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ABSTRACT
This article proposes an adaptable path tracking control system, based on reinforcement
learning (RL), for autonomous cars. A four-parameter controller shapes the behaviour
of the vehicle to navigate lane changes and roundabouts. The tuning of the tracker
uses an ‘educated’ Q-Learning algorithm to minimize the lateral and steering trajectory
errors, this being a key contribution of this article. The CARLA (CAR Learning to Act)
simulator was used both for training and testing. The results show the vehicle is able to
adapt its behaviour to the different types of reference trajectories, navigating safely with
low tracking errors. The use of a robot operating system (ROS) bridge between CARLA
and the tracker (i) results in a realistic system, and (ii) simplifies the replacement of
CARLA by a real vehicle, as in a hardware-in-the-loop system. Another contribution
of this article is the framework for the dependability of the overall architecture based
on stability results of non-smooth systems, presented at the end of this article.

Subjects Autonomous Systems, Data Mining and Machine Learning, Robotics
Keywords Reinforcement learning, Autonomous driving systems, Q-learning, Path tracking,
Non-smooth systems, Autonomous cars, Dependability

INTRODUCTION
Over the last decades, autonomous vehicles (AVs) have become a trendy research subject.
The economics being developed around AVs is likely to have a significant societal impact,
e.g., reducing accidents and traffic congestion, optimizing energy use, and having an
eco-friendly societal impact (the report by Deichmann et al. (2023) estimates revenues of
$300–$400 billion by 2035, though also refering to the need for a change in mindset on the
part of manufacturers), is a powerful motive for everyone working in this field.

The typical architecture of an AV, built around a guidance-navigation and control
(GNC) structure, defines areas with multiple relevant research topics. From control topics,
tightly connected to hardware and physical aspects, to planning and supervision, these
have been addressed by multiple researches, see for instance the survey in Pendleton et al.
(2017). These include technical challenges, such as localization, trajectory following based
on geometric principles, motion planning, communications, and vehicle cooperation,
(Omeiza et al., 2021), but also societal concerns, namely explainability, (Saha & De, 2022),
ethical, (Hansson, Belin & Lundgren, 2021), road infrastructure,Manivasakan et al. (2021),
and cyber security challenges, (Algarni & Thayananthan, 2022; Kim et al., 2021).
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Regarding societal concerns, acceptance of AVs is still one of the biggest challenges faced
by the industry. Results from surveys of the perception of US people were reported inRainie
et al. (2022), showing a direct connection between acceptance, transparency/explainability,
and the person’s level of knowledge. Similarly, Thomas et al. (2020) reported that people
with higher education tend to be less concerned with liability issues. These results suggest
that understandable, explainable systems will increase the acceptance of AVs by society.

AI techniques have been used in the design of the system’s perception and guidance
modules. Devi et al. (2020) surveyed machine learning techniques applied to object
detection, reporting that the best performance was obtained with convolutional neural
networks (CNNs). Grigorescu et al. (2020) reports an increased interest in using deep
learning (DL) technologies for path planning and behaviour arbitration, with two of the
most representative paradigms being planning based on imitation learning (IL) and deep
reinforcement learning (DRL).

Following a reference trajectory, i.e., path following, is a key topic in generic AVs and has
been extensively addressed in control theory and mobile robotics. Pure pursuit and Stanley
methods conventional feedback controllers (e.g., linear quadratic regulators (LQRs),
proportional integral derivative (PID) controllers) (Yao et al., 2020; Sorniotti, Barber & De
Pinto, 2017), iterative learning control (ILC) Yao et al. (2020), andmodel predictive control
(MPC) (Pendleton et al., 2017) are examples that have been used for trajectory following.
Less conventional control frameworks have also been proposed to tackle problems such as
non-linearity, parameter uncertainties, and external disturbances, such as H∞, and sliding
mode controllers (SMC) (Yao et al., 2020; Sorniotti, Barber & De Pinto, 2017).

Pure machine learning (ML) based solutions for vehicle control have also been proposed
in the literature. Kuutti et al. (2020) surveys a wide range of research in this area, reporting
promising results from using DL methods for vehicle control, but also acknowledging
significant room for improvement. A framework based on Q-Learning for longitudinal
and lateral control is proposed in Wang, Chan & Li (2018) and experiments involving
the system while performing a lane change maneuver are presented. Bojarski et al. (2016)
proposes a supervised learning (SL) based end-to-end architectures with a complex NN
that is able to replace a lane marking detection, path planning, and control pipeline.
However, despite their popularity, these solutions tend to be computationally complex
during training and the corresponding end-to-end architectures are associated with
the ‘‘black-box’’ problem (Kuutti et al., 2020), lacking transparency and explainability.
Simple fine-tuned feedback path tracking controllers have also been shown to provide
good performance under a variety of conditions (Sorniotti, Barber & De Pinto, 2017). This
suggests the use of a combination of these two architectures, by using supervision strategies
to adjust/tune common controllers.

