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ABSTRACT
Clothing analysis has garnered significant attention, and within this field, clothing
classification plays a vital role as one of the fundamental technologies. Due to the
inherent complexity of clothing scenes in real-world environments, the learning
of clothing features in such complex scenes often encounters interference. Because
clothing classification relies on the contour and texture information of clothing,
clothing classification in real scenes may lead to poor classification results. Therefore,
this paper proposes a clothing classification network based on frequency-spatial domain
conversion. The proposed network combines frequency domain information with
spatial information and does not compress channels. It aims to enhance the extraction
of clothing features and improve the accuracy of clothing classification. In our work, (1)
we combine the frequency domain information and spatial information to establish a
clothing feature extraction clothing classification network without compressed feature
map channels, (2) we use the frequency domain feature enhancement module to realize
the preliminary extraction of clothing features, and (3) we introduce a clothing dataset
in complex scenes (Clothing-8). Our network achieves a top-1model accuracy of 93.4%
on the Clothing-8 dataset and 94.62% on the Fashion-MNIST dataset. Additionally, it
also achieves the best results in terms of top-3 and top-5 metrics on the DeepFashion
dataset.

Subjects Human-Computer Interaction, Artificial Intelligence, Computer Vision, Neural
Networks
Keywords Image classification, Clothing, Drequency domain enhancement, Convolutional
neural network, Feature extraction

INTRODUCTION
With the rapid popularization of online shopping in the clothing industry, efficient
clothing image classification (Shajini & Ramanan, 2022) can not only realize the automatic
classification of clothing, but also greatly improve the efficiency of clothing retrieval and
virtual try-on. The complexity and variety of clothing scenes pose a challenge for accurate
clothing classification, which is an urgent issue to address in the application of clothing
images in real-world scenarios.
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In the field of clothing classification, a significant amount of research has been conducted
in the past. Clothing classification differs from other classification tasks due to certain
similarities among different clothing categories and variations within the same clothing
category, such as patterns and colors. Previous research on clothing classification can
be broadly categorized into two main types: 1) traditional machine learning methods
(Zhou, 2022; Ölçer, Ölçer & Sümer, 2023), and 2) deep neural network methods (Hassan
et al., 2022; Sun et al., 2022; Al Shehri, 2022). In the realm of clothing classification using
traditional machine learning methods, researchers often improve basic classifiers. For
instance, Zhang et al. (2016) incorporated Histogram of Oriented Gradient (HOG) (Déniz
et al., 2011) into the Example Support Vector Machine (E-SVM) (Noble, 2006) classifier to
enhance robustness to lighting conditions and improve the accuracy of E-SVM in clothing
classification. Others proposed improvements to the fusion of Scale Invariant Feature
Transform (SIFT) (Cheung & Hamarneh, 2009) andHOG for ethnic clothing classification.
Some researchers utilized texture features and modified SIFT to obtain Speeded Up
Robust Features (SURF) (Bay et al., 2008) for clothing classification. The above-mentioned
methodological enhancements represent only a fraction of the innovative approaches in
the field of clothing classification using traditional machine learning algorithms. While
traditional machine learning algorithms offer faster adaptation to different scenarios, they
generally exhibit lower accuracy compared to deep neural network algorithms.

Currently, most clothing classification tasks are based on deep neural network methods,
which involve modifying mainstream classification models to suit clothing-specific scenes.
Researchers propose improved convolutional neural networks (CNNs) (Kiranyaz et al.,
2021; Pan, Gupta & Raza, 2023) for clothing classification by adjusting the structure of
the original CNN model and increasing the size of the convolutional kernels in the
modified structure. In the clothing domain, many researchers enhance the effectiveness
of clothing classification by modifying the neural network’s architecture and integrating
other technologies. For example, Bai et al. (2019) introduced Bidirectional Convolutional
Recurrent Neural Networks, which efficiently handle message-passing in syntactic
topology and generate regularized landmark layouts. Based on this network, two attention
mechanisms are Landmark-Aware Attention and Category-Driven Attention, which
were designed to enhance clothing category classification. In another study, Hidayati
et al. (2017) performed classification on clothing objects in the images. By analyzing
the characteristics and clothing features present in the clothing images, the authors
addressed the challenge of limited clothing image samples to some extent. Additionally,
they introduced a comprehensive full-body clothing dataset containing 3250 images. Zhang
et al. (2020) proposed the trained two-branch ImageNet backbone is used to enhance image
shape and texture extraction, and the shape features are extracted by landmark detection.
The effect improvement was verified in clothing category classification and clothing
attribute classification respectively.

