguer, 2010).
Several formal analysis facilities, such as reachability analysis and LTL model checking, are
implemented in Maude, making it possible to specify and analyze complex systems. This
section briefly introduces the syntax of the Maude language (see the article by Durán et al.
(2020) and the book by Clavel et al. (2007) for more details), how narrowing works, and
how Par-Maude-NPA was parallelized.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 3/25

https://peerj.com
https://doi.org/10.5281/zenodo.7919153
http://dx.doi.org/10.7717/peerj-cs.1556

Functional modules
A functional moduleM specifies an order-sorted equational logic theory (6,E) with the
syntax: fmod M is (6,E) endfm . 6 is an order-sorted signature, which may contain a set
of the following declarations:

• importations of previously defined modules (protecting ... or extending ... or including
...)
• sorts and subsorts (sort s . or sorts s s′ . or subsort s < s′ .)
• function symbols (op f : s1 ... sn → s [att1 . . . attk] .)
• variables (vars v v ′ .)

where s and s′ are sort names; v and v ′ are variable names; and att1,...,attk are equational
attributes, such as assoc for associativity and comm for commutativity.

E may contain a collection of equations, which may be either unconditional (eq t = t ′ .)
or conditional (ceq t = t ′ if cond .), where t and t ′ are terms and cond is a conjunction of
equations (e.g., t = t ′). Equations are used as equational rules to perform the simplification
in which instances of the left-hand side pattern that match subterms of a subject term are
replaced by the corresponding instances of the right-hand side. The process is called term
rewriting and the result of simplifying a term is called its normal form.

System modules
A system moduleR specifies a rewrite theory (6,E,R) with the syntax: mod R is (6,E,R)
endm . 6 and E are the same as those in an equational theory. Rmay contain a collection of
rewrite rules, which may be either unconditional (rl [label] : u => v .) or conditional
(crl [label] : u => v if cond .), where label is a name; u and v are terms; and cond is a
conjunction of equations and/or rewrites (e.g., t => t ′). Rewrite rules are also computed
by rewriting from left to right modulo the equations in the system module and regarded
as local transition rules, making many possible state transitions from a given state in a
concurrent system.

Narrowing
Narrowing is a generalization of term rewriting that allows logical variables in terms
and replaces pattern matching by unification. To describe how narrowing works, in the
following, we use a classical example in the Maude book (Clavel et al., 2007). The following
systemmodule specifies a concurrent machine to buy cakes (c) and apples (a) with dollars
($) and quarters (q). A cake costs a dollar while an apple costs three quarters (specified by
the rewrite rules buy-c and buy-a , respectively). Only dollars are allowed to buy cakes and
apples. However, the machine can change four quarters into a dollar (the equation change).
The complete specification of the machine is as follows:

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 4/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

mod NARROWING -VENDING -MACHINE is
sorts Coin Item Marking Money State .
subsort Coin < Money .
op empty : -> Money .
op __ : Money Money -> Money [assoc comm id: empty] .
subsort Money Item < Marking .
op __ : Marking Marking -> Marking [assoc comm id: empty] .
op <_> : Marking -> State .
ops $ q : -> Coin .
ops c a : -> Item .
var M : Marking .
rl [buy -a] : < M $ > => < M a q > [narrowing] .
rl [buy -c] : < M $ > => < M c > [narrowing] .
eq [change] : q q q q M = $ M [variant] .

endm

where the operator <_> specifies the machine state. The attributes in the __ operators
state that they are associative and commutative and have the identity element empty .
The attributes narrowing and variant are specially used for narrowing and variant-based
equational unification algorithms (Escobar, Sasse & Meseguer, 2010), i.e., only rewrite rules
and equations with these attributes are used to perform the algorithms. Let us consider a
term < M1 > as an initial state that only contains a variable of the sort Money . There would
be several traces from the initial state by using narrowing. At each narrowing step, we must
choose which subterm of the subject term, which rewrite rule of the specification, and
which instantiation on the variables of the subterm and the left-hand side of the rewrite
rule (or which unifier (or substitution) of the subterm and the left-hand side of the rewrite
rule) are going to be considered. Each narrowing step applied to a given state produces a
new branch in the reachability tree. For example, for each rewrite rule of the machine, there
is only one unifier that makes the initial state < M1 > equal the left-hand side of the rewrite
rule. Therefore, with one narrowing step, there are only two possible cases, producing two
successor states from the initial state as follows:
< M1 > σ1, buy-a < a q M2 >
< M1 > σ ′1, buy-c < c M2’ >

where M2 and M2’ are variables of the sort Money and the substitutions are σ1= M1 7→ M2, M
7→ M2 and σ ′1 = M1 7→ M2’ , M 7→ M2’ with the rewrite rules buy-a and buy-c , respectively.
Note that M in the substitutions is the variable used in the left-hand side of the rewrite
rules. From the successor state < a q M2 > , two more consecutive narrowing steps may be
performed as follows:
< M1 > σ1, buy-a < a q M2 > σ2, buy-c < a c q M3 > σ3, buy-a < a a c q M4 >

where M3 and M4 are variables of the sort Money and the substitutions are σ2 = {M2 7→
M3, M 7→ a q M3} and σ3= { M3 7→ q q q M4, M 7→ a c M4} with the rewrite rules buy-c and
buy-a, respectively. In the third narrowing step, when we apply the substitution σ3, the
two obtained instances of < a c q M3 > and the left-hand side of the rewrite rule buy-a

are < a c q q q q M4 > and < a c M4 > , respectively. The two instances are actually equal,
thanks to the commutative property and the equation change . Therefore, the rewrite rule
buy-a modulo the equational theory is used to obtain the state < a a c q M4 > . From
what has been described, it follows that by using narrowing, we can solve the reachability
problem where St and St ′ are patterns (terms that may have variables in common) of

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

the sort State such that some conditions are satisfied, and R,E are the rewrite rules and
equations in the specification.

Par-Maude-NPA
Par-Maude-NPA (Do et al., 2022) has been developed in order to improve the running
performance of Maude-NPA by the parallel mechanism. Maude-NPA basically uses a
breadth-first search (BFS) to explore the state space backwardly from a given insecure
attack pattern. Given a set of states in layer l , for each state in the set, the backward
narrowing can be performed independently to obtain its successor states in layer l+1.
Par-Maude-NPA makes use of this point to parallelize the backward narrowing tasks for
states at the same layer, so that successor states are generated in parallel at each layer.
Generally speaking, the breadth-first search in Maude-NPA is transformed into a parallel
breadth-first search in Par-Maude-NPAwithout altering the number or formof the states in
the state space. Par-Maude-NPA uses a master-worker model with onemaster andmultiple
workers, where the master distributes (or assigns) jobs to each worker in a well-balanced
way. The tool uses a shared cache maintained by the master and a local cache maintained
by each worker to avoid making unnecessary duplications of jobs.

HYBRID POST-QUANTUM TLS 1.2
Figure 1 depicts the exchanged messages in a full handshake of the Hybrid PQ TLS
protocol. In this figure, ∗ indicates that the message is not sent unless client authentication
is requested. The hybrid key exchangemechanism in the proposed protocol directly impacts
on ClientHello, ServerHello, ServerKeyExchange, and ClientKeyExchange messages.

Let C and S denote a client and a server, respectively. When C wants to start a new
session with S, C starts by sending a ClientHello message to S. This message in the full
handshake mode consists of the protocol version, a random number, an empty session
ID, a list of cipher suites (cryptographic algorithms supported by C) in order of C ’s
preference, and a set of post-quantum KEM parameters (including both the name of KEM
and its parameters) supported by C . When receiving the ClientHello message, S responds
to C with a ServerHello message, containing the protocol version, a random number, a
non-empty session ID, and a selected cipher suite. S then sends his/her digital certificate (via
a Certificate message) and a ServerKeyExchange message to C . The ServerKeyExchange
message includes the ECDH & KEM public keys and a signature over the two public
keys together with the two random numbers previously sent in the Hello messages (i.e.,
ClientHello and ServerHello messages) signed by S’s long-term private key. In the case
when client authentication is requested, which is optional, a CertificateRequest message
will also be sent. S then sends a ServerHelloDone message to C , informing the completion
of the hello phase on the server side.

