
Optimization of predictive performance of
intrusion detection system using hybrid
ensemble model for secure systems
Qaiser Abbas1, Sadaf Hina2, Hamza Sajjad3, Khurram Shabih Zaidi4 and
Rehan Akbar5

1 University of Engineering and Technology, Lahore, Pakistan
2 University of Salford, Salford, UK
3 University of Engineering and Technology Lahore, Lahore, Pakistan
4 COMSATS University Islamabad, Lahore, Pakistan
5 Computer and Information Sciences Department, Universiti Teknologi PETRONAS, Seri
Iskandar, Malaysia

ABSTRACT
Network intrusion is one of the main threats to organizational networks and systems.
Its timely detection is a profound challenge for the security of networks and systems.
The situation is even more challenging for small and medium enterprises (SMEs) of
developing countries where limited resources and investment in deploying foreign
security controls and development of indigenous security solutions are big hurdles. A
robust, yet cost-effective network intrusion detection system is required to secure
traditional and Internet of Things (IoT) networks to confront such escalating security
challenges in SMEs. In the present research, a novel hybrid ensemble model using
random forest-recursive feature elimination (RF-RFE) method is proposed to
increase the predictive performance of intrusion detection system (IDS). Compared
to the deep learning paradigm, the proposed machine learning ensemble method
could yield the state-of-the-art results with lower computational cost and less
training time. The evaluation of the proposed ensemble machine leaning model
shows 99%, 98.53% and 99.9% overall accuracy for NSL-KDD, UNSW-NB15 and
CSE-CIC-IDS2018 datasets, respectively. The results show that the proposed
ensemble method successfully optimizes the performance of intrusion detection
systems. The outcome of the research is significant and contributes to the
performance efficiency of intrusion detection systems and developing secure systems
and applications.

Subjects Artificial Intelligence, Computer Networks and Communications, Data Mining and
Machine Learning, Security and Privacy
Keywords Predictive modelling, Ensemble method, Intrusion detection, Secure systems

INTRODUCTION
The increase in the active internet users has set off significant risks to the network
resources and communication security (Abdulhammed et al., 2018). Any unauthorized
activity by an illicit individual, triggering changes to the network resources and systems,
stealing sensitive/valuable network resources, or malicious actions to disrupt normal
routine of the network is considered as intrusion (Saeed, 2022). A network intrusion
detection system has the ability to prevent, detect and respond to such attacks (Belouch,

How to cite this article Abbas Q, Hina S, Sajjad H, Zaidi KS, Akbar R. 2023. Optimization of predictive performance of intrusion detection
system using hybrid ensemble model for secure systems. PeerJ Comput. Sci. 9:e1552 DOI 10.7717/peerj-cs.1552

Submitted 26 January 2023
Accepted 3 August 2023
Published 4 September 2023

Corresponding author
Rehan Akbar, rehankb@yahoo.com

Academic editor
Wenbing Zhao

Additional Information and
Declarations can be found on
page 33

DOI 10.7717/peerj-cs.1552

Copyright
2023 Abbas et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.1552
mailto:rehankb@�yahoo.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1552
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

Hadaj & Idhammad, 2018; Bhosale, Nenova & Iliev, 2018). The emerging network
technologies, continuous connectivity, diversity in the types and use of networks and
continuously evolving and intelligent techniques of intrusions have aggravated the
vulnerabilities in the existing systems. In addition, uncontrolled use of personal devices
connected with home and office networks during COVID-19, and dependency on
emerging digital technologies and trends also opened many vulnerabilities and
opportunities for intruders to access organizational networks and systems. Such emerging
digital technologies and trends led to many new challenges related to the network and
system’s security leaving intrusion detection still as an important open problem (Chen, Fu
& Zheng, 2022).

The intrusion detection systems are implemented at two levels as the name depicts such
as host-based intrusion detection system (HIDS) and network-based intrusion detection
system (NIDS). NIDS are further two categories for anomaly-based and signature-based
detections. A signature-based intrusion detection system works with the predefined
vulnerabilities and malware signatures which result in limited and inflexible detection
whereas anomaly-based systems are dynamic and tend to search the attacks that were not
predefined through detection rules. However, this mechanism may result in increased false
positive notifications. Yet, it can timely inform the administrator about the possible attack
without first recognizing the actual type of attack. Hence, comparatively, it performs well
than the signature-based systems (Xu et al., 2021).

The NIDS should perform in real-time and work with maximum accuracy (Zhang et al.,
2022). Earlier, intrusion detection systems were signature-based and performed well on the
known attacks that were already available in the system’s database. For detection of a new
attack, the database needed to be updated on a regular basis. This drawback prevented the
systems from working in real-time environments where new attacks are always inevitable.
To solve such issues, much research and investigations have been made and still it is
required to develop real-time, speedy, yet accurate network anomaly detection systems
that can monitor, analyze and detect anomalies in sensitive environments with compact
traffic (Otair et al., 2022). However, such systems may get costly if complex computational
models are incorporated. To protect large number of networked resources in less
privileged enterprises, it is mandatory to design a solution which is not only dynamic but
also cost-effective for maximum affordability.

With the increase in the amount of data, machine learning techniques are being
overwhelmingly used because of the augmented computational power of various machine
learning algorithms to process huge datasets. Machine learning techniques for the
development of network intrusion detection systems have been quite effective, however,
further research for specific business and organizational settings implemented with
distinctive attack vectors is required (Gulla et al., 2020; Injadat et al., 2020; Taher, Jisan &
Rahman, 2019). The data mining approach can be used for classification of the network
traffic by extracting huge datasets, mining patterns, and performing pattern analysis.
Likewise, machine learning models can also be used to classify the attacks in real-time
whereby speed and accuracy should further be enhanced to work in challenging
environments.

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 2/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Deep learning technology has widely been used in the development of the NIDS for real-
time systems (Abdel-Basset et al., 2021; Hussien, 2020). Its effective feature extraction
ability from the raw data has made this a popular practice for the development of
automated systems. Recent research has shown that although it works better for network
anomaly detection and outperforms the traditional machine learning and rule-based
methods, it still has some drawbacks. First, it requires huge, labeled datasets which are
mostly not available publicly. Secondly, this technology is computationally expensive and
requires costly graphic processing units (GPUs) and other computing resources (Abdel-
Basset et al., 2021). Additionally, the deep learning-based system is vastly complex and
hard to interpret. In recent years, Internet of Things (IoT) and edge computing has been
the focus for the communication between various computing and networking devices (de
Souza, Westphall & Machado, 2022). Many traditional computing systems don’t have
high-end computing resources, therefore, the deep learning methods might also not be
fully utilized in the IoT and edge computing domain due to resources limitations (Nasir
et al., 2022). Moreover, small and medium enterprises (SMEs) generally lack the required
resources, and skills to combat cyber-attack vectors, yet they need to utilize some methods
to stay competitive and secure. Newer methods/technologies, to be adopted by developing
SMEs, are valuable only if they are cost-effective and robust in resisting latest unknown
network attacks.

Network intrusion detection is very crucial for organizations to safeguard against data
theft. Traditional intrusion detection methods work on rule-based systems where manual
analysis of network traffic is quite a challenging problem. Although machine learning
based methods can help in learning the traffic behavior from historical data, however,
working with real time traffic data requires manual feature selection which requires time
and domain expertise. Traffic data is usually high dimensional and determining important
features is an important step for predictive systems. In addition, simple machine learning
algorithms can struggle while working with high dimensional data. Ensemble learning is a
technique in which multiple algorithms are used for prediction. Ensemble learning helps in
increasing the predictive performance for a given problem. Therefore, an ensemble
method which could be integrated with important features selection techniques, is required
for developing high performance predictive methods for network intrusion detection.

In this article, a hybrid ensemble method is proposed for the development of an efficient
cost-effective network intrusion detection system. Based on the evaluation of the
performance of major machine learning and deep learning algorithms on four
performance parameters, including accuracy, precision, recall, and F1-score, a cost-
effective model is proposed to optimize the predictive performance. One of the major
challenges in evaluating performance of machine learning models is the unavailability of
large datasets. In previous research works, KDD CUP 99 dataset (University of California
at Irvine, 2022) has been prominently used which is outdated and does not depict real
attacks in the networks. The present research work uses Network Security Laboratory–
Knowledge Discovery and Datamining (NSL-KDD) (Canadian Institute of Cybersecurity,
2022), University of New South Wales-New Brunswick (UNSW-NB15) and
Communications Security Establishment-Canadian Institute of Cybersecurity (CSE-CIC-

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 3/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

IDS2018) datasets. Data preprocessing steps were applied on the dataset to make it
compatible with the algorithm requirements. Additionally, a feature selection method has
been implemented to select the best input features for the selected classification algorithms.
Conclusively, the ensemble model optimized the prediction of domain specific attacks and
contributed to the design of secure networks systems, and applications.

LITERATURE REVIEW AND RELATED WORK
During recent years, artificial intelligence techniques, due to their powerful automated
feature extraction methods, have been widely implemented to develop solutions in the
broader domain of security. During the last decade, many researchers have used machine
learning and artificial intelligence algorithms for detection of network intrusion. Various
learning-based methods have been proposed to improve the performance of intrusion
detection systems. In this section a thorough review of related work is presented where
latest algorithms and techniques have been studied to identify the prospects of
improvement in terms of efficiency, accuracy, and cost-effectiveness of intelligent network
intrusion detection methods.