A variation of MPC, referred to as learning-based nonlinear model predictive control
(LB-NMPC) is introduced in Ostafew et al. (2015) to improve the path tracking in
challenging off-road terrain. Brunner et al. (2017) introduces a learning MPC variant
to deal with repetitive tasks in the context of autonomous racing. The learning strategies
in these variants are based on the application of optimization strategies to a space of
parameters of processes modelling disturbances. Path tracking control approaches based
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on DL have been shown to outperform traditional methods (Li, Zhang & Chen, 2019;
Shan et al., 2020). Combining traditional path tracking controllers (e.g., pure pursuit and
PID) with reinforcement learning (RL) modules is proposed in Chen & Chan (2021),
Shan et al. (2020), Chen et al. (2019), and reported to effectively improve the performance
of the traditional controllers. Using RL algorithms to optimize the parameters of PID
controllers has also been proposed (Ahmed & Petrov, 2015; Kofinas & Dounis, 2018; Shi et
al., 2018). RL and deep neural networks are used in Shipman & Coetzee (2019) to tune a PI
controller for a simulated system, without any formal analysis. An Actor–Critic architecture
to tune PIDs for the control of wind turbines is proposed by Sedighizadeh & Rezazadeh
(2008). Residual policy RL to tune a PID controlled car suspension is described in Hynes,
Sapozhnikova & Dusparic (2020), where it is shown that this method is sensitive to the
initial conditions, i.e., it may fail to adjust poorly tuned PIDs.

A variety of maneuvers, including lane keeping, lane change, ramp merging and
navigating an intersection have been used to validate architectures (Farazi et al., 2021).
In Koh & Cho (1994), a set of maneuvers, namely, proceeding in a straight line, changing
lanes, turning quickly, and circular turning, are used to validate their path tracking
method. The same set of maneuvers are used in the present article to validate its proposed
architecture.

The present article describes a path tracking controller using an RL agent to perform
offline parameter tuning. The RL agent, using a discretized tabular variation of the
Q-Learning algorithm (Sutton & Barto, 2018), is trained to fine-tune the controller’s gains
while performing lane changes and roundabout maneuvers.

The CARLA environment is used to simulate a car driving scenario. CARLA is an open-
source simulator which has been reported to be suitable for learning applications in car
driving (see Malik, Khan & El-Sayed, 2022; Sierra et al., 2021). By combining model-based
controllers with learning algorithms, the properties of traditional controller designs can be
preserved and the result still benefit from the robustness and adaptability of the learning
component. By carefully constraining the parameter space explored during the learning
phase(s), one obtains architectures that are dependable.

The proposed architecture also includes a module that identifies when to perform each
maneuver and changes the gains appropriately, and a safety watchdog module that controls
the vehicle’s velocity.

This article is organized in the following sequence. The implementation section details
the low-level path following controller and the supervising RL agent. Simulation results
are presented next. The following section presents a framework based on non-smooth
systems to model a supervised system of the kind described in this article and shows
how dependability can be preserved. The section on conclusions summarizes the findings
and points to future work. Portions of the text were previously published as part of a
preprint (Vilaça Carrasco & Silva Sequeira, 2023).

IMPLEMENTATION
The proposed architecture is presented in Fig. 1. The simulator implements a regular
vehicle with multiple sensors attached. The use of the ROS framework (Quigley et al.,
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Figure 1 Figure with the full architecture used. The main blocks of software are shown, together with
the information exchanged among them.

Full-size DOI: 10.7717/peerjcs.1550/fig-1

2009) as a bridge between the vehicle and the overall control architecture allows a quick
replacement of the simulator by a real vehicle. The low-level controller drives the vehicle
through a predefined reference path by calculating and imposing values for the velocities
and steering angles. The RL agent is trained to find the best set of gains for each maneuver.
The maneuvers tested were lane changing (to the right) in a straight road and circulating
in a roundabout.