When receiving the ServerHelloDone message, C replies to S with a ClientKeyExchange
message, consisting of the client’s ECDH public key and the KEM ciphertext (generated
by the algorithm Encaps , see the ‘‘Protocol Formal Specification in Maude-NPA’’ section).
Before that, however, if S has previously sent a CertificateRequest message, meaning that
client authentication was requested, C must send their certificate (a Certificate message)

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 6/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

Client Server
ClientHello −→

ServerHello
Certificate

ServerKeyExchange
CertificateRequest∗

←− ServerHelloDone
Certificate∗

ClientKeyExchange
CertificateVerify∗

ClientFinished −→
←− ServerFinished

Figure 1. Messages exchanged in a full handshake of the Hybrid Post-Quantum TLS protocol
(Campagna and Crockett, 2021)

a master-worker model with one master and multiple workers, where the master distributes (or assigns)199

jobs to each worker in a well-balanced way. The tool uses a shared cache maintained by the master and a200

local cache maintained by each worker to avoid making unnecessary duplications of jobs.201

3 HYBRID POST-QUANTUM TLS 1.2202

Figure 1 depicts the exchanged messages in a full handshake of the Hybrid PQ TLS protocol. In this figure,203

∗ indicates that the message is not sent unless client authentication is requested. The hybrid key exchange204

mechanism in the proposed protocol directly impacts on ClientHello, ServerHello, ServerKeyExchange,205

and ClientKeyExchange messages.206

Let C and S denote a client and a server, respectively. When C wants to start a new session with S, C207

starts by sending a ClientHello message to S. This message in the full handshake mode consists of the208

protocol version, a random number, an empty session ID, a list of cipher suites (cryptographic algorithms209

supported by C) in order of C’s preference, and a set of post-quantum KEM parameters (including both the210

name of KEM and its parameters) supported by C. When receiving the ClientHello message, S responds211

to C with a ServerHello message, containing the protocol version, a random number, a non-empty session212

ID, and a selected cipher suite. S then sends his/her digital certificate (via a Certificate message) and a213

ServerKeyExchange message to C. The ServerKeyExchange message includes the ECDH & KEM public214

keys and a signature over the two public keys together with the two random numbers previously sent in215

the Hello messages (i.e., ClientHello and ServerHello messages) signed by S’s long-term private key. In216

the case when client authentication is requested, which is optional, a CertificateRequest message will also217

be sent. S then sends a ServerHelloDone message to C, informing the completion of the hello phase on218

the server side.219

When receiving the ServerHelloDone message, C replies to S with a ClientKeyExchange message,220

consisting of the client’s ECDH public key and the KEM ciphertext (generated by the algorithm Encaps,221

see Section 4.2.1). Before that, however, if S has previously sent a CertificateRequest message, meaning222

that client authentication was requested, C must send their certificate (a Certificate message) first. Fur-223

thermore, if client authentication was requested, following the ClientKeyExchange message, C will then224

send a CertificateVerify message, that is a signature over all handshake messages exchanged so far signed225

by C’s long-term private key. Finally, C sends a ClientFinished message, whose content is a hash of all226

handshake messages exchanged so far encrypted by the negotiated handshake key.227

When receiving the ClientFinished message, S validates it and sends a ServerFinished message. Once228

C receives the ServerFinished message, it also has to validate that the message is correct. After that, both229

sides can securely exchange messages by encrypting them under the negotiated handshake key.230

4 PROTOCOL FORMAL SPECIFICATION IN MAUDE-NPA231

Through this section, we present how we formally specify the Hybrid PQ TLS protocol in Maude-NPA.232

Before going into detail about the protocol formal specification, we first describe the strand notation233

through a running example to see how strands can be used to model the protocol execution.234

5/18PeerJ Comput. Sci. reviewing PDF | (CS-2023:02:83008:2:0:NEW 18 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 1 Messages exchanged in a full handshake of the hybrid post-quantum TLS protocol (Cam-
pagna & Crockett, 2021). An asterisk (∗) indicates that the message is not sent unless client authentica-
tion is requested.

Full-size DOI: 10.7717/peerjcs.1556/fig-1

first. Furthermore, if client authentication was requested, following the ClientKeyExchange
message, C will then send a CertificateVerify message, that is a signature over all handshake
messages exchanged so far signed by C ’s long-term private key. Finally, C sends a
ClientFinished message, whose content is a hash of all handshake messages exchanged
so far encrypted by the negotiated handshake key.

When receiving the ClientFinished message, S validates it and sends a ServerFinished
message. Once C receives the ServerFinished message, it also has to validate that the
message is correct. After that, both sides can securely exchange messages by encrypting
them under the negotiated handshake key.

PROTOCOL FORMAL SPECIFICATION IN MAUDE-NPA
Through this section, we present how we formally specify the Hybrid PQ TLS protocol
in Maude-NPA. Before going into detail about the protocol formal specification, we first
describe the strand notation through a running example to see how strands can be used to
model the protocol execution.

Formal specification by strands
Maude-NPA uses strands (Thayer, Herzog & Guttman, 1998) to specify the execution of the
protocol under analysis as well as the capabilities of the intruder. Each strand is a sequence
of positive and negative messages and possibly with some unique fresh data as follows:

:: r1,...,rk :: [+(msg1),−(msg2),...,−(msgi) |+ (msgi+1),...]

where r1,...,rk denote unique fresh data consumed by the principal performing the strand
(they would be, for example, secret keys, unique random numbers, and session identifiers).
A positive message +(msg) and a negative message −(msg) denote sending and receiving
the message msg , respectively. The vertical bar is used to distinguish between present and
future when the strand appears in a state description. Messages appearing before the bar

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 7/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1556/fig-1
http://dx.doi.org/10.7717/peerj-cs.1556

were sent/received in the past, whilemessages appearing after the bar will be sent/received in
the future. Let us consider a classical security protocol, namely Needham-Schroeder-Lowe
Public Key (NSLPK) protocol (Lowe, 1995), to illustrate how strands would be used to
specify the protocol execution. The protocol consists of the following three exchange
messages:
(1) P→Q : pk(Q,P;NP)
(2) Q→ P : pk(P,NP;NQ;Q)
(3) P→Q : pk(Q,NQ)
where P andQ denote two principal identifiers,NP andNQ are nonces (unguessable values)
generated by P and Q, respectively, and pk(P,m) denotes the encryption of message m
by the public key of P . The three messages exchanged can be explained as follows. P first
generates a nonce NP and sends it together with P ’s identifiers encrypted by Q’s public key
to Q. Upon receiving that message, Q decrypts it and obtains a nonce. Q generates a new
nonceNQ, encrypts the nonce received, the new nonce, andQ’s identifiers under P ’s public
key, and sends the result back to P . Upon receiving the response message, P decrypts it,
checking if one of the nonces is exactly the one that P has sent before in the first message.
If that is the case, P responds to Q with the other nonce encrypted under Q’s public key.

Maude-NPA provides some built-in sorts, such as the sort Msg that represents messages
and the sort Fresh that is used to identify terms that must be unique. Tomodel the protocol
in Maude-NPA, we first introduce some new sorts, such as Name and Nonce to distinguish
principal names and nonces, respectively. The two sorts are subsorts of the sort Msg , which
are declared as follows:
sorts Name Nonce .
subsort Name Nonce < Msg .

The nonce constructor is specified by the following operator:
op n : Name Fresh -> Nonce [frozen] .

where the frozen attribute is attached following the Maude-NPA convention, which is
necessary to tell Maude not to attempt to apply rewriting/narrowing at the arguments of
this operator. Suppose that P and r respectively are variables of the sorts Name and Fresh,
then n(P,r) denotes the nonce generated by P , where r guarantees its uniqueness. We also
declare the public encryption operator as follows:
op pk : Name Msg -> Msg [frozen] .

Let Q and N be variables of the sorts Name and Nonce , respectively. The strand specifying
the protocol execution from the P side is then defined as follows:
:: r ::
[nil | +(pk(Q, P ; n(P,r))), -(pk(P, n(P,r) ; N ; Q)), +(pk(Q, N)), nil]

The strand says that initially, given a unique fresh r , P consumes it to generate the
nonce n(P,r) and sends the nonce to Q together with P ’s identifiers encrypted by Q ’s public
key. When P receives another message whose content is n(P,r) , another nonce N , and Q ’s
identifiers encrypted under P ’s public key (which can be checked by using their secret key
to decrypt the received ciphertext), P replies to Q the new nonce N encrypted under Q ’s
public key. Recall that :: r:: denotes the unique fresh r which is consumed by the first

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 8/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

output message of the strand and all messages are put after the vertical bar following the
Maude-NPA convention because the vertical bar is irrelevant when specifying the protocol
execution. Note also that ; is the infix operator of message concatenation, which has
signature declaration as follows:
op _;_ : Msg Msg -> Msg [frozen] .

