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Sleep Apnea is defined as a breathing disorder that affects sleep. Early detection of sleep
apnea helps doctors to take intervention for patients to prevent Sleep Apnea. Manually
making this determination is a time-consuming and subjectivity problem. Therefore, many
different methods based on polysomnography (PSG) have been proposed and applied to
detect this disorder. . In this study, a unique two-layer method is proposed, in which there
are 4 different deep learning models in the Deep neural network (DNN), Gated Recurrent
Unit (GRU), Recurrent neural network (RNN), RNN-based-Long term short term memory
(LSTM) architecture in the first layer, and a machine learning-based meta-learner
(decision-layer) in the second layer. The strategy of making a preliminary decision in the
first layer and verifying/correcting the results in the second layer is adopted. In the
training of this architecture, a vector consisting of 23 features consisting of snore, oxygen
saturation, arousal and sleep score data is used together with PSG data. A dataset
consisting of 50 patients, both children and adults, is prepared. A number of pre-
processing and under-sampling applications have been made to eliminate the problem of
unbalanced classes. Proposed method has an accuracy of 95.74% and 99.4% in accuracy
of apnea detection (apnea, hypopnea and normal) and apnea types detection (central,
mixed and obstructive), respectively. Experimental results demonstrate that patient-
independent consistent results can be produced with high accuracy. This robust model can
be considered as a system that will help in the decisions of sleep clinics where it is
expected to detect sleep disorders in detail with high performance.
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7 Abstract

8 Sleep Apnea is defined as a breathing disorder that affects sleep. Early detection of sleep apnea helps doctors to take 
9 intervention for patients to prevent Sleep Apnea. Manually making this determination is a time-consuming and 

10 subjectivity problem. Therefore, many different methods based on polysomnography (PSG) have been proposed and 
11 applied to detect this disorder. . In this study, a unique two-layer method is proposed, in which there are 4 different 
12 deep learning models in the Deep neural network (DNN), Gated Recurrent Unit (GRU), Recurrent neural network 
13 (RNN), RNN-based-Long term short term memory (LSTM) architecture in the first layer, and a machine learning-
14 based meta-learner (decision-layer) in the second layer. The strategy of making a preliminary decision in the first layer 
15 and verifying/correcting the results in the second layer is adopted. In the training of this architecture, a vector 
16 consisting of 23 features consisting of snore, oxygen saturation, arousal and sleep score data is used together with 
17 PSG data. A dataset consisting of 50 patients, both children and adults, is prepared. A number of pre-processing and 
18 under-sampling applications have been made to eliminate the problem of unbalanced classes. Proposed method has 
19 an accuracy of 95.74% and 99.4% in accuracy of apnea detection (apnea, hypopnea and normal) and apnea types 
20 detection (central, mixed and obstructive), respectively. Experimental results demonstrate that patient-independent 
21 consistent results can be produced with high accuracy. This robust model can be considered as a system that will help 
22 in the decisions of sleep clinics where it is expected to detect sleep disorders in detail with high performance.

23 Keywords Sleep Disorder, Apnea Events, PSG, Deep and Machine Learning, Two-tier model.

24 1. INTRODUCTION

25 Sleep apnea can be considered as sleep disorder that disturbs person�s sleep. There are three types of sleep apnea 
26 as obstructive, central, and mixed.  Obstructive sleep apnea occurs due to improper functioning of the upper respiratory 
27 tract. Central sleep apnea occurs when the brain fails to generate signals to control breathing muscles. Finally mixed 
28 sleep apnea which occurs due to central apnea persisting even after obstructive sleep apnea (OSA) disappeared with 
29 positive air pressure therapy [1-3]. 

30 Obstructive sleep apnea is one of the most important sleep disorder syndromes seen in the respiratory tract [4]. 
31 This syndrome causes snoring and respiratory effort to overcome the resistance that occurs in the upper respiratory 
32 tract [5]. It shows that an average of 1 million people worldwide is affected by this disease [6]. OSA syndrome can 
33 cause several other diseases such as heart disease, and early diagnosis and treatment are therefore very important [7-
34 8]. The standard approach in the detection of this syndrome is Polysomnography (PSG) [9]. A series of sensors such 
35 as ECG, EEG, SpO2, respiratory effort and airflow are connected to the patient and recorded by PSG during a night's 
36 sleep (7:30-8:00 hours on average). Thus, it is possible to analyze these data later and to detect diseases [10]. Hypopnea 
37 is defined as a type of respiration in which air flow is reduced by at least 50% and does not prevent air entry into the 
38 body [11]. In obstructive apnea, while breathing is completely obstructed, there is a serious decrease instead of 
39 obstruction in hypopnea. This is the main difference between obstructive sleep apnea and hypopnea.  Since every 
40 patient data composed from around 700 epochs (30s each), analyzing sleep, and calculating the apnea hypopnea index 
41 (AHI) is time consuming process that must be done by a sleep doctor or sleep expert [12]. The apnea- hypopnea index 
42 can be calculated by 60 x (apneas + hypopneas)/total sleep-in minutes. 

43 Obstructive sleep apnea syndrome (OSAS) severity detection could be important for developing new methods. 
44 For example, revealing prediction between man and woman [13], Neck circumference and OSAS relation [14].  In 
45 1970s, healthy subjects classified as event rate <5 apneas per hour and it is accepted as a standard for defining disease 
46 and no disease [15]. Hypopnea was defined as decreased respiratory events due to a decrease in oxygen saturation or 
47 arousal. However, a sense that this decline is physiologically significant is to be expected [16-17]. Initially OSA was 
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48 defined by 30 apneas over the night, then it is defined by an index which is defined by the number of apneas / hours 
49 to diagnose the disease. OSAS severity can be assessed as mild when it is occurred between 5-15, moderate if AHI 
50 index between 15 and 30, and severe when AHI >30 [18-20].

51 Electrocardiogram (ECG) is one of the most reliable physiological signals containing information about central 
52 cardiovascular function, respiration, and electrical activity of heart. For this reason, we see several studies on AHI 
53 index screening by using machine learning and deep learning methods as in [21-24]. Many patients with OSA report 
54 a history of shortness of breath associated with hypopnea. Therefore, oxygen level decreases from 90% to lower levels 
55 which can be considered as hazardous and requires immediate medial actions. So that, single channel blood oxygen 
56 saturation (SpO2) is also used to predict AHI index by using machine learning or deep learning-based approaches as 
57 in the [25-27]., electroencephalographic (EEG) signals require more than one probe to sense individual� s effort for 
58 breathing and detection of OSA and its type. This signal is also being used for AHI index calculation as in the [28]. 