These previous challenges have demonstrated that the performance of deep neural
networks in clothing classification can be enhanced by adjusting the network structure
and incorporating clothing-specific feature enhancements. Furthermore, these studies
have shown that improving the representation of clothing outlines can lead to increased
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accuracy in clothing classification. Despite these advancements, several challenges still
persist in the clothing classification domain: (1) poor accuracy of clothing classification
in complex scenes: Current methods face difficulties in accurately classifying clothing
in complex scenes, where multiple factors such as lighting conditions, occlusions, and
background clutter can affect the classification results. (2) Insufficient improvement
through spatial image feature enhancement: While enhancing spatial image features has
shown promise, it alone may not be sufficient to significantly improve the accuracy
of clothing classification. Further research is needed to explore other complementary
approaches. (3) Similarity amongdifferent clothing categories and variationwithin the same
category: Different clothing categories often share similar parts, making discrimination
challenging. Additionally, clothing within the same category may exhibit significant texture
variations, further complicating the classification task. Addressing these challenges is crucial
for advancing the accuracy and robustness of clothing classification methods in real-world
scenarios.

We propose a clothing classification network based on a frequency-spatial feature
enhancement framework to address the aforementioned challenges. The main idea of the
framework is as follows: the image input to the network is converted from the spatial
domain to the frequency domain using the discrete cosine transform (DCT) (Pang et al.,
2019), then the information in different frequency domains is extracted, different frequency
domains store different information. The image information is divided into high frequency
information and low frequency information, where the high frequency information stores
the contour information and detail information, and the low frequency information stores
the texture information. Finally, the spatial information and frequency information are
used to enhance the objective feature for improving the classification accuracy. Our main
contributions are threefold:

• A novel clothing classification network is proposed to improve the accuracy with
frequency information and optimal backbone network, that is, frequecy-spatial feature
enhancement network for clothing classfication (FFENet). Our proposed optimal
backbone network consists of effective convolutional modules and efficient channel
attention (ECA) (Wang et al., 2020) modules. A large number of experiments indicate
that our proposed method can achieve the best performance among state-of-the-art
methods.
• The frequency domain enhancement module is proposed to extract high and low
frequency information from the feature maps and transform this information from the
frequency domain into a spatial domain image. This transformation does not lose the
original information, but increases the number of feature maps, allowing the network
to focus on both contour and texture information.
• By collecting some public complex scene clothing images on kaggle websites and
shopping websites, combining with a small part of clothing data in the Deepfashion
dataset (Liu et al., 2016), and manually filtering the collected images, we obtain a dataset
of 8 classified clothing styles with 5,156 high quality images.
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RELATED WORK
The related work consists of two main parts: 1) application of frequency domain in the
field of image classification, and 2) mainstream deep neural networks for classification.

Application of frequency domain in the field of image classification
Spatial domain images can be classified directly by using trained neural networks, and
good classification results can be obtained, but this approach does not fully exploit the
information in the image, which is the frequency domain information implies in the image.
There are many ways to extract frequency domain information from an image, such as
the Fourier transform, discrete cosine transform, wavelet transform, and other methods.
Frequency domain information, as an alternative representation of the spatial domain
image, may contain information that is not used by the neural network and is useful for
classification. Researchers have also conducted research into the use of frequency domain
information extracted from images to complement image processing tasks when using
deep learning techniques.

First, for DCT, Qin et al. (2021) studied the effect of partially compressed input images
using the DCT algorithm on the performance of neural networks. They found that while
the DCT algorithm reduces data redundancy, there is a risk of losing valuable features
for network learning. In a similar vein, Xu et al. (2020) investigated the use of DCT
transformation on original images followed by CNN classification. They demonstrated
through experiments that DCT features obtained directly from the JPG format can be
processed as effectively as the original image data using the same CNN architecture. The
neural network architecturewithDCT features performedonparwith the one using original
image data. Borhanuddin et al. (2019) approached the channel attention mechanism from
a different perspective by considering frequency analysis. They showed that regular global
average pooling can be seen as a special case of frequency domain feature decomposition
and proposed a novel multi-spectral channel attention structure. Liu et al. (2018) proposed
methods to compress and accelerate neural network training by focusing on weights and
their connections. They explored a data-driven approach to remove redundancy in both
spatial and frequency domains, enabling the network to discard more unnecessary weights
while maintaining similar accuracy. They achieved this by obtaining an optimal sparse
CNN in the frequency domain and reducing the computational burden of convolution
operations through linear combinations of DCT basis convolutional responses. On a
different note, Gueguen et al. (2018) presented a simple idea where they directly used
JPG image processing to generate DCT coefficients. They modified the ResNet 50 (He et
al., 2016) network to accommodate DCT coefficients as direct inputs and evaluated the
performance of this model on the ImageNet dataset.

