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ABSTRACT
Background. Clustering is one of the most common techniques in data analysis and
seeks to group together data points that are similar in some measure. Although there
are many computer programs available for performing clustering, a single web resource
that provides several state-of-the-art clustering methods, interactive visualizations and
evaluation of clustering results is lacking.
Methods. ClusterEnG (acronym for Clustering Engine for Genomics) provides a web
interface for clustering data and interactive visualizations including 3D views, data
selection and zoom features. Eighteen clustering validation measures are also presented
to aid the user in selecting a suitable algorithm for their dataset. ClusterEnG also aims
at educating the user about the similarities and differences between various clustering
algorithms and provides tutorials that demonstrate potential pitfalls of each algorithm.
Conclusions. The web resource will be particularly useful to scientists who are not
conversant with computing but want to understand the structure of their data in
an intuitive manner. The validation measures facilitate the process of choosing a
suitable clustering algorithm among the available options. ClusterEnG is part of a
bigger project called KnowEnG (Knowledge Engine for Genomics) and is available
at http://education.knoweng.org/clustereng.

Subjects Bioinformatics, Computational Biology
Keywords Validation measures, Genomics, Web interface, Education, Clustering

BACKGROUND
Clustering is one of the most powerful and widely used analysis techniques for discovering
structure in large datasets by grouping data points that are similar according to some
measure. Several programming languages such as R (R Core Team , 2015) and Python
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(Pedregosa et al., 2011) offer libraries or packages for clustering custom data and generating
static plots. However, interactive visualization, which aids the user in understanding the
data at a deeper level, requires additional libraries and external software. Moreover, the
advent of next-generation sequencing has enabled researchers to generate data at an
unprecedented rapid pace, creating an acute need for resources that can enable the users
of high-dimensional biological data to quickly perform ‘‘first-hand’’ analysis, such as
clustering (Stephens et al., 2015). The main challenges to building such a resource are
handling large datasets and facilitating its interpretability. Client-side computer systems
or web browsers may not always be powerful enough for efficient navigation through the
data. The NIH has recently funded Big Data to Knowledge (BD2K) Centers to tackle this
type of challenges. As part of the KnowEnG BD2K Center, we have developed a web-based
resource called ClusterEnG (acronym for Clustering Engine for Genomics) for clustering
large datasets with efficient parallel algorithms and software containerization.

Web servers, such as ClustVis (Metsalu & Vilo, 2015), provide a simple yet powerful
interface for visualizing Principal Component Analysis (PCA) and heatmap plots.
However, at present, ClustVis limits the uploaded file size to 2 MB, and the plots are
also static. WebMeV (Wang et al., 2017), a cloud-based application, performs PCA, k-
means and hierarchical clustering on large datasets, while providing limited interactivity
and visualization. Gitools (Perez-Llamas & Lopez-Bigas, 2011) contains several features
for interactive visualization of clustering results, but currently there is no web interface
available. Also, at present, Gitools provides only two clustering algorithms for analysis.
WebGimm (Joshi et al., 2011) is another application for clustering analysis of gene
expression data and provides results to be viewed externally using various Java applications.
Similarly, other existing tools, although catering to high-dimensional data, either require
a local software installation or lack clustering visualization and validation analysis (L’Yi
et al., 2015; Fernandez et al., 2017). In comparison, ClusterEnG integrates the features of
the above tools into one platform and produces visual results with enhanced interactivity.
ClusterEnG’s interactive PCA and t-Distributed Stochastic Neighbor Embedding (t-
SNE; Van der Maaten & Hinton, 2008) plots in 2D and 3D allow intuitive exploration of
structures in data. ClusterEnG also provides additional algorithms not available in the
above resources. Furthermore, ClusterEnG offers several internal validation measures,
thereby adding a crucial feature for evaluating the performance of clustering results.

RESULTS
Figure 1 illustrates the flowchart of various components of ClusterEnG, fromuser-uploaded
data to output visualizations. Underlying details of the components are outlined below.

Input data and output
The user can upload custom data or choose one of the preloaded sample datasets for
clustering. ClusterEnG accepts data in a tabular format of rows and columns, allowing the
user to analyze most datasets generated by typical biological experiments, such as RNA-seq,
microarray and drug-response data. The input data are then read in R utilizing the fast
and convenient ‘‘fread’’ function from the data.table package (Dowle et al., 2015). The
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Figure 1 Typical workflow of ClusterEnG encompassing educational and visualization components.
Full-size DOI: 10.7717/peerjcs.155/fig-1

ClusterEnG server currently accepts files up to a size of 2 GB. The uploaded file will be
securely stored on the server temporarily for seven days, during which the user can retrieve
the file or run more jobs from the same browser (with cookies enabled).