59 Computer engineers work with sleep doctors for sleep stage scoring and detection of sleep apnea as well as AHI 
60 index calculation effectively over the past decade [29-31]. To do so, some researchers employed machine learning 
61 techniques as hidden Markov model for feature extraction and classification [32]. Machine learning is generally used 
62 in the structure of supervised learning to detect sleep apnea [33]. In addition, it is possible to prefer unsupervised or 
63 reinforced learning in cases where expert support cannot be provided. Among the machine learning models, while 
64 CNN networks are used in image-based models, different model structures such as DNN, RNN, LSTM, GRU can be 
65 preferred. The choice between these models determines the ability of the data to recall the past, and this has a 
66 significant impact on the detection of sleep disorders. [23].  Due to increasing number of methods, deep learning-
67 based models are being employed in OSA detection [34-35]. Although deep learning-based solutions for OSA 
68 detection was improved, there are still limitations as employing single channel for detection and acquiring limited 
69 accuracy levels as well as using publicly available datasets [36]. 

70 In this study, a two-layer classifier was designed in which DNN, LSTM, RNN and GRU networks are used in the 
71 first layer, and a pre-trained model is used in the second layer, which is tested with 11 different ML algorithms. Thus, 
72 it is aimed to find solutions to the constraints of deep learning networks and to achieve high performance. The 
73 conditions of the patients are first classified as Apnea-Hypopnea-Normal, and in the second stage, the Apnea types 
74 are determined as Mixed, Central and Obstructive. In this way, it was ensured that the disease status was determined 
75 more clearly and in detail.

76 Compared to previous studies, the following improvements were made in this study:

77 - A unique multiclass model which detects apnea types in two layers occupied from LSTM, GRU, DNN and RNN 
78 networks in the first layer and pre-trained decision-making ML model placed in the second layers is proposed. 
79 - Unlike similar studies, after Apnea-Hypopnea-Normal status is determined, the events of Apnea types are 
80 detected as mixed, central, or obstructive with high performance in the second stage. Thus, 6 different types of 
81 classification of the disease were made.
82 - It was studied with a discrete signal instead of a continuous signal.
83 - By using 23 different features, more distinctive features of the patient were captured. While an accuracy value 
84 of 95.76% was obtained, an increase of 1.19% was achieved by using the two-layer structure compared to deep 
85 learning models.
86

87 This study has a comprehensive structure and is divided into sections as follows. In section 2, studies on the 
88 detection of sleep apnea were examined and analyzed in separate sections on a method-based basis. In section 3, the 
89 2-tier architecture proposed in this study is explained in detail. In addition, the stages of model creation, dataset 
90 collection, deep learning and machine learning model structures are explained in this section. In Section 4, the test 
91 results of the proposed model are given. In section 5, the proposed model is compared with similar studies and 
92 information about some of its limitations and unsolvable situations of the problem is given. In the light of this 
93 information, future studies are mentioned. In the last part, a general evaluation of the study was made. After the 
94 references, it was shared with the publication in 2 separate annexes.

95 2. RELATED WORKS

96 To present the current work� differences from similar deep learning based and machine learning based studies, 
97 this section is prepared and obtained results briefly given in Table 1. 
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98 2.1 Deep Learning Based Studies 

99 One of the most common methods for detecting sleep disorders is Convolution neural network (CNN), LSTM, RNN 
100 and Bi-LSTM structures in deep learning structure. It has been seen that in CNN-based networks, it is mostly based 
101 on the processing of images of EEG signals, and in LSTM, RNN and Bi-LSTM networks, analysis is made over 
102 numerical data, as in our study. Studies are concerned with detecting sleep disorders as classification problems and 
103 calculating the AHI index. In this section, examples and current studies using deep learning structure are evaluated.

104 Wang et al. [35] detected sleep apnea with 87.6% accuracy with a CNN network called LeNet-5. The model trains 
105 single-channel ECG data on a 1-dimensional CNN network and is based on the approach of evaluating adjacent 
106 segments. Shen et al. [36], like other studies, proposed a classification method based on 1-D CNN network and time-
107 dependent weight loss. Their accuracy was 89.4% for noninvasive wearable devices. Urtnasan et al., proposed a CNN-
108 based model using segmented SMC and apnea dataset to determine the severity of sleep apnea. They successfully 
109 differentiate the mild and severe apnea with an accuracy of 99% by using segmented dataset which employs ECG 
110 signal [37]. Another ECG based study conducted by Hedman et al [38]., proposed an LSTM-based network for 
111 classifying 35 labeled patients by looking at the long-term dependencies of the ECG signals they received as a single 
112 channel over the PyhsioNet-ECG dataset.  They achieved 97.1% accuracy in detection of sleep apnea events. Iwasaki 
113 et al., proposed a SAS method and LSTM to analyze R waves on ECG records to predict moderate to severe SAS. 
114 They obtained 100% accuracy in differentiation of moderate and severe apnea by using their own dataset [39].  They 
115 used PhysioNet Apnea-ECG dataset occupied from 70 patients and obtained 91.7% accuracy diagnose level with using 
116 different forms of RNN and single channel ECG signal. Falco et al. proposed a deep neural network-based model for 
117 the detection of sleep apnea using ECG signals. Their accuracy was around 73% on Sleep Heart Health Study database 
118 [40].  Chang et al. [41], ECG signals were used as a single channel in training a 1D D-CNN network for the detection 
119 of sleep apnea, their model obtained 87.9% accuracy.    Sheta et al. [42], worked on the reduction of noise via filter, 
120 extracting features from the ECG signal and developing thirteen machine learning and four deep learning algorithms 
121 on ECG signals and the automatic classification system called CAD in the detection of sleep apnea. Their model 
122 achieved an accuracy of 86.25 on Physionet�s CinC challenge-2000 database. Yang et al. [43] proposed a structure 
123 using 1-dimensional resudial networks and single-channel ECG signal data for the detection of sleep apnea. They 
124 achieved 90.3% success in their tests with Apnea-ECG data. Wang et al. [44], proposed a model that can be used in 
125 IoT devices for sleep apnea monitoring, uses a single-channel EEG-based feature and classifies with Bi-LSTM.

126 Due to containing only one record where AHI is distributed near critical values of 5, some studies as in [45-47] 
127 achieves 100% accuracy in OSA detection. Their data contains small number of channels and algorithms have boosted 
128 dataset for increasing accuracy. In contrast to them our proposed method has an accuracy of 91% by using all channels 
129 rather than single or small number of inputs.  Also, our proposed model is marking apnea event like, and sleep experts 
130 do. For this reason, following works explained but not given in table 1. For example, Sharan et al. [45] proposed a 
131 model in which single-channel ECG signal data are evaluated in a 1-D residual CNN network. Nassi et al [46] 
132 developed a DNN model on MGH dataset for binary classification of sleep apnea by applying boosting. Their accuracy 
133 obtained 100% accuracy for differentiation apnea and normal events. Chyad et al. [47] proposed a complex model 
134 using neural network and soft computing algorithms for OSA estimation. Like our study, the model hybridly combines 
135 different sensor data such as heart rate, SpO2, chest movement, and thus has a high success rate of 98.67%.

