
Submitted 25 April 2023
Accepted 30 July 2023
Published 19 September 2023

Corresponding author
Víctor García, vicgarval@upv.es

Academic editor
Maurice ter Beek

Additional Information and
Declarations can be found on
page 43

DOI 10.7717/peerj-cs.1547

Copyright
2023 García et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Modelling and verification of
post-quantum key encapsulation
mechanisms using Maude
Víctor García1, Santiago Escobar1, Kazuhiro Ogata2, Sedat Akleylek3,4 and
Ayoub Otmani5

1Universidad Politécnica de Valencia, Valencia, Spain
2 Japan Advanced Institute of Science and Technology, Ishikawa, Japan
3Ondokuz Mayis University, Samsun, Turkey
4University of Tartu, Tartu, Estonia
5University of Rouen Normandie, Rouen, France

ABSTRACT
Communication and information technologies shape the world’s systems of today, and
those systems shape our society. The security of those systems relies on mathematical
problems that are hard to solve for classical computers, that is, the available current
computers. Recent advances in quantumcomputing threaten the security of our systems
and the communications we use. In order to face this threat, multiple solutions and
protocols have been proposed in the Post-Quantum Cryptography project carried on
by the National Institute of Standards and Technologies. The presented work focuses
on defining a formal framework in Maude for the security analysis of different post-
quantum key encapsulation mechanisms under assumptions given under the Dolev-
Yao model. Through the use of our framework, we construct a symbolic model to
represent the behaviour of each of the participants of the protocol in a network. We
then conduct reachability analysis and find a man-in-the-middle attack in each of
them and a design vulnerability in Bit Flipping Key Encapsulation. For both cases, we
provide some insights on possible solutions. Then, we use the Maude Linear Temporal
Logic model checker to extend the analysis of the symbolic system regarding security,
liveness and fairness properties. Liveness and fairness properties hold while the security
property does not due to the man-in-the-middle attack and the design vulnerability in
Bit Flipping Key Encapsulation.

Subjects Cryptography, Security and Privacy, Theory and Formal Methods,
Software Engineering, Quantum Computing
Keywords Maude, Rewriting logic, Formal verification, Post-quantum protocols,
Key encapsulation mechanisms

INTRODUCTION
Today’s security is heavily based on computationally hard problems. Most of the current
network infrastructure and systems work over classical computers. Specifically, most of
these protocols rely on three problems considered hard to solve under classic computation:
the integer factorization problem, the discrete logarithm problem and the elliptic-curve

How to cite this article García Ví, Escobar S, Ogata K, Akleylek S, Otmani A. 2023. Modelling and verification of post-quantum key en-
capsulation mechanisms using Maude. PeerJ Comput. Sci. 9:e1547 http://doi.org/10.7717/peerj-cs.1547

https://peerj.com/computer-science
mailto:vicgarval@upv.es
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1547
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1547

discrete logarithm problem. Such problems are considered to be in the NP category, which
stands for non-deterministic polynomial time for classic computers.

Research in the quantum field has been active in the past years, proposing new algorithms
and methods that could endanger the security of current crypto-systems and cryptographic
schemes. As stated before, the protocols of today are based on mathematical problems
that are hard to solve for classical computers, but such problems become solvable with
quantum computers. Some of the most popular asymmetric (or public key) algorithms,
which rely on integer factorization, will become insecure under quantum computers
using Shor’s algorithm from Shor (1994). Another example is Grover’s search algorithm,
proposed by Grover (1996), which makes it possible to reduce the complexity of the
integer factorization problem to a quadratic cost. A current simple solution to counter the
reduction cost is to extend the length of the key.

In order to face the threat quantum computers suppose to the security of most
information systems, the National Institute for Standards and Technologies (NIST)
started 2017 the Post-Quantum Cryptography Project (PQC). The project is conducted as
a contest, divided into multiple rounds, to analyze candidate protocols and select some as
a standardized solution to face the threat of quantum adversaries. As of the submission
of this article, there have been four rounds of the project, and candidates range between
public-key encryption and key establishment to digital signature algorithms.

We focus on key encapsulation mechanisms (KEMs). A KEMs primary goal is to
securely share a key between two network participants where channels are not safe from
intruders. The goal is interesting for conventional cryptography, also known as symmetric
cryptosystem, which uses a secret key to encrypt a message. The selected protocols are
Kyber, BIKE, and Classic McEliece. The former, Kyber, is lattice-based, meaning its
security is based on the hardness of solving the Learning With Errors (LWE) problem over
module lattices. Kyber was selected as the finalist in round 3. The latter two are code-based.
Specifically, BIKE bases its security on Quasi-Cyclic Moderate Density Parity Check
(QC-MDPC) codes. Meanwhile, McEliece bases its security on error-correcting codes and
the difficult problem of decoding a message with random errors. For some KEMs, some
vulnerabilities have been found such as man-in-the-middle (Tran et al., 2022a; Tran et al.,
2022b; Tran et al., 2022c; García, Escobar & Ogata, 2022).

Once the problem of quantum computers and some possible solution schemes are
chosen by NIST, we need to establish how to analyze and reason about the protocols.
For the analysis of security systems and protocols, two main approaches can be taken:
computational security and symbolic security; see Blanchet (2012) for further information
on both approaches and their comparison. The former is based on mathematical proofs
over a computational model, where messages are bit strings, and the adversary is any
probabilistic Turing machine. Cryptographers generally use computational security, and
the authors of the three selected KEM have already covered this approach. Although the
computational model is closer to reality, it complicates the proofs and is hard to understand
for non-experts of cryptography. The latter is based on symbols, where the cryptography
primitives are function symbols acting as black boxes. It is important to note that these
models assume perfect cryptography (Dolev & Yao, 1983), i.e., ciphertexts cannot be broken

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 2/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

without the proper key. Furthermore, symbolic models are suitable for automation and
easier to understand. It is essential to mention that this approach not only can be applied
to the selected protocols but also to any other scheme or mechanism in rounds 3 or 4 of the
Post-Quantum Cryptography project, either public key encryption and key establishment
algorithms or digital signatures.

To further extend the implications of performing symbolic security analysis, we could
have a protocol under inspection. First, it is necessary to write a formal system specification
of the protocol in a formal specification language, such as Maude. Because Maude is a
programming language and a logical framework we have not only a formal model of the
protocol to reason about but an effective implementation. This modelling process implies
the necessity to formalize every data structure used in the protocol and every possible
action conducted by the participants of the protocol. Furthermore, if the protocol is
cryptographic then it is necessary to include the presence of dishonest participants and
consider all possible measures that can be utilized by the attackers, such as extra algebraic
properties, probably not for implementation but certainly for security analysis. The formal
specification and analysis process is likely to find out subtle problems in the protocol
that otherwise could go unnoticed; see Barbosa et al. (2021) for a recent SoK on symbolic
protocol analysis. To do formal verification, it is necessary to formalize desired properties
of the protocol in a logic, such as linear temporal logic (LTL). Furthermore, model checking
properties over the protocol model may reveal extra problems to those detected during the
formal specification.

Contributions. We perform symbolic security specification and analysis using Maude and
LTL on three post-quantum key encapsulation mechanisms (KEMs). Our contributions
are (i) a novel framework for the specification of post-quantum cryptographic protocols
using Maude, (ii) an extended analysis of three post-quantum KEM protocols using model
checking, (iii) verification of the presence of a man-in-the-middle attack in the three
selected KEMs and (iv) discovery of a design flaw in BIKE, allowing a malicious participant
to use a weak key to impersonate another participant. All developed modules resulting
from this work can be found at https://github.com/v1ct0r-byte/PQC-in-Maude.

Outline. The rest of the article is structured as follows. ‘Related Work’ presents an
overview of the advances made in the symbolic analysis of protocols, mentioning tools
and articles of similar nature. ‘Rewriting Logic and Maude’ introduces rewriting-logic and
gives a presentation on the fundamental building blocks of Maude. ‘Key Encapsulation
Mechanisms’ explains the behaviour and security principles of the three selected KEMs.
‘Framework Specification’ describes the core modules of our framework to build symbolic
models of these KEMs. ‘Key Encapsulation Mechanism Specifications’ dives into the
concrete specification of each KEM through the use of our framework. ‘Verification’ dives
into the two analysis approaches carried on over the symbolic model to formally analyze the
constructed KEMs. Finally, ‘Conclusion’ summarizes the article and gives future directions
for the presented work. This article is an extended version of García, Escobar & Ogata
(2022) and García (2022).

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 3/47

https://peerj.com
https://github.com/v1ct0r-byte/PQC-in-Maude
http://dx.doi.org/10.7717/peerj-cs.1547

RELATED WORK
Currently, advances in protocol security analysis have been made. One interesting idea is
the one proposed at Blanchet (2012), where the author explains several examples of formal
specification of protocols and introduces and explains the symbolic and computational
model analysis. In Cortier, Kremer & Warinschi (2011), the authors explore the current
literature and articles on both symbolic and computational analysis of protocols. In this
survey, they analyze the results by combining both types of analysis. This proposal was
made initially by Abadi & Rogaway (2002) in order to close the gap between both lines of
protocol verification.

Among the various symbolic protocol analysis tools available, we have Maude-
NPA (Escobar, Meadows & Meseguer, 2009; Escobar, Meadows & Meseguer, 2006), related
to the programming language Maude (Clavel et al., 2007; Durán et al., 2020). Maude-NPA
has a theoretical basis on rewriting logic, unification and narrowing and performs a
backwards search from a final attack state to determine whether or not it is reachable
from an initial state. Some symbolic tools, such as ProVerif (Blanchet et al., 2018; Blanchet,
Cheval & Cortier, 2022), are based on an abstract representation of a protocol using
Horn clauses. The verification of security properties is done by reasoning on these
representative clauses. Other symbolic tools, such as Tamarin (Meier et al., 2013; Basin
et al., 2022), are based on constraint solving to perform an exhaustive, symbolic search
for executions traces. Furthermore, other symbolic tools such as Scyther (Cremers, 2008)
or CPSA (Ramsdell & Guttman, 2018) attempt to enumerate all the essential parts of the
different possible executions of a protocol. Also, AKISS (Gazeau & Kremer, 2017) or the
DEEPSEC prover (Cheval, Kremer & Rakotonirina, 2018) are other tools mostly used to
decide equivalence properties.

Some related work can be found for the symbolic security analysis of protocols with
quantum features. For example, the authors of Gazdag et al. (2021) built a model of IKEv2
on a classical setting and then perform some analysis on it for seven properties, all of it
using the Tamarin prover. With this first symbolic analysis, they prove their model to be
correct and corroborate previous results by other authors. Later, they extended the model
with the improvements included in the latest extension of IKEv2 in order to include a
quantum-resistant key exchange. With this extension, they perform a new analysis, where
all properties hold, verifying the security of the new extension.

Another article performing symbolic analysis of post-quantum protocols is Jacomme et
al. (2023). The authors use the recently published tool SAPIC+ to analyze the Ephemeral
Diffie Hellman Over COSE (EDHOC) protocol, on its 12th draft version. With SAPIC+

they can automatically transform their model to a suitable one in Tamarin, ProVerif or
DEEPSEC respective syntax. This allows the authors to take advantage of the strength of
each tool to perform analysis over their modular composedmodel of the protocol. With the
analysis, they discover several flaws and report them to the team of EDHOC. Then propose
some fixes, validate them and are accepted into the 14th draft version of the protocol.

In Hülsing et al. (2021) a variant for a handshake protocol from the WireGuard VPN
protocol with post-quantum capabilities is presented. They performed such adaptation

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 4/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

by replacing the previous Diffie-Hellman-based handshake with key-encapsulation
mechanisms. The authors verify the security of their proposal with symbolic and
computational proofs. On the one hand, the symbolic proofs verify more security
properties than the computational proofs and are computer verified. On the other hand,
computational proofs give stronger security guarantees as the proof makes less idealizing
assumptions.

In Tran et al. (2022a), a first approximation on the symbolic specification of post-
quantum protocols in Maude-NPA is provided. The authors selected to specify the
Post-Quantum TLS protocol primitives and execution trace, leaving for future work
the definition of attack states and the verification of the protocol. This type of work is
interesting and necessary to us because it demonstrates the capability of Maude-NPA as
well as Maude to verify more advanced schemes automatically.