In addition to DCT, as a powerful time domain evaluation analysis method, wavelet
transform can also provide additional frequency domain information for deep learning
techniques. Li et al. (2020) used a nonlinear model and average pooling for wavelet
transformation and proposed the wavelet scattering network. The first network layer of this
network outputted SIFT-type descriptors, while the next layer provided complementary
translation invariant information to improve classification. The network computed a
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translation invariant image representation that was stable to deformation and preserved
high-frequency information for classification. However, the network couldn’t be easily
transferred to other tasks due to strict mathematical assumptions. To address the problem
of CNN being susceptible to noise interference (i.e., small image noise causing drastic
changes in the output), Bruna & Mallat (2013) used discrete wavelet transform to replace
max-pooling, step convolution, and average pooling in order to enhance CNN. They
proposed a universal discrete wavelet transform and its inverse transform layer suitable
for all kinds of wavelets. These layers were utilized to design a wavelet ensemble CNN for
image classification.

In addition, a number of variants based on the wavelet transform (e.g., the contour
wavelet transform) had also been studied accordingly. Liu et al. (2020) proposed a new
network architecture called the contourlet convolutional neural network, which was
designed to learn sparse and effective feature representations of images. The contour wave
transform was first applied to obtain spectral features from the image. Then, the spatial
spectral feature fusion method was used to integrate the spectral features into the CNN
architecture, followed by statistical feature fusion to integrate the statistical features into
the network. Finally, the fused features were classified to obtain the results.

Mainstream deep neural networks for classification
The image classification task is the task of determiningwhich categories in the category space
the input image belongs to. There are two types of mainstream classification networks, one
based on convolutional neural networks and the other based on Transformer. Each of these
two types has its own advantages and disadvantages. Convolutional neural network-based
models work better for both small sample datasets and large datasets, and the network
inference is faster. The Transformer-based classification model may not work as well on
small datasets as the convolutional neural network-based one, which consumes a lot of
memory space. However, it performs well on very large datasets, and the network is less
prone to overfitting.

Convolutional neural network based classificationmodels include GoogleNet (Szegedy et
al., 2015), ResNet, DenseNet (Huang et al., 2017), EfficientNet (Tan & Le, 2019), ConvNext
(Liu et al., 2022), and EfficientNetV2 (Tan & Le, 2021), among which the EfficientNetV2
model has best accuracy and computing speed comparedwithmany classification networks.
The focus of this paper is to improve the performance of the network on a small sample
dataset, so in this paper, CNN is used to build our clothing classification network. The
transformer (Dong et al., 2022; Hua et al., 2022) based classification models, such as ViT
and SwinT (Liu et al., 2021), are initially used in the field of natural processing, where the
transformer framework based on the attention mechanism achieved good results. Later,
Vaswani et al. (2017) introduces the transformer to the field of computer vision, which
worked well in mega databases, so the improvement of the Transformer based classification
models hung a boom.
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OUR METHOD
Themain task of the approach in this paper is to construct amodel for clothing classification
on a small sample clothing dataset for complex scenes. The category of clothing depends
greatly on the silhouette features and textural characteristics of the clothing. We have
summarised these rules, and if we can extract and learn these corresponding features
through some techniques, it will be of great help in clothing classification.

Based on the above discussion we propose our approach (FFENet), where from the
perspective of frequency domain, texture information and contour information in spatial
domain are the information of different frequency bands. So we convert the spatial domain
images into frequency domain images, transform them into different spatial feature maps
by selecting information from different frequency bands, and put the spatial feature map
information into the network we build for learning to improve the accuracy of clothing
classification.

Network overview
Our proposed network structure is shown in Fig. 1. When the clothing images are inputted
into the DCT frequency domain enhancement (DCT-FDE)module, they are first converted
into the YCbCr format. Subsequently, the converted feature map is divided into blocks,
and the information of each block is then transformed from the spatial domain to the
frequency domain using DCT. The list of spatial domain feature maps is generated based
on the frequency domain information at the corresponding position of each block. Finally,
the generated feature maps are stitched together to obtain the feature map F. In order to
delve deeper into the learned feature map information, we propose the clothing feature
extraction (CFE) module to further explore the information within the feature map F.