Abdulhammed et al. (2018) proposed a machine learning method for wireless network
intrusion detection system that included classification and feature selection methods. They
first preprocessed the data to feed the model and later applied various algorithms such as
AdaBoost (adaptive boosting), random forest (RF), and multilayer perceptron (MLP),
where the focus was to improve the feature reduction in input data for classification
algorithms. This helped in increased speed and detection accuracy. Four feature sets were
selected and applied to the models for training. The results showed that RF performed
better using 32 input features. The final model developed in this research work resulted in
99% accuracy, 0.99 precision and 0.966 recall on test dataset. The developed system was
later applied on an AWID dataset for real-time intrusion detection. Researchers also
compared the performance of machine learning methods to show that the proposed and
developed model was performing well on the test dataset. Belouch, Hadaj & Idhammad
(2018) conducted a research study to evaluate the performance of four classification
methods for intrusion detection in networks. They evaluated support vector machine
(SVM), Naive Bayes (NB), RF, and decision tree algorithms for the desired output. Apache
Spark tool was used to classify the intrusion traffic, whereas, publicly available dataset,
UNSW-NB15, with 42 input features for training the machine learning models was used.
The experiments showed that RF outperformed the other models and achieved an accuracy
of 97% on test data with 93% sensitivity and a specificity of 97%. Further, in the same year,
Bhosale, Nenova & Iliev (2018) presented a new filter-based feature selection algorithm
which was based on hybrid approach for feature selection. A subset of features was
optimized by the hybridized feature selection approach (HFSA) for building a classification
algorithm for multi-class classification task. The model was trained using real-time packets
which were captured using the JPCAP package. Researchers used a Naive Bayes algorithm
for classification of normal attacks. Before feeding the data to the model, it was
preprocessed with two methods. First, the data was converted to numerical values and then
applied to a phase of data normalization where features were scaled between 0 and 1. Then

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 4/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

feature selection was applied along with the Naive Bayes classifier to classify six types of
attacks that were normal, remote to user (R2L), denial of service (DoS), user to root (U2R),
brute force attacks, and probe. The proposed HFSA algorithm was applied for
classification enhancement. The final model achieved an accuracy of 92% while 95%
precision and 90% recall values were recorded.

Later, Kim et al. (2020) developed a distributed denial of service (DDoS) detection and
classification system using convolutional neural network (CNNs) and compared the
performance with recurrent neural networks (RNNs). The system was evaluated using
KDDCup99 and CSE-CIC-IDS2018 to differentiate the malicious DDoS traffic from
normal network traffic. On KDDCup99, an average accuracy of 99.9% was achieved while
CSE-CIC-IDS2018 yielded 91.997% average accuracy for binary and multi-class
classification of DDoS traffic. The RNN accuracy was 99% for binary classification but for
multi-class classification RNN could only achieve 93% accuracy, on KDDCup99. CNN also
outperformed the RNN on CSE-CIC-IDS2018 dataset with 91.3% accuracy as compared to
65% accuracy, respectively. Here, researchers only discussed DDoS categorization while
neglecting other classes of datasets. Moreover, convolution operation is very costly, and it
increases complexity of the overall system. Injadat et al. (2020) introduced a multi-stage
optimized NID framework using optimized ML algorithms with lesser complexity and
increased detection performance. Additionally, they studied the impact of oversampling,
training size, and information gain and correlation-based feature selection techniques. The
framework consisted of a combination of random search, particle swarm optimization
(PSO), genetic algorithm (GA) for feature selection and KNN and RF classifiers. The
performance was evaluated on CICIDS2017 and UNSW-NB-15 datasets with more than
99% accuracy on both datasets. The framework required only 74% of training sample size
and 50% features for training. The proposed work was a multi-stage framework where each
module was dependent on the previous one, which highlighted the need for an end-to-end
system with fewer dependencies.

Pokharel, Pokhrel & Sigdel (2020) presented an IDS which was based on hybrid machine
learning classification algorithm. Profile improvement methods were applied to improve
the detection of abnormal user behavior. The hybrid method was based on Naive Bayes
classifier and SVM for abnormal behavior detection. Data preprocessing was also applied
on the raw input data. These feature normalization, feature scaling and feature selection
methods improved the performance of IDS by achieving an accuracy of 93.1% and a
precision of 95.8%. Chkirbene et al. (2020) proposed a dynamic intrusion detection and
classification method using feature selection technique. They develop two methods for
intrusion detection namely trust-based intrusion detection and classification system
(TIDCS) and trust-based intrusion detection and classification system-accelerated
(TIDCS-A). They utilized feature selection algorithm to reduce the input features. High
rank features are selected to train the system for optimal performance. Both algorithms
were trained using NSL-KDD and UNSW datasets and experiments showed that they
could detect attacks with greater accuracy and less false alarm rate. The final model
achieved an accuracy of 91% using the TICDS method. Xu et al. (2020) presented a new
intrusion detection system log-cosh conditional variational autoencoder (LCVAE). It

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 5/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

utilized properties of CVAE, and a new loss function log-cosh was introduced which
balanced the generation and reconstruction of intrusion data for data classes with fewer
samples. For classification and feature extraction, CNN was used, which achieved an
accuracy of 85.51% on NSL-KDD dataset. The research considered binary classification
while using expensive DL methods.

Gu & Lu (2021) used SVM with Naive Bayes feature embeddings to develop an
intrusion detection system. Naive Bayes algorithm was utilized to transform features for
data state conversion. SVM model was trained as a classifier. The method was applied to
many datasets including UNSW-NB15, NSL-KDD, Kyoto 2006+ and CICIDS2017.
Various features were selected from these datasets for training the classifier. The final
system was compared with a simple SVM model. This comparison showed that
performance of SVM increases by using Naive Bayes embeddings. The best results were
obtained using NSL-KDD dataset and the highest accuracy of 99.36% was achieved with a
detection rate of 99.25%. Gu & Lu (2021) proposed to enhance the quality of the data for
intrusion detection problems. They argued that quality of data can help in the
development of robust intrusion detection systems. In their research, they utilized Naive
Bayes feature transformation technique to enhance the data quality. Later, they trained
SVM classifier on the transformed dataset. The accuracies were 93.75%, 98.92%, 99.35%
and 98.58% on UNSW-NB15, CICIDS2017, NSL-KDD and Kyoto 2006+ datasets
respectively. However, researchers only considered binary classification where the system
could only differentiate between normal and attack traffic with no information about the
class of the attack. In addition, they extracted random data to balance the dataset instead of
utilizing the complete dataset. Zhao et al. (2021) developed an efficient network intrusion
detection using combination of convolutional network and dynamic autoencoders. They
also presented a new loss function for NID to train autoencoder and classifier together. The
lightweight structural design helped to extract the efficient feature extraction which
achieved high accuracy of 93.1% and 98.5% on KDD99 and UNSW-NB15 respectively. Yet
gain, researchers only consider binary classification problem and focused on development
of lightweight NID method.

Abdel-Basset et al. (2021) proposed a semi-supervised deep learning based intrusion
detection system in IoT networks. Researchers introduced a multiscale residual temporal
convolutional module (MS-Res) to help network learn the spatiotemporal representations.
To improve the importance of influential features, a traffic attention (TA) mechanism was
developed. The system was evaluated using CICIDS2017 and CICIDS2018 datasets with
more than 99% accuracy in case of binary class classification scenario. Researchers
supported the claim that deep learning requires more data and computational cost. Xu
et al. (2021) proposed a new five-layer autoencoder model for network anomaly detection.
The data bias, due to redundant samples, was removed by preprocessing the data and
outliers were removed to reduce the effect of detection bias. It was trained on NSL-KDD
and achieved an accuracy of 90.61% and 92.26%. Consideringly, autoencoder is
computationally expensive deep learning model and the system could only differentiate
binary classification problems.

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 6/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Recently, in 2022, a research study presented a network behavior anomaly detection
method based on deep belief network. The method worked by extracting features using
deep belief network (DBN) and dimensions were reduced. A DBN was pre-trained on
small training data using unsupervised learning and then it was again trained using
supervised learning to extract useful features. Later, a light long short-term memory
(LSTM) network was used to classify the network anomalies. The proposed model was
evaluated using KDD99 with 94% accuracy and CICIDS2017 with 86.8% accuracy. The
performance of the proposed model was not good in classes with fewer records. Moreover,
in another limitation, two models were needed to train. Therefore, an end-to-end model is
required to reduce false alarm rates and enhanced performance (Chen, Fu & Zheng, 2022).
Roy et al. (2022) introduced a cyber-attacks detection model for IoT networks. They
preprocessed the data using removal of redundant features, sampling the dataset, and
reducing dimensions of the dataset. These steps helped in choosing the most relevant
features for intrusion detection. In addition, they used the B-Stacking method which is a
combination of boosting and stacking algorithms. Researchers utilized CICIDS2017 and
NSL-KDD dataset for evaluation. The proposed system has a high detection rate and low
false alarm rate with 98.5% and 99.11% accuracy on NSL-KDD and CICIDS2017 datasets
respectively. However, research presented lower results on U2R and R2L and the proposed
model was only for IoT networks. In a similar research (de Souza, Westphall & Machado,
2022), the authors presented a two-step ensemble approach for intrusion detection in IoT
and fog computing. In the first step they used an extra tree as a binary classifier to analyze
the traffic and later an ensemble based on ET, RF and DNN was used to detect intrusion
traffic. Researchers performed experiments with Bot-IoT, NSL-KDD, IoTID20 and
CICIDS2018 datasets. This approach achieved an average precision of 100% with 100%
recall value on bot-IoT dataset. On NSL-KDD dataset they achieved 99.81% accuracy with
99.81% precision. Again, low results on U2R (68.75) and R2L (96.31) were reported on
NSL-KDD dataset. Fewer attacks related to IoT networks were presented, with no
countermeasures.

Zhang et al. (2022) introduced RANet based on group gating convolutional networks. In
the last maxpooling layer, they applied an overlapping method and tested the proposed
model on five publicly available datasets. It achieved an accuracy of 83.23%, 69.04%,
99.78%, 97.55%, and 96.73% on NSL-KDD Test (+), NSL-KDD (21), KDDCUP99, Kyoto
and CICIDS2017 datasets respectively. However, the proposed system showed low
performance on infrequent network attack types and had weak interpretability. Rashid
et al. (2022) worked on the development of tree-based stacking algorithm using DT, RT
and XGBoost. In addition, the effectiveness of k-best model for features selection was
analyzed. Researchers evaluated the system using NSL-KDD and UNSW-NB15 datasets
with 20 features based on their score. An average accuracy of 93.7% and 99% was achieved
on UNSW-NB15 and NSL-KDD datasets respectively. But the authors only considered
binary classification problem due to which the system could not differentiate between
various attack classes. Another research work utilized CNN for feature extraction and
meta-heuristic LSTM for detection of DDoS attack. For effective feature selection and
minimizing the correlation among features, they developed a closest position grey wolf

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 7/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

optimization (CP-GWO) algorithm with less complexity and better convergence. To
evaluate the performance of model DARPA1998, DARPA LLS DDoS-1.0, CICIDS2017,
NSL-KDD and KDD99 datasets were used with 96.52%, 95.94%, 96.52%, 96.37% and
96.37% respectively. The research work focused on binary classification of DDoS vs benign
network traffic where performance on NSL-KDD is comparatively lower (Dora &
Lakshmi, 2022).