In the same manner, the strand that describes how the protocol is executed from the Q
side can be specified as follows:
:: r ::
[nil | -(pk(Q, P ; N)), +(pk(P, N ; n(Q,r) ; Q)), -(pk(Q, n(Q,r))), nil]

Strands are also used for the specification of the intruder capabilities. But in this case,
such an intruder strand is limited to be in the form of a sequence of negative messages
(possibly empty) followed by one positive message combining all previous variables under
a function symbol. For example, the intruder’s capability in encrypting any message by any
public key is specified as follows:
:: nil :: [nil | -(M), +pk(P,M), nil]

where M is a variable of the sort Msg . Precisely, the strand says that if the intruder has
learned the message M , then the intruder can encrypt it by the public key of any principal
(P).

Protocol formal specification
This section describes the Maude-NPA formal specification of the Hybrid PS TLS protocol.
We start with the definition of KEMs and how to model them in Maude-NPA.

KEM specification
A key encapsulation mechanism is a tuple of algorithms (KeyGen , Encaps , Decaps) along
with a finite key space K:
• KeyGen ()→ (pk,sk): A probabilistic key generation algorithm, which generates a public
& secret key pair pk & sk.
• Encaps (pk)→ (c,k): A probabilistic encapsulation algorithm, which takes as input a
public key pk and generates an encapsulation (or ciphertext) c and a shared key k ∈K.
• Decaps (c,sk)→ k: A deterministic decapsulation algorithm, which takes as inputs a
ciphertext c and a secret key sk, and returns as output a shared key k ∈K.
A KEM is ε- correct if for all (pk,sk)← KeyGen () and (c,k)← Encaps (pk), it holds that:
Pr[Decaps ([c,sk 6= k] ≤ ε
Intuitively, ε is the probability such that Decaps cannot recover the correct shared key

k. In most cases, ε would be negligible, and when ε = 0, we say the KEM is correct . In
this article, we only consider the case that all KEMs are correct , which means that Encaps
and Decaps always correctly return the same shared key k. Idealizing assumptions like
that are typically necessary when conducting security analysis in the symbolic model.
Furthermore, because a Decaps -failure probability is really small, typically almost 0, we are
not over-idealizing when omitting such Decaps -failure cases. For example, with Kyber, that
failure probability is below 2−140 (Bos et al., 2018), i.e., Kyber is ε- correct with ε < 2−140.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 9/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

To model KEMs in Maude-NPA, we first introduce sorts PqSk , PqPk , Cipher , and PqKey

to represent secret keys, public keys, encapsulations, and shared keys, respectively. The
constructor of a secret key is specified by the following operator:
op pqSk : Name Fresh -> PqSk [frozen] .

The argument of the sort Fresh provides the uniqueness of secret keys, while the
argument of the sort Name is not strictly necessary, but it is convenient for identifying who
is the owner of a given key.

The Decaps algorithm is straightforwardly declared as follows:
op decap : Cipher PqSk -> PqKey [frozen] .

Unlike Decaps , it is a bit tricky to specify the KeyGen and Encaps procedures because they
are probabilistic algorithms. For each of the two procedures, we add an argument of the
sort PqSk to make them become deterministic procedures. With the Encaps procedures, we
declare two separate Maude operators: encapCipher and encapKey that return the ciphertext
c and the key k, respectively. We declare the following operators:
op pqPk : PqSk -> PqPk [frozen] .
op encapCipher : PqPk PqSk -> Cipher [frozen] .
op encapKey : PqPk PqSk -> PqKey [frozen] .

The first operator models the KeyGen procedure, while the two others model the Encaps

procedure. The algebraic properties of KEMs are then specified by means of equations as
follows:
op $pqKey : PqSk PqSk -> PqKey [frozen] .
eq encapKey(pqPk(S:PqSk), S2:PqSk) = $pqKey(S:PqSk , S2:PqSk) [variant] .
eq decap(encapCipher(pqPk(S:PqSk),S2:PqSk), S:PqSk)

= $pqKey(S:PqSk , S2:PqSk) [variant] .

where the variant attribute denotes that the two equations are not regularMaude equations
used for simplification, but are equations used for variant-based equational unification
(Escobar, Sasse & Meseguer, 2010). Here we introduce one more operator, namely $pqKey,
which is necessary for specifying that the rewritings of encapKey and decap (Encaps and
Decaps steps) on proper arguments will result in the same key. The first equation can be
straightforwardly comprehended. The second equation states that given an encapsulation
en and a secret key sk, a principal can perform Decaps (en,sk) to get the proper shared key
only if en is the result of Encaps when taking as input the public key associated with the
secret key sk.

ECDH and key calculation specification
To model ECDH in Maude-NPA, we first introduce the following sorts:
sort Scalar Point ECKey .
subsort Point < ECKey .

The sort Point represents points on the curve, which serve as ECDH public keys. The
sort Scalar and ECKey represent the secret keys and shared keys, respectively. We then
declare the following operators:
op p : -> Point .
op scl : Name Fresh -> Scalar [frozen] .
op gen : Point Scalar -> Point [frozen] .
op _*_ : Scalar Scalar -> Scalar [frozen assoc comm] .

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 10/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

The constant p denotes a point generator on the curve, which is publicly known by all
participants including the intruder. The operator scl takes as inputs a principal name and
a fresh, and outputs a scalar, which serves as a secret key. The operator gen takes as inputs a
point and a (secret) scalar and outputs another point. Concretely, when the first argument
is a point generator, the result is a public key, which is used to send to the other peer; and
when the first argument is a public key received from the opposite peer, the result is a
shared key. The last operator is the associative-commutative multiplication operation on
scalars, thanks to the Maude attributes assoc and comm . The algebraic property of ECDH
is then specified by the following equation:
eq gen(gen(P:Point , S:Scalar), S2:Scalar)

= gen(P:Point , S:Scalar * S2:Scalar) [variant] .

Sorts PreMasterSecret and MasterSecret are introduced to represent premaster secrets
and master secrets, respectively, in the protocol key calculation. We then model their
calculations with the following operators:
op pms : ECKey PqKey -> PreMasterSecret [frozen] .
op ms : PreMasterSecret Rand Rand Point Cipher -> MasterSecret [frozen] .

where Rand is the sort representing random numbers generated by clients and servers. A
pre-master secret is the concatenation of an ECDH shared secret and a PQ KEM shared
secret. Whereas, a master secret is computed by the pseudorandom function (PRF) taking
as inputs a pre-master secret and a seed, which is the combination of the two random
numbers previously exchanged in the two Hello messages and the ECDH public key & PQ
encapsulation previously sent in the ClientKeyExchange message.

Honest principal specification
We use three operators rd , sess , and cert that serve as functions to produce random
numbers, session IDs, and digital certificates, respectively. We also define operators sig

and enc reflecting the signature and symmetric encryption functions. All of them are as
follows:
op rd : Name Fresh -> Rand [frozen] .
op sess : Name Fresh -> Session [frozen] .
op cert : Name -> Cert [frozen] .
op sig : Name Msg -> Msg [frozen] .
op enc : MasterSecret Msg -> Msg [frozen] .

Given a server S , a message M , and a master-secret MS , enc(MS,M) denotes the ciphertext
obtained by encrypting M by MS , while sig(S,M) denotes the signature over message M signed
by the long-term private key of server S . By using the principal name as an input argument
for the signature sign function instead of the private key (for example, sig(priKey(S),M)),
we implicitly associate a long-term private key with its owner’s name. For the sake of
simplicity and for reducing the size of the state space, cert(S) is used to denote the digital
certificate of the server S , while in fact, the certificate must contain information about the
trusted certificate authority and the public key of S. By using that simplification form, we
explicitly associate a certificate with its owner’s name and ignore the case when the intruder
tries to fake a certificate.