The closest to our work are Tran et al. (2022b); Tran et al. (2022c), which present the
first symbolic security analyses of a collection of post-quantum protocols, among which
Kyber can be found. The authors report a man-in-the-middle (MITM) attack for each of
the specified protocols using the Maude search command. This analysis has paved the way
for us by performing symbolic specification and analysis usingMaude. However, our article
differs in many ways: (i) the syntax of the protocol and intruder models are completely
different, (ii) we provide a general framework and show how it can be parameterized for
the three selected KEMs, (iii) we consider code-base KEMs, specifically two, apart from
lattice-based KEMs, (iv) we consider simpler and more general cryptographic properties,
(v) we perform LTL model checking, and (vi) we have discovered a design flaw in the BIKE
protocol. We only share the discovery of the man-in-the-middle attacks and similar honest
and intruder actions.

REWRITING LOGIC AND MAUDE
Maude (Clavel et al., 2007; Durán et al., 2020) is based on rewriting logic (Meseguer,
1992), a logic ideally suited to specify and execute computational systems in a simple
and natural way. Since nowadays most computational systems are concurrent, rewriting
logic is particularly well suited to specify concurrent systems without making any early
commitments about the model of concurrency in question, which can be synchronous or
asynchronous, and can vary widely in shape and nature: from a Petri net (Stehr, Meseguer
& Ölveczky, 2001) to a process calculus (Martí-Oliet & Verdejo-López, 2000), from an
object-based system (Meseguer, 1993) to asynchronous hardware (Katelman, Keller &
Meseguer, 2012), from a mobile ad hoc network protocol (Liu, Ölveczky & Meseguer,
2015) to a cloud-based storage system (Bobba et al., 2018), from a web browser (Chen et
al., 2007) to a programming language with threads (Meseguer & Roşu, 2007), or from a
distributed control system (Bae, Meseguer & Ölveczky, 2014) to a model of mammalian cell
pathways (Eker et al., 2001; Talcott et al., 2003). And all without any encoding : You see and
get a direct system definition without any artificial encoding.

Rewriting logic has a sub-logic called membership equational logic. This sub-logic
defines a system’s deterministic parts using functional modules. In contrast, Maude

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 5/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

system modules represent concurrent systems as conditional rewrite theories that model a
nondeterministic system which may never terminate and where the notion of a computed
value may be meaningless. In this concurrent system, the membership equational sub-
theory defines the states of such a system as the elements of an algebraic data type, such
as terms in an equivalence class associated with cryptography properties. We can call this
aspect the static part of the specification. Instead, its dynamics, i.e., how states evolve, are
described by the transition rules, which specify the possible local concurrent transitions
of the system thus specified. The system’s concurrency is naturally modelled by several
transition rules in a given state that may be applied concurrently to different sub-parts,
producing several concurrent local state changes. Thus rewriting logic models those
concurrent transitions as logical deductions (Meseguer, 1992).

The most basic form of system analysis, in the form of explicit-state model checking, is
illustrated by the use of the search command in Maude that performs reachability analysis
from an initial state to a target state. Reachability can be used to verify invariants or find
violations of invariants in the following sense. We can search for a violation of an invariant.
If the invariant fails to hold, it will do so for some finite sequence of transitions from the
initial state, which will be uncovered by the search command above since all reachable
states are explored in a breadth-first manner. If the invariant does hold, we may be lucky
and have a finite state system, in which case the search command will report failure to
find a violation of the invariant. However, the search will never terminate if an infinite
number of states are reachable from the initial state.

Under the assumption that the set of states reachable from an initial state is finite, Maude
also supports explicit-state model checking verification of any properties in linear-time
temporal logic (LTL) through its LTL model checker.

In the following sections, we will review different aspects of Maude and see an example
specifying and analysing the Needham–Schroeder public key (NSPK) protocol. Each
section introduces the notation in Maude and an example of how to use that notation. We
selected the NSPK protocol because it is easy to understand. Figure 1 depicts a simplified
version of the NSPK protocol without the intervention of a server to provide the public
keys. The protocol’s basis is that two participants, A and B, want to share a key. To do so, A
sends a nonce, Na, concatenated to his identifier and encrypted using B’s public key. Upon
receiving the message, B extracts A;Na since he uses his paired secret key, and thanks to
knowing A’s identifier, he obtains Na. Now, B concatenates a nonce of his own, Nb, with
the received one, encrypting both in a new message sent to A using the corresponding
public key. Once A receives the messages, since A knows Na, he can extract Nb and send it
in a third and last message to B in order to confirm that he can decipher it. In the end, A
has in its possession Nb, and B has Na, thus succeeding in sharing secrets.

Sorts and subsorts
At Maude, the first thing we do when creating a module, whether it is functional or a
system module, is to define the types used in the operators and variables we want to use.
Wemust use the reserved word sort followed by an identifier to define a type. An identifier

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 6/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

A B

{A;Na}Kpb{A;Na}Kpb

{Na;Nb}Kpa

{Nb}Kpb

Figure 1 Network diagram of a simplified Needham–Schroeder protocol version.
Full-size DOI: 10.7717/peerjcs.1547/fig-1

is a string of unreserved characters that Maude uses to identify everything from a module
name to a variable name, or in this case, a type.

Let us see an example of how to declare sorts in order to introduce the concept of
sub-type. The statement "sort Key ." defines a type with the identifier Key. The dot
in Maude is used to terminate statements, similar to semicolons in Java, Python or C. If
we want to define several types simultaneously, we can use the sorts keyword. Thus, the
statement "sorts PubKey SecKey ." declares the types PubKey and SecKey.

Then we have the concept of subsort, a relationship between different types. To clarify
this concept, we will use the previously defined types, i.e., Key, PubKey and SecKey.
To declare a relationship of sub-types, there is in Maude the reserved word subsort.
Therefore, if we want to declare that the type PubKey is a sub-type of Key, we write the
statement "subsort PubKey < Key ." where the symbol < is the operator reserved for
indicating the direction of the relationship. We can do the same for SecKey with "subsort
SecKey < Key .".

With the previous statements, we obtain a relationship resembling other languages’
inheritance. As we see in Fig. 2, we have the three previous types in a tree-like structure,
semantically representing that public and secret keys are considered keys.

Operators
The operators allow us to define the syntax for the types we have defined, which allows
us to define a notation that will express whatever we need. In this way, we can model the
elements of a system or function with great freedom of expression.

Operators in Maude are defined by the reserved word op followed by the notation
definition. Operators can be parameterized using the underscore character to indicate the
position of each of the parameters within the notation. We can also parameterize them if

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 7/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-1
http://dx.doi.org/10.7717/peerj-cs.1547

Figure 2 Subtype relation between defined Key, PubKey and SecKey types.
Full-size DOI: 10.7717/peerjcs.1547/fig-2

Operators in Maude are defined by the reserved word op followed by the notation definition. Operators231

can be parameterized using the underscore character to indicate the position of each of the parameters232

within the notation. We can also parameterize them if we omit underscore characters, making it a prefix233

operator; we will pass the parameters using parentheses as if it were a Java or C function. Once the234

parameters are set, we will indicate, after a colon, the types of each parameter in the order of appearance235

and, finally, the type returned by the operator after an arrow.236

If we continue with the previous example of the simplified NSPK, we can define an operator to237

represent participants of the protocol and another one for the messages that they would exchange between238

them. We use Maude and get the following code snippet in Figure 3 to show how participants and239

messages are defined. Notice that new sorts are used, which were previously defined in the same way we240

did for the examples of types of keys. Among these, we find Identifier to represent the values that241

act as identifiers of participants. Also, Content represents any information such as identifiers, keys or242

nonces defined by the protocol.243

op p_ : Identifier Content -> Participant [ctor] .

op msg(_->_,_) : Identifier Identifier Key -> Message [ctor] .

Figure 3. Definition of operators for participants and messages in our model of the simplified NSPK.

The first line of Figure 3 shows that a participant is defined as an operator receiving two parameters.244

The participant’s identifier is the first parameter, which will go between square brackets. The second245

parameter is all the content the participant has in his possession, which is enclosed between round brackets.246

As for the second line in Figure 3, messages are defined as an operator starting with msg and then two247

identifiers separated by an arrow. This represents the origin and destination of a message. The third248

parameter is the encapsulated key inside the message, separated from the pseudo-header by a comma.249

3.3 Axioms250

Axioms are properties or attributes on sets that are satisfied on a certain operator when defined in another251

operator’s sequence. These attributes are applied in Maude if we write them between the symbols [and]252

at the end of the sequence operator, that is, the operator that contains a sequence of other operators of the253

same type. The default axioms defined by Maude are:254

• assoc for specifying associativity property on the set255

• comm for specifying commutativity property on the set256

• id:e for specifying the identity element e for the set257

To see an example of how to apply attributes, we will use the Participant type to define an258

operator that indicates a set of participants on which we will apply properties of interest. We first create259

the type Participants as shown in the first line of Figure 4. The next line indicates, through a relation260

of sub-types, that a participant is a type of set of participants, that is, a set where there is only one element.261

Then we define a participant as the identity element of a set of participants, the empty set. Finally, with262

the last line, we define the set of participants as a sequence of at least two participants, being this set263

associative, commutative and with empty as the identity element.264

sort Participants .
subsort Participant < Participants .
op empty : -> Participant .
op __ : Participant Participant -> Participants

[assoc comm id: empty] .

Figure 4. Definition in Maude of a set operator for participants with associative and commutative
properties and empty as the identity element.

6/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 3 Definition of operators for participants andmessages in our model of the simplified NSPK.
Full-size DOI: 10.7717/peerjcs.1547/fig-3

we omit underscore characters, making it a prefix operator; we will pass the parameters
using parentheses as if it were a Java or C function. Once the parameters are set, we will
indicate, after a colon, the types of each parameter in the order of appearance and, finally,
the type returned by the operator after an arrow.

If we continue with the previous example of the simplified NSPK, we can define an
operator to represent participants of the protocol and another one for the messages that
they would exchange between them. We use Maude and get the following code snippet
in Fig. 3 to show how participants and messages are defined. Notice that new sorts are
used, which were previously defined in the same way we did for the examples of types of
keys. Among these, we find Identifier to represent the values that act as identifiers of
participants. Also, Content represents any information such as identifiers, keys or nonces
defined by the protocol.

The first line of Fig. 3 shows that a participant is defined as an operator receiving two
parameters. The participant’s identifier is the first parameter, which will go between square
brackets. The second parameter is all the content the participant has in his possession,
which is enclosed between round brackets. As for the second line in Fig. 3, messages are
defined as an operator starting with msg and then two identifiers separated by an arrow. This
represents the origin and destination of a message. The third parameter is the encapsulated
key inside the message, separated from the pseudo-header by a comma.

Axioms
Axioms are properties or attributes on sets that are satisfied on a certain operator when
defined in another operator’s sequence. These attributes are applied in Maude if we write
them between the symbols [and] at the end of the sequence operator, that is, the operator

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 8/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-2
https://doi.org/10.7717/peerjcs.1547/fig-3
http://dx.doi.org/10.7717/peerj-cs.1547

Operators in Maude are defined by the reserved word op followed by the notation definition. Operators231

can be parameterized using the underscore character to indicate the position of each of the parameters232

within the notation. We can also parameterize them if we omit underscore characters, making it a prefix233

operator; we will pass the parameters using parentheses as if it were a Java or C function. Once the234

parameters are set, we will indicate, after a colon, the types of each parameter in the order of appearance235

and, finally, the type returned by the operator after an arrow.236

If we continue with the previous example of the simplified NSPK, we can define an operator to237

represent participants of the protocol and another one for the messages that they would exchange between238

them. We use Maude and get the following code snippet in Figure 3 to show how participants and239

messages are defined. Notice that new sorts are used, which were previously defined in the same way we240

did for the examples of types of keys. Among these, we find Identifier to represent the values that241

act as identifiers of participants. Also, Content represents any information such as identifiers, keys or242

nonces defined by the protocol.243

op p_ : Identifier Content -> Participant [ctor] .

op msg(_->_,_) : Identifier Identifier Key -> Message [ctor] .

Figure 3. Definition of operators for participants and messages in our model of the simplified NSPK.

The first line of Figure 3 shows that a participant is defined as an operator receiving two parameters.244

The participant’s identifier is the first parameter, which will go between square brackets. The second245

parameter is all the content the participant has in his possession, which is enclosed between round brackets.246

As for the second line in Figure 3, messages are defined as an operator starting with msg and then two247

identifiers separated by an arrow. This represents the origin and destination of a message. The third248

parameter is the encapsulated key inside the message, separated from the pseudo-header by a comma.249

3.3 Axioms250

Axioms are properties or attributes on sets that are satisfied on a certain operator when defined in another251

operator’s sequence. These attributes are applied in Maude if we write them between the symbols [and]252

at the end of the sequence operator, that is, the operator that contains a sequence of other operators of the253

same type. The default axioms defined by Maude are:254

• assoc for specifying associativity property on the set255

• comm for specifying commutativity property on the set256

• id:e for specifying the identity element e for the set257

To see an example of how to apply attributes, we will use the Participant type to define an258

operator that indicates a set of participants on which we will apply properties of interest. We first create259

the type Participants as shown in the first line of Figure 4. The next line indicates, through a relation260

of sub-types, that a participant is a type of set of participants, that is, a set where there is only one element.261

Then we define a participant as the identity element of a set of participants, the empty set. Finally, with262

the last line, we define the set of participants as a sequence of at least two participants, being this set263

associative, commutative and with empty as the identity element.264

sort Participants .
subsort Participant < Participants .
op empty : -> Participant .
op __ : Participant Participant -> Participants

[assoc comm id: empty] .