Nasir et al. (2022) presented an intelligent framework (DF-IDS) to secure edge IoT
using deep learning. The framework presented two stages, where first stage started by
selecting features using spider monkey (SM), PCA, information gain (IG) and correlation
attribute evaluation (CAE). The selected features were fed to a deep neural network. The
framework was tested using NSL-KDD dataset and achieved an accuracy of 99.23% and
F1-Score of 99.27%. Again, this research worked on binary classification where the system
could only differentiate between normal and attack traffic with no information about the
type of attack. Otair et al. (2022) presented a wireless sensor networks intrusion detection
system using grey wolf optimizer (GWO) and particle swarm optimization (PSO).
Researchers selected important features using GWO and utilized PSO to attain global
optimum values for selected features. To classify the network traffic an ensemble algorithm
consisting of KNN and SVMwas used. NSL-KDD was utilized to evaluate the performance
of the proposed system with 98.97% accuracy. This also works on binary classification
only. Another research Saeed (2022) proposed a hybrid system for real-time intrusion
detection of streaming data. Researchers selected 16 features from input data that
contributed to the performance enhancement. For classification, KNN, Naive Bayes and a
hybrid classifier were used on NSL-KDD and KDD99 datasets with more than 99%
accuracy. This system also considers binary classification problem while neglecting
information about the type of attack.

Table 1 summarizes the work reviewed in this study including authors, dataset
information, pre-processing techniques, feature selection methos, classification techniques,
number of features used, evaluation metrics and limitations.

The table presents the summarized relevant information. Some of the problems with the
recent work are discussed based on classification type, dataset choice, required
computational resources, training complexity and low results on minority classes.

In the literature, majority of the researchers have worked on binary classification of
intrusion traffic (Gu & Lu, 2021; Zhao et al., 2021; Rashid et al., 2022; Dora & Lakshmi,
2022) while some also worked on multi-class classification using deep learning techniques
(Chen, Fu & Zheng, 2022; Zhang et al., 2022; Abdel-Basset et al., 2021; Moizuddin & Jose,
2022). However, deep learning requires computational resources and time to train the
models (Gu & Lu, 2021). This claim is also supported by results of the deep learning
algorithm experiments performed in this research. In addition to that, large, labeled
datasets are also a primary requirement to train deep learning algorithms. Although some
of the researchers have used simple ML based approaches but they utilized older dataset
such as KDD99 (Saeed, 2022; Zhang et al., 2022; Dora & Lakshmi, 2022). Moreover, in
some recent studies (Chen, Fu & Zheng, 2022; de Souza, Westphall & Machado, 2022; Roy
et al., 2022), detailed analysis and classification of network intrusion is done using machine

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 8/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Table 1 Critical analysis of IDS methods in relevant literature.

Authors Dataset Data pre-
processing

Features
selection method

Classifier Classification No of
features
used

Evaluation metrics Limitation

Roy et al.
(2022)

CICIDS2017,
NSL-KDD

Dimensions
reduction

– B-Stacking
ensemble

Multi-class 28 Accuracy 98.5% Low performance on U2R
and R2L classes.

de Souza,
Westphall
&
Machado
(2022)

BoT-IoT, NSL-
KDD, IoTID20,
CICIDS2018

Standard scaling,
SMOTE

Extra tree Ensemble of ET, RF
and DNN

Multi-class 20 Accuracy 99.81%,
Precision 99.81%

Low performance on U2R
and R2L, Fewer IoT related
attacks

Zhang et al.
(2022)

NSL-KDD,
KDD99,
CICIDS2017

MinMax
normalization

CNN CNN based RANet Multi-class 41 and
122

Accuracy 83.23% Poor performance on
infrequent attack types

Rashid et al.
(2022)

NSL-KDD,
UNSW-NB15

MinMax
normalization

k-best model Ensemble of RF,
XGBoost and DT

Binary 20 Accuracy 99% No information about attack
classes

Dora &
Lakshmi
(2022)

NSL-KDD,
DARPA1998,
DDoS-1.0,
KDD99

Correlation
minimization

CP-GWO
(Closest
Position)

CNN + LSTM Binary 5 Accuracy 96.37%,
Precision 97.44%,
Recall 98.78%

Specifically designed for
DDoS detection

Nasir et al.
(2022)

NSL-KDD Data
normalization

Spider monkey
(SM), PCA, IG

Deep neural
network

Binary 14 Accuracy 99.23%,
Precision 99.30%,
Recall 99.24%, F1-
Score 99.27%

No information about types
of attacks

Otair et al.
(2022)

NSL-KDD Data
normalization

GWO + PSO Ensemble of KNN +
SVM

Binary 20 Accuracy 98.97%,
Detection Rate
98.57%

Can only distinguish
between attack and benign
traffic.

Chen, Fu &
Zheng
(2022)

KDD99,
CICIDS2017

Data
normalization

Deep belief
network

LSTM Multi-class – Accuracy 94.25% Low performance on U2R
and R2L classes

Saeed (2022) NSL-KDD, KDD
CUP 99

– Minimum
redundancy—
Maximum
relevance
MRMR

KNN + Naïve Bayes Binary 16 Accuracy 99%,
Precision 99.7%,
Recall 99.75%

Neglects additional attack
information

Injadat et al.
(2020)

CICIDS2017,
UNSW-NB15

Z-Score
normalization,
SMOTE

Information
Gain, PSO, GA

KNN + RF Multi-class 31 and
41

Accuracy 99%,
Precision 98%, Recall
99%

Complex module-based
architecture

Gu & Lu
(2021)

UNSW-ND15,
CICIDS2017,
NSL-KDD,
Kyoto 2006+

Naïve Bayes
feature
embeddings

– SVM Binary – Accuracy 99.35%,
Detection Rate
99.25%

Use a part of data instead of
whole dataset, only
consider binary
classification problem

(Continued)

A
b
b
as

et
al.(2023),P

eerJ
C
o
m
p
u
t.S

ci.,D
O
I10.7717/p

eerj-cs.1552
9/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Table 1 (continued)

Authors Dataset Data pre-
processing

Features
selection method

Classifier Classification No of
features
used

Evaluation metrics Limitation

Abdel-Basset
et al.
(2021)

CICIDS2017,
CICIDS2018

Redundant
feature
elimination,
Data
normalization

Traffic Attention Modified residual
network

Multi-class – Accuracy 99.6%,
Precision 92.31%,
Recall 96.29%

Additional computational
cost due to DL

Zhao et al.
(2021)

KDD99, UNSW-
NB15

Data
normalization,
PCA

CNN CNN + Dynamic
autoencoder

Binary – Accuracy 93.1%,
Precision 99.8%,
Recall 91.6% (on
KDD99)

Focus on lightweight model
development and
classification performance
is very low.

Xu et al.
(2021)

NSL-KDD and
UNSW

Outlier analysis,
Data
normalization

– Autoencoder Binary 122 Accuracy 90.61%,
Precision 86.83%,
Recall 98.34%, F1-
Score 92.26%

Cannot differentiate
subclasses of the attack
types

Kim et al.
(2020)

KDD99,
CICIDS2018

– CNN Fully connected
network

Binary – Accuracy 99.9%,
Recall 100%,
Precision 99.9%
(KDD99)

Costly convolution
operation + Special system
for DDoS detection

Xu et al.
(2020)

NSL-KDD Data balancing
using log-cosh
function

CNN Conditional
variational
autoencoder

Binary – Accuracy 85.51%,
Precision 97.62%,
Recall 68.90%

Expensive DL method + no
information about attack
classifications

Note:
AWID, Aegean Wi-Fi Intrusion Dataset; MLP, Multi-Layer Perceptron; UNSW-NB15, University of New South Wales; SVM, Support Vector Machine; KDD, Knowledge Discovery in Databases;
HFSA, Hybrid Feature Selection Algorithm; SDN, Software Defined Networking; KNN, k-Nearest Neighbors; PCA, Principal Components Analysis; CIC, Canadian Institute for Cybersecurity; LSTM,
Long Short-Term Memory; CNN, Convolutional Neural Network; SMOTE, Synthetic Minority Oversampling Technique; GWO, Grey Wolf Optimizer; PSO, Particle Swarm Optimization.

A
b
b
as

et
al.(2023),P

eerJ
C
o
m
p
u
t.S

ci.,D
O
I10.7717/p

eerj-cs.1552
10/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

learning, still, they achieved low results on minority classes. Besides, various researchers
(Injadat et al., 2020; Gupta, Jindal & Bedi, 2022) developed complex module-based
approaches that cannot be directly used on low-end devices.

To fill the gap in literature, an end-to-end lightweight and cost-effective machine
learning approach for optimized network intrusion detection is developed, by utilizing
latest intrusion datasets to evaluate the approach. As compared to the recent studies, the
proposed method is simple, computationally efficient, works on multi-class classification
and does not require high-end computational resources. The popular deep learning
algorithms such as CNN, RNN and LSTM were also trained to compare the performance
of the proposed system with the deep learning-based methods. The proposed method gives
results that are comparable to the latest deep learning approaches and has some
considerable advantages over deep learning-based approaches.

METHODOLOGY AND EVALUATIONS
In the proposed method, data normalization technique, and a wrapper-based feature
elimination method are utilized to select 13 and 15 important features from NSL-KDD and
other two datasets, respectively. Only 31%, 33% and 21% features for NSL-KDD, UNSW-
NB15 and CSE-CIC-IDS2018 datasets were used, respectively. In the next step, a hybrid
stacking ensemble was developed using RF-RFE, MLP, Random Forest and SVM for
classification. A majority voting mechanism was utilized to calculate the probabilities of
attack classes. The results indicated the superiority of the proposed approach for network
intrusion detection.

For this study, datasets were downloaded from public repositories. The input data was
normalized, and features were reduced using a hybrid method i.e., RF-RFE. In the next
step, the datasets were again saved in the reduced form, and were split into training and
testing parts. Initially, major machine learning algorithms were utilized to learn the attacks
behavior and classes. However, due to complex nature and high-dimensional data, single
algorithms didn’t work quite well. To overcome this issue, the proposed hybrid ensemble
algorithm was trained on preprocessed datasets to learn the attack types. To evaluate the
system, widely used classification metrics were utilized, as shown in Fig. 1.