The high-level supervisor monitors whether the linear velocity is within the imposed
limits and whether the vehicle is required to perform one of the maneuvers. If so, it
sends that information to the RL agent, which will then set the gains to the appropriate
fine-tuned values for that maneuver. Those fine-tuned gains, denoted by (Kv ,Kl ,Ks,Ki),
are then sent to the low-level controller to calculate the steering angle, φ, as well as the
linear and angular velocities, v and ws–these three values define a low-level control action.
If necessary, the value for v is overridden by the high-level supervisor, to stay within the
limits. The simulator also communicates directly with the low-level controller, sending an
estimate of the vehicle’s current pose, based solely on the vehicle’s odometry.

Low-level controller
The low-level control module controls the trajectory of the vehicle by adjusting the values
of the steering angle φ, linear velocity, v , and angular velocity, ωs, in real-time, with the
goal of minimizing the error between the reference and the actual pose of the vehicle. The
control laws, which are based on a nonholonomic vehicle model, are a function of the error
between the reference and the actual pose, in the vehicle frame, be. The error in the world
frame, we, is

we= [xref −x,yref −y,θref −θ ], (1)

where (xref ,yref ,θref ) is the reference pose and (x,y,θ) is the vehicle’s current pose. The
control laws to yield v , ωs and φ, written at discrete time k, are given by

vk =Kv
bexk , ωsk =Ks

beθk +Kl beyk , φk =Kiφk−1+Kihωsk , (2)
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Figure 2 Low level path tracking controller.
Full-size DOI: 10.7717/peerjcs.1550/fig-2

where h is a time step and be is obtained from we by means of a rotation matrix of a θ◦

rotation around the Z axis. The last equation from Eq. (2) is a low-pass filter that removes
unwanted fast changes in ωs.

The v , ωs and φ are then converted into control actions and sent to the vehicle. The
trajectory controller gains are the linear velocity gain, Kv , the steering gain, Ks, the linear
gain, Kl , and the low-pass filter gain, Ki (see Fig. 2).

The loop iterates until the destination is reached (i.e., if the current position is close
enough to the last position in the path), a collision is registered, or the simulation time
ends.

The simulator
CARLA (Dosovitskiy et al., 2017) is an open-source simulator designed for research on
autonomous driving (Chen et al., 2019; Samak, Samak & Kandhasamy, 2021; Shan et al.,
2020). It simulates urban realistic environments (in terms of rendering and physics). A
ROS bridge allows direct communication with the simulated vehicle, through publishers
and subscribers, and also provides a way to customize the vehicle setup. A ‘‘Tesla Model
3’’ vehicle was chosen, including speedometer, collision detector, and odometry sensors.

In this project, the simulator runs with a fixed time-step (the time span between two
simulation frames) of 0.01 (simulation) seconds. Figure 3 illustrates, in a simple way, how
the vehicle simulator transforms the linear velocity (v) and steering angle (φ) provided
by the low-level controller into messages that control the throttle, steer and brake values
of the vehicle. The current pose of the vehicle is updated by subscribing to an odometry
publisher provided by the simulator.

This simulator was run on a computer equipped with an Intel Core i5-7200U CPU
(2.50 GHz ×4), and a NVIDIA Corporation GM108M [GeForce 940MX] GPU. The
CARLA version used was 0.9.9.4, the CARLA ROS bridge version used was 0.9.8, with
ROS Noetic in Ubuntu 20.04. More details about the simulator setup can be found
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Figure 3 Block diagram of the vehicle simulator.
Full-size DOI: 10.7717/peerjcs.1550/fig-3

Figure 4 Block diagram of the high-level supervisor controller.
Full-size DOI: 10.7717/peerjcs.1550/fig-4

on this project’s GitHub and Zenodo (https://github.com/anavc97/RL-for-Autonomus-
Vehicles)(https://doi.org/10.5281/zenodo.8078645).

High-level supervisor
The high-level supervisor works as both an event manager and a safety module (see Fig. 4).
It determines whether the vehicle needs to perform one of the two maneuvers based on
which zone of the map the vehicle is currently in. It also enforces a speed limit, overriding,
if necessary, the linear velocity calculated by the low-level controller.

In the experiments performed, the map was divided into zones, each of which associated
with an event (see ahead in the article the definition of these zones). In the blue zone the
vehicle performs a lane change and in the red zone, it navigates a roundabout. The reference
path is shown as the black line.