136 2.2 Machine Learning Based Studies 

137 On the other hand, the machine learning approach was preferred to provide the opportunity to evaluate more sensors 
138 together in detecting sleep disorders. It is mostly aimed to evaluate the PSG data. In this section, current studies using 
139 the machine learning approach are evaluated.

140 Rodrigues-jr et al., conducted a comparative study on the MARS dataset, including tests with 60 different classification 
141 models for AHI index calculation and OSA detection [48]. They obtained 83% specificity by 60 algorithms (28 
142 regressors and 32 classifiers for attribute selection. Huang et al. [49], develop SVM model to predict AHI index in 
143 Chinese patients. Their model reached to maximum 82% AUC and 74.4% sensitivity.  Home sleep apnea test model 
144 which was developed by Stretch et al. [50] applied random forest model and reached a sensitivity of 46% in the 
145 classification of respiratory efforts  and  Mencar et al. [51], They collected and analyzed data from 313 people 
146 with OSA. They used 19 different features together in their analysis. Their model yielded 44.7 accuracy level in 
147 prediction of AHI index to represent OSA severity. Accuracy level in this work low due to choosing gas exchange as 
148 an input for model creation. Another important factor is unbalanced or limited data in dataset for training.  Lazazzera 
149 et al., proposed a model in which they used PPG and SpO2 sensor data together to detect sleep apnea and hypopnea, 
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150 and they achieved 75.1% accuracy [52].  Papini proposed a model that automatically estimate AHI with a deep learning 
151 model that uses the carddirespirotory and sleep information collected by a wrist worn IoT device as input. He obtained 
152 86% max ROC-AUC value in mild/moderate/severe OSA [53]. His model is based on deep learning methods applied 
153 on own dataset.  Surrel et al. [54] developed a time-domain analysis based embedded system to compute the sleep 
154 apnea score. They obtained 88.2% accuracy in the tests performed with the PhysioNet Apnea-ECG. Varon et al. [55] 
155 detected sleep apnea with 84.7% accuracy using single-lead ECG data. Sharma et al. [56] Using single-lead ECG data, 
156 they achieved 83.8% success with the machine learning model. Song et al. [32] proposed a OSA detection approach 
157 based on ECG signal by using discriminative hidden Markov model and related algorithms with an accuracy of 86.2%. 
158 Corresponding parameter estimation algorithms are provided. Dhruba et al., Similar to our study, they developed a 
159 model that uses multiple sensor data such as ECG, heart rate, pulse rate, skin response, and SpO2 together in the 
160 diagnosis of OSA [57].  Dutta et al., conducted a study aiming to identify 4 different OSA types depending on the 
161 AHI index with unsupervised multivariate PCA analysis and data-intensive machine learning and achieved 86% 
162 success [58]. 

163 To view better, we prepared the following comparison table Table 1 which presents the obtained results, methods, and 
164 datasets of the proposed work with the similar works. 

165 Table 1 Brief comparison of similar works with presented work. 

166 In summary, when the studies were examined as shown in Table-1, it was seen that Physionet's Apnea ECG dataset 
167 was used in the majority of the studies. In all studies that did not use image processing, features such as Ramp Peak 
168 Value, P-wave, T wave, QRS complex, R-R interval, P-R interval, S-T interval, Q-T interval derived from ECG 
169 continuous signal data were used. It has been seen that Machine learning, CNN, LSTM models are used as classifiers 
170 and the classification performances vary between 46% and 98.7%. In all high-performance models, patients were 
171 classified as either Apnea or Not. 

172 In this study both deep learning and machine learning approaches were used as a two-layer architecture design 
173 together. Own dataset was used in the training and testing processes of the design. While Sleep Disorder Detection 
174 (Apnea, Hypopnea or Normal) is performed in the first stage for classification, Apnea's events (mixed, central, or 
175 obstructive) are also detected for patients which identified as Apnea. In this aspect, it differs from other studies. Since 
176 they both determine disorders and events together. Classification performances are determined as 98.99% in the first 
177 stage and 99.4% in the second stage. This high performance is depending on the two-layer architecture using and 
178 employing PSG inputs as input from supervised features (C-snore, desaturation, arousal, sleep stages). While the 
179 proposed model classifies with high performance, it will help to the sleep doctors or experts and support them for 
180 labor costs. This study is able to detect the disease as more classes of the person with the proposed model and does 
181 not use any feature engineering in it. Only sensor data are evaluated as features in model training.

182 3. METHODOLOGY

183 In this study, a model in which a 2-layer learning architecture is used, and high performance is achieved for the 
184 detection of sleep apnea types as multiple classes is proposed and is shown in detail in Figure-1. Model includes data 
185 preparation, training and testing for meta-learner feature set creation with all data, meta-learner pre-training model 
186 and testing stages.

187 Figure 1 Sleep disorder and Sleep Apnea Events Detection Methodology Diagram

188 3.1 Data preparation

189 One of the first and most important stages of the proposed 2-layer classification structure in this study is the preparation 
190 of the data set for classification and feature engineering. In this study, as in similar studies, used the PSG input (A1A2, 
191 ABD, Body, C3A2, C4A1, CEMG, CFlow, ECG2, F3A2, F4A1, LEG1, LEG2, LEOGA2,  O1A2, O2A1, REOGA2, 
192 SpO2, TFlow, THO. ), C_snore, de_saturation, arousal, and sleep stage features for modeling.

193 C_snore data is the feature that shows at which periods people snore during sleep and is kept as binary. Snoring, a 
194 type of respiratory sound, is one of the earliest and most common symptoms for the detection of Sleep apnea syndrome 
195 [59]. For this reason, it was evaluated as an important parameter in the classification of sleep disorders and was used 
196 in the model proposed in this study.
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197 Oxygen saturation (SpO2) has been reported to facilitate the detection of OSA disease, especially in children [60]. It 
198 has been shown that PSG data and SpO2 signal values are compatible with each other and OSA diagnosis can be made 
199 with artificial intelligence models in adults [61].

200 Gold et al. [62], demonstrated the relationship between Arousal status, sleepiness/fatigue, and AHI. It has been stated 
201 that sleepiness and fatigue are two symptoms that characterize the severity of the disease in OSA patients.

202 The symptoms of most sleep disorders can be determined objectively using the expert decision system. The 
203 physiological characteristics of these diseases are also directly related to the proportional change of sleep stages. For 
204 this reason, sleep staging is very important in terms of sleep health. According to the American sleep medical academy, 
205 sleep stages are defined as Wake (W), REM, Non-Rem1, Non-Rem2, and Non-Rem3 [63]. Automatic sleep staging 
206 is important in OSA patients and provides important distinguishing data on patients. In addition, analysis of 
207 Polysomnography (PSG) recordings containing data such as EEG, EOG, and EMG is also widely used in solving 
208 sleep-related problems [64-66]. 