Dataset description
The characteristics and features of datasets used in the evaluation of the proposed mode
have been presented as follows.

NSL-KDD
In related work, most of the researchers used KDDCup99 for training their final systems.
Although this dataset is good to train the classifiers, but it has some issues such as duplicate
values and lack of real-world attacks scenarios. To develop a practically applicable robust
intrusion detection system, this research work primarily used a newer dataset, NSL-KDD,
to validate the performance of the proposed method, as it had real-world scenarios and
millions of network records for NID evaluation. This dataset does not have redundant
records, so any model trained on this dataset should not be biased towards repeated attack

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 11/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

records. The NSL-KDD (Canadian Institute of Cybersecurity, 2022) consists of four sub-
datasets that are KDD Test+, KDD Train, KDD Test-21, and _20 Percent. The dataset has
records of various network attacks that an intrusion detection system must detect to avoid
security problems. There are total of 43 features in this dataset for a single record. Out of 43
features, 41 are related to traffic input and the other two are labels and scores of traffic
input. This dataset has a total of four classes for various attacks: probe, user to root (U2R),
denial of services (DoS), and remote to local (R2L). A breakdown of number of records
distributions is presented in the Table 2.

As mentioned, a DoS attack tries to shut down the system while the other three attacks
are related to gaining access to system and sensitive information. This dataset suffers class
imbalance problem where more than half of the records are normal. Distribution of U2R
and R2L attacks is very low as compared to DoS attack. This property of the dataset
resembles the real-life scenarios where DoS is the main type of attack that is a threat to the
network and a smaller number of U2R and R2L attacks are seen in real environments. The
input features in the dataset can be divided into four main categories that are: intrinsic,
content, time-based, and host based.

UNSW-NB15
This dataset was created by the Australian Center for Cyber Security (Moustafa & Slay,
2015) having more than two million records, 48 features and nine different attack types.

Figure 1 The proposed methodology. Full-size DOI: 10.7717/peerj-cs.1552/fig-1

Table 2 Attack types distribution in the NSL-KDD dataset.

Dataset Number of records

Total Normal DoS Probe U2R R2L

KDDTrain+20% 25,192 13,449 9,234 2,289 11 209

KDDTrain+ 125,973 67,343 45,927 11,656 52 995

KDDTest+ 22,544 9,711 7,458 2,421 200 2,654

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 12/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-1
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

These features were extracted using newly developed algorithms such as Bro-IDS and
Argus tools. The dataset was generated in the Cyber Range Lab where realistic state-of-the-
art normal, and synthetic abnormal networks were established. The features are further
categorized into five major groups which are flow features, basic features, content features,
and time features along with additional generated features. The dataset contains nine types
of different attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance,
Shellcode and Worm.

Table 3 presents the overall statistics of the UNSW-NB15 dataset.

CSE-CIC-IDS2018
The dataset was created by Communication Security Establishment (CSE) and Canadian
Institute of Cybersecurity (CIC) in 2018. This work was aimed to develop user-profile
based diversified instructional data for intrusion detection on networks. The data
resembles the actual user behavior on the network. The dataset has seven different attack
classes: DoS, DDoS, web attacks, botnet, heartbleed, brute-force, and infiltration. Due to
the huge amount of dataset, only a part of data was used. CSV files, only from Friday-02-
03-2018 and Friday-16-02-2018, were selected for the evaluation purposes. As the data is
highly imbalanced, only those parts of the data were selected that could simulate real-
world attack scenarios. The selected data has four classes: normal traffic, botnet, DoS-
lowHTTP and DoS-Hulk, which are merged to represent a single class i.e., attack. After
removing null values and duplicate records, 1,074,342 records were retained, out of which
290,089 records were malicious. Table 4 provides overall details of the dataset.

Preprocessing
As discussed above, raw dataset might not yield good results due to class imbalance,
various data types and huge number of input features. Therefore, to develop robust
machine learning models, input features were preprocessed to overcome the challenges. In
the following section, an approach for dataset preprocessing is discussed in detail. The
preprocessed datasets were later used in training machine learning algorithms.

Table 3 Attack distribution in the UNSW-NB15 dataset.

Attack
category

Number of
events

Attack
category

Number of
events

Attack
category

Number of
events

Fuzzers 24,246 Analysis 2,677 Exploits 44,525

Reconnaissance 13,987 Backdoors 2,329 Generic 215,481

Shellcode 1,511 DoS 16,353 Worms 174

Table 4 Attack distribution of subset of the CSE-CIC-IDS2018 dataset.

Category Training Testing Total

Benign 751,849 322,493 1,074,342

Attack 203,252 86,837 290,089

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 13/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Feature normalization
To develop a robust machine learning classifier, data normalization is required. It is the
process of standardization of input data features to remove the biasness of the machine
learning classifier. The data values are standardized by the maximum value in that data
feature so that they lie in between standard values of (0–1). The normalization operation
was applied by using Eq. (1). As a result of this process, all the numerical values were
converted to a value range of 0 to 1.

X0 ¼ x � l
r

(1)

In this equation, x is the original feature value, where X′ is the normalized value. r and
l are standard deviation and mean respectively. Due to the normalization process, some
features with high numerical values cannot affect the performance negatively. In addition,
only 13 out of 41 features were used for final classification, in the case of NSL-KDD dataset.
The detail of feature selection is provided in the next section.

Feature selection
There are total of 41 input features in the NSL-KDD dataset, while there are 45 and 73
input features in the UNSW-NB15 and CSE-CIC-IDS2018 datasets, respectively. Selected
target labels might not be affected by some input features. Keeping this in view, only those
features were retained which were required for classification purposes. For this task, RFE
was utilized for feature selection (Guyon et al., 2002), which is a wrapper based backward
feature selection method. In this technique a model is built using an entire set of input
features. Then, the important score for each feature is calculated. In this recursive process,
the least important features were removed by retraining models on various sets of features.
Here, a subset of feature size is a tuning parameter to calculate specific number of features.
When a subset gives optimal performance, that subset is used for predictors. The final
optimal subset is used to train the final algorithm. In simple words, RFE performs a greedy
optimization search to find the best performing feature subset for final model. Algorithm 1
describes the feature selection based on RF-RFE method.

All models cannot be paired with RFE method, because when number of features
increase as compared to the number of samples, some models cannot be used with RFE.
RFE with RF is used in this study for two reasons. First, RF does not tend to exclude the
variables from prediction equation. An ensemble method usually has increased
performance as compared to the individual models. RF, being an ensemble method,
enforces the trees to have sub-optimal splits of features using random sample of input
features. Second reason to include RF as base learner in RFE is because it has internal
mechanism to measure the importance of features (Chen et al., 2018). Other than RF-RFE
feature selection method, various other methods are widely utilized by the researchers. For
example, in Gulla et al. (2020) researchers applied a combination of Gray Wolf
Optimization (GWO) and Particle Swarm Optimization (PSO), however the results from
this study are superior as compared to the Gulla et al. (2020) and a study in Roy et al.
(2022) where k-best method was utilized. This research experimented with several

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 14/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

methods for feature selection, however in this study only results of best performing
method i.e., RF-RFE are discussed.

In addition, t-stochastic neighbor embedding (t-SNE) visualization was also used to
visualize 41 features as shown in Figs. 2 and 3. T-distributed stochastic neighbor
embedding (t-SNE) is a statistical data visualization method for high dimensional data.
The method visualized the data points by giving each datapoint a location in a three-
dimensional space. The method is based on stochastic neighbor embeddings. It is a
nonlinear technique for data dimensionality reduction. It can be seen from the
visualizations that the red dots overlap the blue and other dots representing different kinds
of attacks in different regions. It becomes difficult for the learning algorithm to learn
various distribution areas for the same type of attack traffic at the same time. The RF-RFE
algorithm, applied to data, suggested only 13 features that were important for
classification. In Fig. 4, t-SNE visualization for features selected by RF-RFE algorithm for
final classification is shown. Features selected by RF-RFE help to differentiate the attack
types and decreases the overlap between attacks.

Machine learning algorithms
Most ML algorithms need extracted features while deep learning, which is a subset of
machine learning, does not require extracted features as it directly learns from the data.
Instead of direct implementation of popular algorithms, in some cases, algorithms are
merged to form ensemble models. In this research study, five individual ML models and

Algorithm 1 For feature selection based on RF-RFE.

INPUT:

Training Data D0 = [d1, d2, d3…dn]

Set of n features F = [f1, f2,…fn]

Subset of features S = [1,2,3,4,5….m]

OUTPUT:

Final Optimal Feature Set Fs

BEGIN:

S = [1,2, 3…., m]

Fs = []

While S ≠ [] Do

Repeat For x in [1:n]

Ranking features via M(D,F) #Applying RF-RFE on input data and features

S(f *) ← F’s last ranked features

Fs(n – x + 1) ← S(f *)

S(Fs) ← S (Fs) – S(f *)

End While

End

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 15/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Figure 2 t.SNE visualization—attack vs normal classes on NSL KDD.
Full-size DOI: 10.7717/peerj-cs.1552/fig-2

Figure 3 Multiclass t-SNE visualization on 41 features of NSL-KDD.
Full-size DOI: 10.7717/peerj-cs.1552/fig-3

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 16/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-2
http://dx.doi.org/10.7717/peerj-cs.1552/fig-3
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

three deep learning models along with proposed ensemble method were trained. Further
details have been discussed in the upcoming sections.

Hyperparameters values
Hyperparameter values are necessary in machine learning approaches to train the
proposed model. For deep learning models, basic and simple architectures were trained
and tested to overcome overfitting as deep learning algorithms easily overfit on the training
data. Architecture engineering in deep learning itself is a huge research domain. So, only
training of basic variant of deep learning algorithms was considered and training the
optimized deep learning algorithms for network intrusion detection was seen outside the
scope of this work. Table 5 summarizes the key information about hyperparameters values
used in the present research.