Reinforcement learning agent
The RL agent is responsible for tuning the trajectory controller gains using a variation
of the Q-Learning algorithm. In the original Q-Learning, a discretized Q-Table takes an
interval of gains and finds the values with which the vehicle presents the best performance.
In the variation used in this work, referred to as educated Q-Learning, this interval of gains
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is narrowed down to the most chosen values throughout the training. This facilitates the
selection of the best gains by deliberately reducing the action space the algorithm has to
explore. Performance evaluation is translated into the reward function of the algorithm.
The RL environment is defined as follows.

States: An array with the average of the absolute values of the lateral and orientation
errors, S= [Ey ,Eθ ]. Each of the error values has low and high limits, ELOW and EHIGH , and
are discretized into 40 units.

Actions: Each action,A= [a0,a1,a2,a3], is represented by an array. There are 81 different
actions. The gains are adjusted by the action array using the following expressions,

Kv =Kv+h0a0, Kl =Kl+h1a1,

Ks=Ks+h2a2, Ki=Ki+h3a3. (3)

The a0, a1, a2 and a3 can take the values 1, 0 or −1. The values h0, h1, h2 and h3 are
positive constants that will either be ignored, subtracted or added to the previous value of
the gain.

Terminal condition: Given the difficulty of reaching the state S0= [0,0], the adopted
approach was to consider any state that would come closer to S0 to be the terminal state.
As a result, if the current state is closer to S0 than the closest state recorded so far, then a
terminal state was reached. To determine the distance from a state to the state S0, d(S,S0),
the algorithm uses a weighted Euclidean distance. Since the lateral error values, Ey , are
generally 10 times greater than the orientation error values, Eθ , the weight array used was
[1,10]:

d(S,S0)=
√
|Ey |2+10×|Eθ |2. (4)

The sets of gains that produce the terminal states are referred to as the terminal gains.
If, for the last 5 terminal sets of gains, a gain has a constant value, then that gain’s range
is locked into that value for the rest of the training –this defines the educated Q-Learning
variation presented in this article.

EducatedQ-Learning constrains the searchable space. The practical effect is the reduction
of the volume of the searchable space, which does not compromise the convergence of
the Q-learning. The unrestricted Q-Learning converges to a fixed point (or region).
Following Schauder’s fixed point theorem (see for instance Bonsall (1962), Theorem 2.2),
the restricted version also has a fixed point (region). Although Schauder’s theorem requires
the convexity of the reduced searchable space, (which, in general, will not be verified), the
above idea continues to apply if we assume that the searchable space can be tessellated,
i.e., completely covered by a finite collection of convex regions. Therefore a trajectory in
a convex cell either (i) converges to a fixed point inside, as a consequence of Schauder’s
theorem, or(ii) converges to the boundary of the convex cell from which it can be made to
move into another cell (after which the convergence process re-starts in the current convex
cell).
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Figure 5 Flowchart of the training algorithm.
Full-size DOI: 10.7717/peerjcs.1550/fig-5

In summary, constraining the searchable space in RL processes does not prevent them
from reaching a solution. Even if the solution is potentially sub-optimal, we believe that it
is close enough to optimal to produce satisfying results.

Reward function: The reward function chosen for this work is defined by the equation

R=
1

1+d(S′,S0)
−

1
1+d(S,S0)

, (5)

where d(S′,S0) is the distance between the new state S′ and S0 and d(S,S0) is the distance
between the current state S and S0.

This function is based on the one used in Kofinas & Dounis (2018). Also, if a collision is
registered, the reward is decreased by a defined value.

Training Algorithm: The RL agent was trained to perform two different maneuvers: a
lane changing maneuver in a straight road and driving in a roundabout. The algorithm
used to train the RL agent is shown by the diagram in Fig. 5. The agent was trained over
a certain number of episodes, each of which is divided by steps. In each step, a current
state, Si, is defined based on the last error average registered. Then, an action is taken and
the new gains are defined, after which a new simulation starts, with the system’s controller
guiding the vehicle through the reference path. After the simulation stops, the new state,
Si+1, and the reward, Ri, are updated. With these values, the Q-Table is updated based on
equation 6.8 in Sutton & Barto (2018) (p.131). If the new state, Si+1 does not satisfy the
terminal condition, this cycle repeats in a new step. Otherwise, the episode ends, ε and
the new gain range is updated (based on the educated Q-Learning variation) and a new
episode starts.
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Table 1 Parameter values for each of the training environments, where n is the number of episodes.