209 As it is stated in the literature that different features contribute positively to classification, as given above, in the 
210 detection of sleep disorders and the determination of sleep apnea events, all of them were evaluated within the feature 
211 set in this study. A feature vector containing 23 features for each patient was prepared, along with 19 PSG records, 
212 Csnore, SpO2, Arousal status, and sleep score. Data were collected over a sleep period of approximately 8 hours for 
213 each of the 50 patients. Due to the different nature and high number of features, a series of pre-processing steps were 
214 applied as shown in Figure-1. These operations are normalization of data, elimination of sample imbalance between 
215 clusters, cleaning of erroneous and NaN data. Necessary ones of these procedures were applied for each patient. As a 
216 result, a usable feature set was obtained in the 2-layer architecture proposed for this study. The data obtained as a 
217 result of these processes were splitted into 70% training and 30% testing. 10% of the training set was used as 
218 validation.3.2 Meta-learner feature set creation and pre-trained model design

219 The meta-learner design is made, after the data preparation is completed. The collected data for 50 patients are 
220 separated as training and test sets. With the training data, DNN, RNN, LSTM and GRU deep learning models are 
221 trained and tested with the test data and the results are recorded. The output of each model is to determine one of the 
222 3 classes as Apnea, Hypopnea or Normal. As shown in Figure-2, a vector containing 5 features with 4 deep learning 
223 models using class prediction as input and 1 with expected output is created. As a result, a feature vector of 
224 3077200x23 dimensions is obtained by combining the data of 50 patients into a single feature vector.

225 Figure 2  Feature set design for training of meta-learner model

226 This generated intermediate dataset is used in the training of the meta-learner model. An important point at this point 
227 is to evaluate the data of all 50 patients together in a single feature vector. Thus, a patient-independent second layer 
228 architecture is created. This model will then be used to evaluate the results, working for each patient individually. 
229 Since the patient's age, gender, and other diseases affect sleep disorders, a patient-based evaluation is required. 
230 However, with the proposed model, a patient-independent two-tier classifier is achieved. The same trained model is 
231 used for testing of all patients.

232 3.3 Proposed two-layer classification model. 

233 After all the pre-processing stages are completed, a model is revealed, in which both sleep disorders and sleep apnea 
234 events can be detected. Although it seems like a disadvantageous situation that the preprocessing and model 
235 preparation phase is created in a few steps and it is a relatively complex model, it is possible to make a stable and 
236 high-performance classification that does not change from patient to patient. While the model determines sleep 
237 disorders as multiclass as apnea, hypopnea and normal, it can detect apnea events as obstructive, mixed, and central.

238 3.4 Dataset

239 The dataset was provided by Yozgat Bozok University, Department of Chest Diseases Sleep Laboratory by getting 
240 necessary ethical permissions. As will be given Annex 1, 50 patients� data were used in the training and testing 
241 processes of this study. While there were 761,000 Apnea records for 50 patients, there are 1.8 million Hypopnea 
242 records, and 226 million normal records were deducted in Table 2. Even if a person has very severe apnea, he shows 
243 signs of apnea or hypopnea for an 8-hour sleep period are relatively smaller than the normal situation. This situation 
244 negatively affects the training of the model in both learning and classification stages and causes to the tendency of the 
245 learned model to mark all situations as normal in the test phase. To resolve severe sample imbalance problem between 
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246 clusters, undersampling was performed according to the �majority� class and normally marked samples were reduced 
247 for each patient separately. As a result, the number of normal cases, which was 4.5M per patient on average, was 
248 reduced to 12 thousand. Thus, sample imbalance between clusters was eliminated.

249 Table 2 Dataset details

250 This study is realized by using large amount of data which can be seen in the number of samples before under-sampling 
251 and results are compared with 50 patients one by one.  Thus, it is possible to evaluate the conditions such as age, 
252 gender, other existing diseases, and measurement errors. Each patient was evaluated indivisually in his or her own 
253 situation.

254 3.5 Deep Learning Model Structures and Machine Learning Models

255 The deep learning structures in 4 different architectures which will be used in meta-learner training of the proposed 
256 model and testing results proposed in this study and shown below. 

257 Traditional neural networks have only one hidden layer. For this reason, they are easily trained but have difficulty 
258 solving complex problems. One of the networks used in this study is the deep neural network (DNN) since the 
259 detection of sleep disorders is also very complex and varies according to the patient's condition. The most important 
260 advantage of this network is that it has a deep architecture and allows deep features to be learned by having more 
261 hidden layers. Considering that there are approximately 4.5M records with 23 features per patient, it can be thought a 
262 set of features may be extracted.

263 RNN [67] is not only fully connected between adjacent network layers, but also interconnected at neurons in each 
264 layer. This structure allows information to be transmitted between neurons, and the output of each neuron acts as the 
265 input of the next neuron. While he is good at learning about short-term addictions, he has a hard time remembering 
266 long-term addictions. Since sleep data was produced during sleep, RNN model could be successful in detecting sleep 
267 apnea by examining short-term dependencies.

268 Unlike RNN, LSTM [68] is better at learning long-term dependencies. This model consists of inputs, LSTM, full link 
269 layer and output layer. It uses a kind of transitive structure to capture long-term dependencies between data to prevent 
270 data losses. Since it was considered that it would be possible to detect sleep disorders by taking into account the long-
271 term dependence of sleep data over time, it was used among the deep learning architectures used in this study. 

272 GRU [69] can be thought of as a simplified version of the LSTM structure by making some transitions. It has fewer 
273 parameters than LSTM because it has no output gate. The GRU update port determines how much of the previous 
274 data will be remembered, while the reset port decides how to combine the previous data with the current data. In this 
275 study, the GRU structure was also evaluated between test environments to see the comparative results and to evaluate 
276 the dependence of sleep disorders on sleep recordings during the sleep process. The purpose of evaluating so many 
277 different structures together is to analyze data dependencies in the best way and to achieve the highest performance. 

278 To observe the state of addiction in sleep data and to reveal the most successful mode among the learning structures, 
279 4 different learning structures were designed as summarized in Figure-3. Their test results are shown and analyzed by 
280 comparing them in next section. 

281 Figure 3 Deep Learning model architectures

282 In deep learning structures, there are basically input layer, hidden layers, and output layers. Structure parameters can 
283 be listed as size (total number of nodes), width (number of nodes in the relevant layer), depth (number of layers in the 
284 network), capacity (learning function structure and type) and architecture (layer layout of the network). These 
285 parameter values are directly affecting the system performance and there is no global system proposal in determining 
286 these values. So that, an empirical approach has been adopted because of the experiments to ensure that the most 
287 successful model was revealed.

288 After the training and testing processes of the 4 deep learning structures given above, some problems were identified. 
289 To solve these problems, a meta-learner is used in the second layer proposed in this study. Machine learning models 
290 were used in this decision-making layer. The reason is to obtain more stable values in the results.