In the CFE module, we first perform a 3×3 convolution operation, followed by the
modified fused MBConv block and the modified MBConv block. Subsequently, the feature
map output from the CFEmodule is fed into the classification header for classification. The
classification header involves applying a 1×1 convolutional layer for channel alignment,
followed by global average pooling. Finally, two fully connected layers are utilized. The
first fully connected layer is responsible for obtaining the preliminary sequence, while the
second fully connected layer is used to generate the final prediction result.

DCT frequency domain enhancement module
The transformation process of the DCT-FDE module is depicted in Fig. 2, which
first converts the input RGB image into ycbcr format to obtain the feature map
xycbcr ∈ RH×W×3. Subsequently, xycbcr is partitioned into a set of 4×4 patches to obtain{
pi,j ∈R4×4×3

|1≤ i≤H
//

4,1≤ j ≤W
//

4
}
, where the patches are three channels. A dense

DCT transformation is performed on the image window for each one, and each patch is
processed in the frequency domain to obtain, where represents the patch corresponding
to a particular colour channel in

{
di,j ∈R4×4×3

|1≤ i≤H
//

4,1≤ j ≤W
//

4
}
. Here each

value in the patch corresponds to the intensity of a particular frequency band. In order
to extract the information of different frequency bands separately, we filter the frequency
bands for the number of times of chunk size squared, taking the information of only one
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Figure 1 An overview of the proposed network. We use the DCT frequency domain enhancement mod-
ule to extract the spatial information of different frequency bands of the image, and use the stitching op-
eration to concatenate all the spatial information feature maps to obtain F. The information of the feature
map F is further extracted using the clothing feature extraction module, where LIFn and LIMn represent the
number of repetitions of the corresponding layer of the IFMBConv block and IMBConv block, respec-
tively. Finally, one 1×1 convolution operation, one global average pooling operation and two full connec-
tion operations are carried out in turn to obtain the final clothing classification results.

Full-size DOI: 10.7717/peerjcs.1555/fig-1

frequency band and filtering out the information of other frequency bands each time,
and perform a DCT inverse transform to convert the filtered time-frequency domain
information into spatial domain information after each filtering operation, and finally
get a list of feature maps x idct1 ∈R

H×W×3,x idct2 ∈R
H×W×3,...,x idctn ∈R

H×W×3, where the
value of n is the square of the block size. We have a block size of 4 here, so we end up with
16 feature maps. As Fig. 3 shows an experiment we did, visualising the 16 feature maps
obtained after inputting the image to the DCT-FDE module, we can see that the first band
of the chunk stores the most colour and texture information, and that the other bands store
more shape and detail information, which is what we call low-frequency information and
high-frequency information. By this method we do not lose any information in any of the
frequency bands, but it allows our subsequent proposed classification network to learn both
high-frequency and low-frequency information, which in fact replaces the convolution
operation in a sense and has a feature enhancement effect.

Clothing feature extraction module
The MBConv block is a module unit originally introduced by MobileNetV2 (Sandler et
al., 2018). It has since been widely adopted due to its portability and good performance.
Subsequently, EfficientNet further built upon the MBConv block and achieved notable
results in various tasks. EfficientNetV2, a follow-up work, suggests that employing
fused MBConv blocks at the shallower layers of the network yields better performance.
This improvement was achieved through the application of neural architecture search
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Figure 3 The image after 4× 4 DCT transformation and IDCT transformation of a single frequency
band.

Full-size DOI: 10.7717/peerjcs.1555/fig-3

techniques, which allowed for the identification of more effective network configurations.
The module we built is initially a combination of the fused MBConv block and the
MBConv block, but in combination with the previous DCT-FDE module, we guess that
there is channel compression in the squeeze-and-excitation (SE) module, which might lead
to inadequate learning of our frequency domain information, so our DCT-FDE module
improves the structure of the fused MBConv block and the MBConv block by replacing the
SE module with the ECA module. Our experimental results prove our conjecture, please
see the experimental section for details. We use ECA module to enforce the feature map,
which is defined as follows:

F eca
t = Ft−1(σ (Conv1×1(GAP(Ft−1)))) (1)
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where Ft−1 and F eca
t are the input and output feature maps of the ECAmodule, respectively.

σ denotes the sigmoid function. Conv1×1 denotes the convolution operation with a filter
size of 1×1.GAP denotes for global average pooling operation.