Ensemble method
The main idea behind the ensemble learning is to get the advantage from various classifiers
by learning in a collective ensemble way. Each classifier has its own strengths and
drawbacks for data classification. Some classifiers perform well on specific types of attacks
while others may perform well on the rest of attack types. The key idea is to combine
several weak classifiers by training multiple classification models and develop a strong
classification model by utilizing a voting algorithm. In this way, weaknesses of the
classification algorithms can be reduced to develop a strong classification model. The
proposed ensemble model is based on RF, MLP and SVM classification models. These
algorithms were trained collectively via a hybrid approach where RF-RFE helped to reduce

Figure 4 Multiclass t-SNE visualization on 13 features of NSL-KDD.
Full-size DOI: 10.7717/peerj-cs.1552/fig-4

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 17/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-4
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

the input features and later, a stacking ensemble method used the individual predictions to
calculate the final class prediction using majority vote. The proposed method helped in
minimizing the variance and increasing the predictive force of collective learners. The
results showed that the performance gains were notable when utilizing the proposed
ensemble method.

Figure 5 presents the basic idea of the proposed approach in this article. Algorithm 2
presents the steps in the proposed ensemble model training and testing.

Evaluation metrics
Several evaluation methods have been used to evaluate the performance of classifiers. Most
of the metrics come from the information retrieval domain. Some of the popular metrics to
evaluate the classifier are precision, recall, accuracy, F1-score, and mean absolute error
(MAE). In this section, various evaluation metrices for classifiers’ evaluation are described.
Many of these metrics can be calculated by using a confusion matrix. A typical confusion
matrix is presented in Table 6. This confusion matrix forms the basis of various other
metrics to evaluate the final classifier. The correct and incorrect predictions can be

Table 5 Hyperparameters values to train the algorithms.

Classifier Parameters

RF Number of Trees = 10; Max Features = 13

KNN Number of Neighbors = 5; Algorithm Solver = Auto

SVM Kernel = Linear and Poly (for multiclass) ; Regularization parameter (C = 1.0)

DT Max Depth = Auto; Max Features = 13

MLP Number of iterations = 300; Hidden Layer Size = 100; Activation = ReLU; Optimizer = Adam;
Learning Rate = 0.001

CNN Epochs = 30, Optimizer = Adam, Conv1D layers = 4, Loss Function = Sparse Categorical Cross
Entropy, Batch Size =128, Learning Rate = 0.001

RNN Epochs = 30, Optimizer = Adam, RNN layers = 3, Loss Function = Sparse Categorical Cross
Entropy, Batch Size =128, Learning Rate = 0.001

LSTM Epochs = 30, Optimizer = Adam, LSTM layers = 3, Loss Function = Sparse Categorical Cross
Entropy, Batch Size =128, Learning Rate = 0.001

Figure 5 Working of proposed hybrid ensemble based on RF-RFE.
Full-size DOI: 10.7717/peerj-cs.1552/fig-5

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 18/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-5
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

presented in a tabular form and a confusion matrix is generated. TN, TP, FP, FN are four
values which are part of a confusion matrix.

Accuracy—It is the percentage of the correct predictions by the classifier. It can be
calculated from the terms that are defined earlier in the confusion matrix section. It can be
calculated by using a following formula:

Algorithm 2 Proposed ensemble classifier.

INPUT:

Training Data N � k (k Features selected by Algorithm 1 with N observations)

Testing Data N � k

OUTPUT:

Trained Ensemble Classifier Ec

Final Attack Predictions using Ec

BEGIN:

/* Training Step */

Initiate Ensemble Models

Algorithms = [MLP, SVM, RF]

Trained_Models = []

For i=1 to N:

For model in Algorithms:

Train model on k Features

Trained_Models ← model

End For

End For

/* Testing Steps*/

predictions = []

For model in Trained_Models

pred = model(Test Data)

Predictions ← pred

End For

final_prediction = Ec(predictions) #Ec selects the final class based on majority predictions

END

Table 6 Confusion matrix.

Predicted

Actual class label Attack Normal

Attack TP FN

Normal FP TN

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 19/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

(2)

Precision—It indicates the probability of a test instance that was positive and correctly
identified as positive. It is given by:

Precision ¼ TP
TP þ FP

(3)

Recall—It is also called true positive rate. It gives us the indication of actual positive
values which were identified correctly. It can be calculated by following formula:

Sensitivity ¼ TP
TP þ FN

(4)

F1-Score—It is the harmonic mean of sensitivity and precision. The final classifier can
be evaluated using this evaluation metric. It can be calculated as:

F1 Score ¼ 2 � Precision � Recall
Precisionþ Recall

(5)

RESULTS AND DISCUSSIONS
The proposed machine learning model has been developed and trained in Python
programming language using Sklearn, Keras, Pandas, and NumPy libraries. Five machine
learning models and three deep learning along with proposed ensemble model have been
developed in this research work. These models are trained using the preprocessed NSL-
KDD, UNSW-NB15 and CSE-CIC-IDS2018 datasets to select the best performing mode.
All experiments were done on Intel core i5 processor on HP 840 G2 laptop with 64-bit
Windows 10 operating system, and 16 GB RAM.

Evaluation using NSL-KDD dataset
The detail of results for NSL-KDD with classification performance on original set of forty-
one features is presented in Table 7. Results showed that for all features used, classifiers did
not give higher percentages on the performance metrices. With all features utilized, the
ensemble method showed better performance than the rest of the classifiers, yet the overall
performance was not appreciable. For the next stage, classification performance based on
feature selection method was investigated. In total, thirteen features were selected out of
the original forty-one features in the dataset. The results showed that random forest
classifier achieved an accuracy of 98.81% with 97.70% precision value. The recall and F1-
score were obtained as 95.66% and 96.67% respectively. The lowest accuracy was achieved
in the case of K-Nearest Neighbor algorithm with 94.72% accuracy score. This could be
due to the reason that it is a very simple method and could not handle complex data. The
overall details of the obtained results can be seen in the Table 8.

Experimental results showed that RF outperformed other algorithms in terms of
accuracy and precision measures. The same trend can be seen in the literature where

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 20/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

random forest performed better as compared to the other algorithms (Taher, Jisan &
Rahman, 2019). There might be two reasons for these results. First, it works by voting
mechanism where predictions from various decision trees are used to make final decision.
The second reason could be the fact that by having multiple decision trees in the forest,
only best features that contribute to the final prediction are selected for training the final
classifier. Although MLP showed better results as a single classifier, when used in an
ensemble model, considering its extensive training time, preference was given to KNN.
Conclusively, ensemble of RF, SVM and MLP performed undoubtedly well with less
training time and high percentages on performance metrices. Hence, efficient network
intrusion detection systems can be developed by utilizing high performance machine
learning algorithms. Confusion matrix for the NSL-KDD dataset is given in the Fig. 6
below.

Overall performance of machine learning algorithms has been shown through a bar
graph in the Fig. 7, while performance of various machine learning methods on NSL-KDD
dataset is shown in Table 8 shows result of each classifier with performance metrics
mapped on the attacks included in NSL-KDD dataset. For each attack type, ensemble
model outperformed individual algorithms. However, a slight variation was observed in
recall and F1-score metrics for U2R and Probe attack. The trees in RF protect each other
from their individual prediction errors. Although some trees could be wrong but many
others will be correct at the same time. Therefore, the trees as a group can make the right
prediction by helping each other in the prediction task. On other hand, the ensemble

Table 7 Classification performance on original NSL-KDD dataset (41 features).

Classifier Accuracy Precision Recall F1-measure

Random forest 71.91% 68.76% 72.66% 70.65%

KNN 68.71% 67.61% 69.25% 68.42%

SVM 74.32% 72.19% 69.92% 71.03%

Decision tree 67.39% 66.21% 65.43% 65.81%

MLP 78.32% 79.43% 77.14% 78.26%

Ensemble 82.91% 81.82% 84.78% 83.27%

Table 8 Classification performance based on feature selection method for NSL-KDD dataset (13
features).

Classifier Accuracy Precision Recall F1-measure

Random forest 98.81% 97.70% 95.66% 96.67%

KNN 94.72% 95.61% 93.51% 94.53%

SVM 98.33% 96.11% 98.40% 97.23%

Decision tree 96.35% 95.11% 96.42% 95.74%

MLP 98.32% 97.43% 98.14% 97.78%

Ensemble 99.53% 99.79% 98.78% 99.29%

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 21/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

method is based on heterogeneous based classifiers which do not show similar behavior
and the number of attacks in Probe and U2R are very limited. Due to this, RF performed
better as compared to the method on U2R and Probe. Still, the proposed method was
found much better as compared to the presented methods in the related literature.

Table 9 shows result of each classifier with performance metrices mapped on the attacks
included in NSL-KDD dataset. For each attack type, ensemble model outperformed
individual algorithms. However, a slight variation was observed in recall and F1-score
metrics for U2R and Probe attack. The trees in RF protect each other from their individual
prediction errors. Although some trees could be wrong, but many others will be correct at
the same time. Therefore, the trees as a group can make the right prediction by helping

Figure 6 Confusion matrix for NSL-KDD (Normalized). Full-size DOI: 10.7717/peerj-cs.1552/fig-6

98
.8
1%

94
.7
2%

98
.3
3%

96
.3
5%

98
.3
2% 99
.5
3%

97
.7
0%

95
.6
1%

96
.1
1%

95
.1
1%

97
.4
3%

99
.7
9%

95
.6
6%

93
.5
1%

98
.4
0%

96
.4
2% 98

.1
4%

98
.7
8%

96
.6
7%

94
.5
3%

97
.2
3%

95
.7
4%

97
.7
8% 99

.2
9%

R A N D O M
F O R E S T

K N N S V M D E C I S I O N T R E E M L P E N S E M B L E

COMPARISON OF MODELS FOR NSL -KDD

Accuracy Precision Recall F1-Score

Figure 7 Results of selected machine learning models for network intrusion detection on
preprocessed data. Full-size DOI: 10.7717/peerj-cs.1552/fig-7

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 22/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-6
http://dx.doi.org/10.7717/peerj-cs.1552/fig-7
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

each other in the prediction task. On other hand, the ensemble method is based on
heterogeneous based classifiers which do not show similar behavior and the number of
attacks in Probe and U2R are very limited. Due to this, RF performed better as compared
to the proposed method on U2R and Probe. Still, the method was much better as compared
to the presented methods in the related literature.

Figures 8 and 9 represent the ROC curve for the proposed ensemble model on the NSL-
KDD dataset. It shows that the TPR rate is closer to 1, which is high, while the FPR is low
as desired.