291
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292 For the meta-learner design, tests were carried out with 11 different machine learning algorithms, namely Logistic 
293 regression (LR), Random forest (RF), Decision Tree (DT), Gaussian Naive Bayes  (GNB), Linear Discriminant 
294 Analysis (LDA), Ada Boost, Gradient boosting (GB), ExtraTree (ET), Extreme Gradient Boosting  (XGBoost), 
295 Support Vector Classifier  (SVC), K-Nearest Neighbor(KNN). Thus, it is aimed to select the machine learning model 
296 with the highest performance and use it as a decision model. This allows us to guarantee the highest classification 
297 success for all patients. Thus, the proposed model not only aims to increase performance, but also eliminates patient-
298 based variability in results. Default hyper-parameters were used for each classifier and no parameter optimization was 
299 performed.

300 4. Obtained Results 

301 4.1 System Arhitecture

302 Training of both deep learning models, meta-learner's training and all test processes performed with a notebook 
303 equipped with 32 GB RAM and Intel(R) Processor 11th Gen Intel(R) Core (TM) i7-11390H @ 3.40GHz, 2918 Mhz, 
304 4 Cores, 8 Logical Processors. The server has Windows 10 operating system. Tensorflow is used with Keras 
305 framework. In addition, matplotlib, sklearn, imblearn, numpy, pandas� libraries were used. Different libraries were 
306 needed for the 2-layer model with both deep learning and machine learning structures.

307 4.2 Evulation 

308 Traditional performance measurement parameters of accuracy, specificity, recall, f-score and confusion matrix were 
309 used for calculation, evalution and comparison of results both in deep learning models and machine learning models.  
310 The calculation equations of these parameters are as shown below. 

311

Accuracy  = 
TP + TN

TP + TN + FP + FN Sensitivity  = 
TP

TP + FN

Specificity  = 
TN

FP + TN F-score  = 
2xTP

2xTP FN + FP

Confusion matrix = [TN FP
FN TP]

312

313 4.3 Deep learning models for sleep disorder detection 

314 The learning curves for each deep learning model were as given below in order to obtain the best results for each 
315 model on a patient basis and to understand that the learning process is now being completed.

316 The learning curve for 4 different models was as shown in Figure-4. When the graphs are examined, it is seen that the 
317 training and test curves are parallel and could achieve high performance. However, the amount of vibration could not 
318 be reduced, and smoother graphics could not be obtained. When we set the batch size to be larger, smoother curves 
319 emerge, but in this case, there is a risk of fluctuation. Since the learning rate also affects this situation, the learning 
320 rate was tried to be determined in a balanced way with the batch size. On the other hand, the smoothness of the curve 
321 is not seen as a problem. Because batch size and learning rate changes do not cause much fluctioans on graphics. This 
322 showed that the proposed model did not have any major problems with convergence or overfitting. The number of 
323 epochs, on the other hand, varies according to the complexity and structure of the model, and the training was 
324 terminated when there was no longer any increase in classification performance.

325 Figure 4 Deep Learning Models Learning Curves

326 Since the problem examined in this study is multi-class (Apnea, Hypopnea or Normal), the results obtained for 6 
327 different patients are shown in Figure-5 as below to evaluate the high performance obtained in the learning curves on 
328 a class basis. It has been observed that TP values are generally high and average performances are 95% and above. 
329 However, a problem arose in the results obtained as can be seen in the figure. This problem is detection of higher 
330 performance in Apnea or Hypopnea class changing patient to patient. This situation revealed that deep learning models 
331 can show different performances, varying from patient to patient. It causes patient-to-patient variability in the detection 
332 of positive patients expressed as Recall. It tells that the results are balanced on a class basis according to the confusion 
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333 matrices and that similar results cannot be guaranteed for each sleep disorder. This limits the stability of the proposed 
334 model and its ability to produce patient-independent results. For this reason, it is aimed to solve this problem by using 
335 a meta-learner in layer 2.

336 Figure 5 Confusion matrix of Deep learning models

337 Another situation that should be evaluated in tests with deep learning models is defining which model produces more 
338 successful results on a patient basis. As this study aimed to design a patient-independent system, it is expected that 
339 the results will be achieved with the highest performance for each patient. The highest performance model table which 
340 was obtained for the 50 patients used in this study is given in Table-3. Accordingly, while the DNN model has the 
341 highest performance in most patients, there are patients with higher performance in the LSTM, GRU and RNN models. 
342 Although there are not high differences in classification performances as can be seen in all results given in Annex-2, 
343 it is planned to be examined and resolved in this case. To do so, evaluation of each model�s output with a meta learner 
344 has been completed to ensure the best result. In this way, this work not only achieve an increase in performance, but 
345 more importantly, ensures that the results remain consistent from patient to patient. As can be seen in the table, the 
346 highest results in all patients were obtained with the proposed 2-layer architecture as given in Annex-2. 

347 Table 3 Best learning models for each patient

348 As a result, when the results obtained in this section and some limitations of deep learning models are evaluated 
349 together, the following problems emerged:

350 1- As can be seen with confusion matrixes, different sleep disorders are more successful for different patients. This 
351 disrupts the consistency of deep learning models. The level of success may rise or fall in certain types of disease on a 
352 patient basis.

353 2- There is a problem that different deep learning models are more successful in different patients and therefore it is 
354 not possible to decide which model to use and the best result cannot always be guaranteed.

355 3- It is necessary to evaluate whether it is possible to increase the classification performance.

356 4- Since the age, gender and status of other diseases are effective in sleep apnea, results that vary from patient to 
357 patient can be obtained.

358 It has been evaluated that these problems can be solved by using a meta-learner in the 2nd layer to solve these 
359 problems. For these reasons, a two-layer architecture was designed, and it was aimed to find solutions to these 
360 problems and increase the overall system performance. The results obtained with the use of meta learner are explained 
361 in the next section.

362 4.4 Results for Meta-learner preparation 

363 One of the important features of this study is to analyze the results in a second layer and increasing the model 
364 performance. At this stage, it is aimed to eliminate the limitations detailed in the previous section. For this purpose, 
365 the data of all patients were collected in a single dataset and tested with 11 different machine learning models. By 
366 choosing the classifier with the best results, its contribution to the results seen positively. After these tests, the results 
367 have reached very high accuracy changing between 82.0% to 99.5%. Furthermore, these results showed that the 
368 ensemble models such as ExtraTree, XGBoost, Gradient Boosting are more successful than other types. For this 
369 reason, one of them is trained as a meta-learner to be used in the final stage of the model. Thus, the decision-making 
370 layer that will take 4 different deep learning model inputs as features to produce a 3-class output has been prepared.

371 Training is performed for 4 classification results and 1 expected value after under-sampling for all patients, and the 
372 result for all classifiers is as shown in Figure 6.