Figure 4. Definition in Maude of a set operator for participants with associative and commutative
properties and empty as the identity element.

6/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 4 Definition inMaude of a set operator for participants with associative and commutative
properties and empty as the identity element.

Full-size DOI: 10.7717/peerjcs.1547/fig-4

that contains a sequence of other operators of the same type. The default axioms defined
by Maude are:

• assoc for specifying associativity property on the set
• comm for specifying commutativity property on the set
• id:e for specifying the identity element e for the set

To see an example of how to apply attributes, we will use the Participant type to
define an operator that indicates a set of participants on which we will apply properties
of interest. We first create the type Participants as shown in the first line of Fig. 4. The
next line indicates, through a relation of sub-types, that a participant is a type of set of
participants, that is, a set where there is only one element. Then, we define a participant
as the identity element of a set of participants, the empty set. Finally, with the last line,
we define the set of participants as a sequence of at least two participants, being this set
associative, commutative and with empty as the identity element.

Variables
Variables in Maude are defined using the structure "var <id> : <var-sort>.", where
<id> is the name by which to identify the variable and <var-sort> the type it can contain.
If we want to define more than one variable of the same type in a single statement, we can
replace the previous var with vars.

As an example, we can define three variables with identifiers K, PK and SK. The identifier
K is for a variable of type Key. For PK, the type will be PubKey, while for SK, it will be SecKey.
An operator can be stored in each variable that returns the type specified for the variable.
For example, a public key can be stored only in variables of type PubKey or super-types,
like Key. Furthermore, thanks to the sub-type relationship, the variable K can also store the
contents of PK or SK.

System modules
System modules allow us to model systems in Maude, having non-deterministic behaviour
with the possibility of infinite executions. We define them using the structure mod

<ModuleName> is <DeclarationsAndStatements> endm, where <ModuleName> is the
module identifier in uppercase, and <DeclarationsAndStatements> are statements. As
statements, we can use those we have already seen, such as types and operators, although
there are also equations and rules.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 9/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-4
http://dx.doi.org/10.7717/peerj-cs.1547

3.4 Variables265

Variables in Maude are defined using the structure "var <id> : <var-sort> .", where <id>266

is the name by which to identify the variable and <var-sort> the type it can contain. If we want to267

define more than one variable of the same type in a single statement, we can replace the previous var268

with vars.269

As an example, we can define three variables with identifiers K, PK and SK. The identifier K is for a270

variable of type Key. For PK, the type will be PubKey, while for SK, it will be SecKey. An operator271

can be stored in each variable that returns the type specified for the variable. For example, a public key272

can be stored only in variables of type PubKey or super-types, like Key. Furthermore, thanks to the273

sub-type relationship, the variable K can also store the contents of PK or SK.274

3.5 System modules275

System modules allow us to model systems in Maude, having non-deterministic behaviour with the276

possibility of infinite executions. We define them using the structure mod <ModuleName> is277

<DeclarationsAndStatements> endm, where <ModuleName> is the module identifier in up-278

percase, and <DeclarationsAndStatements> are statements. As statements, we can use those279

we have already seen, such as types and operators, although there are also equations and rules.280

System modules specify rewrite theories. Theories are described in the form R = (∑, E, ϕ , R). The281

element ∑ represents the set of all system states. The symbol E represents the equational theories defined282

by the equations of the module. The symbol ϕ is a function that assigns a set of natural numbers to the283

states of ∑ according to their number of arguments. The last element, R, is the set of system rules that284

specify the transitions between the states in ∑.285

On the one hand, equations are statements of the form "eq <Term-1> = <Term-2> .", and286

they transform the left part of the equal sign to the right part so that Term-1 becomes Term-2. One287

way to view equations is as deterministic transformations that allow us to reduce or simplify expressions.288

On the other hand, rules are like equations, except the system’s state changes within the modelled system289

upon applying a rule. Rules have the form "rl [id] : l => r .", having an optional identifier290

id and converting the left part l to the right part r.291

These rules work over a state definition of our symbolic system. The specific representation of that292

system state is given in Figure 5. Here a sort is defined to represent the type of global state, and then we293

define an operator to model such type. The global state is defined as two components divided by |. On294

the left is a pool of participants in the system, while on the right, a pool of messages models the state of295

the system’s network.296

sort GlobalState .
op _|_ : Participants Messages -> GlobalState .

Figure 5. Definition of the system state for the NSPK protocol.

Now that we have the representation of the system, we move to the definition of the behaviour297

through the use of rules. The rules are presented in two groups. The first group has to do with the298

honest participant’s capabilities. Figure 6 shows the six rules, three of them conditional, that symbolically299

represent how the system works regarding the NSPK protocol specification. These rules are labelled in a300

way that they come in pairs. Notice that the first rule, labelled as 1s, models the behaviour of constructing301

and sending the first message depicted in Figure 1. As per the second rule, labelled 1r, it models the302

reception and treatment of the first message.303

The rules modelling an intruder’s behaviour are defined in Figure 7. Here the capabilities of some304

intruder, say E, to supplant the identity of an honest participant is shown. The first rule, labelled as E1,305

states the ability of an intruder to modify a valid message sent to him in order to resend it to another306

participant. The second rule, E2, is just a redirection of the message. Then, the third and fourth rules307

model how the honest participant that initiated the process with an intruder processes the received message.308

Finally, the fifth rule processes the message to get the secret and creates a new one to trick the victim into309

thinking he could process it.310

In relation to the rules, it is worth mentioning the capabilities of conditional rules. Conditional311

rules are similar to normal rules except they have the syntax "crl [<label>] : <Term-1> =>312

7/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 5 Definition of the system state for the NSPK protocol.
Full-size DOI: 10.7717/peerjcs.1547/fig-5

System modules specify rewrite theories. Theories are described in the form R = (
∑

, E,
ϕ, R). The element

∑
represents the set of all system states. The symbol E represents the

equational theories defined by the equations of the module. The symbol ϕ is a function that
assigns a set of natural numbers to the states of

∑
according to their number of arguments.

The last element, R, is the set of system rules that specify the transitions between the states
in

∑
.

On the one hand, equations are statements of the form "eq <Term-1> = <Term-2>.",
and they transform the left part of the equal sign to the right part so that Term-1 becomes
Term-2. One way to view equations is as deterministic transformations that allow us to
reduce or simplify expressions. On the other hand, rules are like equations, except the
system’s state changes within the modelled system upon applying a rule. Rules have the
form "rl [id]: l => r .", having an optional identifier id and converting the left part
l to the right part r.

These rules work over a state definition of our symbolic system. The specific
representation of that system state is given in Fig. 5. Here, a sort is defined to represent the
type of global state, and then we define an operator to model such type. The global state is
defined as two components divided by |. On the left is a pool of participants in the system,
while on the right, a pool of messages models the state of the system’s network.

Now that we have the representation of the system, we move to the definition of the
behaviour through the use of rules. The rules are presented in two groups. The first group
has to do with the honest participant’s capabilities. Figure 6 shows the six rules, three of
them conditional, that symbolically represent how the system works regarding the NSPK
protocol specification. These rules are labelled in a way that they come in pairs. Notice that
the first rule, labelled as 1s, models the behaviour of constructing and sending the first
message depicted in Fig. 1. As per the second rule, labelled 1r, it models the reception and
treatment of the first message.

The rules modelling an intruder’s behaviour are defined in Fig. 7. Here the capabilities
of some intruder, say E, to supplant the identity of an honest participant is shown. The
first rule, labelled as E1, states the ability of an intruder to modify a valid message sent to
him in order to resend it to another participant. The second rule, E2, is just a redirection
of the message. Then, the third and fourth rules model how the honest participant, that
initiated the process with an intruder, processes the received message. Finally, the fifth
rule processes the message to get the secret and creates a new one to trick the victim into
thinking he could process it.

In relation to the rules, it is worth mentioning the capabilities of conditional rules.
Conditional rules are similar to normal rules except they have the syntax "crl [<label>]:

<Term-1> => <Term-2> if <Condition-1> /\... /\ <Condition- k>.", where

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 10/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-5
http://dx.doi.org/10.7717/peerj-cs.1547

crl [1s] : p[A](pk(I,PK),Na,CSA) p[I](CSB) PS | none
=>
p[A](pk(I,PK),Na,CSA) p[I](CSB) PS | msg(A -> I, {Na,A}PK)
if not Na in CSB .

rl [1r] : p[B](sk(B,SK),pk(B,PK),CSB) PS | msg(I -> B, {N,I}PK)
=>
p[B](N,sk(B,SK),pk(B,PK),CSB) PS | none .

crl [2s] : p[B](Na,Nb,pk(A,PK),CSB) p[A](CSA) PS | none
=>
p[B](Na,Nb,CSB) p[A](CSA) PS | msg(B -> A, {Na,Nb}PK)
if not Nb in CSA .

rl [2r] : p[A](sk(A,SK),pk(A,PK),N,CSA) PS | msg(B -> A, {N,C}PK)
=>
p[A](C,N,CSA) PS | none .

rl [3s] : p[A](Na,Nb,pk(B,PK),CSA) PS | none
=>
p[A](Na,Nb) PS | msg(A -> B, {Nb}PK) .

rl [3r] : p[B](N,Na,pk(B,PK),sk(B,SK),CSB) PS | msg(A -> B, {N}PK)
=>
p[B](N,Na) PS | none .

Figure 6. Rules regarding the capabilities of the honest participants as defined by the simplified version
of the NSPK protocol.

<Term-2> if <Condition-1> /\ ... /\<Condition- k> .", where the list of state-313

ments <Condition-1> /\ ... /\ <Condition-k> are expressions that will return false or314

true. Conditions in conditional rules can take three forms:315

1. Equations with the syntax t=t’.316

2. Matching equations with the syntax t:=t’.317

3. Rewrite expressions with the syntax t->t’.318

Once our system is defined, we can analyze it to find vulnerabilities or failures due to the design. One319

form of analysis, reachability analysis, can be done using the search command. This command allows320

us to explore paths from one fully defined state to another that matches the given pattern. This command321

allows using different symbols to tell Maude the criteria that must be met to stop the search. By default, in322

Maude, searches are performed on a state graph using the breadth-first search approach. The search com-323

mand has the form "search <Term-1> <SearchArrow> <Term-2> .", where <Term-1>324

and <Term-2> are valid state statements of our modeled system. The word <SearchArrow> can be325

one of the following forms, each one giving a different criterion to proceed in the construction of the state326

graph:327

• =>1 to make a search of a single execution step, that is, only one rule is applied.328

• =>+ to make a search of one or more rewrite rules.329

• =>* to make a search of zero, one or more rewrite rules.330

• =>! to make a search of only canonical states, in other words, a state to which no rules can be331

applied.332

8/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 6 Rules regarding the capabilities of the honest participants as defined by the simplified ver-
sion of the NSPK protocol.

Full-size DOI: 10.7717/peerjcs.1547/fig-6

the list of statements <Condition-1> /\... /\ <Condition-k> are expressions that
will return false or true. Conditions in conditional rules can take three forms:
1. Equations with the syntax t=t’.
2. Matching equations with the syntax t:=t’.
3. Rewrite expressions with the syntax t->t’.
Once our system is defined, we can analyze it to find vulnerabilities or failures due

to the design. One form of analysis, reachability analysis, can be done using the search
command. This command allows us to explore paths from one fully defined state to another
that matches the given pattern. This command allows using different symbols to tell Maude
the criteria thatmust bemet to stop the search. By default, inMaude, searches are performed
on a state graph using the breadth-first search approach. The search command has the
form "search <Term-1> <SearchArrow> <Term-2>.", where <Term-1> and <Term-2>

are valid state statements of our modeled system. The word <SearchArrow> can be one of
the following forms, each one giving a different criterion to proceed in the construction of
the state graph:

• =>1 to make a search of a single execution step, that is, only one rule is applied.
• =>+ to make a search of one or more rewrite rules.
• =>* to make a search of zero, one or more rewrite rules.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 11/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-6
http://dx.doi.org/10.7717/peerj-cs.1547

rl [E1] : p[E](pk(E,PK),pk(B,PK’),sk(E,SK),CSE) PS |
msg(A -> E, {N,A}PK)
=>
p[E](N,pk(E,PK),pk(B,PK’),sk(E,SK),CSE) PS |
msg(A -> B, {N,A}PK’) .

rl [E2] : p[E](CSE) PS | msg(B -> A, C)
=>
p[E](CSE) PS | msg(E -> A, C) .

rl [E3] : p[A](pk(A,PK),sk(A,SK),N,CSA)
PS | msg(E -> A, {N,C}PK)
=>
p[A](C,N,CSA) PS | none .

rl [E4] : p[A](Nb,pk(E,PK),CSA) PS | none
=>
p[A](CSA) PS | msg(A -> E, {Nb}PK).

rl [E5] : p[E](pk(E,PK),pk(B,PK’),sk(E,SK),CSE)
PS | msg(A -> E, {N}PK)
=>
p[E](N,CSE) PS | msg(A -> B, {N}PK’) .