As shown in Figs. 4A and 4B, the improved fused MBconv block (IFMBConv) and the
improved MBConv block (IMBConv) used in this paper are shown schematically. The
CFE module specific parameter information can be found in Table 1, which describes
each phase of the DCT-FDE module in detail. The parameter Stride indicates whether the
first convolution in the first IFMBConv block or IMBConv block in a phase consisting of
IFMBConv or IMBConv compresses the feature map, when the step size is 1, the feature
map size is unchanged, and when the step size is 2, the compressed feature map size is one
half of the input feature map. The parameter Channel indicates the size of the feature map
at the time of input to the current stage. The Layers parameter represents the number of
times the IFMBConv block or IMBConv block is repeated. Note that the size of the feature
map output at stage 7 is 7×7 and the number of channels is 384.
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EXPERIMENTS
In this section, ourmethod FFENetwill conduct comparative experiments on three datasets,
Clothing-8, fashion-mnist and Deepfashion, and verify the rationality of the structural
design by conducting ablation experiments on the Clothing-8 dataset. Clothing 8 is our own
small sample dataset built for complex scenes, while fashion-mnist and Deepfashion are
public clothing datasets. The performance of our model in specific scenarios is verified on
the Clothing-8 dataset, and the experiments on the fashion-mnist dataset and Deepfashion
dataset are used to verify the performance of our model on regular large datasets.

Implement details
System configuration information for the experimental platform. The system version is
Windows 10, the processor is an Intel(R) Core(TM) i9-12900KF CPU @ 3.20 GHz and the
GPU is an NVIDIA GeForce RTX 3090 Ti 24GB. Conda environment relies on python 3.8.
The optimizer used is the SGD optimizer, which the initial learning rate is 0.01 and the
decay coefficient of the optimizer is 0.0001. The input network has 224×224 image pixels,
batch size is 8. GoogleNet, ResNet, DenseNet, EfficientNet, ConvNext, EfficientNetV2, ViT
and SwinT were chosen to compare the classification of the models.

Dataset
Clothing-8.
The Clothing-8 dataset is an 8-category clothing dataset dedicated to the clothing category.
We formed our initial dataset by collecting open source clothing images from Kaggle
and shopping websites, combined with a small number of clothing images from the
DeepFashion dataset. Through discussions on the collected images, we categorized them
into eight general clothing categories. The Clothing 8 dataset comprises a training set with
4,550 examples and a validation set with 606 examples. The dataset includes the following
eight categories: dress, jacket, pants, polo, shirt, tank top, t-shirt, and warmcloth, with
corresponding counts of 613, 614, 731, 601, 571, 614, 722, and 691. When we trained, the
ratio of the training set to the test set was 8:2.

Fashion-MNIST.
Fashion-MNIST dataset is a clothing dataset with consistent backgrounds. The fashion-
mnist dataset have 70,000 examples. Each example is a 28×28 gray-scale image associated
with a label from 10 classes. The 10 categories are Angle Boot, Bag, Coat, Dress, Pullover,
Sandal, Shirt, Sneaker, Trouser and T-shirt. The fashion-mnist dataset has the ratio of the
training set to the test set is 6:1.

DeepFashion.
DeepFashion dataset is a large-scale clothing dataset consisting of real-world scenarios,
including buyer’s show and seller’s show. It contains 289,222 annotated fashion clothes
images, of which 209,222 are used for training, 40,000 are used for verification, and the
remaining 40,000 are test samples. Each image is labelled with 46 clothing categories. The
ratio of training set, validation set, and test set in the dataset is approximately 5:1:1.
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Evaluation criterion
We usually call the prediction is correct and positive as true positive (TP). A false positive
(FP) is a prediction that is false and positive. If the prediction os correct and the result is
negative, it is called true negative (TN). A false negative (FN) is when the prediction is
false and negative. Based on the above theories, the evaluation indexes of the text are as
follows. Accuracy is the proportion of correct prediction results in total prediction, which
specific calculation method is shown in Eq. (2). Precision is the percentage of positive
predictions that are correct, which specific calculation method is shown in Eq. (3). Recall
is the percentage of all positive events that correctly predicted the result, which specific
calculation method is shown in Eq. (4). Model accuracy is equal to the number of correct
predictions (NCP) of all kinds divided by the total number of verified pictures (TNVP),
which specific calculation method is shown in Eq. (5). It is the parameter most often used
to evaluate the quality of model training. The equations are as follows:

Accuracy =
TP+TN

TP+TN +FP+FN
(2)

Precision=
TP

TP+FP
(3)

Recall =
TP

TP+FN
(4)

Model Accuracy =
NCP
TNVP

(5)

where accuracy here is calculating the probability that a single category is correct, whereas
model accuracy is calculating the probability that the entire model is correct. Accuracy,
Precision, and Recall can only reflect the performance of individual categories. To provide
a more intuitive assessment of model performance in terms of Accuracy, Precision, and
Recall, we introduce mAccuracy, mPrecision, and mRecall to evaluate the effectiveness of
eachmodel. By averaging Accuracy, Precision, and Recall, wemake the experimental results
more comprehensible. Additionally, we incorporate the number of model parameters and
model complexity as indicators to analyze our model in the ablation experiment.