373 Figure 6 Clasification Results for Sleep Disorder Detection for meta-learner design

374 As a result, the ExtraTree classifier with the highest success is chosen for the meta-learner. Whether this selection 
375 contributes to the classification is evaluated by testing in the next section.

376 4.5 Results for two-tier Proposed Model (Meta learner design) for Sleep Disorder Detection (Apnea, Hypopnea, 

377 Normal) 
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378 To compare the results of the proposed model with the standard deep learning models, the same data has been tested 
379 with both deep learning models and with the proposed 2-layer architecture, obtained results are presented in the table 
380 shown below seperatelly in Table 4. 

381 Table 4 Classification Results with Proposed Model

382 When the average, maximum and minimum results of DNN, LSTM, GRU, RNN and the proposed model (PM) in this 
383 study obtained for 50 patients is examined, it is seen that the PM haas higher success than other classifiers in terms of 
384 all parameters. Average performance increase is 1.19%. In addition, the lowest performance value has increased to 
385 90.33%, while the highest performance has reached very high values such as 98.99%. The average performance has 
386 also been increased to over 95%. This increase is similar for all metrics, proving that the proposed model makes this 
387 contribution regardless of the class. To better observe this contribution, confusion matrixes obtained for the patient 
388 with the lowest performance are given in Figure-7.

389 When the matrixes are examined, it is seen that the sample numbers for the Apnea, Hypopnea and Normal classes are 
390 balanced at the first stage. On a class basis, the highest value in all metrics in all three classes was obtained with the 
391 proposed model. The closest results to the proposed model are obtained with the DNN model. Accuracy value 
392 increased by 2% compared to the closest classifier.

393 Figure 7 Detailed Confusion Matrix with Three Class Basis

394 In this section, the contributions of the proposed model to the performance increase compared to other deep learning 
395 models are presented together with the test results. Other contributions of the proposed model (1) were created a 
396 structure that did not change from patient to patient and all patients' data were evaluated on a single model, (2) all 
397 patient data were used in a single model training. Thus, all the conditions affecting the sleeping sickness such as the 
398 patient's (age, gender, other diseases) were evaluated for a single model. As a result, a high-performance sleep disorder 
399 detection tool was developed with a model that eliminates some limitations independently of the patient, has 4 different 
400 deep learning models in the first layer, and Extra Tree ensemble classifier in the second layer.

401 4.6 Results for Apnea Events Detection (Obstructive, Mixed or Central Apnea)

402 Sleep apnea refers to situations in which a person's breathing stops and pauses intermittently throughout the night. 
403 Obstructive apnea is the most common form of sleep apnea. However, it has 2 different forms as central or mixed 
404 sleep apnea. In the second test phase of the proposed model, the events of patients with Apnea type are also determined. 
405 It has been tested with both machine learning models and deep learning models to detect 3 types of sleep apnea, and 
406 the results are as shown in Table-5. Like the previous results, ensemble models showed the highest performance in 
407 this problem. Events of apnea patients are classified with a high accuracy of 99.4%.  Precision, recall and f-score 
408 values are also at a similar level. The proposed model showed high performance in this problem.

409 Table 5 Results for Apnea Events Detection

410 Comparison results are given in Figure-8 to evaluate the classification results on ROC curve and confusion matrix. At 
411 this point, it is necessary to evaluate the results on a class basis for a multi-class problem. 

412 In Figure 8.a, sleep apnea events were tested in 3 classes as central, mixed and obrustive. It seen on the tests that there 
413 are only 9 FP or FN samples over 1800 samples. Among these, Central Apnea and Mixed Apnea cases can be detected 
414 with much higher performance, while there are erroneous detections in Obstructive Apnea cases. This high 
415 performance is also seen in the ROC curve. While the AUC value was 1.00 for both Central and Mixed Apnea, it was 
416 0.99 for Obstructive Apnea. This shows that the proposed model can detect the events of Apnea patients with high 
417 performance. 

418 The results of the tests performed to evaluate both sleep disorders and the events of Apnea patients together are given 
419 in Figure 8.b. At this stage, it is aimed to analyze the entire study together. Accordingly, high TP values were obtained 
420 except for the patients in the Normal state. �Normal� patients are confused with hypopnea patients. This situation is 
421 considered as problematic, and the proposed model is working in two stages. At the first stage, Apnea status of the 
422 patient will be determined and then its events will be determined. 

423 Figure 8 RoC curve and Confusion Matrix for Sleep apnea events detection

424 4.7 Hyper-parameters of Proposed Deep Learning Models
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425 The four-layer DNN model consists of an input layer, two hidden layers, and an output layer. The input layer represents 
426 the data entering the model, and each input data in this model consists of 23 features. This layer has 60 neurons and 
427 ReLU (Rectified Linear Unit) activation function. ReLU is often used in hidden layers because it converts negative 
428 input values to zero while leaving positive input values intact. Hidden layers enable the model to model complex 
429 relationships and patterns between the input and output layers. The hidden layers have 40 and 20 neurons in this 
430 model, respectively, and both use the ReLU activation function. More neurons and layers often add to the complexity 
431 of the model and often to its learning capacity. The output layer represents the output or prediction of the model. In 
432 this case, the model solves a multi-class classification problem. Therefore, 3 neurons are used in the output layer and 
433 Softmax is used as the activation function. To measure the success of the model, categorical_crossentropy is used as 
434 the loss function. This loss function measures the difference between the actual values and the model's predictions. In 
435 addition, the Adam optimization algorithm is used to update the weights of the model. Adam adapts the learning rate 
436 and generally offers fast learning and good performance. The parameters selected for each deep learning model are as 
437 given in Table-6 with the tuning intervals.

438 Table 6 Hyper-parameter tuning results

439 5. Discussion 

440 5.1 Comparison with previous works

441 In this study, a 2-layer structure was created that includes both deep learning and machine learning models. Besides 
442 PSG data, SpO2, Snoring, Arousal and Sleep Scoring data were used as features. When similar studies are examined 
443 (Table-7), some studies use a single signal data such as ECG signal, while others use more features consisting of PSG 
444 inputs. Classification performances vary depending on the dataset and the number of classes. Deep learning models 
445 generally have higher performance than machine learning models. As a dataset, PhysioNet Apnea-ECG was used in 
446 most of the studies, while original datasets were created in some studies, as in our study.

447 In terms of model classification performance of proposed model; it detects sleep disorders with 95.76% accuracy and 
448 detects sleep apnea events with 99.4% accuracy. The first difference of our study from similar studies is that high 
449 performance was achieved for a multiclass problem. In previous studies, classification problems such as Apnea-
450 Hypopnea, Apnea-Normal are generally solved in binary. By using 23 different features, more distinctive features of 
451 the patient were captured. In addition, our model can solve two different problems at the same time. It first detects the 
452 patient's sleep disorder, and in the second stage, it can detect the events of apnea patients. In fact, it can detect for 6 
453 different classes. In this aspect, it is completely different from other studies.