Variable Lane change Roundabout

Loop time 5 30
γ 0.9 0.9
EHIGH (m) [3 , 0.4] [1 , 0.1]
ELOW (m) [0 , 0] [0 , 0]
Kmin(Kv ,Kl ,Ks,Ki) [0.1, 1, 1, 0.7] [1, 1, 1, 0.7]
Kmax(Kv ,Kl ,Ks,Ki) [3, 21, 21, 0.98] [5.8, 21, 21, 0.98]
[h0,h1,h2,h3] [0.58, 5, 5, 0.07] [1.2, 5, 5, 0.07]
φ range (◦) ±30 ±30
ε (start) 1 1
ε decay 1/(n/2) 1/(n/2)
Step limit 130 100

SIMULATION RESULTS
The values chosen for the parameters, for each of the maneuvers, are shown in Table 1. The
Loop time represents the time of each training step, in simulated seconds. γ is the discount
factor used for the Q-Learning equation used. EHIGH/LOW are the state limits (see the
section on RL). Kmax/min define the range of gains explored. The values [h0,h1,h2,h3] are
the positive constants that define the action values (Eq. 3). The ε decay and start value refer
to the ε greedy policy (Sutton & Barto, 2018) used in the Q-Learning algorithm. φ range
is the default steering angle range used during training. Step limit refers to the maximum
number of steps an episode can have, a condition that prevents unfeasible training times.

Using the algorithm in Fig. 5, the agent is trained to find the set of gains that minimize
the error while the vehicle performs the two maneuvers. To choose the best set of gains,
multiple training sessions were carried out, for each of the maneuvers, with different values
for α (the learning rate). Figures 6 and 7 show the sum of rewards of each episode (learning
curve).

Each training session had 30 episodes for the lane changing maneuver and 20 episodes
for the roundabout navigation. The training times of these tests were, on average, 24 h and
33 h, respectively.

Both figures show a convergence of the learning curves, which implies the success of the
algorithm.

To define the set of gains for each maneuver, we used the set of gains that was picked
more times over all the different values of α: (3,21,21,0.7) for the lane changing maneuver
and (3.4,21,1,0.84) for the roundabout maneuver. These are the sets of gains used in the
validation tests.

For the validation process, the system performs each of the maneuvers with the
corresponding chosen sets of gains. Then, the average mean square error, MSE, of the
trajectory position is calculated by

MSE=
1
N

N∑
i=1

be2xi+be
2
yi

2
, (6)
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Figure 6 Accumulated rewards for lane changing maneuver. Each curve shows the evolution for a spe-
cific value of the α parameter.

Full-size DOI: 10.7717/peerjcs.1550/fig-6

Figure 7 Accumulated reward for the roundabout maneuver. Each curve shows the accumulated re-
ward for a specific value of the α parameter.

Full-size DOI: 10.7717/peerjcs.1550/fig-7

where N represents the number of data points registered. This process is repeated for
different sets of gains spread over the range of values of the gain. The goal is to compare
the performance of the chosen sets of gains with the performance of other sets of gains,
while the system performs the maneuvers. Table 2 presents the average MSE for the lane
changing and the roundabout maneuver. For each set of gains, the system performs the
maneuver 10 times, and then the highest average MSE registered is selected.

By default, CARLA does not consider any noise in the odometry sensor. To analyse the
robustness of the system, noisy odometry measurements were simulated. Position noise is
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Table 2 MSE (without noise) andMSEξ (with noise) for odometry measurements with different sets of
gains, for the lane change and roundabout maneuvers.

Lane change

Gains MSE MSEξ

(0.1,1,6,0.7) 6.94 8.018
(0.68,21,21,0.77) 2.01 6.02
(1.26,6,11,0.84) 1.628 5.882
(3,21,16,0.7) 1.428 5.591
(3,21,21,0.7) 1.359 5.589
(3,21,21,0.98) 1.399 5.637

Roundabout navigation

Gains MSE MSEξ

(2.2,21,1,0.98) 0.245 1.374
(2.2,16,21,0.77) 0.230 1.363
(3.4,11,21,0.84) 0.214 1.388
(3.4,21,1,0.84) 0.208 1.347
(3.4,21,11,0.77) 0.216 1.385
(4.6,6,1,0.84) 0.265 1.429

Notes.
Min values are in bold.

obtained by drawing random samples from a normal (Gaussian) distribution with a mean
of 0 and a standard deviation of 0.1 m. Orientation noise is obtained by drawing samples
from the triangular distribution over the interval [−0.088, 0.088] rad and centred at 0. The
third column in Table 2 shows the MSE and MSEξ obtained under noisy conditions.