Figure 7. Rules regarding the capabilities of the intruder as defined by the simplified version of the
NSPK protocol.

As a first example, we will check if we can reach, from a valid initial state, a state in our model where333

two participants have shared some information, i.e. they have followed the protocol accordingly. Figure 8334

is the output given by the command where init is a valid initial state previously defined. The result is335

that Maude finds two possible states where two honest participants have applied the protocol.336

Figure 8. Output of a search command to examine the execution paths for states where two participants
have applied the NSPK protocol, and thus share their respective secret values.

As a second example, we can try something more interesting. We will see if a participant manages to337

trick both sides in the system we have modelled, which is a critical situation an honest participant does338

not want to happen. Searches for undesired states that do not find solutions mean that the system’s critical339

situation is not reached from the specified initial state. Figure 9 shows the use of the search command340

with the same initial state as before, but now it has a final state where the intruder has acquired both341

secrets from the other two participants.342

The other path to formally specify and verify properties is using a technique called model-checking.343

9/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 7 Rules regarding the capabilities of the intruder as defined by the simplified version of the
NSPK protocol.

Full-size DOI: 10.7717/peerjcs.1547/fig-7

• =>! to make a search of only canonical states, in other words, a state to which no rules
can be applied.

As a first example, we will check if we can reach, from a valid initial state, a state in our
model where two participants have shared some information, i.e., they have followed the
protocol accordingly. Figure 8 is the output given by the command where init is a valid
initial state previously defined. The result is that Maude finds two possible states where
two honest participants have applied the protocol.

As a second example, we can try something more interesting. We will see if a participant
manages to trick both sides in the system we have modelled, which is a critical situation an
honest participant does not want to happen. Searches for undesired states that do not find
solutions mean that the system’s critical situation is not reached from the specified initial
state. Figure 9 shows the use of the search command with the same initial state as before,
but now it has a final state where the intruder has acquired both secrets from the other two
participants.

The other path to formally specify and verify properties is using a technique called
model-checking. Maude has a model checker (Eker, Meseguer & Sridharanarayanan, 2004)
to perform model checking by writing properties as formulas in linear temporal logic

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 12/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-7
http://dx.doi.org/10.7717/peerj-cs.1547

Figure 8 Output of a search command to examine the execution paths for states where two partici-
pants have applied the NSPK protocol, and thus share their respective secret values.

Full-size DOI: 10.7717/peerjcs.1547/fig-8

Figure 9 Output of a search command to examine the execution paths for a MITM attack in the NSPK
protocol symbolic specification.

Full-size DOI: 10.7717/peerjcs.1547/fig-9

and using modules to describe predicates about the system states. We further explain this
concept and put it into practice in ‘Verification’.

Functional modules
Functional modules specify functions and are similar to system modules, except that they
can only contain equations. Functional modules, unlike system modules, are deterministic
and finite. To define a functional module in Maude, we do so between the fmod and endfm
keywords. Let us see an example of specifying a functional type module.

If we look at the following figure, we have a functionalmodule, defined between fmod and
endfm, which specifies through equations the factorial mathematical function of a number
N. In the module, we have defined the symbol for said operation and the equations that
will transform the expression until it is irreducible, thus obtaining the result.

Continuing with Fig. 10, on line three, we specify the symbol of the factorial function,
which obtains a natural number in place of the _ symbol and returns another natural
number, as indicated by the expression Nat −> Nat.

Then, on line four, we declare the variable N, which we will use in the following equations
on lines five and six. The first equation defines that when Maude finds a "0 !" on the left

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 13/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-8
https://doi.org/10.7717/peerjcs.1547/fig-9
http://dx.doi.org/10.7717/peerj-cs.1547

Figure 9. Output of a search command to examine the execution paths for a MITM attack in the NSPK
protocol symbolic specification.

Maude has a model checker (Eker et al., 2004) to perform model checking by writing properties as344

formulas in linear temporal logic and using modules to describe predicates about the system states. We345

further explain this concept and put it into practice in Section 7.346

3.6 Functional modules347

Functional modules specify functions and are similar to system modules, except that they can only contain348

equations. Functional modules, unlike system modules, are deterministic and finite. To define a functional349

module in Maude, we do so between the fmod and endfm keywords. Let’s see an example of specifying350

a functional type module.351

If we look at the following figure, we have a functional module, defined between fmod and endfm,352

which specifies through equations the factorial mathematical function of a number N. In the module, we353

have defined the symbol for said operation and the equations that will transform the expression until it is354

irreducible, thus obtaining the result.355

1 fmod FACT is
2 protecting NAT .
3 op _! : Nat -> Nat .
4 var N : Nat .
5 --- factorial for N=0 is 1
6 eq 0 ! = 1 .
7 --- factorial for N>0 is (N-1)! * N
8 eq N ! = (sd(N,1))! * N [owise] .
9 endfm

Figure 10. Code of a functional module that implements the factorial in Maude.

Continuing with Figure 10, on line three, we specify the symbol of the factorial function, which356

obtains a natural number in place of the symbol and returns another natural number, as indicated by the357

expression Nat −> Nat.358

Then on line four, we declare the variable N, which we will use in the following equations on lines359

five and six. The first equation defines that when Maude finds a "0 !" on the left side, this is translated360

into the number one. The second equation will be executed whenever the first one has not executed thanks361

to the attribute defined owise, and it will return the factorial function of a number N as a factorial of N-1362

multiplied by N.363

In addition, it should be noted that just as there are conditional rules, there are also conditional364

equations. These behave in the same way as the equations described, with the difference that one365

or more conditions must pass to be applied, in the same way as the conditions of the rules. The366

syntax for conditional equations is "ceq <Term1> = <Term2> if <Condition-1> / ...367

/ <Condition-k> .", where conditions <Condition-k> are expressions that will return false or368

true. The conditions of the conditional equations can take two forms:369

1. Be other equations, with the form t = t’.370

2. Matching equations, with the form t := t’.371

10/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 10 Code of a functional module that implements the factorial in Maude.
Full-size DOI: 10.7717/peerjcs.1547/fig-10

side, this is translated into the number one. The second equation will be executed whenever
the first one has not executed thanks to the attribute defined owise, and it will return the
factorial function of a number N as a factorial of N-1 multiplied by N.

In addition, it should be noted that just as there are conditional rules, there are
also conditional equations. These behave in the same way as the equations described,
with the difference that one or more conditions must pass to be applied, in the
same way as the conditions of the rules. The syntax for conditional equations is "ceq
<Term1>= <Term2>if <Condition-1>/ ... / <Condition-k>.", where conditions
<Condition-k> are expressions that will return false or true. The conditions of the
conditional equations can take two forms:
1. Be other equations, with the form t=t’.
2. Matching equations, with the form t:=t’.
To finish, we will see the reduce command. This command is very useful for us to test

the defined equations in functional or system modules. The reduce command receives
an expression and returns the maximum reduced expression using the equations we have
defined. For example, we will use the definition of the factorial operation in the FACT
functional module to test different expressions. For example, as Fig. 11 shows, we tried to
reduce the factorial of three and the factorial of zero. The first returns six, and the second
returns one, both correct. In addition, since no rules are applied in reduce, we can see how
in both executions, the number of rewrites is zero, indicating that no rule was applied and,
therefore, the state was not changed.

KEY ENCAPSULATION MECHANISMS
In this section, we explain three key encapsulationmechanisms: Kyber (Avanzi et al., 2019),
BIKE (Aragon et al., 2017) and McEliece (Chou et al., 2022). Specifically, we will explain
their behaviour and the security fundamentals behind each one of them to give the reader
an understanding of what our work has been based on.

Behaviour
The three key encapsulation mechanisms’ behaviour fits the following model represented
in Fig. 12. Participants of the protocol will be Alice and Bob for literature reasons. Before

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 14/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-10
http://dx.doi.org/10.7717/peerj-cs.1547

Figure 11 Execution of two factorial expressions with the reduce command.
Full-size DOI: 10.7717/peerjcs.1547/fig-11

(PK, SK)KeyGen()

ALICE BOB

Enc(PK) (C,K)

Dec(C, SK) K

PK

C

Figure 12 High-level view of the behaviour of a key exchange of a KEM between two honest partici-
pants, i.e., Alice and Bob.

Full-size DOI: 10.7717/peerjcs.1547/fig-12

explaining an example trace of the execution, we look into the three common steps in these
KEMs.
• KeyGen()→ (PK, SK): Step where a pair of values is generated, acting as public and
secret keys during the session. Stands for Key Generation.
• Enc(PK)→ (C, K): Step where using the public key PK of another participant, the
values, that change depending on the KEM, used in the computation of a shared key K
are encapsulated into a ciphertext C. Stands for encapsulation.
• Dec(C, SK)→ K: Step where previously encapsulated value or values in the ciphertext
C are now decapsulated using some operations alongside the secret key SK. These values
are then used to compute the shared key K. Stands for decapsulation.

A KEM is initiated when a participant, i.e., Alice, performs the KeyGen function, using
some predefined values of the scheme, to generate a pair of keys (PK, SK). The former
key, PK, is the public key and can be known by every other network participant. The latter,

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 15/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-11
https://doi.org/10.7717/peerjcs.1547/fig-12
http://dx.doi.org/10.7717/peerj-cs.1547

SK, is a secret key only known and accessible by the user that generated it, in this case,
Alice. Once Alice has both keys, she will send a message to another participant, Bob, with
her public key. Once Bob receives Alice’s public key, he performs Enc. The Enc function
produces a pair (C, K), where C is a ciphertext encapsulating some key information for
later deriving the second element of the pair, K, which is the future shared key between the
two participants. Once Bob has in his storage the shared key and the ciphered text, he sends
the latter in a new message back to Alice, who started the protocol session and from whom
he used the public key. Alice then receives the ciphered text C from Bob and uses her secret
key SK to perform the Dec function over ciphertext C. Function Dec outputs ideally the
original encapsulated information, allowing for the computation of the same shared key
generated by Bob. With the conclusion of this last step, participants have securely shared a
key K between them.

As we have seen, the network is elementary, and participant interaction is minimal. No
confirmation messages or previous establishment to know where the participants are in the
network is performed. We then assume that any necessary discovery and set-up procedures
have been done previously by the corresponding participants.

Security fundamentals
In this section, we focus on the security aspects of each KEM. We recall the algebraic
properties each KEM needs to function properly in order to be formally specified using
our framework in ‘Framework Specification’ below.

Kyber
Kyber (Avanzi et al., 2019) is an IND-CCA2-secure key encapsulation mechanism whose
security is based on the hardness of solving the learning-with-errors (LWE) problem
over module lattices. Kyber works with vectors and matrices of polynomials with various
operations, such as concatenation, transposition, product or other more complex ones,
such as hash and key derivation functions. These operations are present in the main
functions KeyGen, Enc and Dec, depicted in Figs. 13 and 14. It is important to clarify that
the algorithms in both figures represent an instance of the algorithms previously explained
with Fig. 12 in ‘Behaviour’. Specifically, Figure 13 shows three algorithms that encapsulate
the ones present in Fig. 14. The encapsulation is done to provide further security measures
as stated by Avanzi et al. (2019). The algorithms on the left, KeyGen and Dec, are executed
by the initiator of the protocol. Meanwhile, the algorithm on the right, Enc, is run by the
other participant.

Furthermore, In Fig. 13 it should be noted that in algorithm CCAKEM.Dec, when the
sub-function CPAPKE.Dec(s,(u,v)) takes place, the computed text m′ could not be the
same as the one generated by the other participant in CCAKEM.Enc. This different message
m′ is a value close to m given the property isSmall(p) over a polynomial p. We say that
a polynomial p is small when its degree is lower than a given number established by the
protocol. This approximately equal valuem′ is then used to compute a new, but also close,
value c ′, which is compared to the received c in a message. Depending on their equality, the
construction of the shared key will be different from the key derivation function (KDF).