454 Table 7 Similar Works

455 5.2 Data imbalance problem

456 In multi-class problems, excessive imbalance between classes leads to an imbalance in the sensitivity and specificity 
457 of the model. This is because the model cannot accurately detect the distribution characteristics of the data. In this 
458 study, the number of samples per patient, which is given in Annex-1, is examined on a class basis, and it is seen that 
459 the Normal state is much more numerous than the Apnea and Hypopnea conditions. On average, 4.3M of 4.5M records 
460 represent Normal status. Since the severe data imbalance situation is inherent in the sleep recording and scoring 
461 process, it was not possible to change it. For this reason, we under-sampling according to the "majority" class with the 
462 SMOTE method to eliminate the problem. Thus, we ensured that it was transferred to the learning stage by reducing 
463 the sample only in the most dominant class. The sample numbers after this process were again as given in Annex-1.

464 5.3 Feature extraction and processing problem

465 In the feature extraction and processing phase, the identification and selection of the features and the selection of the 
466 appropriate classifier for this selection are laborious and require prior knowledge. As described in this study, 4 
467 different types of deep learning models and 11 different machine learning algorithms were used. More importantly, 
468 unlike all other studies, sleep disorders were detected with many 23 features. While the use of many and various 
469 features enables the proposed model to achieve positive results in terms of classification performance, it is 
470 disadvantageous in terms of required processing power. For this reason, the proposed model is thought to be suitable 
471 for clinics or hospitals that want to make a more comprehensive and detailed analysis instead of personal home users. 

PeerJ Comput. Sci. reviewing PDF | (CS-2023:05:85421:1:1:NEW 26 Jul 2023)

Manuscript to be reviewedComputer Science



472 Detailed results about the patient can be obtained by detecting with high performance in 6 different classes. Fewer 
473 features or a single-layer classifier design means lower performance and a simpler binary classification.

474 5.4 Two-tier model design 

475 The proposed two-layer design has been used to improve the overall performance and to find solutions to some of the 
476 limitations of deep learning models. The design uses the decision-making algorithm in a second layer. In this way, it 
477 eliminates some addictions of the patient. This is quite valuable. Because sleep state is highly dependent on the age, 
478 gender, and habits of the person.

479 5.5 Future work

480 Efficient and high-performance automated systems are needed to detect sleep disorder and help determine sleep apnea 
481 events and apply the most appropriate treatment. These systems are important so that people can be diagnosed quickly. 
482 The proposed method aims to make a high-performance and detailed analysis by processing 23 different data and 
483 making a comprehensive analysis. With the proposed method, it was preferred to use more complex and more features 
484 by preferring better detection. However, in this system, collecting 23 different sensor data can be quite troublesome. 
485 In the future, studies will be carried out on the selection and reduction of features to achieve the same performances 
486 with fewer features. In case of integration with wearable technologies, usage prevalence will be gained. With this 
487 integration, the discrete signal data collected during the night will be transferred to the computer environment thanks 
488 to the embedded software, and then the detection will be made. The system is not a real-time strategy, but it is of 
489 practical importance as a decision support system in detecting sleep disorders. More research on the problem is needed.

490 6. Conclusion

491 In this study, a 2-layer sleep disorder detection model working with 23 different sensor data is proposed. The model 
492 uses the distinctive features of different sensor data for learning and can detect both sleep disorders and apnea events. 
493 A comprehensive feature set was studied for 50 patients. With the use of meta-learner in the 2nd layer, some limitations 
494 of deep learning models have been solved and high performance has been achieved. Several pre-processing processes 
495 and under-sampling methods are used for data imbalance. Experimental results confirm that the proposed model is 
496 successful and reliable when compared with similar models. The model, which uses a comprehensive analysis 
497 structure, is suitable for detailed sleep analysis. We believe that the proposed method is a good decision support system 
498 for clinical applications.
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Figure 1
Figure 1 Sleep disorder and Sleep Apnea Events Detection Methodology Diagram
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Figure 2
Figure 2 Feature set design for training of meta-learner model
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Figure 3
Figure 3 Deep Learning model architectures
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Figure 4
Figure 4 Deep Learning Models Learning Curves
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Figure 5
Figure 5 Confusion matrix of Deep learning models
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Figure 6
Figure 6 Clasification Results for Sleep Disorder Detection for meta-learner design
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Figure 7
Figure 7 Detailed Confusion Matrix with Three Class Basis
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Figure 8
Figure 8 RoC curve and Confusion Matrix for Sleep apnea events detection
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Table 1 Brief comparison of similar works with presented work.

Table 1 Brief comparison of similar works with presented work.
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1 Table 1 Brief comparison of similar works with presented work.

Ref No Method Dataset Channels Accuracy

24 1D CNN and 2D CNN, RNN Samsung Medical 
Center

ECG 99%

35 LeNet-5 PhysioNet Apnea-ECG Single Channel ECG 87.6%

36 Deep Learning CNN+ 
weighted-loss time-dependent 
classification 

Apnea-ECG ECG 89.4%

37 CNN SMC and sleep apnea 
dataset 

ECG 99% (Binary classifier for 
mild and severe

38 LSTM PhysioNet Apnea-ECG ECG 97.1%

39 LSTM Own dataset ECG signals 100% (moderate and severe 
apnea)

40 Deep Learning, Grid Search Sleep Heart Health 
Study 

ECG 72.91%

41 Deep Learning, CNN MIT PhysioNet Apnea-
ECG 

Single Channel ECG 87.9%

42 Deep learning and machine 
learning, CNN+LSTM

Physionet�s CinC 
challenge-2000 

ECG signals 86.2%

43 Deep learning, multi-model 
fusion

Apnea-ECG ECG 90.3%

44 Deep learning, LSTM Own dataset EEG channels 92.73% 

45 Deep Learning, 1-D Residual 
Neural Networks

Apnea-ECG ECG signals 93.05%

46 Deep Learning, WaveNet MGH and SSHS dataset PSG inputs 84% (AHI index calculation)

47 Deep Learning, MVO, ANN Own dataset PSG inputs 98.67%

38 RNN PhysioNet Apnea-ECG ECG signal 91.7%

22 Machine Learning PhysioNet resource ECG 98.7% (apnea and normal)

23 SVM and ANN Apnea-ECG dataset Single lead ECG 85% (OSA event detection

25 Machine learning AdaBoost, 
linear discriminants

Own dataset SpO2 78.7% (severe apnea 
classification)

26 Machine learning Own Dataset SpO2 and airflow 81.3% (4 class)

32 Machine Learning, Hidden 
Markov model

The apnea-ECG ECG 86.2%

48 Machine learning MARS dataset PSG inputs 83%(specifity)

49 SVM Own dataset PSG inputs 82% (AUC)

50 Random Forest Own dataset PSG inputs 46%
(sensitiviy)

51 Machine learning Own Dataset Gas exchange inputs 44.7% (AHI index to 
represent Apnea severity)

52 Machine learning Own and different 
dataset for testing

PPG and SpO2 75.1% (apnea and hypopnea)