Let r1 , r2 , and r3 be variables of the sort Fresh ; C and S be variables of the sort Name ;
N and SS be variables of the sorts Rand and Session , respectively; PK1 and PK2 be variables

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 11/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

of the sorts Point and PqPk , respectively. The execution of the protocol of Fig. 1 up to the
ClientFinished message from a client’s side is specified as follows:
:: r1,r2,r3 ::
[nil |
+(ch ; rd(C,r1)),
-(sh ; N ; SS),
-(sc ; cert(S)),
-(ske ; PK1 ; PK2 ; sig(S, PK1 ; PK2 ; rd(C,r1) ; N)),
+(cke ; gen(p,scl(C,r2)) ; encapCipher(PK2 , pqSk(C,r3))),
+(cf ; enc(ms(pms(gen(PK1 ,scl(C,r2)), encapKey(PK2 , pqSk(C,r3))),

rd(C,r1), N, gen(p,scl(C,r2)), encapCipher(PK2 , pqSk(C,r3))),
(ch ; rd(C,r1)) ++
(sh ; N ; SS) ++
(sc ; cert(S)) ++
(ske ; PK1 ; PK2 ; sig(S, PK1 ; PK2 ; rd(C,r1) ; N)) ++
(cke ; gen(p,scl(C,r2)) ; encapCipher(PK2 , pqSk(C,r3))))

),
nil]

where ch , sh , sc , ske , cke , and cf are constants of the sort Msg , which are acronyms
of ClientHello, ServerHello, Server Certificate, ServerKeyExchange, ClientKeyExchange,
and ClientFinished. The ++ operator denotes message concatenation. The strand says that
the client C starts a new connection with the server S by sending a ClientHello message
with a random number denoted by rd(C,r1) . When the client receives a ServerHello
message, a valid server Certificate message, and a valid ServerKeyExchange message with
ECDH and PQ public keys, i.e., PK1 and PK2 , the client will send a ClientKeyExchange
message with the client’s ECDH public key exchange and the encapsulation computed
with PK2 as one of the inputs. Then, the client also sends a ClientFinished message, that
is the concatenation (denoted by ++) of all messages exchanged so far encrypted under
the master secret. Note that for the sake of simplicity and for reducing the size of the
state space, we use master secrets as symmetric keys for encryption of Finished messages.
However, the correct protocol design states such a symmetric key must be computed by
the PRF function taking as inputs the master secret and the two random numbers in the
two Hello messages sent in the same session. Moreover, the ServerHelloDone message
and some components of the Hello messages, such as protocol versions, cipher suites,
and lists of cipher suites, are excluded. We also suppose that client authentication is not
requested. Note also that the use of the concatenation operator ++ is not strictly necessary.
For example, from the definition of ++ , it follows that (sh ; N ; SS) ++ (sc ; cert(S)) is
rewritten to (sh ; N ; SS ; sc ; cert(S)) . Therefore, ++ can be omitted without posing
any technical problems. However, we define and keep on using it because we want to show
each message separately for ease of understanding from readers.

In the same manner, we specify the protocol execution from a server’s side. The strand
below specifies the server execution up to the ClientFinished message:
:: r1,r2,r3,r4 ::
[nil |
-(ch ; N),
+(sh ; rd(S,r1) ; sess(S,r2)),
+(sc ; cert(S)),
+(ske ; gen(p,scl(S,r3)) ; pqPk(pqSk(S,r4)) ;

sig(S, gen(p,scl(S,r3)) ; pqPk(pqSk(S,r4)) ; N ; rd(S,r1))),
-(cke ; PK1 ; CP),
-(cf ; enc(ms(pms(gen(PK1 ,scl(S,r3)), decap(CP, pqSk(S,r4))),

N, rd(S,r1), PK1 , CP),
(ch ; N) ++

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 12/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

(sh ; rd(S,r1) ; sess(S,r2)) ++
(sc ; cert(S)) ++
(ske ; gen(p,scl(S,r3)) ; pqPk(pqSk(S,r4)) ;

sig(S, gen(p,scl(S,r3)) ; pqPk(pqSk(S,r4)) ; N ; rd(S,r1))) ++
(cke ; PK1 ; CP))

),
nil]

where CP is a variable of the sort Cipher . Note that in both strands, we omit the
ServerFinished message because they are too long to show all. The complete specification
is publicly available at https://doi.org/10.5281/zenodo.7919153.

Intruder capabilities
Maude-NPA uses the standard Dolev-Yao intruder model (Dolev & Yao, 1983). The
intruder is given the capability of fully controlling the network, in particular, the intruder
can intercept and learn information from any message in the network; fake and synthesize
messages based on the gleaned information; and impersonate some principal to send the
faking message to some other. Let X and Y be variables of the sort Msg , we first specify the
intruder’s capabilities in concatenating and de-concatenating messages by the following
three strands:
:: nil :: [nil | -(X), -(Y), +(X ; Y), nil] &
:: nil :: [nil | -(X ; Y), +(X), nil] &
:: nil :: [nil | -(X ; Y), +(Y), nil] &

The intruder may consume a fresh to generate by themself a random number and a
scalar serving as an ECDH secret key, which is specified as follows:
:: r :: [nil | +(rd(i,r)), nil] &
:: r :: [nil | +(scl(i,r)), nil] &

where i is a constant denoting the intruder.
With KEMs, if the intruder has learned some public key PK2 , secret key SK , and

encapsulation CP , then the intruder can derive some appropriate encapsulations and keys
as follows:
:: nil :: [nil | -(PK2), -(SK), +(encapCipher(PK2 ,SK)), nil] &
:: nil :: [nil | -(PK2), -(SK), +(encapKey(PK2 ,SK)), nil] &
:: nil :: [nil | -(CP), -(SK), +(decap(CP,SK)), nil] &

With ECDH, an important assumption we suppose is that the intruder can break the
key exchange security by utilizing the power of quantum computation. That is, if the
intruder knows the two ECDH public keys exchanged between a client and a server, then
the intruder can derive the shared secret key. This capability is specified by the following
strand:
:: nil :: [nil | -(gen(p,S)), -(gen(p,S2)), +(gen(p,S * S2)), nil]

where S and S2 are variables of Scalar .
The complete specification of the intruder capabilities includes some more strands,

which are omitted showing here. Again, readers can find them at https://doi.org/10.5281/
zenodo.7919153.

Checking the specification
To increase trust in the correctness of what has been formally specified, a state pattern is
defined proving that it is possible to successfully complete a protocol handshake between

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 13/25

https://peerj.com
https://doi.org/10.5281/zenodo.7919153
https://doi.org/10.5281/zenodo.7919153
https://doi.org/10.5281/zenodo.7919153
http://dx.doi.org/10.7717/peerj-cs.1556

two principals. This must be fulfilled, otherwise, the analysis coming later would be
meaningless. Let c and s be two constants of the sort Name , denoting arbitrary principals
(implicitly stand for a client and a server). The state pattern is defined as a Maude-NPA
ATTACK-STATE as follows:
eq ATTACK -STATE (10) =
:: r1,r2,r3 ::
[nil ,
+(ch ; rd(c,r1)),
-(sh ; N ; SS),
-(sc ; cert(s)),
-(ske ; PK1 ; PK2 ; sig(s, PK1 ; PK2 ; rd(c,r1) ; N)),
+(cke ; gen(p, scl(c,r2)) ; encapCipher(PK2 , pqSk(c,r3))),
+(cf ; enc(ms(pms(gen(PK1 , scl(c,r2)), encapKey(PK2 , pqSk(c,r3))),

rd(c,r1), N, gen(p, scl(c,r2)), encapCipher(PK2 , pqSk(c,r3))),
(ch ; rd(c,r1)) ++
(sh ; N ; SS) ++
(sc ; cert(s)) ++
(ske ; PK1 ; PK2 ; sig(s, PK1 ; PK2 ; rd(c,r1) ; N)) ++
(cke ; gen(p, scl(c,r2)) ; encapCipher(PK2 , pqSk(c,r3))))),

-(sf ; ...)
| nil]

|| empty
|| nil || nil || nil
[nonexec] .

where 10 in ATTACK-STATE(10) denotes the attack pattern number in order to distinguish
from other attacks and ... denotes that some terms of the sort Msg , which are components
of the ServerFinished message, are omitted for the sake of simplicity. The attack pattern
consists of five sections separated by the symbol ||. The second section is the intruder
knowledge, which is empty in this case. The last three sections are set to nil denoting
empty because they are irrelevant in this case. The first section is the set of strands expected
to appear in the attack, which says that client c has completed the protocol handshake
with server s . Maude-NPA returns a solution for the attack pattern, thereby confirming
that it is possible to successfully complete the protocol handshake between two principals.