Table 9, Figs. 8 and 9 conclude that an IDS, using the proposed model, can effectively
detect network intrusions.

Table 10 presents performance of the proposed system with some recent research works
that utilized deep learning-based models for building intrusion detection systems using the
NSL-KDD dataset. For a fair comparison, experiments with deep learning algorithms were
carried out to demonstrate the superiority of the approach. It can be seen that the proposed
approach consistently outperformed the deep learning algorithms in terms of performance

Table 9 Performance of various machine learning methods on NSL-KDD (Binary classification).

Attack type Algorithm Accuracy Precision Recall F1-measure

DoS KNN 0.997 0.996 0.996 0.996

SVM 0.993 0.991 0.994 0.992

Decision tree 0.994 0.991 0.994 0.992

MLP 0.996 0.991 0.994 0.992

Random forest 0.995 0.992 0.996 0.997

Ensemble 0.998 0.998 0.997 0.997

Probe KNN 0.990 0.986 0.985 0.985

SVM 0.984 0.969 0.983 0.976

Decision tree 0.995 0.969 0.983 0.976

MLP 0.991 0.969 0.983 0.976

Random forest 0.991 0.996 0.992 0.995

Ensemble 0.997 0.987 0.989 0.988

R2L KNN 0.967 0.953 0.954 0.953

SVM 0.967 0.948 0.962 0.951

Decision tree 0.979 0.948 0.962 0.949

MLP 0.973 0.948 0.962 0.955

Random forest 0.992 0.964 0.837 0.903

Ensemble 0.973 0.959 0.964 0.961

U2R KNN 0.997 0.931 0.850 0.878

SVM 0.996 0.910 0.829 0.848

Decision tree 0.996 0.910 0.829 0.848

MLP 0.997 0.910 0.829 0.848

Random forest 0.971 0.962 0.971 0.970

Ensemble 0.9972 0.943 0.872 0.895

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 23/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

measures, training time and testing time. One interesting observation was the lower model
size of RNN trained model as compared to the proposed ML ensemble trained model in
this study’s experiments.

Evaluation using the UNSW-NB15 dataset
To further evaluate the performance of the proposed approach, the preprocessed dataset
was used. Tables 11 and 12 presents the experimental results of the proposed approach on
this dataset.

As can be seen from Table 9, using all the features for classification, results in
performance degradation. This is intuitive as some features are not always important for
the classification. On the other hand, the results of this study suggested that ensemble
performs well and shows the superior results, as seen in Table 9. The results show that RF

Figure 9 ROC for testing dataset on the NSL-KDD. Full-size DOI: 10.7717/peerj-cs.1552/fig-9

Figure 8 ROC for training dataset on NSL-KDD. Full-size DOI: 10.7717/peerj-cs.1552/fig-8

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 24/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-9
http://dx.doi.org/10.7717/peerj-cs.1552/fig-8
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

performs better when comparing the individual algorithms with 87.9% accuracy. The
lowest accuracy score was obtained in the case of KNN that was also the least performing
algorithm in case of NSL-KDD. This reason for poor performance is discussed in the
previous section. Reason for RF better performance is also already discussed in the
previous section. Therefore, RF was chosen in the hybrid stacking ensemble method
Table 12 shows the superiority of the proposed approach as compared to individual
machine learning algorithms when using the proposed RF-RFE and the stacking-based
ensemble method. The proposed method yields more than 98% accuracy which
outperforms RF and other algorithms. Figure 10 shows the confusion matrix obtained for
the whole dataset.

Overall performance of the algorithms and the ensemble approach is shown in the
Fig. 11. The figure explains that the proposed ensemble method is outperforming all the
individual algorithms in terms of classification metrics.

Figure 12 represent the ROC curve for the proposed ensemble model on UNSW-NB15
dataset. It shows that the TPR rate is closer to 1 which is high for majority classes, while the

Table 11 Classification performance on the original UNSW-NB15 dataset (45 features).

Classifier Accuracy Precision Recall F1-measure

Random forest 87.91% 86.76% 85.66% 86.20%

KNN 65.71% 66.61% 67.25% 66.92%

SVM 73.32% 71.19% 69.12% 70.13%

Decision tree 78.39% 76.21% 75.43% 75.81%

MLP 77.32% 78.43% 77.14% 77.77%

Ensemble 89.91% 86.82% 85.78% 86.29%

Table 10 Comparison of recent approaches for intrusion detection on the NSL-KDD dataset (training time on whole dataset while testing time
on single data sample).

Study Method Performance measures (%) Multi-
class

No of
features

Time required (s) Model
size

Feature
selection

Classifier Accuracy Precision Recall F1-
score

Training
time

Testing
time

Proposed RF-RFE ML
ensemble

99.53 99.79 99.78 99.29 ✓ 13 ~18 0.003 ~242 kb

CNN 95.04 95.13 95.11 95.02 ✓ ~390 0.16 ~1,024 kb

RNN 89.3 88.10 89.12 88.19 ✓ ~360 0.085 ~225 kb

LSTM 91.21 91.1 91.2 91.23 ✓ ~800 0.084 ~1,240 kb

Otair et al. (2022) GWO+PSO KNN +
SVM

98.97 – – – X 20 ~1,680 0.15 –

Roy et al. (2022) – RF 98.5 – – – ✓ – ~454 ~0.0030 –

Gu & Lu (2021) k-Best RF + XGB +
DT

99.9 99.8 99.9 99.9 X 20 ~8.21 0.0055 –

Pokharel, Pokhrel &
Sigdel (2020)

CNN AE 85.51 97.62 68.90 – X – ~1,800 0.054 –

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 25/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

FPR is low as desired. Therefore, from the results presented in Table 12 and ROC figure, it
may be concluded that an IDS, using the proposed approach, can effectively detect network
intrusions. Figure 12 also show that ROC area under curve is nearly 1 for most classes
which shows that the proposed method can effectively differentiate between these classes.
However, in the case of class 1 (Backdoor) and class 8 (Worms) a sharp decline can be seen
in the area under curve. This could be due to two reasons. Firstly, the dataset is highly
imbalanced, and it has few samples as compared to other majority classes. Secondly, the
dimensions in the overall dataset have been reduced using RF-RFE. This might have
caused loss of important features that can increase performance for these minority classes.
However, overall, the proposed method performs well as compared to the individual
algorithms.

Table 12 Classification performance on the UNSW-NB15 dataset with RF-RFE features (15 features).

Classifier Accuracy Precision Recall F1-measure

Random forest 97.73% 98.01% 98.02% 98.01%

KNN 86.50% 82.31% 87.41% 84.78%

SVM 84.60% 78.11% 85.40% 81.59%

Decision tree 97.58% 98.24% 98.12% 98.17%

MLP 74.21% 77.43% 77.14% 77.78%

Ensemble 98.53% 98.79% 98.78% 98.78%

Figure 10 Confusion matric for the UNSW-NB15 dataset (Normalized).
Full-size DOI: 10.7717/peerj-cs.1552/fig-10

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 26/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-10
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Table 13 compares performance of the proposed system with some recent research
works that utilized the UNSW-NB15 dataset for intrusion detection. The researchers
additionally compared the results with the three deep learning algorithms as well.
Researchers have used deep learning, and machine learning-based models for building
intrusion detection systems. This proposed method clearly outperforms previous works by
considerable margins. Other than the model size of the RNN trained algorithm, this

97
.7
3%

86
.5
0%

84
.6
0% 97

.5
8%

74
.2
1%

98
.5
3%

98
.0
1%

82
.3
1%

78
.1
1%

98
.2
4%

77
.4
3%

98
.7
9%

98
.0
2%

87
.4
1%

85
.4
0% 98

.1
2%

77
.1
4%

98
.7
8%

98
.0
1%

84
.7
8%

81
.5
9%

98
.1
7%

77
.7
8%

98
.7
8%

R A N D O M
F O R E S T

K N N S V M D E C I S I O N T R E E M L P E N S E M B L E

COMPARISON OF MODELS ON UNSW -NB15

Accuracy Precision Recall F1-Score

Figure 11 Results of selected ML models for network intrusion detection on the UNSW-NB15
dataset. Full-size DOI: 10.7717/peerj-cs.1552/fig-11

Figure 12 ROC curve for the UNSW-NB15 dataset. Full-size DOI: 10.7717/peerj-cs.1552/fig-12

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 27/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-11
http://dx.doi.org/10.7717/peerj-cs.1552/fig-12
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

approach outperformed deep learning algorithms that were trained on the same machine.
Mostly researchers only focused on binary classification therefore results in the study
(Injadat et al., 2020) have better results as compared to the results of this study. However,
information about attack classes is important in determining the countermeasures in case
of intrusion. Therefore, superior results in binary classification might not be helpful in
determining the intrusion countermeasures. In addition, mostly researchers do not
provide the features that they used for classification and training and testing time
requirements. As SMEs have limited resources, therefore, training and testing time might
help them in selecting better choices for IDS development with limited resources and
expertise.

Evaluation using CSE-CIC-IDS2018 dataset
As stated in “Dataset Description”, this dataset was only considered for binary
classification (benign vsmalicious) as the data is imbalanced with fewer records for specific
classes. Additionally, the dataset is divided into a few files where each file is a record with
the name of the day the record was generated. Combining the data into one file requires
huge computational power and processing such a massive dataset was not possible due to
resource limitation. Therefore, only binary classification is considered. Further details of
the dataset are already discussed in “Dataset Description”.

Table 14 provides classification performance of the algorithms using original dataset
features. In the case of this dataset, RF again performs better and KNN and MLP does not
perform well. In comparison to individual algorithms, the ensemble method performs
better. However, performance is still low as compared to the ensemble approach using RF-
RFE selected features. In the case of original features RF performance is comparable to the
proposed ensemble method in terms of precision and recall. This is also confirmed from
the literature (de Souza, Westphall & Machado, 2022) where RF performs well. In Table 15

Table 13 Comparison of recent intrusion detection approaches on the UNSW-NB15 dataset (training time on whole dataset while testing time
on single data sample).