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 16/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

pk

c

Figure 13 Algorithms of Kyber Key EncapsulationMechanism adapted from Avanzi et al. (2019).
Full-size DOI: 10.7717/peerjcs.1547/fig-13

pk

c

Figure 14 Internal algorithms of the Kyber Key EncapsulationMechanism adapted from Avanzi et al.
(2019).

Full-size DOI: 10.7717/peerjcs.1547/fig-14

This differentiation of values arises with low probability (Avanzi et al., 2019), but it states
that the encryption and decryption phases are not error-prone.

Nevertheless, why are they different in the end? To answer this question is to understand
the strength of the scheme against a quantum adversary. If we check the most internal
functions, that is, the CPAPKE ones shown in Fig. 14, we can see in algorithm CPAPKE.Enc
that there are vector values such as e1 and e2 that have been sampled with a random seed

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 17/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-13
https://doi.org/10.7717/peerjcs.1547/fig-14
http://dx.doi.org/10.7717/peerj-cs.1547

h

c

Figure 15 Algorithms implementing the three main steps of the KEMBIKE, adapted from Aragon et
al. (2017).

Full-size DOI: 10.7717/peerjcs.1547/fig-15

r using function sampleCBD from a centred binomial distribution. These values add
randomness to the computations, thus making the computations harder to replicate or
break.

Decompressq(Compressq(X ,1),1)=X ′ (1)

Function Decompressq processes the error when extracting from the pair of vectors c1
and c2 the vectors u and v respectively, at the middle of step CPAPKE.Dec. This function
has a property in combination with function Compressq, which states in Eq. (1) that
decompressing the compress of a given value X with the same second parameters, gives a
new value X ′ which is similar to the original compressed value. This property takes place
while computing the original message m as it is shown in Eq. (2), present at the end of the
Dec algorithm in Fig. 14.

m=Compress(v ′− sTu′,1) (2)

It is important to mention that other operations take place, such as generate, sampleCBD,
Compress,Decompress, encode and decode. These are necessary for themain three operations
we have described before but are not explained in detail in this article because they are
not necessary for the understanding of the protocol. Full descriptions of these specific
functions are available at Avanzi et al. (2019).

BIKE
BIKE (Aragon et al., 2017), which stands for BIt-flipping Key Encapsulation, is a code-based
key encapsulation mechanism. Figure 15 shows BIKE’s specific algorithms. Although the
previous KEMKyber is lattice-based and this KEMBIKE is code-based, they follow a similar
structure, and BIKE’s algorithms are an instance of the functionalities of ‘Behaviour’.
The key part of this KEM is how the decapsulation algorithm, to process the received
ciphertext, manages to recover the original tuple of errors computed during the

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 18/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-15
http://dx.doi.org/10.7717/peerj-cs.1547

encapsulation step. To better understand the process, we first need to know where the
errors are added. Looking at Fig. 15 we can see in step Encaps, line 3, that C is computed
as a tuple of values (c0,c1). The first element, c0, is defined as e0+e1h, being h= h1h−10 the
public key previously received and (e0,e1) the tuple of error values we are looking for. The
second element, c1, encapsulates the value m performing the exclusive or operation with
a hash function L :R2

→M on the two same error values. This value m holds significant
importance since it is used to compute, through other hash function H :M→ εt , the pair
of error values, (e0,e1), specifically in line 2.

Now, on the Decaps step line 1, present also in Fig. 15, e ′ will be the result of applying
the decoder function on c0 with the components of the public key h, that is, the tuple
h0 and h1. This decoding algorithm will ideally return a pair of errors equal to those of
e from the Encaps step such that e0h0+ e1h1 = s, where s represents the first parameter
of decoder . Since we managed to extract the original errors with high probability, we are
able to compute m′ on line 2 applying exclusive or over c1=m⊕L(e0,e1) and L(e0,e1). It
is important to note that similar to the previous KEM, m′ here is named to denote that
the computed value may not be the same since the decoder function might fail with low
probability. Thanks to two properties of exclusive or, we will get the original m. The first
property is where X ⊕X = 0, and the second property has to do with X ⊕0= X . The
combination of these two properties allows us to compute in line 3 the same shared key
using another hash function K .

Another operation also takes place and is fully defined by Aragon et al. (2017). The
concrete algorithm is Black-Gray-Flip, and it implements the decoder. It is necessary for
the decoding of a ciphertext, but we do not explain it in detail because it is not necessary
for the understanding of the protocol.

Classic McEliece
Classic McEliece (Chou et al., 2022) is a code-based key encapsulation mechanism designed
to achieve IND-CCA2 security. Even though it is code-based, like BIKE, and follows the
same steps all KEMs do, it is a new instance, providing new algorithms for each of the three
main functions for key generation, encapsulation and decapsulation.

The key part for this specific instance of a KEM resides at the ENCODE and DECODE
functions, and the role they play in the encapsulation and decapsulation algorithms,
respectively. Figure 16 shows, in algorithm Enc line 2, the application of function ENCODE
over some error e with the public key T to get the ciphertext C . A careful reader can see
the resemblance between BIKE’s encapsulation and this one because some sampled or
generated error is being ‘‘encapsulated’’ with the public key previously received. Then the
shared key is computed using a hash function H : {0,1}8×Fn

2×F
mt
2 →Fl

2.
In algorithm Dec , values s and 0′ are extracted from the private key computed with

SeededKeyGen, that is, KeyGen. With these values, the application of function DECODE
manages to decapsulate the original error e. This is done thanks to the idea represented in
Eq. (3). Furthermore, notice that even if the decoding process can fail, i.e., returning e as
⊥, there is a way in which the shared key can be computed thanks to the existence of some

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 19/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

T

C

Figure 16 Algorithms of McEliece adapted from Chou et al. (2022).
Full-size DOI: 10.7717/peerjcs.1547/fig-16

error correction mechanisms.

DECODE(ENCODE(E,T),0′)= E (3)

It is important to note that although the second argument of DECODE and ENCODE
are different, they share a common value. If we expand the values with their specific
construction definitions, i.e., the specific functions used in their computations, we get that
T is the first component from the output of MATGEN (0) while 0′ is the last component
from the same output. With this discovery, we get a relation between the two, in principle,
distinct values, so when the same matrix generation function has been used to compute
the two values, the property defined in Eq. (3) holds.

As with previous KEMs, other operations take place. For Classic McEliece it is MatGen,
Encode, Decode, Irreducible, FieldOrdering and FixedWeight. These are necessary
for the main three operations we have described before but are not explained in detail here
because only a high-level representation is needed for the specification. Full descriptions
of these specific functions are available at Chou et al. (2022).

FRAMEWORK SPECIFICATION
This section presents the framework for the symbolic specification of KEMs. First, general
and KEM-specific assumptions are explained. These assumptions are necessary to cover
the mathematical notions the symbolic model cannot manage, thus abstracting ourselves
from computational problems. Then, an overview of the framework is given.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 20/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-16
http://dx.doi.org/10.7717/peerj-cs.1547

Assumptions
During the design of our framework, assumptions on the symbolic models are made to
ease the specification process by allowing us to abstract from implementation details.
Under such assumptions, systems are easier to specify and understand, assisting in the
automatization process by allowing the engineer to focus his efforts on capturing the
behaviour and key transformations of the KEM. We have taken the freedom to make
some assumptions on the specification of the symbolic modules for the three KEMs in our
framework.

The assumptions are divided into Dolev-Yao adversary assumptions and KEM-
specification assumptions. The former assumptions, Dolev-Yao, are stated next, implying
additional rules and conditions for our Maude system module. These new rules are
explained in ‘Framework Infrastructure’. We also assume that there will be only three
participants in the network, two of them honest (Alice and Bob) and one adversary (Eve).
The latter assumptions are almost all over mathematical and low-level concepts for each
KEM. Such assumptions allow us to abstract ourmodel from implementation requirements
and focus on representing the desired behaviour among the participants, only specifying the
essential part of these mechanisms based on the explanations in ‘Security Fundamentals’
for each of them.

Dolev-Yao
The Dolev-Yao adversary model was first introduced byDolev & Yao (1983). In that article,
the authors explained that public-key schemes are secure against adversaries that cannot
modify the environment, which is unrealistic. That is why they presented different examples
of protocols whose security properties could be compromised if an intruder can take action
over the messages of a network. An intruder can be either passive or active over a network
where other participants send and receive messages during, for example, a handshake
protocol or a key exchange scheme. The passive intruder can only read the message and
extract raw content from it, meaning they cannot derive any information from messages
without the proper private key. The active intruder can read messages, modify them, and
send them through the network. It is essential to clarify that the intruder is considered a
polynomial-time Turing machine.

In their seminal work, the authors proposed the Dolev-Yao intruder model. This model
states the capabilities an intruder has over a network. Such capabilities are:

• Intruder can obtain any message that is passing through the network.
• He is a legitimate user of the network. That is, he can do any actions an honest participant
can.
• The intruder has the opportunity to be a receiver to any participant. That is, he can
receive messages from other participants.

It must be noted that the network participants, the intruder included, must comply with
the following assumptions:

• One-way functions are unbreakable. In other words, the basic primitives of the protocol
are considered to be non-reversible.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 21/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

• The protocol definition cannot be changed and must be followed by any participant. A
user cannot do undefined steps during the protocol execution.
• Public keys can be used for encryption by everyone.
• Private keys can decrypt messages encrypted by the corresponding public key.

Kyber
In the case of the KEM known as Kyber, we make some assumptions on the mathematical
aspects of the data types we try to represent. We also assume certain qualities of some
operations. In the case of basic data types, we assume that all matrices are square matrices
and that vectors are column vectors, considering transposed vectors as row vectors. Vectors,
representing polynomials, are considered to be of the necessary degree to be considered
small, thus fulfilling the property isSmall(p) explained in ‘Kyber’. Related to the qualities
of some operations, we only consider for the decompression function the ideal case where
there is no error in obtaining m. Thus, m′ will be equal to m. Furthermore, we assume
that the deciphered message is the shared key between the participants, so no additional
functions, such as KDF, need to be specified and applied. Finally, our sampling procedures
are deterministic, but we will assume that the operators sampled are from a CBD whenever
it is the case.

BIKE
Regarding the assumptionsmade over the symbolic model of BIKE, we have some inherited
from the specification provided byAragon et al. (2017) and the rest aremade over operation
decoder . From the specification, we inherit the assumption for Hardness of Quasi Cyclic
Syndrome Decoding (QCSD) and Hardness of Quasi Cyclic Codeword Finding (QCCF),
needed for code-based KEM. We also assume indistinguishability in two aspects. First,

we assume it for the public key, i.e., h1h−10 from random (ho,h1)
$
←Hw . Second, assume

indistinguishability of the first half of the ciphertext c , i.e., (e0+ e1h) where h= h1h−10 ,

from random ((e0,e1),h)
$
← εt ×R. We assume the decoder function is correct and always

returns the correct pair of errors, so we assume no decoding failure, i.e., σ = 0.

Classic McEliece
With Classic McEliece, we focus on operational assumptions regarding its decoding
algorithm DECODE. As per the specification given by Chou et al. (2022), algorithm
DECODE has two possible outputs. On the first one, the original errors are recovered
given some conditions, i.e., there exists a weight-t vector e ∈ Fn

2 such that C =He with
H = (Imt |T), then DECODE (C,0′)= e. The second condition is when the ciphertext does
not have the form He, so DECODE returns DECODE (C,0′) = ⊥. For this reason, we
assume that all applications of DECODE always return the original errors; thus, C always
has the form He for any weight-t vector e ∈Fn

2 .

Framework infrastructure
Different modules carry on the specification of our framework. Each of these modules is
specific to one part of the KEMs, and, when set together, builds a representative symbolic
model. In this subsection, we will examine them and explain the basic contents and their

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 22/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

DATA-TYPES

KEM

KEM-KEYGEN KEM-ENC KEM-DEC

MODEL-CONFIGURATION

KEM-HASH-OPERATIONS

Figure 17 Structure of our framework in modules with relations of inclusion between them.
Full-size DOI: 10.7717/peerjcs.1547/fig-17

purpose. Specifically, all KEMs in our framework are specified with six functional modules
and one system module. An overview of the structure of the framework is presented
in Fig. 17. Boxes named DATA-TYPES, KEM-HASH-OPERATIONS, KEM-KEYGEN, KEM-ENC,
KEM-DEC and MODEL-CONFIGURATION represent functional modules, where KEM is the
corresponding name of the KEM, i.e., for KYBER we have KYBER. The system module is
named after the corresponding KEM following the previous example.