ANALYSIS EXPERIMENTS
Three experiments analyze the following three properties for the protocol with each of
Maude-NPA and Par-Maude-NPA: (1) the secrecy property of the ECDH shared secret
key established between two honest principals, (2) the secrecy property of the PQ KEM
shared secret key established between two honest principals, and (3) the authentication
property, i.e., if A has completed the protocol execution apparently with B, then B is indeed
the principal who has communicated with A.

Secrecy property of ECDH shared secret key
The first property we would like to check is whether the intruder can glean the ECDH
shared secret key when a client and a server have completed the handshake. To check
that property, we specify another Maude-NPA attack pattern, i.e., ATTACK-STATE(0) , that is
identical to the ATTACK-STATE(10) shown above except for the intruder knowledge section,
which is changed from empty to the following:

gen(PK1 , scl(c,r2)) inI , empty

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 14/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

Recall that PK1 denotes the ECDH public key that client c receives from server s , while
scl(c,r2) denotes the ECDH secret key of the client. The symbol _inI indicates what
messages the intruder knows, while the symbol _!inI indicates what messages the intruder
does not yet know (but will know in the future). The attack pattern says that when a client
has completed the handshake with a server in which the server sent their ECDH public
key, i.e., PK1 , to the client and the client sent their ECDH public key, i.e., gen(p, scl(c,r2))

to the server, then the intruder can learn the corresponding ECDH shared key denoted by
gen(PK1, scl(s,r2)) .

We have checked the attack pattern with both the original Maude-NPA and Par-
Maude-NPA. Par-Maude-NPA found a counterexample for the attack pattern in about
1,722 h (nearly 72 days), meaning that the intruder can learn the ECDH shared secret key
established between the honest client and the honest server. That counterexample state
contains four sections: (1) state ID, (2) set of current protocol and intruder strands, (3)
intruder knowledge, and (4) sequence of messages. To understand how the attack can
happen, we show (4)—the message sequence leading to the counterexample as follows:
1 +(ch ; rd(c,#3: Fresh)),
2 -(ch ; rd(c,#3: Fresh)),
3 +(sh ; rd(s,#4: Fresh) ; sess(s,#6: Fresh)),
4 +(sc ; cert(s)),
5 +(ske ; gen(p, scl(s,#0: Fresh)) ; pqPk(pqSk(s,#2: Fresh)) ;
sig(s, gen(p, scl(s,#0: Fresh)) ; pqPk(pqSk(s,#2: Fresh)) ;
rd(c,#3: Fresh) ; rd(s,#4: Fresh))),
6 -(ske ; ...),
7 +(gen(p, scl(s,#0: Fresh)) ; pqPk(pqSk(s,#2: Fresh)) ;
sig(s, gen(p, scl(s,#0: Fresh)) ; pqPk(pqSk(s,#2: Fresh)) ;
rd(c,#3: Fresh) ; rd(s,#4: Fresh))),
8 -(sh ; rd(s,#4: Fresh) ; sess(s,#6: Fresh)),
9 -(sc ; cert(s)),
10 -(ske ; ...),
11 +(cke ; gen(p, scl(c,#1: Fresh)) ;
encapCipher(pqPk(pqSk(s,#2: Fresh)), pqSk(c,#5: Fresh))),
12 -(cke ; ...),
13 +(gen(p, scl(c,#1: Fresh)) ;
encapCipher(pqPk(pqSk(s,#2: Fresh)),pqSk(c,#5: Fresh))),
14 -(gen(p, scl(c,#1: Fresh)) ;
encapCipher(pqPk(pqSk(s,#2: Fresh)),pqSk(c,#5: Fresh))),
15 +(gen(p, scl(c,#1: Fresh))),
16 -(gen(p, scl(s,#0: Fresh)) ;
pqPk(pqSk(s,#2: Fresh)) ; sig(s, gen(p, scl(s,#0: Fresh)) ;
pqPk(pqSk(s,#2: Fresh)) ; rd(c,#3: Fresh) ; rd(s,#4: Fresh))),
17 +(gen(p, scl(s,#0: Fresh))),
18 -(gen(p, scl(s,#0: Fresh))),
19 -(gen(p, scl(c,#1: Fresh))),
20 +(gen(p, scl(s,#0: Fresh) * scl(c,#1: Fresh))),
21 +(cf ; ...),
22 -(cke ; gen(p, scl(c,#1: Fresh)) ;
encapCipher(pqPk(pqSk(s,#2: Fresh)), pqSk(c,#5: Fresh))),
23 -(cf ; ...),
24 +(sf ; ...),
25 -(sf ; ...)

We insert line numbers on the left side for easy reference in the following explanation.
Client c starts sending a ClientHello message to server s (at line 1), where #3:Fresh denote
a unique fresh. Server s receives that message (at line 2), and then sends consecutively to c

a ServerHello message (at line 3), a Certificate message (at line 4), and a ServerKeyExchange
message (at line 5). The intruder grasps the ServerKeyExchange message, and by applying
the de-concatenation rules twice, they learn the ECDHpublic key (gen(p, scl(s,#0:Fresh)))
sent in that message (at lines 6–7 and 16–17). We use ... to omit some components of

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 15/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

a message, which is too long to show fully. When c receives the three messages from
s (at lines 8–10), c sends to s a ClientKeyExchange message (at line 11). The intruder
again grasps that message, and by applying the de-concatenation rules twice, they learn the
ECDH public key (gen(p, scl(s,#1:Fresh))) sent in that message (at lines 12–15). From
the two ECDH public keys learned (at lines 18–19), by applying the rule
:: nil :: [nil | -(gen(p,S)), -(gen(p,S2)), +(gen(p,S * S2)), nil]

the intruder learns the ECDH shared secret between c and s (at line 20). c then sends
a ClientFinished message to s (at line 21). Upon receiving the ClientKeyExchange and
ClientFinished messages (at lines 22–23), s sends back to c a ServerFinished message (at
line 24). The last line 25 denotes the reception of that ServerFinished message on the client
side. The handshake is now completed, in which the ECDH shared secret is learned by the
intruder.

The counterexample was found by Par-Maude-NPA at depth 12. It means that the found
state is located at depth 12 from the root of the backward reachability tree constructed by
the tool. In this tree, the root is the attack pattern, and a child node is connected to its
parent node by an action of an honest principal or the intruder. With Maude-NPA, it did
not find the counterexample in the same amount of time T. The detail of the experimental
results is discussed in Section ‘Experimental results’.

Secrecy property of PQ KEM shared secret key
Another attack pattern namely ATTACK-STATE(1) is defined as the counterpart of
ATTACK-STATE(0) , checking whether the intruder can learn the PQ KEM shared secret
key established between the client and the server. If it is possible, then they can indeed
derive the pre-master secret and the master secret from both PQ KEM and ECDH shared
secrets learned; otherwise, the secrecy of the master secret is guaranteed. Therefore, the
secrecy property of handshake keys is checked through this attack pattern. ATTACK-STATE(1)
is identical to ATTACK-STATE(10) except for the intruder knowledge section, which now
becomes as follows:

encapKey(PK2 , pqSk(c,r3)) inI , empty

ATTACK-STATE(1) says that when a client has completed the protocol handshake
with a server in which the server sent the PQ KEM public key denoted by PK2 to
the client and the client sent the PQ KEM ciphertext (or encapsulation) denoted by
encapCipher(PK2, pqSk(c,r3)) to the server, then the intruder cannot learn the PQ KEM
shared key denoted by encapKey(PK2, pqSk(c,r3)) .