Currently, the server contains two public sample datasets: the gene expression data in
NCI60 cancer cell lines (Ross et al., 2000) and B-cell lymphoma cells (Alizadeh et al., 2000).
The NCI60 data (9,707 genes, 64 samples) provide a good tumor gene expression dataset
to explore and assess the quality of clustering from various algorithms implemented in
ClusterEnG. The B-cell lymphoma data have a similar number of samples as the NCI60
data, but contains a larger number of genes (18,432 genes, 67 samples).

Clustering results are made available to the user in a CSV format in mainly two different
ways. First, the user can download a single file with the entire data, sample/feature
annotation and clustering results. Second, the user can select a subset of data interactively
and download the clustering labels for the chosen data points. The user can also download
snapshots of clustering plots in PDF, PNG and SVG formats.

Clustering algorithms
ClusterEnG provides seven clustering algorithms, including parallel implementations for
two algorithms. Currently, serial implementations are written in the R programming
language using various packages available in the CRAN repository (R Core Team , 2015).
The seven algorithms include k-means, k-medoids, affinity propagation, spectral clustering,
Gaussian mixture model, hierarchical clustering and DBSCAN (Ester et al., 1996). Two
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Figure 2 A partial snapshot of ClusterEnG user interface showing a choice of clustering algorithms
and related options.

Full-size DOI: 10.7717/peerjcs.155/fig-2

heuristic algorithms are also implemented to estimate one of the parameters of DBSCAN
algorithm. The parallel code for the k-means algorithm utilizes a software package written
in C (Liao, 2005), while parallel spectral clustering implements a C++ code (Chen et al.,
2011). For a subset of the algorithms, the user is given a list of commonly used parameters
to modify and visualize the changes (Fig. 2).

ClusterEnG also features a module for querying the Gene Expression Omnibus (GEO)
database (Davis & Meltzer, 2007) to download data and draw an interactive heatmap with
hierarchical clustering based on the InCHlib JavaScript library (Skuta, Bartunek & Svozil,
2014). This allows direct access to published biological data and deeper exploration of
hierarchical clustering results.

Docker containerization
We employ state-of-the-art methods to handle the analysis of large files. The input data
and user-selected algorithms from the front-end are dynamically packaged into a Docker
container (Merkel, 2014) on the back-end wherein the code (serial or parallel) is executed
and the results are returned to the main server. Chronos is used to schedule jobs by
spawning Docker containers into an Apache Mesos cluster, which automatically utilizes
available processors for parallel runs.

Interactive 2D/3D visualization
We use dimensionality reduction techniques to facilitate the meaningful visual
interpretation of the clustering results. Currently, PCA and t-SNE plots, which are broadly
used in diverse fields, are implemented. We utilize the R packages stats and Rtsne (Krijthe,
2015) to evaluate the PCA and t-SNE algorithms, respectively. PCA and t-SNE provide
complementary views; PCA is linear and deterministic, while t-SNE is nonlinear and
nondeterministic. After PCA is performed, projection coefficients onto the first three
principal components are used to generate three linked scatter plots for each pair of the
components (Fig. 3A). Similar scatter plots are shown for t-SNE by reducing the number of
input dimensions to three (Fig. 3A). Interactive plots are displayed using JavaScript library
d3.js (Bostock, Ogievetsky & Heer, 2011) and jQuery to allow zooming, group selecting,
mousing-over for annotation, and highlighting a region/cluster which maps to other PC
direction plots.
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Figure 3 NCI60 gene expression sample data clustering of samples using k-medoids algorithm. The
snapshots show visualizations of first three principal components and vectors from PCA and t-SNE, re-
spectively, in (A) 2D and (B) 3D with perspective and orthogonal projection of principal components.

Full-size DOI: 10.7717/peerjcs.155/fig-3

We also implement a dynamic 3D visualization for the first three principal components
to enable deeper exploration of data structure by providing a perspective 3D view of data
points. A real-time orthogonal projection from the current 3D viewpoint is also provided.
Written in Javascript with the libraries d3.js (Bostock, Ogievetsky & Heer, 2011) and three.js
(Cabello, 2010), the 3D Principal Component Viewer (Fig. 3B) allows zooming and rotating
of the viewpoint. Graphical User Interface (GUI) is written using dat.GUI to toggle points
or automate the rotation of viewpoint. It should be noted that the user’s browser and
machine capabilities may limit these 2D and 3D visualizations. Our preliminary tests show
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Figure 4 Dynamic clustering application in affinity propagation using R Shiny server displaying
heatmap of similarity matrix of selected data points.

Full-size DOI: 10.7717/peerjcs.155/fig-4

that the visualizations work well for up to a few thousand data points on machines with
typical hardware and modern browsers, but Google Chrome performed the best in all tests.