Functional modules
DATA-TYPES. Basic data types and operations over them are specified in thismodule. Data
types are definedwith sorts, and relations between themare definedwith the subsort relation.
For example, in most of the KEMs, the basic data type is polynomials, and one fundamental
form of a polynomial might be a natural number, between others. Operations over the basic
data types are defined here via operator declaration symbols. These operators might have
some properties defined through the use of axioms like associativity, commutativity and/or
the identity element. Other properties, like the distributive one, can be specified through
the appropriate equations to define properties between operations. Another important
feature is thatmost assumptions of a protocol, like the onesmentioned in ‘Assumptions’ are
portrayed here. For example, if in a KEM there is an inverse notion, then it is interesting to
specify the negation case where something and its inverse give the identity element through
some operation. These assumptions and properties will help in the resolution of the model,
making things simpler as we will see in subsequent modules.

Furthermore, complex data structures like pairs and lists of data are defined here. For
example, the data structure Pair needs the declaration of some function which can access
its data elements. To this end, along the definition of a Pair, functions first and second

are defined over pairs to access the first and second components, respectively.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 23/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-17
http://dx.doi.org/10.7717/peerj-cs.1547

KEM-HASH-OPERATIONS. The module has the responsibility of declaring and defining
any hashing functions present in the KEM. These hash functions are declared using the
operator declaration syntax of Maude, and the semantics is defined using equations. Such
a definition is symbolic and deterministic, representing the values that would come from
the application of the hash to a symbolic value.

KEM-KEYGEN. The key generation module aims to harbour the sampling operations,
values and functions necessary to generate pairs of public and private keys. These sampling
functions would assume the corresponding sampling distributions and be modelled
through equations to represent the sampling procedure symbolically.

KEM-ENC. Following a similar philosophy from the previous key generation module
here would be defined the necessary samplings, with their assumed distributions, and
cryptography operations. As always, all of them are defined in a symbolic manner. In the
end, all this would represent the necessary components to carry on with the encapsulation
process of some value as a ciphertext.

KEM-DEC. The key to the specified KEMs resides in this module. Here the equational
theories related to the core operations are declared and defined. These equations
represent properties in the underlying operations, be they mathematical or not. A
simple example to illustrate a property over some operation would be the well-known
Diffie Hellman key exchange algorithm. At the end of the algorithm, both participants
derive the same values thanks to the property of modular exponentiation such that
(g amodp)bmodp= (g bmodp)amodp.

MODEL-CONFIGURATION. Module that sets the basic structure of the system upon
which the KEMwill work on.We first define the participants, explaining their structure and
components. Also, related to their components, we define some notation so participants can
store and identify different types of keys and encrypted texts, linking those to a participant.
Then the message syntax is set. Finally, we define the global state, where participants send
and receive messages. All these element definitions are the same for the three KEMs we
have defined following the framework.

Participants in our model follow the operational definition shown in Fig. 18. Here
three identifiers are declared for our corresponding participants. Then the structure of a
participant is declared. A participant consists of an Identifier, like the ones that have been
defined, a group of keys the participant know, and a group of elements that represent its
elements that are not keys and the participant has in its possession, that is, in its memory.

Shared between all KEMs, these operators have the purpose of storing a relation between
a cryptography component and a participant. Examples of such cryptography components
are the notion of types of keys such as public, secret and shared keys, or a ciphertext.
Figure 19 shows the definition of the former, where sorts PKey and SKey represent the
publicly available keys and secret keys, only known to the creator and or corresponding
peer, respectively.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 24/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

global state, where participants send and receive messages. All these element definitions are the same for628

the three KEMs we have defined following the framework.629

Participants in our model follow the operational definition shown in Figure 18. Here three identifiers630

are declared for our corresponding participants. Then the structure of a participant is declared. A631

participant consists of an Identifier, like the ones that have been defined, a group of keys the participant632

know, and a group of elements that represent its elements that are not keys and the participant has in its633

possession, that is, in its memory.634

ops Alice Eve Bob : -> Identifier .
op _[_]_ : Identifier Keys Content -> Principal .

Figure 18. Definition of a participant at the network in MODEL-CONFIGURATION.

Shared between all KEMs, these operators have the purpose of storing a relation between a cryptogra-635

phy component and a participant. Examples of such cryptography components are the notion of types of636

keys such as public, secret and shared keys, or a ciphertext. Figure 19 shows the definition of the former,637

where sorts PKey and SKey represent the publicly available keys and secret keys, only known to the638

creator and or corresponding peer, respectively.639

op publicKey : Identifier Key -> PKey .
op secretKey : Identifier Key -> SKey .
op sharedKey : Identifier Key -> SKey [format (g! o)] .

Figure 19. Definition of components to link three notions of keys with a participant.

Messages are defined by the operator msg shown in Figure 20. A message contains information about640

two participant identifiers, the status of the message and the content it carries. The first identifier indicates641

the source of the message, and the second is the identifier of the participant to whom the message is642

delivered throw the network. Then, the status of a message can take the values sentX and receivedX ,643

where X can either be PK or C for public key or ciphertext, respectively, depicting in part the current step644

over the network. At last, the content of the message is assumed to be secure, meaning a participant can645

not infer any additional contents from it without the required information.646

op msg{(_,_)[_]_} : Identifier Identifier MsgState Content -> Msg .

Figure 20. Definition of the message operator for our symbolic model.

Figure 21 shows the definition of the structure representing our system. Here, and from left to647

right, the elements our rules will handle are specified. At the right corner, we assigned a field between648

symbols { and } for all the available sample values. These samples are modelled as constant values649

representing symbolic values, to use in any of the Keygen, Enc or Dec steps. Next, we have an associative650

and commutative set of participants between symbols < and >, following the structure explained at the651

beginning of this section. Then, at the left end, we have the network, with a collection of associative652

messages representing a kind of record that lets participants work over the sent messages. All this together653

gives us a proper term structure that can represent any network with any participants and messages being654

sent and received.655

op {_}<_>net(_) : Content Principals Msgs -> GlobalState .

Figure 21. Definition of the syntax to represent the global state of our system.

5.2.2 System module656

With the system module identified as the name of the corresponding KEM, we try to model the behaviour657

of honest participants and the intruder’s capabilities over the network, that is, the global state we defined.658

19/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 18 Definition of a participant at the network in MODEL-CONFIGURATION.
Full-size DOI: 10.7717/peerjcs.1547/fig-18

global state, where participants send and receive messages. All these element definitions are the same for628

the three KEMs we have defined following the framework.629

Participants in our model follow the operational definition shown in Figure 18. Here three identifiers630

are declared for our corresponding participants. Then the structure of a participant is declared. A631

participant consists of an Identifier, like the ones that have been defined, a group of keys the participant632

know, and a group of elements that represent its elements that are not keys and the participant has in its633

possession, that is, in its memory.634

ops Alice Eve Bob : -> Identifier .
op _[_]_ : Identifier Keys Content -> Principal .

Figure 18. Definition of a participant at the network in MODEL-CONFIGURATION.

Shared between all KEMs, these operators have the purpose of storing a relation between a cryptogra-635

phy component and a participant. Examples of such cryptography components are the notion of types of636

keys such as public, secret and shared keys, or a ciphertext. Figure 19 shows the definition of the former,637

where sorts PKey and SKey represent the publicly available keys and secret keys, only known to the638

creator and or corresponding peer, respectively.639

op publicKey : Identifier Key -> PKey .
op secretKey : Identifier Key -> SKey .
op sharedKey : Identifier Key -> SKey [format (g! o)] .

Figure 19. Definition of components to link three notions of keys with a participant.

Messages are defined by the operator msg shown in Figure 20. A message contains information about640

two participant identifiers, the status of the message and the content it carries. The first identifier indicates641

the source of the message, and the second is the identifier of the participant to whom the message is642

delivered throw the network. Then, the status of a message can take the values sentX and receivedX ,643

where X can either be PK or C for public key or ciphertext, respectively, depicting in part the current step644

over the network. At last, the content of the message is assumed to be secure, meaning a participant can645

not infer any additional contents from it without the required information.646

op msg{(_,_)[_]_} : Identifier Identifier MsgState Content -> Msg .

Figure 20. Definition of the message operator for our symbolic model.

Figure 21 shows the definition of the structure representing our system. Here, and from left to647

right, the elements our rules will handle are specified. At the right corner, we assigned a field between648

symbols { and } for all the available sample values. These samples are modelled as constant values649

representing symbolic values, to use in any of the Keygen, Enc or Dec steps. Next, we have an associative650

and commutative set of participants between symbols < and >, following the structure explained at the651

beginning of this section. Then, at the left end, we have the network, with a collection of associative652

messages representing a kind of record that lets participants work over the sent messages. All this together653

gives us a proper term structure that can represent any network with any participants and messages being654

sent and received.655

op {_}<_>net(_) : Content Principals Msgs -> GlobalState .

Figure 21. Definition of the syntax to represent the global state of our system.

5.2.2 System module656

With the system module identified as the name of the corresponding KEM, we try to model the behaviour657

of honest participants and the intruder’s capabilities over the network, that is, the global state we defined.658

19/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 19 Definition of components to link three notions of keys with a participant.
Full-size DOI: 10.7717/peerjcs.1547/fig-19

global state, where participants send and receive messages. All these element definitions are the same for628

the three KEMs we have defined following the framework.629

Participants in our model follow the operational definition shown in Figure 18. Here three identifiers630

are declared for our corresponding participants. Then the structure of a participant is declared. A631

participant consists of an Identifier, like the ones that have been defined, a group of keys the participant632

know, and a group of elements that represent its elements that are not keys and the participant has in its633

possession, that is, in its memory.634

ops Alice Eve Bob : -> Identifier .
op _[_]_ : Identifier Keys Content -> Principal .

Figure 18. Definition of a participant at the network in MODEL-CONFIGURATION.

Shared between all KEMs, these operators have the purpose of storing a relation between a cryptogra-635

phy component and a participant. Examples of such cryptography components are the notion of types of636

keys such as public, secret and shared keys, or a ciphertext. Figure 19 shows the definition of the former,637

where sorts PKey and SKey represent the publicly available keys and secret keys, only known to the638

creator and or corresponding peer, respectively.639

op publicKey : Identifier Key -> PKey .
op secretKey : Identifier Key -> SKey .
op sharedKey : Identifier Key -> SKey [format (g! o)] .

Figure 19. Definition of components to link three notions of keys with a participant.

Messages are defined by the operator msg shown in Figure 20. A message contains information about640

two participant identifiers, the status of the message and the content it carries. The first identifier indicates641

the source of the message, and the second is the identifier of the participant to whom the message is642

delivered throw the network. Then, the status of a message can take the values sentX and receivedX ,643

where X can either be PK or C for public key or ciphertext, respectively, depicting in part the current step644

over the network. At last, the content of the message is assumed to be secure, meaning a participant can645

not infer any additional contents from it without the required information.646

op msg{(_,_)[_]_} : Identifier Identifier MsgState Content -> Msg .

Figure 20. Definition of the message operator for our symbolic model.

Figure 21 shows the definition of the structure representing our system. Here, and from left to647

right, the elements our rules will handle are specified. At the right corner, we assigned a field between648

symbols { and } for all the available sample values. These samples are modelled as constant values649

representing symbolic values, to use in any of the Keygen, Enc or Dec steps. Next, we have an associative650

and commutative set of participants between symbols < and >, following the structure explained at the651

beginning of this section. Then, at the left end, we have the network, with a collection of associative652

messages representing a kind of record that lets participants work over the sent messages. All this together653

gives us a proper term structure that can represent any network with any participants and messages being654

sent and received.655

op {_}<_>net(_) : Content Principals Msgs -> GlobalState .

Figure 21. Definition of the syntax to represent the global state of our system.

5.2.2 System module656

With the system module identified as the name of the corresponding KEM, we try to model the behaviour657

of honest participants and the intruder’s capabilities over the network, that is, the global state we defined.658

19/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 20 Definition of the message operator for our symbolic model.
Full-size DOI: 10.7717/peerjcs.1547/fig-20

Messages are defined by the operator msg shown in Fig. 20. A message contains
information about two participant identifiers, the status of the message and the content
it carries. The first identifier indicates the source of the message, and the second is the
identifier of the participant to whom the message is delivered throw the network. Then,
the status of a message can take the values sentX and receivedX , where X can either be PK
or C for public key or ciphertext, respectively, depicting in part the current step over the
network. At last, the content of the message is assumed to be secure, meaning a participant
can not infer any additional contents from it without the required information.