Figures 8 and 9 show the trajectory, linear velocity and angular velocity of the vehicle,
without noise (blue) and with noise (red), and the reference path in orange, for the chosen
gains. In the trajectory graph, the lengths of the trajectories with and without noise differ.
This is because the duration of each validation test is fixed, and it takes longer for the
system, with noisy odometry measurements, to take off. The delay in velocities, shown
in the graphs below, corroborates this. For both maneuvers,these figures and Table 2
show small lateral errors and MSE values. A qualitative analysis of the values in Table 2
reveals that the gains chosen by the RL agent present the lowest MSE, implying that the
chosen gains are in the neighbourhood of the values that minimize the trajectory error.
Furthermore, comparing MSE to MSEξ , it is possible to verify the system’s robustness
to some noise in the odometry sensor measurements, in the sense that the chosen gains
continue to produce the lowest values of MSE.

The system was also tested while navigating in the environment illustrated in Fig. 10,
following the reference path defined in red, which included both maneuvers and a sharp
left turn. The chosen gains for the blue and red zones were, respectively, (3,21,21,0.7)
and (3.4,21,1,0.84). For testing purposes, the speed limit imposed is 4 m/s. The results
are presented in Fig. 11. It shows the trajectory performed by the system, without noise
(blue) and with noise (red), and the reference path, in orange, which are, on average,
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Figure 8 Example of a lane change maneuver. The plot shows the xy trajectory (in orange is the refer-
ence lane; in blue and red the trajectories obtained without/with noise).

Full-size DOI: 10.7717/peerjcs.1550/fig-8
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Figure 9 Example of trajectory for a roundabout maneuver. The plot shows the xy trajectory (in orange
is the reference lane; in blue and red the trajectories obtained without/with noise).

Full-size DOI: 10.7717/peerjcs.1550/fig-9
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Figure 10 Trajectory for a full circuit, including lane change and roundabouts. Reference trajectory is
shown in orange while the trajectory of the vehicle is shown in red.

Full-size DOI: 10.7717/peerjcs.1550/fig-10

superimposed: the system successfully follows the reference path, without any major errors
or collisions.

Table 3 presents the values ofMSE andMSEξ for different sets of gains, with the reference
path defined in Fig. 10. As with the maneuvers, the results show that the chosen sets of
gains produce the lowest MSE out of a wide range of gains, which suggests the proximity
of the chosen gains to the optimal values of the gains.

AN ARGUMENT ON DEPENDABILITY
This section aims at sketching a framework to research dependability properties in the
RL-enabled autonomous car setting.

Dependability is tightly related to stability. Following Avizienis et al. (2004),
dependability means a consistent behaviour among different executions of the same
task. Stability is a concept with many variations (e.g., input–output, input-to-state) where
some form of bounded behaviour is implicit. Furthermore, boundedness can be identified
with the consistency that characterizes dependability, i.e., in a dependable system state
trajectories resulting from different executions will remain in a limited region of the state
space.

The rationale behind the framework in this section is that dependability is ensured by
using (i) a controller with a known topology and good stability and performance properties
for a wide range of parameters, and (ii) an RL stage used to learn/select parameters for
the controller adequate to each maneuver. Once stability is ensured for each individual
scenario, it remains to derive conditions to ensure stability as the car switches between

Vilaça Carrasco and Silva Sequeira (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1550 14/22

https://peerj.com
https://doi.org/10.7717/peerjcs.1550/fig-10
http://dx.doi.org/10.7717/peerj-cs.1550


Figure 11 Top view of the simulation environment with the reference trajectory. The task includes a
sharp left turn, lane change, and circulating on a roundabout.

Full-size DOI: 10.7717/peerjcs.1550/fig-11

scenarios.(As known from Control theory, switching between stable systems may lead to
instability: see for instance (Lin & Antsaklis, 2009) in the framework of switched linear
systems.) This is the concern addressed with this framework.

The GNC architecture, typical of a wide class of robotics systems, fully applies to the
context of autonomous cars. The Control block accommodates multiple controllers tuned
to specific driving conditions, e.g., a trajectory tracker adapted to different maneuvers, such
as overtaking maneuvers, changing between straight and twisty roads, or even changing
between smooth and aggressive driving styles, and the Guidance block selects which of
the controllers is used at every instant. Switching between controllers may be required in
several situations, and hence the overall system is of a hybrid nature. Often, the switching
mechanism will have the form of a finite state machine and the overall Control block can
thus be described as an affine model,

C =C0+C1u1+C2u2+ ...+Cnun (7)

where C0,C1,C2,...,Cn can be assumed state dependent smooth vector fields representing
the output of each controller, and u1,u2,...,un stand for the switching control variables
which are 0 whenever their respective controller is not active and C0 is an affine term which
may represent controller terms that must be always present (and not subject to any sudden
change of structure).