Par-Maude-NPA did not find any counterexample up to depth 12, confirming that the
intruder cannot learn the PQ KEM shared secret established between the client and the
server up to the bounded depth. Together with the previous analysis experiment, it follows
that even though the intruder can learn the ECDH shared secret, the intruder cannot
learn the master secret. We leave a detailed discussion about the analysis result in Section
‘Experimental results’.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 16/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

Authentication property
The next property we would like to check is the authentication property, i.e., if client A has
completed the handshake apparently with server B, then B is indeed the principal who has
communicated with A. We define the following ATTACK-STATE(2) :
eq ATTACK -STATE (2) =
:: r1,r2,r3 ::
[nil ,
+(ch ; rd(c,r1)),
-(sh ; N ; SS),
-(sc ; cert(s)),
-(ske ; PK1 ; PK2 ; sig(s, PK1 ; PK2 ; rd(c,r1) ; N)),
+(cke ; gen(p,pt(c,r2)) ; encapCipher(PK2 , pqSk(c,r3))),
+(cf ; enc(ms(pms(gen(PK1 , pt(c,r2)), encapKey(PK2 , pqSk(c,r3))),

rd(c,r1),N,gen(p,pt(c,r2)), encapCipher(PK2 , pqSk(c,r3))),
(ch ; rd(c,r1)) ++
(sh ; N ; SS) ++
(sc ; cert(s)) ++
(ske ; PK1 ; PK2 ; sig(s, PK1 ; PK2 ; rd(c,r1) ; N)) ++
(cke ; gen(p,pt(c,r2)) ; encapCipher(PK2 , pqSk(c,r3))))),

-(sf ; ...)
| nil]

|| empty
|| nil
|| nil
|| never(

:: r’,r1’,r2’,r3’ ::
[nil |
-(ch ; rd(c,r1)),
+(sh ; N ; SS),
+(sc ; cert(s)),
+(ske ; PK1 ; PK2 ; sig(s, PK1 ; PK2 ; rd(c,r1) ; N)),
-(cke ; gen(p,pt(c,r2)) ; encapCipher(PK2 , pqSk(c,r3))),
-(cf ; enc(ms(pms(gen(PK1 ,pt(c,r2)), encapKey(PK2 , pqSk(c,r3))),

rd(c,r1),N,gen(p,pt(c,r2)), encapCipher(PK2 , pqSk(c,r3))),
(ch ; rd(c,r1)) ++
(sh ; N ; SS) ++
(sc ; cert(s)) ++
(ske ; PK1 ; PK2 ; sig(s, PK1 ; PK2 ; rd(c,r1) ; N)) ++
(cke ; gen(p,pt(c,r2)) ; encapCipher(PK2 , pqSk(c,r3))))),

+(sf ; ...),
nil]

& STR:StrandSet
|| IK:IntruderKnowledge)

[nonexec] .

Recall that ... denotes the omission of some terms of sort Msg , which are components of
the ServerFinished message. The intruder knowledge section now becomes empty , meaning
that there is no constraint about the intruder knowledge, while the last section now is
a never pattern. This attack pattern defines a state in which client c has completed the
handshake, apparently with server s , by sending a ClientFinished message to s and c has
received back another valid ServerFinished message, but s has actually not executed such
a server instance with c (denoted by the never pattern in the last section of the attack).
Maude-NPA and Par-Maude-NPA did not find any counterexample up to depths 17 and
18, respectively. Next, we report the detailed experimental results of the three analyses in
the next subsection.

Experimental results
We have conducted experiments for the three above-mentioned attack patterns with
Maude-NPA and Par-Maude-NPA on a supercomputer that carries 1.5 TB of memory and
four 2.8 GHz microprocessors, where each microprocessor has 16 cores. Because we were

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 17/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

Table 1 Experimental results of the three attack patterns after 1,722h 20m 23s.

Attack number Maude-NPA Par-Maude-NPA

Time (h:m:s) Depth Result Time (h:m:s) Depth Result

0 1,722:20:23 H 11 ∅ 1,722:20:23 F 12 ×

1 1,722:20:23 H 11 ∅ 1,722:20:23 H 13 ∅
2 1,722:20:23 H 18 ∅ 1,722:20:23 H 19 ∅

only able to use one such supercomputer for our experiments and could have predicted
that it would take a long time to complete each of the total six experiments, we started the
six experiments on the supercomputer simultaneously. With Par-Maude-NPA, we used
one master and eight workers with at most 256 GB of memory and 16microprocessor cores
for each experiment. With Maude-NPA, at most 256 GB of memory and 4 microprocessor
cores were used for each experiment. This resource allocation is reasonably fair because of
1.5 TB memory (= 6×256 GB memory) and 4×16 cores (> 3×16 cores + 3×4 cores),
although the OS uses some resources, which should be negligible. Note that Maude-NPA
uses one core for each experiment and the six experiments may use a total of about 1.5 TB
of memory for about 1,722 h. Table 1 shows the experimental results for the three attack
patterns with Maude-NPA and Par-Maude-NPA. The first column denotes the attack
number corresponding to each attack pattern. The next three columns denote the running
time, the depth at which Maude-NPA reaches, and the result of each analysis, respectively,
with Maude-NPA and similarly for Par-Maude-NPA with the last three columns. In the
Result column, the symbol ∅ denotes no counterexample is found up to a bounded
depth; while the symbol× denotes a counterexample is found and the protocol is insecure
against the attack. In theDepth column, ‘‘H x ’’ denotes the analysis is still running at depth
x and has not been completed, where ‘‘H’’ stands for ‘‘Handling’’. On the other hand, ‘‘F
x ’’ denotes the analysis is completed at depth x , where ‘‘F’’ stands for ‘‘Finished’’.

With attack pattern number 0, as T= 1,722 h, 20 min, and 23 s (nearly 72 days),
Par-Maude-NPA completed the analysis at depth 12 and found a counterexample. We
decided to stop all of the six experiments as the time T because the long time had been
spent. We report the results of the five other experiments as the same time T. Also with
attack pattern number 0, as the same time T, Maude-NPA only reached depth 11 and was
handling it. Therefore, no counterexample was found by Maude-NPA in T.

With attack pattern number 1, as the same time T, both Par-Maude-NPA and Maude-
NPA did not find any counterexample. Par-Maude-NPA and Maude-NPA were handling
depth 13 and depth 11, respectively. Observing the number of reachable states at each
depth, we see that it is increased after each layer depth. The number of reachable states
at each depth of the three analysis experiments is depicted in Table 2, where the hyphen
symbol denotes the data is not available because the analysis with that given attack is not
conducted at that given depth. Note that the data shown in Table 2 are exactly the same
up to depths 10, 10, and 17 for the three attack patterns 0, 1, and 2, respectively, with
Maude-NPA and Par-Maude-NPA.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 18/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

Table 2 Number of reachable states at each depth.

Depth Attack 0 Attack 1 Attack 2

1 15 15 8
2 30 30 5
3 51 56 2
4 86 101 2
5 150 165 2
6 261 262 2
7 435 408 2
8 695 610 2
9 1,067 871 2
10 1,597 1,216 4
11 2,374 1,757 7
12 3,679 2,634 10
13 – – 19
14 – – 40
15 – – 95
16 – – 246
17 – – 602
18 – – 1,355

With attack pattern number 2, similarly, both Par-Maude-NPA and Maude-NPA did
not find any counterexample, and were handling at depth 19 and depth 18, respectively, in
the time T. The number of reachable states at each depth from 1 to 13 is reasonably small.
However, it quickly increases at the deeper depths, especially depths 17 and 18. Therefore,
we guess that the experiments would not converge at depth 19 or a bit deeper depth.

The six experiments show that using Par-Maude-NPA helped us to significantly reduce
the analysis time in this Hybrid PQ TLS case study. To measure precisely how much
Par-Maude-NPA is faster than Maude-NPA, we conduct some more experiments with
attack number 0, bounded depths 8 and 9, numbers of workers 8, 12, and 16, and show
the results in Table 3. For example, when the bounded depth is 8, we can increase the
running performance of Maude-NPA with Par-Maude-NPA as 3.8x, 4.2x, and 4.6x faster
than that with Maude-NPA, respectively. The improvement of the running performance
of Maude-NPA with Par-Maude-NPA for the bounded depth 9 is better than that for the
bounded depth 8 in this case study. That is because the number of states at the bounded
depth 9 is larger than that at the bounded depth 8. It says that the more states located
at a depth, the more improvement will be obtained by using Par-Maude-NPA. Indeed,
the number of states at deeper depths (see Table 2) increases quickly, and then the use of
Par-Maude-NPA will achieve a better improvement compared to Maude-NPA in terms of
running performance, which was partially shown in these experiments and also in the six
experiments described above.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 19/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

Table 3 Comparison of Maude-NPA and Par-Maude-NPA in terms of running performance.