Study Method Performance measures (%) Multi-
class

No of
features

Time required (s) Model
size

Feature
selection

Classifier Accuracy Precision Recall F1-
score

Training
time

Testing
time

Proposed RF-RFE ML ensemble 98.53 98.79 98.78 98.78 ✓ 15 ~104 0.006 ~544 kb

CNN 98.01 97.01 98.13 98.12 ✓ ~413 0.08 ~1,029 kb

RNN 98 97 98 97 ✓ ~228 0.07 ~250 kb

LSTM 98 98 98 98 ✓ ~390 0.071 ~978 kb

Belouch, Hadaj &
Idhammad (2018)

CNN CNN + Dynamic
autoencoder

98.5 98.4 98.6 98.5 X – – – ~923 kb

Taher, Jisan &
Rahman (2019)

IG, PSO,
GA

KNN + RF 99.96 99 99 99 X – – – –

Roy et al. (2022) – SVM 93.75 – – – X – ~500 – -

Dora & Lakshmi
(2022)

K Best RF + XGBoost +
DT

93.7 94.5 90.2 92.29 X 20 ~11.65 8 (µs) –

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 28/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

the performance of algorithms using features selected by RF-RFE is compared. It can be
seen in the table that the acquired results are again 1% to 2% superior.

Figure 13 present the overall results of the machine learning algorithms and the
ensemble method on RF-RFE features. Using RF as base learner in RFE helped in selecting
useful features that help in final classification with few dimensions.

Figure 14 present the ROC curve for testing dataset. This shows a perfect area under
curve of 1 in both cases. It implies that the proposed method was able to successfully
differentiate between benign and malicious attacks on network.

To demonstrate the superiority of this approach, results were compared with the recent
studies that utilized a similar dataset. As stated earlier, fewer researchers have investigated
CSE-CIC-IDS2018 in the experiments, whereas NSL-KDD and KDD99 have been widely
used. The approach was compared with a few recently published research articles and
individual deep learning models. As seen in Table 16, the proposed method has performed
much better than the deep learning approaches (Kim et al., 2020). Researchers have
investigated newer methods for feature selection (Abdel-Basset et al., 2021) which performs
better. However, it increases the computational overhead for training and testing of
machine learning systems and SMEs cannot afford such expensive methods. When
compared with other studies, the proposed approach is computationally friendly, and the
results are also superior. One interesting thing found is the lower size of the deep learning
trained models for CSE-CIC-IDS2018 when compared to the proposed model size.

Table 14 Classification performance based on the original CSE-CIC-IDS2018 dataset (Binary
classification).

Classifier Accuracy Precision Recall F1-measure

Random forest 87.91% 88.76% 87.66% 88.20%

KNN 78.71% 76.61% 78.25% 77.42%

SVM 79.32% 78.19% 79.92% 79.04%

Decision tree 82.39% 81.21% 83.43% 82.30%

MLP 78.32% 79.43% 77.14% 78.26%

Ensemble 89.91% 89.82% 88.78% 89.29%

Table 15 Classification performance based on the feature selection method on CSE-CIC-IDS2018
(15 features).

Classifier Accuracy Precision Recall F1-measure

Random forest 98.91% 97.81% 96.69% 97.24%

KNN 95.72% 96.63% 94.15% 95. 73%

SVM 97.53% 95.15% 96.14% 95.64%

Decision tree 97.53% 96.21% 95.24% 95.72%

MLP 97.23% 96.34% 97.41% 96. 87%

Ensemble 99.9% 99.9% 99.89% 99.89%

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 29/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

However, the performance of the system is slightly better than the individual algorithms
with reduced training and testing time that is a requirement for real-time systems.

The proposed ensemble algorithm, based on hybrid feature selection, has outperformed
individual algorithms on all three publicly available datasets. In case of NSL-KDD dataset,
the method yielded more than 99% accuracy and F1-score that outperformed individual
best performing model i.e., RF, while only using less than half of the original dataset

Figure 14 ROC curve for dataset on CSE-CIC-IDS2018.Full-size DOI: 10.7717/peerj-cs.1552/fig-14

98
.9
1%

95
.7
2%

97
.5
2%

97
.5
3%

97
.2
3%

99
.9
0%

97
.8
1%

96
.6
3%

96
.1
5%

96
.2
1%

96
.3
4%

99
.9
0%

96
.6
9%

94
.1
5%

96
.1
4%

95
.2
4%

97
.4
1%

99
.8
9%

97
.2
4%

95
.7
3% 96
.6
4%

95
.7
1% 96

.8
7%

99
.8
9%

R A N D O M
F O R E S T

K N N S V M D E C I S I O N T R E E M L P E N S E M B L E

COMPARISON OF MODELS ON CSE-C IC - IDS2018

Accuracy Precision Recall F1-Score

Figure 13 Results of selected MLmodels for network intrusion detection on CSE-CIC-IDS2018 data.
Full-size DOI: 10.7717/peerj-cs.1552/fig-13

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 30/35

http://dx.doi.org/10.7717/peerj-cs.1552/fig-14
http://dx.doi.org/10.7717/peerj-cs.1552/fig-13
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

features. At the same time, in comparison with the literature, the proposed method also
outperformed the recent studies, as presented in Table 10. During investigation on
UNSW-NB15 and CSE-CIC-IDS2018 datasets, same trends were observed where the
proposed method outperformed the individual algorithms. The method yielded more than
98% F1-score and accuracy on UNSW-NB15 and more than 99% accuracy and F1-score
on CSE-CIC-IDS2018 datasets. The detailed comparisons with recent studies are presented
in Tables 14 and 16. The feature selection method helped in feature reduction while only
selecting the best features that contributed towards the final prediction. This also helped in
data dimensionality reduction and enhanced training and testing efficiency while
generating state of the art intrusion detection results.

Implications
The proposed ensemble method excelled in performance metrices as compared to the
individual machine learning algorithms. Moreover, in contrast to the deep learning
approaches, that require large, labeled datasets, this simple ensemble method achieved the
same performance without requiring high-end GPUs. This can be particularly helpful in
the edge computing and internet of things (IoT) domain. As the edge devices do not have
enough computation power, therefore methods based on deep learning may not work well
in real-time in case of any intrusion. The first step to prevent attacks in networks is the
timely detection of that attack. As discussed, in a resource constrained environment, deep
learning methods might not work in real-time, so untimely detection of network intrusions
can be disruptive in such scenarios. Moreover, computationally expensive deep learning
models based NID systems are not a critical requirement in small and medium enterprises.
SMEs can readily implement machine learning based systems and fulfil their need of
combating cybercrimes.

Table 16 Comparison of recent intrusion detection approaches on the CSE-CIC-IDS2018 dataset (training time on whole dataset and testing
time on single data sample).

Study Method Performance measures (%) No of
features

Time required (s) Model
size

Feature
selection

Classifier Accuracy Precision Recall F1-
score

Training
time

Testing
time

Proposed RF-RFE ML ensemble 99.9 99.9 99.89 99.89 15 ~40.76 0.007 ~912 kb

CNN 99.2 99.2 99.1 99.1 ~1,337 0.091 ~220 kb

RNN 99.9 99.7 99.8 99.7 ~1,450 0.095 ~240 kb

LSTM 99.9 99.8 99.7 99.8 ~2,050 0.10 ~444 kb

Abdel-Basset et al. (2021) Traffic
Attention

ResNet 98.71 94.91 94.3 94.92 20 ~213 1.2 –

de Souza, Westphall &
Machado (2022)

Extra Tree RF + DNN + ET 98.21 97.90 – – – – 7.19 –

Kim et al. (2020) CNN Fully connected
network

91.5 70.87 83.5 76.66 – – – –

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 31/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Limitations and future work
To develop a machine learning based IDS, a comprehensive and representative of real-
world attacks dataset is required. In this article, NSL-KDD is primarily used to perform
extensive experiments. Although the results are superior on the dataset, a main challenge is
to deploy the trained models on resource constrained devices such as edge devices and
monitor the performance. In future, we would like to deploy and investigate the
performance of such methods on edge devices.

Additionally, the UNW-NB15 dataset has been used to evaluate the performance of the
proposed method. The dataset is imbalanced, and some classes have only a few handed
samples (Backdoor and Worm). These minority classes affect the performance of the
overall system that can be seen in the results and experimentation section. Therefore, CSE-
CIC-IDS2018 dataset was further investigated to test the proposed approach. The dataset is
comparatively new and contains millions of records. One problem with this dataset is the
requirement for computational resources. Still, the method works well with this dataset
and performs binary classification with more than 99% accuracy. Due to unavailability of
computational resources, only binary classification was investigated on a subpart of the
dataset. In future we would like to extend this work to the whole dataset in multiclass
classification scenario.

In future, these datasets should be extended for more efficient development of network
IDS. Moreover, different sectors should develop and share real-time network intrusion
datasets to help researchers design sector specific intrusion detection systems. In the
current study, machine learning has shown the ability to detect attacks in network.
Therefore, we believe that with the development of newer intrusion datasets, a similar
approach can be extended to work with the newer datasets.

CONCLUSIONS
Defensive security has evidently become a top priority of any organizational network to
safeguard against financial, reputational, and legislative exposures. Once intruded,
networks and systems can be used for exploitation of vulnerabilities and transformation of
a risk into an attack. This study investigates the performance of five powerful algorithms
for network intrusion detection along with a newly proposed hybrid stacking algorithm-
based RF-RFE feature selection method. The results showed that the proposed ensemble
classifier performed equally well as compared to the other deep learning algorithms with
an accuracy of more than 99.5%, 98.5% and 99.9% on the NSL-KDD, UNSW-NB15 and
CSE-CIC-IDS2018 datasets, respectively. Additionally, individual selected algorithms also
performed well on the benchmark datasets. The ensemble model optimizes the prediction
of domain specific features and properties and contributes to designing secure networks,
systems, and applications. Likewise, design solutions for secure systems and networks for
varying domains can be formulated. In future, a similar approach can be extended to work
with newer intrusion detection datasets.

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 32/35

http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research work was supported by the Universiti Teknologi PETRONAS STIRF
Research Grant Scheme Project (Cost Centre No. 015LA0-036). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Universiti Teknologi PETRONAS STIRF Research: 015LA0-036.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Qaiser Abbas performed the experiments, prepared figures and/or tables, and approved
the final draft.

� Sadaf Hina conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

� Hamza Sajjad analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.

� Khurram Shabih Zaidi performed the computation work, authored or reviewed drafts of
the article, and approved the final draft.