Figure 21 shows the definition of the structure representing our system. Here, and
from left to right, the elements our rules will handle are specified. At the right corner, we
assigned a field between symbols { and } for all the available sample values. These samples
are modelled as constant values representing symbolic values, to use in any of the Keygen,
Enc orDec steps. Next, we have an associative and commutative set of participants between
symbols< and>, following the structure explained at the beginning of this section. Then,
at the left end, we have the network, with a collection of associative messages representing
a kind of record that lets participants work over the sent messages. All this together gives us
a proper term structure that can represent any network with any participants and messages
being sent and received.

System module
With the systemmodule identified as the name of the corresponding KEM, we try to model
the behaviour of honest participants and the intruder’s capabilities over the network, that
is, the global state we defined. The first thing to do in this module is to declare the sampling
sets of values needed to perform a session of the key exchange. Once the samples are
defined, we can start defining the honest participant behaviour, following the explanation
in ‘Behaviour’. These rules specify the transitions of our formal system regarding the three
main functions known as KeyGen, Enc and Dec , and also model the sending and receiving

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 25/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-18
https://doi.org/10.7717/peerjcs.1547/fig-19
https://doi.org/10.7717/peerjcs.1547/fig-20
http://dx.doi.org/10.7717/peerj-cs.1547

global state, where participants send and receive messages. All these element definitions are the same for628

the three KEMs we have defined following the framework.629

Participants in our model follow the operational definition shown in Figure 18. Here three identifiers630

are declared for our corresponding participants. Then the structure of a participant is declared. A631

participant consists of an Identifier, like the ones that have been defined, a group of keys the participant632

know, and a group of elements that represent its elements that are not keys and the participant has in its633

possession, that is, in its memory.634

ops Alice Eve Bob : -> Identifier .
op _[_]_ : Identifier Keys Content -> Principal .

Figure 18. Definition of a participant at the network in MODEL-CONFIGURATION.

Shared between all KEMs, these operators have the purpose of storing a relation between a cryptogra-635

phy component and a participant. Examples of such cryptography components are the notion of types of636

keys such as public, secret and shared keys, or a ciphertext. Figure 19 shows the definition of the former,637

where sorts PKey and SKey represent the publicly available keys and secret keys, only known to the638

creator and or corresponding peer, respectively.639

op publicKey : Identifier Key -> PKey .
op secretKey : Identifier Key -> SKey .
op sharedKey : Identifier Key -> SKey [format (g! o)] .

Figure 19. Definition of components to link three notions of keys with a participant.

Messages are defined by the operator msg shown in Figure 20. A message contains information about640

two participant identifiers, the status of the message and the content it carries. The first identifier indicates641

the source of the message, and the second is the identifier of the participant to whom the message is642

delivered throw the network. Then, the status of a message can take the values sentX and receivedX ,643

where X can either be PK or C for public key or ciphertext, respectively, depicting in part the current step644

over the network. At last, the content of the message is assumed to be secure, meaning a participant can645

not infer any additional contents from it without the required information.646

op msg{(_,_)[_]_} : Identifier Identifier MsgState Content -> Msg .

Figure 20. Definition of the message operator for our symbolic model.

Figure 21 shows the definition of the structure representing our system. Here, and from left to647

right, the elements our rules will handle are specified. At the right corner, we assigned a field between648

symbols { and } for all the available sample values. These samples are modelled as constant values649

representing symbolic values, to use in any of the Keygen, Enc or Dec steps. Next, we have an associative650

and commutative set of participants between symbols < and >, following the structure explained at the651

beginning of this section. Then, at the left end, we have the network, with a collection of associative652

messages representing a kind of record that lets participants work over the sent messages. All this together653

gives us a proper term structure that can represent any network with any participants and messages being654

sent and received.655

op {_}<_>net(_) : Content Principals Msgs -> GlobalState .

Figure 21. Definition of the syntax to represent the global state of our system.

5.2.2 System module656

With the system module identified as the name of the corresponding KEM, we try to model the behaviour657

of honest participants and the intruder’s capabilities over the network, that is, the global state we defined.658

19/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 21 Definition of the syntax to represent the global state of our system.
Full-size DOI: 10.7717/peerjcs.1547/fig-21

The first thing to do in this module is to declare the sampling sets of values needed to perform a session of659

the key exchange. Once the samples are defined, we can start defining the honest participant behaviour,660

following the explanation in Section 4.1. These rules specify the transitions of our formal system regarding661

the three main functions known as KeyGen, Enc and Dec, and also model the sending and receiving662

of both the public key and the ciphered text over the network. Lastly, we check the specific intruder663

behaviour following the Dolev-Yao intruder model assumptions and represent such capabilities over the664

network messages.665

Initial set up: Before modelling the behaviour, we need to declare the sampling groups and the initial666

states upon which the symbolic model would start to run the simulation. Sampling groups are represented667

as operators that can store sampling values of some type. Such operators are placed at the sample set of668

the global state. The population in these operators should be minimal, that is, the minimal set of values669

required to carry on a protocol session of a KEM. In this way, and since our approach is symbolic, with670

many different symbolic values, we would be representing the same thing, so by keeping it minimal, we671

are avoiding redundancy. We can now declare the initial global states with the specific sampling sets,672

participants and the network channel. Such initial states can be seen as snapshots of the network. An673

example is shown in Figure 22 following the required samples for KYBER, where sampling sets ds, ms674

and rs contain one corresponding sampling value, participants Alice, Bob and Eve have empty key sets675

and no peer assigned, and the network is empty.676

ops init1 : -> GlobalState .
eq init1 = {ds(d1) ms(m1) rs(r1)}

< (Alice[emptyK]peer(none))
(Eve[emptyK]peer(none))
(Bob[emptyK]peer(none)) >

net(emptyM) .

Figure 22. Example of initial state definition for KYBER.

Participant behaviour: Following the different KEMs’ specifications and the Dolev-Yao assumptions,677

we specify the following rules in Maude to model how the different KEMs operate. All these rules have678

been written to be as general as possible, making the model and the constructed execution tree more679

realistic and compelling for model checking. It is important to note that the main differences between680

each rule related to the three main functions are the conditions, which help to model how the sample681

values and other functions are used to construct the cryptography elements like keys and ciphered texts682

between others. To properly explain the participant behaviour rules, we will first show a more general rule683

without the conditionals, which is almost the same for all the KEMs. Then, we will show the conditionals684

of each KEM and link it to the original algorithm we showed in Section 4.2.685

The first rule is KeyGen as seen in Figure 23. This rule is the one that starts the protocol for a given686

participant. Specifically, the rule states that given a participant with identifier ID1 whose set of keys is687

empty and has no peer associated, he can generate a publicKey(ID1, PK) and a secretKey(ID1,688

SK) in the group of keys, linked to the identifier ID1 of the participant. Specifically, for each protocol,689

the necessary samples should be present in CONT4, the pool of available sampled sets.690

crl [KeyGen] : {sampleSet(SAM1 CONT1) CONT4}
< (ID1[emptyK]peer(none)) PS >
net(MSGS)
=>
{sampleSet(CONT1) CONT4}
< (ID1[publicKey(ID1, PK) ; secretKey(ID1, SK)]

sampleI(ID1, SAM1) peer(none)) PS >
net(MSGS)

Figure 23. General definition of conditional rule KeyGen in our framework.

We also defined two rules available in Figure 24 .The first rule, SendPK, models the behaviour of a691

20/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 22 Example of initial state definition for KYBER.
Full-size DOI: 10.7717/peerjcs.1547/fig-22

of both the public key and the ciphered text over the network. Lastly, we check the specific
intruder behaviour following the Dolev-Yao intruder model assumptions and represent
such capabilities over the network messages.
Initial set up: Before modelling the behaviour, we need to declare the sampling groups
and the initial states upon which the symbolic model would start to run the simulation.
Sampling groups are represented as operators that can store sampling values of some
type. Such operators are placed at the sample set of the global state. The population in
these operators should be minimal, that is, the minimal set of values required to carry
on a protocol session of a KEM. In this way, and since our approach is symbolic, with
many different symbolic values, we would be representing the same thing, so by keeping
it minimal, we are avoiding redundancy. We can now declare the initial global states with
the specific sampling sets, participants and the network channel. Such initial states can be
seen as snapshots of the network. An example is shown in Fig. 22 following the required
samples for KYBER, where sampling sets ds, ms and rs contain one corresponding sampling
value, participants Alice, Bob and Eve have empty key sets and no peer assigned, and the
network is empty.
Participant behaviour: Following the different KEMs’ specifications and the Dolev-Yao
assumptions, we specify the following rules in Maude to model how the different KEMs
operate. All these rules have been written to be as general as possible, making the model
and the constructed execution tree more realistic and compelling for model checking.
It is important to note that the main differences between each rule related to the three
main functions are the conditions, which help to model how the sample values and other
functions are used to construct the cryptography elements like keys and ciphered texts
between others. To properly explain the participant behaviour rules, we will first show a
more general rule without the conditionals, which is almost the same for all the KEMs.
Then, we will show the conditionals of each KEM and link it to the original algorithm we
showed in ‘Security Fundamentals’.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 26/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-21
https://doi.org/10.7717/peerjcs.1547/fig-22
http://dx.doi.org/10.7717/peerj-cs.1547

The first thing to do in this module is to declare the sampling sets of values needed to perform a session of659

the key exchange. Once the samples are defined, we can start defining the honest participant behaviour,660

following the explanation in Section 4.1. These rules specify the transitions of our formal system regarding661

the three main functions known as KeyGen, Enc and Dec, and also model the sending and receiving662

of both the public key and the ciphered text over the network. Lastly, we check the specific intruder663

behaviour following the Dolev-Yao intruder model assumptions and represent such capabilities over the664

network messages.665

Initial set up: Before modelling the behaviour, we need to declare the sampling groups and the initial666

states upon which the symbolic model would start to run the simulation. Sampling groups are represented667

as operators that can store sampling values of some type. Such operators are placed at the sample set of668

the global state. The population in these operators should be minimal, that is, the minimal set of values669

required to carry on a protocol session of a KEM. In this way, and since our approach is symbolic, with670

many different symbolic values, we would be representing the same thing, so by keeping it minimal, we671

are avoiding redundancy. We can now declare the initial global states with the specific sampling sets,672

participants and the network channel. Such initial states can be seen as snapshots of the network. An673

example is shown in Figure 22 following the required samples for KYBER, where sampling sets ds, ms674

and rs contain one corresponding sampling value, participants Alice, Bob and Eve have empty key sets675

and no peer assigned, and the network is empty.676

ops init1 : -> GlobalState .
eq init1 = {ds(d1) ms(m1) rs(r1)}

< (Alice[emptyK]peer(none))
(Eve[emptyK]peer(none))
(Bob[emptyK]peer(none)) >

net(emptyM) .

Figure 22. Example of initial state definition for KYBER.

Participant behaviour: Following the different KEMs’ specifications and the Dolev-Yao assumptions,677

we specify the following rules in Maude to model how the different KEMs operate. All these rules have678

been written to be as general as possible, making the model and the constructed execution tree more679

realistic and compelling for model checking. It is important to note that the main differences between680

each rule related to the three main functions are the conditions, which help to model how the sample681

values and other functions are used to construct the cryptography elements like keys and ciphered texts682

between others. To properly explain the participant behaviour rules, we will first show a more general rule683

without the conditionals, which is almost the same for all the KEMs. Then, we will show the conditionals684

of each KEM and link it to the original algorithm we showed in Section 4.2.685

The first rule is KeyGen as seen in Figure 23. This rule is the one that starts the protocol for a given686

participant. Specifically, the rule states that given a participant with identifier ID1 whose set of keys is687

empty and has no peer associated, he can generate a publicKey(ID1, PK) and a secretKey(ID1,688

SK) in the group of keys, linked to the identifier ID1 of the participant. Specifically, for each protocol,689

the necessary samples should be present in CONT4, the pool of available sampled sets.690

crl [KeyGen] : {sampleSet(SAM1 CONT1) CONT4}
< (ID1[emptyK]peer(none)) PS >
net(MSGS)
=>
{sampleSet(CONT1) CONT4}
< (ID1[publicKey(ID1, PK) ; secretKey(ID1, SK)]

sampleI(ID1, SAM1) peer(none)) PS >
net(MSGS)

Figure 23. General definition of conditional rule KeyGen in our framework.