Attack Bounded Maude-NPA Par-Maude-NPA Improvement

number depth Time (h:m:s) #workers Time (h:m:s) (how faster)

0 8 70:39:03 8 18:46:37 3.8x
12 16:54:15 4.2x
16 15:26:02 4.6x

0 9 304:01:08 8 57:27:42 5.3x
12 54:15:12 5.6x
16 41:38:10 7.3x

RELATED WORK
Symbolic analysis has been used to analyze a wide range of cryptographic protocols,
partially resulting in the modern cryptosystems used today. With the development of
post-quantum cryptography, symbolic analysis is once again an efficient approach to their
security verification. Hülsing et al. (2021) have verified the security of their proposed post-
quantumWireGuard (PQ-WireGuard) protocol. This is a quantum-resistant version of the
WireGuard protocol (Donenfeld, 2017), a lightweight and high-performance VPN protocol.
The verification confirms that the protocol enjoys the desired security properties inherited
from theWireGuard protocol and also resists attacks using large-scale quantum computers.
The verification used the Tamarin prover (Basin et al., 2017), which is known as one of
the most state-of-the-art formal verification tools for symbolic analysis of cryptographic
protocols. Similar to the analysis with Maude-NPA, they have first symbolically modeled
the primitives, messages, etc. used in the protocol as function symbols and terms, and then
specified the desired security properties. However, unlike Maude-NPA, several commonly
used cryptographic primitives are pre-defined as built-in functions in Tamarin, such as
the Diffie-Hellman key exchange algorithm, encryption & decryption, hashing, and digital
signature, while Maude-NPA leaves all of these definitions to human users. To prove the
protocol enjoys the desired properties, they have introduced some auxiliary lemmas, where
conjecturing lemmas is known as one of the most intellectual tasks in theorem proving.
Additionally, the article has also presented a computational security proof, which gave
stronger security guarantees than the symbol proof since probability and complexity are
taken into account and fewer idealizing assumptions are made. However, more security
properties are verified in the symbolic verification, and more importantly, the symbolic
verification is computer-verified.

By using Tamarin, a comprehensive security analysis of TLS 1.3 (Rescorla, 2018),
precisely, the TLS 1.3 draft 21 release candidate has been presented by Cremers et al.
(2017). The security requirements claimed in the draft have been verified with respect to
a Dolev-Yao intruder. The analysis has taken into account all possible handshake modes,
such as pre-shared key (PSK) based resumption and zero round trip time (0-RTT), which
are new mechanisms only available from version 1.3. Similar to the above-mentioned case
study by Hülsing et al. (2021), a number of auxiliary lemmas has been used for the security
verification through the interactive mode of the tool.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 20/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

The interactive mode of Tamarin with the employment of some lemmas as mentioned
before would be helpful when the property under verification is impossible to be proved in
the fully automated mode. Tamarin’s verification method is based on constraint solving,
and its operation is essentially based onmultiset rewriting. Similar to Maude-NPA, the tool
can handle an unbounded number of participants and sessions (protocol executions). If the
tool terminates, either a counterexample representing an attack is returned or the security
property under verification is confirmed. Generally speaking, a Tamarin specification is
a state machine, where each state is a multiset of facts, and transitions between states are
defined by a set of rules. Those rules specify the protocol execution, the behavior of honest
participants as well as the capabilities of the intruder. A security property is modeled
as a trace property, and then Tamarin checks the satisfiability and/or the validity of the
property. If it is the case of checking the validity, Tamarin first converts it to checking
the satisfiability of the negated formula formalizing the property. Constraint solving is
then used to perform an exhaustive, symbolic search for executions with the trace until a
satisfying trace is found or no more rewrite rules can be applied. Roughly speaking, the
negation of the formula formalizing the validity property in Tamarin corresponds to the
attack pattern in Maude-NPA, and the satisfying trace, if found, in Tamarin corresponds
to the initial state, if found, in Maude-NPA.

ProVerif (Blanchet, Cheval & Cortier, 2022) is another automated tool for symbolically
reasoning cryptographic protocols that supports verification with respect to an unbounded
number of sessions. A variant of the pi-calculus (Blanchet, 2016) is used to model a
cryptographic protocol in the presence of a Dolev-Yao intruder (Dolev & Yao, 1983), and
then ProVerif translates it to a set of Horn clauses. This Horn clause representation makes
some abstractions, which is the cost for the support of an unbounded number of sessions.
Given a security property that we want to prove, the tool reduces the problem of finding
an attack against the property to the derivability of a fact on the Horn clauses representing
the protocol execution. If the fact is not derivable from the clauses, the property is proved.
On the other hand, if the fact is derivable from the clauses, there may be an attack violating
the property under analysis, but it may also be a ‘‘false attack’’, that is the found derivation
actually does not correspond to a real attack.

CONCLUSION
This article has presented a formal analysis of theHybrid PQTLS protocol withMaude-NPA
and the parallel version of Maude-NPA. The most burdensome problem in the analysis is
the big state space generated, which caused a long analysis time for our experiments. This
problem, however, is not dedicated to Maude-NPA only, but rather the major drawback of
other formal method tools based on exhaustive search. In fact, the running performance
of Maude-NPA has significantly improved since several techniques have been proposed
and implemented in the tool to reduce the size of the search space, such as generating
formal grammars representing terms unreachable from initial states and using a super lazy
intruder to delay the generation of substitution instances as much as possible (Escobar,
Meadows & Meseguer, 2008). Moreover, using the parallel version of Maude-NPA allows

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 21/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

us to obtain a better running performance than the original tool in this formal analysis
case study.

To prepare for secure information communication once practical quantum computers
become available, security analysis by formalmethods is a useful approach to the verification
and construction of secure post-quantum cryptosystems. Security verification by Maude-
NPA on the one hand is fully automated, that is no manual effort is required once the
formal specification and the attack pattern are provided. On the other hand, it may
take a quite long time if the state space of the system under verification is huge (i.e.,
state explosion). One possible way to mitigate the analysis time is by introducing some
never patterns serving as auxiliary lemmas to discard some useless reachability branches.
This technique has been demonstrated through the case studies by González-Burgueño
et al. (2014); González-Burgueño et al. (2015). The technique would be one piece of our
future work to investigate on. Besides, we are also interested in formal verifications of
post-quantum cryptographic protocols using some interactive approaches that require
manual efforts from human users. The CafeOBJ/proof score approach (Ogata & Futatsugi,
2013; Ogata & Futatsugi, 2003) is such a promising method. We plan to integrate the two
approaches to make the best use of the benefits obtained from them and mitigate their
weak points.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the JST SICORP (No. JPMJSC20C2), the European
Regional Development Fund, the Generalitat Valenciana, and the European Union
NextGenerationEU. There was no additional external funding received for this study.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The JST SICORP: JPMJSC20C2.
The European Regional Development Fund.
The Generalitat Valenciana, and the European Union NextGenerationEU.

Competing Interests
The authors declare that there are no competing interests.

Author Contributions
• Duong Dinh Tran conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Canh Minh Do conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 22/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1556

• Santiago Escobar conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.
• Kazuhiro Ogata conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Deposition
The following information was supplied regarding data availability:

The complete protocol specification and the attack patterns are available at Zenodo:
duongtd23. (2023). Hybrid Post-Quantum TLS formal analysis in Maude-NPA (v1.1).

Zenodo. https://doi.org/10.5281/zenodo.7919153.

REFERENCES
Aragon N, Barreto P, Bettaieb S, Bidoux L, Blazy O, Deneuville J-C, Gaborit P, Gueron

S, Güneysu T, Melchor CA, Misoczki R, Persichetti E, Sendrier N, Tillich J-
P, Zémor G. 2019. BIKE: bit flipping key encapsulation—round 3 submission.
Available at https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf .

Basin DA, Cremers C, Dreier J, Sasse R. 2017. Symbolically analyzing security protocols
using TAMARIN. ACM SIGLOG News 4(4):19–30 DOI 10.1145/3157831.3157835.