Comparison evaluation on Clothing8 dataset
The number of training rounds for our experiments on the Clothing-8 dataset is 100. The
robustness of the model is very important, so we verify the performance of our model
on the Clothing-8 validation set. The three indicators compared in Table 2 are Precision,
Recall and Accuracy, and it can be seen that the effect of our model is better than these
models. In this complex scene small sample dataset, it can be seen that the classification
model based on convolution is better than the classification model based on tranformer.
Firstly, in terms of the prediction mPrecision metric, our model outperforms the best
EfficientNetV2 by 3.32%. Secondly, from the average recall, EfficientNetV2 has the best
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Table 1 The structure of the CFEmodule.

Stage Operator Input size Stride Channel Layers

1 Conv 3×3 224×224 2 48 4
2 IFMBConv1 112×112 1 48 7
3 IFMBConv2 112×112 2 48 7
4 IFMBConv2 56×56 2 64 10
5 IMBConv1 28×28 2 96 19
6 IMBConv2 14×14 1 192 25
7 IMBConv1 14×14 2 224 7

effect, but our model is 3.46% better than ConvNext. Finally, our model is also the best in
terms of mAccuracy metric, our mAccuracy is 98.35%, which is 0.82% better than the best
existing model EfficientNetV2 in the table.

Table 3 shows the comparison results of Model Accuracy between our model and other
existing models on the Clothing-8 validate seen from Table 3 that ResNet, ConvNeXt, and
EfficientNet V2 achieve preferably performance in the existing methods, and their accuracy
rates are 90.01%, 89.46% and 87.79%, respectively. However, our model EfficientNet V2
achieves an accuracy of 93.4%, 3.39% better than the best model EfficientNetV2. The
performance of our model on this small sample dataset of complex scenes is impressive.
We verify our code on the DeepFashion dataset and replicate the effects of EfficientNet
v2 and EfficientNet-B7 on this dataset, showing that our model FFENet still performs the
best.

Comparison evaluation on Fashion-MNIST dataset
The number of training rounds for our conduct experiments on the fashion-mnist dataset
is 50. Our model is compared with some existing classification models for the same volume
on the fashion-mnist test set, and these experiments are not pre-trained. Among them,
ViT and SwinT adopt the largest size model, and ConvNeXt adopts base model, largest
model used by EfficientNet and EfficientNetV2. Transformer works well on very large
datasets, but the transformer model do not work well on fashion-mnist dataset, so we used
the largest volume of Transformer classification model to compare with convolutional
classification model.

As can be seen fromTable 4, in terms of model accuracy, ourmodel outperforms the best
model EfficientNetV2-L by 0.69%. According to themAccuracymetric, ourmodel is 0.13%
better than the best model ConvNext. Then, it also has good effects from the indicators of
mRecall and mPrecision. Its mRecall and mPrecision are both 94.62%, 0.69% and 0.64%
higher than the current best algorithm respectively. From these comparative experiments,
we can see that our model works well even on datasets with simple backgrounds.

Comparison evaluation on deepfashion dataset
In our comparison experiment on the DeepFashion dataset, we conducted 100 training
iterations with a batch size of 16. Table 5 presents a comparison of the models used for
clothing classification in the DeepFashion test set. Classic models like FashionNet are
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Table 2 Comparison of classification performance on the Clothing-8 validation set. Results that surpass all competing methods are bold font.
The upward arrow next to the parameter in the table indicates that the larger the parameter, the better.

Model Precision (%) ↑ mPrecision (%) ↑

Dress Jacket Pant Polo Shirt T-shirt Tank top Warmcloth

GoogleNet 73.33 92.42 97.75 87.32 90.62 92.68 91.94 79.38 86.33
Resnet-101 82.67 95.52 82.80 82.3 80.6 82.7 91.90 90.4 89.74
DenseNet-201 78.57 95.71 98.75 78.21 84.72 82.93 81.82 82.02 85.34
EfficientNet-B7 78.87 95.38 94.38 78.31 85.51 87.95 89.23 89.02 87.33
ViT-L 25.74 44.58 49.21 22.45 36.36 36.21 36.21 40.62 34.86
Swin-L 95.65 89.33 95.79 83.82 78.33 77.92 86.05 81.17 86.01
ConvNext-L 75.00 100.00 96.51 81.82 92.42 82.95 88.06 88.10 88.11
EfficientNetV2-L 78.26 96.97 100.00 82.28 94.03 86.36 95.16 88.64 90.21
FFENet(ours) 91.07 100.00 97.98 91.55 96.67 82.67 91.67 96.20 93.53
Model Recall (%) ↑ mRecall (%) ↑