� Rehan Akbar conceived and designed the experiments, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub and Zenodo:
- https://github.com/qaixerabbas/network_intrusion_detection.
- Qaiser Abbas, Dr. Sadaf Hina, Hamza Sajjad, Khurram Shabih Zaidi, & Rehan Akbar.

(2023). Network Intrusion Detection. Zenodo. https://doi.org/10.5281/zenodo.7801597.
The data used in this research is available at:
- NSL-KDD: https://www.unb.ca/cic/datasets/nsl.html.
- UNSW-NB15: https://research.unsw.edu.au/projects/unsw-nb15-dataset.
- CICIDS2017: https://www.unb.ca/cic/datasets/ids-2017.html.

REFERENCES
Abdel-Basset M, Hawash H, Chakrabortty RK, Ryan MJ. 2021. Semi-supervised spatiotemporal

deep learning for intrusions detection in IoT networks. IEEE Internet of Things Journal
8(15):12251–12265 DOI 10.1109/JIOT.2021.3060878.

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 33/35

https://github.com/qaixerabbas/network_intrusion_detection
https://doi.org/10.5281/zenodo.7801597
https://www.unb.ca/cic/datasets/nsl.html
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://www.unb.ca/cic/datasets/ids-2017.html
http://dx.doi.org/10.1109/JIOT.2021.3060878
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Abdulhammed R, Faezipour M, Abuzneid A, Alessa A. 2018. Effective features selection and
machine learning classifiers for improved wireless intrusion detection. In: 2018 International
Symposium on Networks, Computers and Communications (ISNCC). Piscataway: IEEE, 1–6.

Belouch M, Hadaj SEl, Idhammad M. 2018. Performance evaluation of intrusion detection based
on machine learning using Apache Spark. Procedia Computer Science 127(2):1–6
DOI 10.1016/j.procs.2018.01.091.

Bhosale KS, Nenova M, Iliev G. 2018. Data mining based advanced algorithm for intrusion
detections in communication networks. In: 2018 International Conference on Computational
Techniques, Electronics and Mechanical Systems (CTEMS). Piscataway: IEEE, 297–300.

Canadian Institute of Cybersecurity. 2022. NSL-KDD database. Saint John: University of New
Brunswick. Available at https://www.unb.ca/cic/datasets/nsl.html (accessed 11 February 2022).

Chen A, Fu Y, Zheng X. 2022. An efficient network behavior anomaly detection using a hybrid
DBN-LSTM network. Computers & Security 114:102600 DOI 10.1016/j.cose.2021.102600.

Chen Q, Meng Z, Liu X, Jin Q, Su R. 2018. Decision variants for the automatic determination of
optimal feature subset in RF-RFE. Genes 9(6):301 DOI 10.3390/genes9060301.

Chkirbene Z, Erbad A, Hamila R, Mohamed A, Guizani M, Hamdi M. 2020. TIDCS: a dynamic
intrusion detection and classification system based feature selection. IEEE Access 8:95864–95877
DOI 10.1109/ACCESS.2020.2994931.

de Souza CA, Westphall CB, Machado RB. 2022. Two-step ensemble approach for intrusion
detection and identification in IoT and fog computing environments. Computers & Electrical
Engineering 98(15):107694 DOI 10.1016/j.compeleceng.2022.107694.

Dora V, Lakshmi VN. 2022.Optimal feature selection with CNN-feature learning for DDoS attack
detection using meta-heuristic-based LSTM. International Journal of Intelligent Robotics and
Applications 6(2):1–27 DOI 10.1007/s41315-022-00224-4.

Gu J, Lu S. 2021. An effective intrusion detection approach using SVM with naïve Bayes feature
embedding. Computers & Security 103:102158 DOI 10.1016/j.cose.2020.102158.

Gulla KK, Viswanath P, Veluru SB, Kumar RR. 2020.Machine learning based intrusion detection
techniques. In: Handbook of Computer Networks and Cyber Security. Cham: Springer, 873–888.

Gupta N, Jindal V, Bedi P. 2022. CSE-IDS: using cost-sensitive deep learning and ensemble
algorithms to handle class imbalance in network-based intrusion detection systems. Computers
& Security 112(1):102499 DOI 10.1016/j.cose.2021.102499.

Guyon I, Weston J, Barnhill S, Vapnik V. 2002. Gene selection for cancer classification using
support vector machines. Machine Learning 46(1):389–422 DOI 10.1023/A:1012487302797.

Hussien Z. 2020. Anomaly detection approach based on deep neural network and dropout.
Baghdad Science Journal 17(2(SI)):0701 DOI 10.21123/bsj.2020.17.2(SI).0701.

Injadat M, Moubayed A, Nassif AB, Shami A. 2020. Multi-stage optimized machine learning
framework for network intrusion detection. IEEE Transactions on Network and Service
Management 18(2):1803–1816 DOI 10.1109/TNSM.2020.3014929.

Kim J, Kim J, Kim H, Shim M, Choi E. 2020. CNN-based network intrusion detection against
denial-of-service attacks. Electronics 9(6):916 DOI 10.3390/electronics9060916.

Moizuddin M, Jose MV. 2022. A bio-inspired hybrid deep learning model for network intrusion
detection. Knowledge-Based Systems 238(4):107894 DOI 10.1016/j.knosys.2021.107894.

Moustafa DN, Slay J. 2015. UNSW-NB15: a comprehensive data set for network intrusion
detection systems (UNSW-NB15 network data set). In: 2015 Military Communications and
Information Systems Conference (MilCIS). IEEE, 1–6. Available at https://research.unsw.edu.au/
projects/unsw-nb15-dataset.

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 34/35

http://dx.doi.org/10.1016/j.procs.2018.01.091
https://www.unb.ca/cic/datasets/nsl.html
http://dx.doi.org/10.1016/j.cose.2021.102600
http://dx.doi.org/10.3390/genes9060301
http://dx.doi.org/10.1109/ACCESS.2020.2994931
http://dx.doi.org/10.1016/j.compeleceng.2022.107694
http://dx.doi.org/10.1007/s41315-022-00224-4
http://dx.doi.org/10.1016/j.cose.2020.102158
http://dx.doi.org/10.1016/j.cose.2021.102499
http://dx.doi.org/10.1023/A:1012487302797
http://dx.doi.org/10.21123/bsj.2020.17.2(SI).0701
http://dx.doi.org/10.1109/TNSM.2020.3014929
http://dx.doi.org/10.3390/electronics9060916
http://dx.doi.org/10.1016/j.knosys.2021.107894
https://research.unsw.edu.au/projects/unsw-nb15-dataset
https://research.unsw.edu.au/projects/unsw-nb15-dataset
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

Nasir M, Javed AR, Tariq MA, Asim M, Baker T. 2022. Feature engineering and deep learning-
based intrusion detection framework for securing edge IoT. The Journal of Supercomputing
78(6):1–15 DOI 10.1007/s11227-021-04250-0.

Otair M, Ibrahim OT, Abualigah L, Altalhi M, Sumari P. 2022. An enhanced grey wolf optimizer
based particle swarm optimizer for intrusion detection system in wireless sensor networks.
Wireless Networks 28(2):1–24 DOI 10.1007/s11276-021-02866-x.

Pokharel P, Pokhrel R, Sigdel S. 2020. Intrusion detection system based on hybrid classifier and
user profile enhancement techniques. In: 2020 International Workshop on Big Data and
Information Security (IWBIS). Piscataway: IEEE, 137–144.

Rashid M, Kamruzzaman J, Imam T, Wibowo S, Gordon S. 2022. A tree-based stacking
ensemble technique with feature selection for network intrusion detection. Applied Intelligence
52(9):1–14 DOI 10.1007/s10489-021-02968-1.

Roy S, Li J, Choi B-J, Bai Y. 2022. A lightweight supervised intrusion detection mechanism for IoT
networks. Future Generation Computer Systems 127:276–285 DOI 10.1016/j.future.2021.09.027.

Saeed MM. 2022. A real-time adaptive network intrusion detection for streaming data: a hybrid
approach. Neural Computing and Applications 34(8):1–14 DOI 10.1007/s00521-021-06786-x.

Taher KA, Jisan BMY, Rahman MM. 2019. Network intrusion detection using supervised
machine learning technique with feature selection. In: 2019 International Conference on
Robotics, Electrical and Signal Processing Techniques (ICREST). Piscataway: IEEE, 643–646.

University of California at Irvine. 2022. Knowledge discovery and data mining. UCI. Available at
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed 11 February 2022).

XuW, Jang-Jaccard J, Singh A, Wei Y, Sabrina F. 2021. Improving performance of autoencoder-
based network anomaly detection on NSL-KDD dataset. IEEE Access 9:140136–140146
DOI 10.1109/ACCESS.2021.3116612.

Xu X, Li J, Yang Y, Shen F. 2020. Toward effective intrusion detection using log-cosh conditional
variational autoencoder. IEEE Internet of Things Journal 8(8):6187–6196
DOI 10.1109/JIOT.2020.3034621.

Zhang X, Yang F, Hu Y, Tian Z, Liu W, Li Y, She W. 2022. RANet: network intrusion detection
with group-gating convolutional neural network. Journal of Network and Computer Applications
198(2):103266 DOI 10.1016/j.jnca.2021.103266.

Zhao R, Yin J, Xue Z, Gui G, Adebisi B, Ohtsuki T, Gacanin H, Sari H. 2021. An efficient
intrusion detection method based on dynamic autoencoder. IEEE Wireless Communications
Letters 10(8):1707–1711 DOI 10.1109/LWC.2021.3077946.

Abbas et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1552 35/35

http://dx.doi.org/10.1007/s11227-021-04250-0
http://dx.doi.org/10.1007/s11276-021-02866-x
http://dx.doi.org/10.1007/s10489-021-02968-1
http://dx.doi.org/10.1016/j.future.2021.09.027
http://dx.doi.org/10.1007/s00521-021-06786-x
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://dx.doi.org/10.1109/ACCESS.2021.3116612
http://dx.doi.org/10.1109/JIOT.2020.3034621
http://dx.doi.org/10.1016/j.jnca.2021.103266
http://dx.doi.org/10.1109/LWC.2021.3077946
http://dx.doi.org/10.7717/peerj-cs.1552
https://peerj.com/computer-science/

	Optimization of predictive performance of intrusion detection system using hybrid ensemble model for secure systems
	Introduction
	Literature review and related work
	Methodology and evaluations
	Results and discussions
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