Blanchet B. 2016.Modeling and Verifying Security Protocols with the Applied Pi
Calculus and ProVerif. Foundations and Trends® in Privacy and Security 1(1–
2):1–135 DOI 10.1561/3300000004.

Blanchet B, Cheval V, Cortier V. 2022. ProVerif with lemmas, induction, fast sub-
sumption, and much more. In: 43rd IEEE symposium on security and privacy,
SP 2022, San Francisco, CA, USA, May 22–26, 2022. Piscataway: IEEE, 69–86
DOI 10.1109/SP46214.2022.9833653.

Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Seiler
G, Stehle D. 2018. CRYSTALS—Kyber: a CCA-secure module-lattice-based KEM.
In: 2018 IEEE european symposium on security and privacy (EuroS P). 353–367
DOI 10.1109/EuroSP.2018.00032.

CampagnaM, Crockett E. 2021. Hybrid post-quantum key encapsulation methods
(PQ KEM) for transport layer security 1.2 (TLS). RFC Editor Available at https:
//datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid .

Clavel M, Durán F, Eker S, Lincoln P, Martí-Oliet N, Meseguer J, Talcott CL (eds.)
2007. All about maude—a high-performance logical framework, how to specify,
program and verify systems in rewriting logic. Lecture notes in computer science, Vol.
4350. Springer DOI 10.1007/978-3-540-71999-1.

Cremers C, Horvat M, Hoyland J, Scott S, van der Merwe T. 2017. A comprehensive
symbolic analysis of TLS 1.3. In: Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security. ACM, 1773–1788
DOI 10.1145/3133956.3134063.

Do CM, Riesco A, Escobar S, Ogata K. 2022. Parallel maude-NPA for cryptographic pro-
tocol analysis. In: Bae K, ed. Rewriting logic and its applications—14th international

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 23/25

https://peerj.com
https://doi.org/10.5281/zenodo.7919153
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.09.29.1.pdf
http://dx.doi.org/10.1145/3157831.3157835
http://dx.doi.org/10.1561/3300000004
http://dx.doi.org/10.1109/SP46214.2022.9833653
http://dx.doi.org/10.1109/EuroSP.2018.00032
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid
https://datatracker.ietf.org/doc/html/draft-campagna-tls-bike-sike-hybrid
http://dx.doi.org/10.1007/978-3-540-71999-1
http://dx.doi.org/10.1145/3133956.3134063
http://dx.doi.org/10.7717/peerj-cs.1556

workshop, WRLA@ETAPS 2022, Munich, Germany, April 2–3, 2022, Revised selected
papers. Springer, 253–273 DOI 10.1007/978-3-031-12441-9_13.

Dolev D, Yao AC. 1983. On the security of public key protocols. IEEE Transactions on
Information Theory 29(2):198–207 DOI 10.1109/TIT.1983.1056650.

Donenfeld JA. 2017.WireGuard: next generation kernel network tunnel. In: 24th annual
network and distributed system security symposium, NDSS 2017.

Durán F, Eker S, Escobar S, Martí-Oliet N, Meseguer J, Rubio R, Talcott CL. 2020.
Programming and symbolic computation in Maude. Journal of Logical and Algebraic
Methods in Programming 110:100497 DOI 10.1016/j.jlamp.2019.100497.

Escobar S, Meadows C, Meseguer J. 2006. A rewriting-based inference system for the
NRL protocol analyzer and its meta-logical properties. Theoretical Computer Science
367(1):162–202 DOI 10.1016/j.tcs.2006.08.035.

Escobar S, Meadows CA, Meseguer J. 2008. State space reduction in the Maude-NRL
protocol analyzer. In: Computer security—ESORICS 2008, 13th European symposium
on research in computer security, Málaga, Spain, October 6–8, 2008. Proceedings.
Cham: Springer, 548–562 DOI 10.1007/978-3-540-88313-5_35.

Escobar S, Sasse R, Meseguer J. 2010. Folding variant narrowing and optimal variant
termination. In: Ölveczky PC, ed. Rewriting logic and its applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 52–68.

González-Burgueño A, Santiago S, Escobar S, Meadows CA, Meseguer J. 2014. Analysis
of the IBM CCA security API protocols in Maude-NPA. In: Chen L, Mitchell
CJ, eds. Security standardisation research—first international conference, SSR
2014, London, UK, December 16–17, 2014. Proceedings. Cham: Springer, 111–130
DOI 10.1007/978-3-319-14054-4_8.

González-Burgueño A, Santiago S, Escobar S, Meadows CA, Meseguer J. 2015.
Analysis of the PKCS#11 API using the Maude-NPA tool. In: Chen L, Matsuo
S, eds. Security standardisation research—second international conference, SSR
2015, Tokyo, Japan, December 15–16, 2015, Proceedings. Cham: Springer, 86–106
DOI 10.1007/978-3-319-27152-1_5.

Hülsing A, Ning K, Schwabe P,Weber F, Zimmermann PR. 2021. Post-quantumWire-
Guard. In: 2021 IEEE symposium on security and privacy. 304–321
DOI 10.1109/SP40001.2021.00030.

Lowe G. 1995. An attack on the needham-schroeder public-key authentication protocol.
Information Processing Letters 56(3):131–133 DOI 10.1016/0020-0190(95)00144-2.

Meseguer J. 2010. Twenty years of rewriting logic. In: Ölveczky PC, ed. Rewriting logic
and its applications. Berlin, Heidelberg: Springer, 15–17.

Ogata K, Futatsugi K. 2003. Proof scores in the OTS/CafeOBJ method. In: FMOODS
2003. 170–184 DOI 10.1007/978-3-540-39958-2_12.

Ogata K, Futatsugi K. 2013. Compositionally writing proof scores of invariants in the
OTS/CafeOBJ method. The Journal of Universal Computer Science 19(6):771–804
DOI 10.3217/jucs-019-06-0771.

Rescorla E. 2018. The transport layer security (TLS) protocol version 1.3. Request for
comments, vol. 8446, RFC Editor. RFC 8446 DOI 10.17487/RFC8446.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 24/25

https://peerj.com
http://dx.doi.org/10.1007/978-3-031-12441-9_13
http://dx.doi.org/10.1109/TIT.1983.1056650
http://dx.doi.org/10.1016/j.jlamp.2019.100497
http://dx.doi.org/10.1016/j.tcs.2006.08.035
http://dx.doi.org/10.1007/978-3-540-88313-5_35
http://dx.doi.org/10.1007/978-3-319-14054-4_8
http://dx.doi.org/10.1007/978-3-319-27152-1_5
http://dx.doi.org/10.1109/SP40001.2021.00030
http://dx.doi.org/10.1016/0020-0190(95)00144-2
http://dx.doi.org/10.1007/978-3-540-39958-2_12
http://dx.doi.org/10.3217/jucs-019-06-0771
http://dx.doi.org/10.17487/RFC8446
http://dx.doi.org/10.7717/peerj-cs.1556

Rescorla E, Dierks T. 2008. The transport layer security (TLS) protocol version 1.2. In:
Request for comments. Vol. 5246. RFC Editor. RFC 5246 DOI 10.17487/RFC5246.

Shor P. 1994. Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th annual symposium on foundations of computer science. 124–134
DOI 10.1109/SFCS.1994.365700.

Thayer FJ, Herzog JC, Guttman JD. 1998. Strand spaces: why is a security protocol
correct? In: Security and privacy—1998 IEEE symposium on security and privacy,
Oakland, CA, USA, May 3-6, 1998, Proceedings. Piscataway: IEEE, 160–171
DOI 10.1109/SECPRI.1998.674832.

Tran DD, Do CM, Escobar S, Ogata K. 2022.Hybrid post-quantum TLS formal
specification in Maude-NPA—toward its security analysis. In: Akleylek S, Escobar S,
Ogata K, Otmani A, eds. CEUR workshop proceedings. Proceedings of the international
workshop on formal analysis and verification of post-quantum cryptographic protocols
co-located with the 23rd international conference on formal engineering methods
(ICFEM 2022), Madrid, Spain, October 24, 2022. 50–64.

Tran et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1556 25/25

https://peerj.com
http://dx.doi.org/10.17487/RFC5246
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SECPRI.1998.674832
http://dx.doi.org/10.7717/peerj-cs.1556