Dress Jacket Pant Polo Shirt T-shirt Tank top Warmcloth
GoogleNet 79.71 88.41 92.13 94.20 83.82 86.21 80.00 81.40 85.74
Resnet-101 89.86 92.75 97.75 89.86 85.29 87.36 81.43 89.53 89.23
DenseNet-201 79.71 97.10 88.76 88.41 81.71 78.16 77.14 84.88 85.48
EfficientNet-B7 81.16 89.86 94.38 94.20 86.76 83.91 82.86 84.88 87.25
ViT-L 37.68 53.62 69.66 15.94 52.94 24.14 20.0 15.12 36.14
Swin-L 83.02 95.71 91.92 79.17 74.60 83.33 92.5 83.13 85.42
ConvNext-L 82.61 89.86 93.26 91.30 89.71 83.91 84.29 87.06 87.75
EfficientNetV2-L 78.26 92.75 97.75 94.20 92.65 87.36 84.29 91.76 89.88
FFENet(ours) 86.96 95.65 97.75 97.10 94.12 90.80 91.43 92.94 93.34
Model Accuracy (%) ↑ mAccuracy (%) ↑

Dress Jacket Pant Polo Shirt T-shirt Tank top Warmcloth
GoogleNet 94.40 97.86 98.68 96.87 97.53 95.39 96.71 94.23 96.46
Resnet-101 96.71 95.68 99.34 97.36 97.36 97.20 97.03 95.22 97.36
DenseNet-201 95.22 99.18 98.19 95.88 97.03 94.56 95.39 95.22 96.33
EfficientNet-B7 95.39 98.35 98.35 96.38 96.87 96.05 96.87 96.38 96.83
ViT-L 80.56 87.15 85.01 84.18 84.35 83.03 83.36 84.84 84.84
Swin-L 80.14 88.14 87.97 85.61 85.10 85.10 86.96 84.93 85.49
ConvNext-L 94.88 98.84 98.51 96.70 98.02 95.21 96.86 96.53 96.94
EfficientNetV2-L 95.05 98.84 99.67 97.03 98.51 96.20 97.69 97.19 97.52
FFENet(ours) 97.17 99.34 99.67 97.85 99.01 97.19 98.68 97.85 98.35

widely recognized in the field of fashion category classification. The citation of the top-k
accuracy rate from the original DeepFashion paper in this study is based on the consistency
of dataset division with the DeepFashion paper. Furthermore, we reproduce EfficientNet
V2 and EfficientNet-B7 on the DeepFashion dataset, assessing their performance in the
clothing classification task.

As shown in Table 5, our method FFENet consistently exhibits superior performance.
In comparison to the specialized clothing classification model, FashionNet, our method
achieves a 5.87% improvement in Top-3 accuracy and a 3.55% improvement in Top-5
accuracy. Moreover, our method outperforms the commonly used classfication model
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Table 3 Comparison of classification performance on the Clothing-8 validation set. Results that sur-
pass all competing methods are bold font. The upward arrow next to the parameter in the table indicates
that the larger the parameter, the better.

Model Model accuracy (%) ↑

GoogleNet 85.83
Resnet-101 89.46
DenseNet-201 85.33
EfficientNet-B7 87.31
ViT-L 36.24
SwinT-L 74.1
ConvNext-L 87.79
EfficientNetV2-L 90.01
FFENet (ours) 93.4

Table 4 Comparison of classification performance on the Fashion-MNIST test set. Results that surpass
all competing methods are bold font. The upward arrow next to the parameter in the table indicates that
the larger the parameter, the better.

Model Model accuracy (%) ↑ mAccuracy (%) ↑ mRecall (%) ↑ mPrecision (%) ↑

GoogleNet 88.18 97.63 88.18 88.34
ResNet 90.00 98.00 90.00 90.05
DenseNet 91.11 98.22 91.11 91.15
EfficientNet 93.87 98.78 93.89 93.88
ViT 86.70 97.33 86.66 86.64
SwinT 90.08 98.07 90.35 90.33
ConvNext 93.86 98.75 93.76 93.73
EfficientNetV2 93.93 98.79 93.93 93.98
FFENet (ours) 94.62 98.92 94.62 94.62

Table 5 Comparison of classification performance on the DeepFashion test set. Results that surpass all
competing methods are shown in bold.