Let Q1,Q2,...,Qn be the accumulated reward trajectories for a set of n controllers
obtained during the RL training process, with each Qi corresponding to an individual
maneuver. The value of an accumulated reward at the end of the training is an indicator of
the quality of the policies found (Sutton & Barto, 2018, pp. 54–55). If the policies are allowed
to run for a time long enough (so that they can reach their goals) the full system amounts
to a sequence of individual/independent stable systems and is globally exponentially stable.
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Table 3 MSE andMSEξ for different sets of gains, for the full circuit.

Gains MSE MSEξ

(1.84,1,1,0.91), (2.2,6,11,0.7) 1.213 1.32
(3,21,21,0.7), (3.4,21,1,0.84) 0.181 0.363
(3,21,21,0.98), (5.8,16,11,0.84) 0.185 0.673

Notes.
Min values are in bold.

However, in normal operation, each maneuver has a limited time/space to be completed
and it may happen that the corresponding controller is not able to cope with it. Therefore,
though each individual maneuver can be stable (and dependable) in unconstrained
situations, arbitrary switching between maneuvers may rend the whole system unstable
(hence losing the dependability property).

Using the converse Lyapunov theorem, this alsomeans that there are Lyapunov functions
V1,V2,...,Vn, associated with each of the individual controllers, which, surely, have
derivatives DV1 < 0,DV2 < 0,...,DVn < 0. Therefore, one can compose a candidate to
Lyapunov function as

V =V1u1+V2u2+ ...+Vnun (8)

with u1,u2,...,un as defined above.
This technique has been reported in the literature when the Vi are quadratic functions

and the Ci are polynomial vector fields (see for instance Papachristodoulou & Prajna, 2002,
Tan & Packard, 2004). In this article we aim at a more general approach. The system
formed by (i) the finite state machine structure used to switch between controllers,(ii)
the controllers, and (iii) the car (assumed to be a regular kinematic structure such as
the car-like robot) can be shown to be upper semicontinuous (USC). Writing (7) in the
alternative set-valued map form as C =C0∪

(
∪
n
i=1Ciun

)
, following the definition of a USC

set-valued map (see for instance, definition 1 in Aubin & Cellina (1984), p. 41, or Smirnov
(2001), pp. 32–33), the overall system is USC as they have closed values and, by Proposition
2 in Aubin & Cellina (1984) this means that the corresponding graphs are closed. Hence,
one is in the conditions required by the generalized Lyapunov theorem in Aubin & Cellina
(1984) for asymptotic stability, namely

D+V (x)<−W (x). (9)

If W is a strictly positive monotonic decreasing function and D+V (x) represents the
contingent derivative of V at x , V is lower semi-continuous, then an equilibrium can be
reached. This means that the overall system is dependable.

In general, in the car control context, the switching will occur at arbitrary instants,
though a minimal separation between switching instants can be assumed without
losing generality(as in a realistic situation a car will not switch arbitrarily quickly
between behaviours in a repetitive way). Also, the switching will make V have bounded
discontinuities (at switching instants) and before each discontinuity will have a monotonic
decreasing trend (as each behaviour is assumed asymptotically stable).
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The Qi reference values are known a priori from the training phase. Monitoring the
values obtained in real conditions and comparing them, in real time, with the training,
yields a performance metric that can be used for control purposes, namely, defining
thresholds to control the switching (e.g., switch only if the currently observed Qi is close
enough to the reference value recorded during training).

To illustrate the above ideas, consider the evolution of the accumulated reward function
for different runs and parameters, shown in Fig. 6 for lane changes and in Fig. 7 for
roundabouts. Each of these figures can be thought of as a set-valued map, F(e), showing
the evolution of the accumulated reward for each of the maneuvers. The convergence of
each run ensures the boundedness of both the maps.