Internal clustering validation measures
We include internal clustering validation measures to help evaluate the clustering results.
Internal clustering validation is used to measure the goodness of clustering results without
referring to any external information such as class labels (Liu et al., 2010). Eighteen indices
for clustering validation are calculated using relevant functions from the R package
clusterCrit (Desgraupes, 2016), where a short summary for each index is provided on our
website.

On the ClusterEnG website, the validation measures are summarized for each index and
clustering algorithm. Each index has an optimal measure (minimum or maximum value),
which is used to compare clustering algorithms. A donut chart displays the number of
indices for which each clustering algorithm is optimal. Also, a bar chart is shown for each
index to compare the index values between clustering algorithms. The calculated validation
measures are available for the user to download for subsequent analysis.

Clustering tutorial and dynamic clustering
A detailed tutorial page on the website provides the user with a summary of advantages and
disadvantages of each of the clustering algorithms. Interactive clustering from the R Shiny
package (Chang et al., 2015) is available for affinity propagation and Gaussian mixture
model, allowing the user to add data points dynamically through the GUI and observe
changes in clustering behavior in real time (Fig. 4). The tutorial page further discusses
pathological situations in which each algorithm may fail, with modified examples from the
Scikit-learn Python package (Pedregosa et al., 2011).

Sample data
Figure 3 shows snapshots of clustering results of NCI60 sample data using the k-medoids
algorithm and 10 clusters. The samples are labeled using the same color scheme for both 2D
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Figure 5 Benchmarking results illustrating algorithm run time for the clustering algorithms in Clus-
terEnG. ‘‘PCA time’’ data indicates the time taken to compute principal components, a step common to
all the algorithms for visualization.

Full-size DOI: 10.7717/peerjcs.155/fig-5

and 3D visualizations. In Fig. 3A, the k-medoids algorithm is able to separate closely related
samples in terms of gene expression. For example, in the plot corresponding to PC1-PC2,
the two breast tumor samples (green color) are identified in a cluster different from the
nearby melanoma samples (gray color). In a similar way, one can compare the clustering
results across different algorithms and assess them based on biological knowledge.

DISCUSSION
We have benchmarked the performance of the codes for all available clustering algorithms.
Figure 5 shows the runtime of various clustering algorithms on ClusterEnG as a function of
number of samples. The test data are randomly generated from five Gaussian distributions
with different mean over the feature set. The number of features for each dataset is fixed at
10,000, while the number of samples is varied from 100 to 5,000. Figure 5 also includes the
time taken to perform PCA on the test data. The PCA step is common to all the algorithms.
As shown in Fig. 5, DBSCAN performs best with respect to runtime for all tested data,
whereas affinity propagation and hierarchical clustering havemaximum runtimes for larger
and smaller sample sizes, respectively. However, DBSCAN and affinity propagation can give
different numbers of clusters, since these algorithms estimate the number of clusters from
data. In the above analysis, the parallel k-means and spectral clustering algorithms are run
on a single core for comparison with serial codes. We note that the above benchmarking
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was performed with datasets having a similar data structure (Gaussian distribution). The
actual runtime of each algorithm may vary from dataset to dataset.

For the NCI60 and B-cell lymphoma gene expression datasets, hierarchical clustering
performs best in terms of the quality of clustering (with default parameters), as assessed
by the number of validation measures suggesting optimal clustering. Specifically, eight and
eleven of the eighteen validation measures indicated that hierarchical clustering is optimal
for the NCI60 and B-cell lymphoma datasets, respectively. However, we note that the
quality of a clustering result crucially depends on the geometric structure of the data being
analyzed. For example, the comparison plot on the website shows that spectral clustering
and DBSCAN can correctly cluster the concentric annuli data, while the other algorithms
fail to identify the correct clusters.

We are currently developing and implementing parallel algorithms for affinity
propagation and hierarchical clustering, and they will be included in the future releases
of ClusterEnG. Furthermore, we plan to incorporate modules for exporting the clustering
results directly to other available web servers for integrative analyses, including gene
ontology and gene set enrichment analysis.

CONCLUSIONS
ClusterEnG offers a one-stop web service for efficient clustering of large datasets with the
flexibility of choosing among many state-of-the-art clustering algorithms, which are not
readily accessible to beginners. The included interactive visualizations of clustering results
in 2D and 3D will enable the users of our resource to comprehend their data effectively.
We are exploring the possibility of accepting datasets much larger than the current limit
by allowing the user to perform clustering on our server and then download the results for
further analysis and/or visualization. As is the case for other visualization web resources,
ClusterEnG’s interactive visualization module for large datasets depends on the user’s
system specifications. Nevertheless, an alternative approach would be to visualize only
user-selected samples after clustering.
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