Model Category

Top-3 (%) Top-5 (%)

WTBI (Liu et al., 2016) 43.73 66.26
DARN (Liu et al., 2016) 59.48 79.58
FashionNet+100 (Liu et al., 2016) 47.38 70.57
FashionNet+500 (Liu et al., 2016) 57.44 77.39
FashionNet+Joins (Liu et al., 2016) 72.30 81.52
FashionNet+Poselets (Liu et al., 2016) 75.34 84.87
FashionNet (Liu et al., 2016) 82.58 90.17
EfficentNet-B7 87.87 93.47
EfficientNetV2-L 87.89 93.42
FFENet (ours) 88.45 93.72
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Table 6 Comparison of classification performance on the Clothing-8 dataset. ACs stands for channel
information for adjusting the constructed network. Results that surpass all competing methods are bold
font. The upward arrow next to the parameter in the table indicates that the larger the parameter, the bet-
ter. The downward arrow next to the parameter in the table indicates that the smaller the parameter, the
better.

DCT-FDEmodule ACs ECA Model accuracy (%) ↑ Params (M) ↓

90.01 117.24
X 90.76 117.26
X X 91.91 117.36
X X X 93.40 95.16

EfficientNetV2-L by 0.56% in terms of Top-3 accuracy and by 0.3% in terms of Top-5
accuracy.

Ablation study
Our ablation experiments are conducted on the Clothing-8 dataset, and the number of
training rounds is set to 100. The other experimental settings are the same as those in
subsection ‘Implement Details’. We choose MBConv block and fusion MBConv block
to build the network structure, and the specific information can be found in subsection
‘Clothing Feature Extraction Module’. Table 6 shows our improvement process. We add
DCT-FDE module and can see a 0.75% improvement in accuracy. We think about why the
accuracy is not improved a lot. Considering that the number of channels of our DCT-FDE
module output feature map is 48, we adjust the number of input and output channels of
the first and second stages of the network to be 48, so that the information of the feature
map output by our DCT-FDE module can be fully learned. The number of channels in the
previous first and second stage are less than 48, so the learned feature map information
must be insufficient. By adjusting the number of channels in the network we get another
1.15% improvement. Because the SE module inside the MBConv block and fused MBConv
block has the operation of compression channel, so we replace the SE block with the ECA
module. ECA module is also a channel attention mechanism, but the ECA module has no
operation to compress the channel. Experiments show that the model accuracy is improved
by 1.49% after replacing the SE module with the ECA module. The final model parameters
decreased by 22.08M compared with the initial model.

Table 7 shows our other ablation experiment, in which the influence of DCT block size
on the accuracy of the final model is discussed. According to the data in the table, we can
find that the accuracy rate of 2×2 block is lower than that of 4×4 block. Meanwhile,
compared with 2×2 block, the number of parameters and computational complexity in
4×4 block are not much improved. From the data in the table, if the 8×8 DCT block size
is used, the accuracy is also decreased a little compared with the 4×4 block size, and the
number of parameters and the computational complexity are increased, so we choose 4×4
block as our block size.
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Table 7 Comparison of classification performance on the Clothing-8 dataset. Results that surpass all
competing methods are bold font. The upward arrow next to the parameter in the table indicates that the
larger the parameter, the better. The downward arrow next to the parameter in the table indicates that the
smaller the parameter, the better.

DCT block size Model accuracy (%) ↑ Params (M) ↓ GFLOPs ↓

2×2 90.586 117.25 12.33
4×4 90.760 117.26 12.46
8×8 90.759 117.30 12.98

CONCLUSIONS
In thiswork, our primary objectivewas to enhance the performance of clothing classification
in complex scenes, recognizing that clothing classification heavily relies on texture and
contour information. Previous studies, along with our own experiments, have confirmed
that different frequency bands in the frequency domain store distinct image information,
including texture, contour, and other relevant details. By extracting and leveraging this
information through a feature extraction module based on discrete cosine transform
(DCT), combined with a fully convolutional backbone algorithm, we propose a clothing
classification network known as the frequency-spatial feature enhancement network. Our
algorithm effectively improves the accuracy of clothing classification. Extensive experiments
were conducted on three datasets: Clothing-8, Fashion-MNIST, and DeepFashion. The
results demonstrate the superior performance of our constructed network in both clothing
dataset with complex scenes and clothing dataset with consistent scenes.

While our method exhibits promising results, it is important to acknowledge its
limitations. For instance, our approach may not provide a significant boost for clothing
images with simple backgrounds. Addressing these limitations will be a focus of our future
work, aiming to further refine and enhance the applicability of our proposed method.
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