The images of F(e) obtained at low episode values, e, indicate inefficient/incomplete
executions. As the number of episodes evolves, the convergence of the RL finds efficient
executions. At each episode, the images of F(e) represent the intervals defined by the
minimum and maximum of the accumulated reward. TheQi can be thus assumed to verify

∃e ≥ emin : Qi ∈ Fi(e)

where emin is a threshold defining the first episode from which learning is considered
to be effective. In the case of the plots Figs. 6 and 7 a threshold of emin ≥ 10 can be
assumed as both plots show a plateau trend beyond this value. For the lane change plot
Fi(emin)⊆ [0.08,0.18] whereas for the roundabout one has Fi(emin)⊆ [0.19,0.4].

The F(emin) obtained during training are implicitly referred to the 0 level, i.e., the
value of the accumulated reward at the beginning of the maneuver. Define the function
representing the switching to the ith maneuver at time ti by

Fi(t )=

{
0 t < ti
Fi(emin) t ≥ ti.

which indicates that the accumulated reward on a switching to the ith maneuver is
represented by a bounded band starting at ti and being constant until ti+1. During a
normal, post-training, mission, with multiple transitions between n maneuvers, the total
accumulated reward can be written as a composition of shifted Fi(·) maps, as (assuming a
sequence of n maneuvers, which can also be assumed different without losing generality),

F(t )= F1(t− t1)+F2(t− t2)+ ...+Fn(t− tn)

where +is the Minkowski sum.
One can conceive multiple forms of estimating an enveloping functionW . For example,

consider the set Fch≡ ch(graph({F(ti)})), with ch() standing for the convex hull operator,
with F(t )⊆ Fch. The enveloping function W can be constructed from the subdifferential
of Fch. By construction, Fch is compact, except if the switching between maneuvers
occurs infinitely rapidly, in which case the accumulated reward grows without bound. An
alternative form is to use a piecewise linear function Fbd such that Fbd(t )= F(t − ti),∀ti,
that is enclose the accumulated reward F by a piecewise linear function, from which the
corresponding subdifferential can be easily computed.
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CONCLUSIONS
This article proposes an RL-based path tracking control system for a four-parameter
architecture that minimizes the lateral and steering trajectory errors of the vehicle when
performing lane changes and negotiating roundabouts. The tuning is done by a variant
of the Q-Learning algorithm, here referred to as ‘educated’ Q-Learning, which reduces
the action space during training, allowing a faster convergence to the final set of gains.
An argument based on Schauder’s fixed point theorem supporting the convergence of the
proposed algorithm is presented.

The trajectories in Figs. 8, 9 and 11, as well as the velocities registered during these
experiments demonstrate that the system does not engage in unsafe behaviour, such as
collisions or excessive velocity. It also consistently follows the reference with little error.
Although the proposed algorithm variant can lead to sub-optimal gains, the MSE values in
Table 2 suggest that it can efficiently tune the gains to values that are in the neighbourhood
of the values that minimize the trajectory errors (optimal gains). Additionally, the mean
of the tracking errors registered for the lane changing, negotiating roundabouts, and a
full circuit were, respectively, 0.076, 0.055 and 0.0166. These values are in line with others
obtained for similar systems and testing conditions, namely (Shan et al., 2020; Chen et al.,
2019).

Despite the popularity of NN based solutions for the control of an AV’s path tracking, the
proposed architecture offers higher explainability by providing control over the algorithm’s
state-action space, allowing the programmer to use traditional control design theory to
ensure a stable behaviour. Additionally, the realistic simulation environment used is
independent yet easily integrated, and the computational complexity of this system is lower
than the NN alternatives, facilitating a smooth transition to real-world environments.

The framework for dependability developed in the previous section shows that the
overall system has a stability property (which amounts to safe driving). Furthermore, given
the rather general conditions imposed, the framework is applicable to other architectures
that can provide a dependable performance indicator (such as the accumulated reward).
Generic actor–critic architectures, e.g., the supervised actor–critic in Rosenstein & Barto
(2004), are potential candidates to benefit from this framework.

Future avenues of research include (i) refining the dependability framework, namely to
take into account the stochastic nature of theQi, and the educated Q-learning variation,(ii)
exploring the use of dynamic reward functions, capable of representing different kinds
of environments, e.g., different road pavement conditions or different types such as
urban/highway roads,(iii) further testing under noisy/uncertain conditions and design of
behaviours to handle abnormal scenarios. The ultimate goal is the implementation in a
real vehicle, where any unmodelled factors are likely to be a challenge.

The code developed for this work is available at GitHub and Zenodo (https://github.
com/anavc97/RL-for-Autonomus-Vehicles, https://doi.org/10.5281/zenodo.8078645).
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