53 Machine learning Own Dataset Heart and sleep data 86% (AUC 
mild/moderate/severe OSA)

54 Machine Learning SVM PhysioNet Apnea-ECG Single channel ECG 88.2%(max)

55 Machine learning
SVM

Apnea-ECG Single channel ECG 84.7%

56 Machine learning
KNN

Apnea-ECG Single channel ECG 83.8%

58 Machine learning Own Dataset PSG inputs 86% (AHI)
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This 

work 

Deep Learning + Machine 

Learning- Two-tier model

Own dataset occupied 

from 50 patients 

PSG inputs, Snoring, 

Arousal, Sleep Stages, 

SpO2 

1- Sleep Disorder Detection 

(Apnea, Hypopne or 

Normal) 95.76%

2- Apnea Events Detection 

(Mixed Apnea, Central 

Apnea or Obstructive 

Apnea) 99.4%  

2
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1 Table 2 Dataset details

Before Undersampling Data Size After Undersampling Data Size

PatientID  Apnea  Hypopnea  Normal  Total  Apnea  Hypopnea  Normal  Total
Total 
Data 761000 1843200

226651000 229255200
761000 1843200 617000 3221200

Average 15220 36864 4533020 4585104 15220 36864 12340 64424
2
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1

2 Table 3 Best learning models for each patient

Patients with the maximum 
classification result achieved

Proposed two-tier model

DNN 2,4,7,9,10,12-19,21,23,24-31,33-
40,42,43,45,47,49,50

LSTM 1,5,6,8,20,32,44,46,48
GRU 11,22,41
RNN 3

It has higher performance than the 
model with the best performance in 
all patients.

3

4
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1 Table 4 Classification R������ with Proposed Model

Accuracy Precision Recall F-Score
Average 0.9457 0.9456 0.9457 0.9447

Min 0.8878 0.8868 0.8878 0.8848

DNN

Max 0.9847 0.9848 0.9847 0.9845
Average 0.9384 0.9376 0.9384 0.9372

Min 0.8457 0.8432 0.8457 0.8440

LSTM

Max 0.9862 0.9864 0.9862 0.9862
Average 0.9337 0.9329 0.9337 0.9325

Min 0.8392 0.8377 0.8392 0.8380

GRU

Max 0.9815 0.9818 0.9815 0.9814
Average 0.9170 0.9162 0.9170 0.9151

Min 0.7884 0.7871 0.7884 0.7860

RNN

Max 0.9838 0.9844 0.9838 0.9836
Average

0.9576 0.9574 0.9576 0.9560

Min
0.90�� 0.9019 0.90�� 0.9022

Proposed Two-layer 

learning model.

Max
0.90�� 0.90�� 0.90�� 0.90�0

Avg. Performance 

I��	
��
 

%1.19 %1.17 %1.19 %1.12

2
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1 Table 5 
������ for Apnea Events Detection

Algorithm
Type

Classification 
Algorithm

Accuracy Precision Recall F-score

Regression 
algorithm Logistic Regression 0.801 0.807 0.801 0.802

Decision Tree C 4.5 0.984 0.984 0.984 0.984

Bayesian GaussianNB 0.924 0.932 0.924 0.924

LDA LDA 0.911 0.916 0.911 0.911

Ada Boost 0.931 0.937 0.931 0.931

Gradient Boosting 0.990 0.990 0.990 0.990

Random Forest 0.987 0.987 0.987 0.987

ExtraTree 0.994 0.994 0.994 0.994

Ensemble

X������ 0.99� 0.99� 0.99� 0.99�

SVC 0.839 0.848 0.839 0.836

Machine 
Learning

Instance-based
KNN 0.841 0.858 0.841 0.837

DNN 0.970 0.970 0.970 0.970

GRU 0.980 0.980 0.980 0.980

LSTM 0.970 0.970 0.970 0.970
Deep Learning

RNN 0.981 0.981 0.981 0.981
2
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1 Table 6 Hyper-parameter tuning results

Parameter Tuning Range Selected Parameters for each 
DL Models

Kernel_initializer Uniform, lecun_uniform,normal, zero, glorot_normal, 
glorot_uniform, he_normal, he_uniform

DNN: uniform
GRU: uniform
LSTM: uniform
RNN: uniform

Optimizer SGD, RMSProp, Adagrad, Adadelta, Adam, Adamax, 
Nadam

DNN:adam 
GRU: Nadam
LSTM: adam
RNN: adam

Learning_rate [0.0001, 0.0005, 0.0008, 0.001, 0.01, 0.2, 0.3] DNN:0.0001
GRU: 0.0002
LSTM:0.0001
RNN: 0.0008

Batch_size [5, 10,20,30,40,50,60,70,80,90,100] DNN:20
GRU:5
LSTM:5
RNN: 10

Epoch [10, 20, 50, 100, 150, 160, 170, 200, 300] DNN:160
GRU:100
LSTM:100
RNN: 200

Neuron activation function Softmax, softplus, softsign, relu, tanh, sigmoid, 
hard_sigmoid, linear

DNN: softmax
GRU: softmax
LSTM: sigmoid
RNN: softmax

Number of neurons [1,5,10,15,20,50,100,200,500] DNN: 60,40,20
GRU:100
LSTM:100
RNN: 100

Early stopping Patient 20%
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1 Table 6 Similar Works

Ref No Method Dataset Channels Accuracy

24 1D CNN and 2D 
CNN, RNN

Samsung 
Medical Center

ECG 99%

35 Deep Learning, 
LeNet-5

PhysioNet 
Apnea-ECG

Single Channel ECG 87.6%

38 LSTM PhysioNet 
Apnea-ECG 

ECG 97.1%

47 Deep Learning + 
MVO

Own dataset PSG inputs 98.67%

38 RNN PhysioNet 
Apnea-ECG

ECG signal 91.7%

48 Machine learning MARS dataset PSG inputs 83% (specifity)

49 SVM Own dataset PSG inputs 82% (AUC

50 Random Forest Own dataset PSG inputs 46%
(sensitiviy)

52 Machine learning Own and 
different dataset 
for testing

PPG and SpO2 75.1% (apnea and hypopnea)

54 Machine Learning, 
SVM

PhysioNet 
Apnea-ECG

Single channel ECG 88.2%(max)

58 Machine learning Own Dataset PSG inputs 86%
AHI = 56% accuracy

This 

work 

Deep Learning Own dataset 

occupied from 

50 patients 

PSG inputs, Snoring, 

Arousal, Sleep Stages, 

SpO2 

1- Sleep Disorder Detection (Apnea, 

Hypopne or Normal) 95.76%

2- Apnea Events Detection (Mixed Apnea, 

Central Apnea or Obstructive Apnea) 99.4%  

2

3
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