We also defined two rules available in Figure 24 .The first rule, SendPK, models the behaviour of a691

20/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 23 General definition of conditional rule KeyGen in our framework.
Full-size DOI: 10.7717/peerjcs.1547/fig-23

participant with his public key, sending it to any other participant in the network different from him. The692

message is sent if it has not been sent previously, so we avoid infinite execution. Then, to complement the693

first rule, we defined rule ReceivePK to process an incoming message if it contains a public key and694

has not been received yet.695

crl [SendPK] : {CONT4}
< (ID1[publicKey(ID1,PK) ; KS1]dI(ID1,SAM1) peer(none) CONT1)

(ID2[KS2]peer(none)) PS >
net(MSGS)
=>
{CONT4}
< (ID1[KS1]dI(ID1,SAM1) peer(ID2) CONT1)

(ID2[KS2]peer(none)) PS >
net(MSGS msg{(ID1,ID2)[sentPK]PK})
if (msg{(ID1,ID2)[sentPK]PK}) in MSGS == false /\

(msg{(ID1,ID2)[receivedPK]PK}) in MSGS == false /\
(ID1 =/= ID2) .

rl [ReceivePK] : {CONT4}
< (ID2[KS2]peer(none) CONT2) PS >
net(MSGS msg{(ID1,ID2)[sentPK]PK})
=>
{CONT4}
< (ID2[publicKey(ID1,PK) ; KS2]peer(ID1) CONT2) PS >
net(MSGS msg{(ID1,ID2)[receivedPK]PK}) .

Figure 24. Definition of rules SendPK and ReceivePK to send and receive a public key in our
framework.

Rule Enc, as it is shown in Figure 25, models the function with its same name. In order to apply the696

encryption step, a participant first has to receive the public key from the other peer, which is why the697

left-hand side of the rule has a component publicKey(ID1, PK). The participant also needs to be698

able to sample values the necessary values from the sampling set of samples CONT4, just like in rule699

KeyGen. After applying the rule, the participant possesses in the pool of keys a new shared key SK700

related to his current peer ID1. In the content pool, the ciphertext C is stored as the value to be transmitted701

securely to the other participant.702

crl [Enc] : {CONT4}
< (ID2[publicKey(ID1, PK) ; KS2]

peer(ID1) CONT2) PS >
net(MSGS)
=>
{CONT4}
< (ID2[sharedKey(ID1, SK) ; KS2]

cI(ID1,C) peer(ID1) CONT2) PS >
net(MSGS)

Figure 25. Definition of conditional rule Enc in our framwork.

The counterpart of SendPK but for a ciphered text c obtained through Enc is the conditional rule703

SendCiph. As Figure 26 shows, it checks similar conditions when sending the public key, so no infinite704

execution happens. Then, the rule to receive a ciphertext behaves similarly to its counterpart, that is,705

ReceivePk. The rule is applied when there is a sent message in the network for a given participant with706

ID1. The content of the message is stored by the participant in its pool of content, acting as memory.707

Finally, the rule to decipher the received ciphertext is Dec. Figure 27 depicts the behaviour of a708

participant ID1 with his own secret key SK and an assigned peer ID2. Once the shared key K1 for709

participant ID2, that is the peer, has been computed and placed in the pool of keys, the peer can be710

removed since the protocol session has ended between them.711

21/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 24 Definition of rules SendPK and ReceivePK to send and receive a public key in our frame-
work.

Full-size DOI: 10.7717/peerjcs.1547/fig-24

The first rule is KeyGen as seen in Fig. 23. This rule is the one that starts the protocol for
a given participant. Specifically, the rule states that given a participant with identifier ID1
whose set of keys is empty and has no peer associated, he can generate a publicKey(ID1,
PK) and a secretKey(ID1, SK) in the group of keys, linked to the identifier ID1 of the
participant. Specifically, for each protocol, the necessary samples should be present in
CONT4, the pool of available sampled sets.

We also defined two rules available in Fig. 24 .The first rule, SendPK, models the
behaviour of a participant with his public key, sending it to any other participant in the
network different from him. The message is sent if it has not been sent previously, so we
avoid infinite execution. Then, to complement the first rule, we defined rule ReceivePK
to process an incoming message if it contains a public key and has not been received yet.

Rule Enc, as it is shown in Fig. 25, models the function with its same name. In order to
apply the encryption step, a participant first has to receive the public key from the other
peer, which is why the left-hand side of the rule has a component publicKey(ID1, PK).
The participant also needs to be able to sample the necessary values from the set of samples

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 27/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-23
https://doi.org/10.7717/peerjcs.1547/fig-24
http://dx.doi.org/10.7717/peerj-cs.1547

participant with his public key, sending it to any other participant in the network different from him. The692

message is sent if it has not been sent previously, so we avoid infinite execution. Then, to complement the693

first rule, we defined rule ReceivePK to process an incoming message if it contains a public key and694

has not been received yet.695

crl [SendPK] : {CONT4}
< (ID1[publicKey(ID1,PK) ; KS1]dI(ID1,SAM1) peer(none) CONT1)

(ID2[KS2]peer(none)) PS >
net(MSGS)
=>
{CONT4}
< (ID1[KS1]dI(ID1,SAM1) peer(ID2) CONT1)

(ID2[KS2]peer(none)) PS >
net(MSGS msg{(ID1,ID2)[sentPK]PK})
if (msg{(ID1,ID2)[sentPK]PK}) in MSGS == false /\

(msg{(ID1,ID2)[receivedPK]PK}) in MSGS == false /\
(ID1 =/= ID2) .

rl [ReceivePK] : {CONT4}
< (ID2[KS2]peer(none) CONT2) PS >
net(MSGS msg{(ID1,ID2)[sentPK]PK})
=>
{CONT4}
< (ID2[publicKey(ID1,PK) ; KS2]peer(ID1) CONT2) PS >
net(MSGS msg{(ID1,ID2)[receivedPK]PK}) .

Figure 24. Definition of rules SendPK and ReceivePK to send and receive a public key in our
framework.

Rule Enc, as it is shown in Figure 25, models the function with its same name. In order to apply the696

encryption step, a participant first has to receive the public key from the other peer, which is why the697

left-hand side of the rule has a component publicKey(ID1, PK). The participant also needs to be698

able to sample values the necessary values from the sampling set of samples CONT4, just like in rule699

KeyGen. After applying the rule, the participant possesses in the pool of keys a new shared key SK700

related to his current peer ID1. In the content pool, the ciphertext C is stored as the value to be transmitted701

securely to the other participant.702

crl [Enc] : {CONT4}
< (ID2[publicKey(ID1, PK) ; KS2]

peer(ID1) CONT2) PS >
net(MSGS)
=>
{CONT4}
< (ID2[sharedKey(ID1, SK) ; KS2]

cI(ID1,C) peer(ID1) CONT2) PS >
net(MSGS)

Figure 25. Definition of conditional rule Enc in our framwork.

The counterpart of SendPK but for a ciphered text c obtained through Enc is the conditional rule703

SendCiph. As Figure 26 shows, it checks similar conditions when sending the public key, so no infinite704

execution happens. Then, the rule to receive a ciphertext behaves similarly to its counterpart, that is,705

ReceivePk. The rule is applied when there is a sent message in the network for a given participant with706

ID1. The content of the message is stored by the participant in its pool of content, acting as memory.707

Finally, the rule to decipher the received ciphertext is Dec. Figure 27 depicts the behaviour of a708

participant ID1 with his own secret key SK and an assigned peer ID2. Once the shared key K1 for709

participant ID2, that is the peer, has been computed and placed in the pool of keys, the peer can be710

removed since the protocol session has ended between them.711

21/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 25 Definition of conditional rule Enc in our framwork.
Full-size DOI: 10.7717/peerjcs.1547/fig-25

crl [SendCiph] : {CONT4}
< (ID2[sharedKey(ID1,SK) ; KS2]

peer(ID1) cI(ID1,C) rI(ID1,SAM2) CONT2) PS >
net(MSGS)
=>
{CONT4}
< (ID2[sharedKey(ID1,SK) ; KS2]

peer(none) rI(ID1,SAM2) CONT2) PS >
net(MSGS msg{(ID2,ID1)[sentC](C)})
if (msg{(ID2,ID1)[sentC](C)}) in MSGS == false /\

(msg{(ID2,ID1)[receivedC](C)}) in MSGS == false .

rl [ReceiveCiph] : {CONT4}
< (ID1[KS1]CONT1) PS >
net(MSGS msg{(ID2,ID1)[sentC](C)})
=>
{CONT4}
< (ID1[KS1]cI(ID1,C) CONT1) PS >
net(MSGS msg{(ID2,ID1)[receivedC](C)}) .

Figure 26. Definition of rules SendCiph and ReceiveCiph to send and receive a ciphertext in our
framework.

crl [Dec] : {CONT4}
< (ID1[secretKey(ID1,SK) ; KS1]

peer(ID2) cI(ID1,C) CONT1) PS >
net(MSGS)
=>
{CONT4}
< (ID1[sharedKey(ID2,K1) ; KS1]peer(none) CONT1) PS >
net(MSGS)

Figure 27. Definition of conditional rule Dec in our system module KYBER.

Intruder behaviour: When specifying the intruder’s capabilities over our module, we decided to specify712

two rules, Intercept1 and Intercept2, both identical between all the KEMs’ symbolic models.713

The former can be seen in Figure 28, and it binds the intruder with the ability to intercept a sent message714

containing a public key. The intercepted message is modified by extracting the body, that is the public key715

It is carrying, and replacing it with its own public key. This modification makes the receiver think the716

public key received is from the sender when it is not, thus beginning the man-in-the-middle attack. The717

latter is available in Figure 29 and makes the intruder intercept a message sent with a ciphertext. This718

intercepted message is sent by the receiver from the previous fake message and makes Eve send a new719

message but with his own ciphertext. In this way, Eve has in store two ciphertexts, her own and the one720

intercepted.721

6 KEY ENCAPSULATION MECHANISM SPECIFICATIONS722

Now we will look into the underlying equational theories and conditions for the rewrite rules of each723

KEM. On the equational theories, we refer to them as the equations defined in the functional modules724

that make the matching equations from the rules work. On the rewriting conditions, we refer to the725

aforementioned matching equations present in the conditions of the rewrite rules. The specific conditions726

can relate very closely to the specific steps or lines on each algorithm presented in Section 4.2. First, we727

focus on Kyber, then pass on to BIKE, and finally, we explain the case of Classic McEliece.728

6.1 Kyber specification729

Related to the properties explicitly shown in Section 4.2.1, we can model these properties using equations.730

In this case, the target module relates to the decapsulation, KYBER-DEC. This module is where the731

22/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 26 Definition of rules SendCiph and ReceiveCiph to send and receive a ciphertext in our frame-
work.

Full-size DOI: 10.7717/peerjcs.1547/fig-26

CONT4, just like in rule KeyGen. After applying the rule, the participant possesses in the
pool of keys a new shared key SK related to his current peer ID1. In the content pool, the
ciphertext C is stored as the value to be transmitted securely to the other participant.

The counterpart of SendPK but for a ciphered text c obtained through Enc is the
conditional rule SendCiph. As Fig. 26 shows, it checks similar conditions when sending
the public key, so no infinite execution happens. Then, the rule to receive a ciphertext
behaves similarly to its counterpart, that is, ReceivePk. The rule is applied when there is a
sent message in the network for a given participant with ID1. The content of the message
is stored by the participant in its pool of content, acting as memory.

Finally, the rule to decipher the received ciphertext is Dec. Figure 27 depicts the behaviour
of a participant ID1 with his own secret key SK and an assigned peer ID2. Once the shared
key K1 for participant ID2, that is the peer, has been computed and placed in the pool of
keys, the peer can be removed since the protocol session has ended between them.
Intruder behaviour: When specifying the intruder’s capabilities over our module, we
decided to specify two rules, Intercept1 and Intercept2, both identical between all the

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 28/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-25
https://doi.org/10.7717/peerjcs.1547/fig-26
http://dx.doi.org/10.7717/peerj-cs.1547

crl [SendCiph] : {CONT4}
< (ID2[sharedKey(ID1,SK) ; KS2]

peer(ID1) cI(ID1,C) rI(ID1,SAM2) CONT2) PS >
net(MSGS)
=>
{CONT4}
< (ID2[sharedKey(ID1,SK) ; KS2]

peer(none) rI(ID1,SAM2) CONT2) PS >
net(MSGS msg{(ID2,ID1)[sentC](C)})
if (msg{(ID2,ID1)[sentC](C)}) in MSGS == false /\

(msg{(ID2,ID1)[receivedC](C)}) in MSGS == false .

rl [ReceiveCiph] : {CONT4}
< (ID1[KS1]CONT1) PS >
net(MSGS msg{(ID2,ID1)[sentC](C)})
=>
{CONT4}
< (ID1[KS1]cI(ID1,C) CONT1) PS >
net(MSGS msg{(ID2,ID1)[receivedC](C)}) .

Figure 26. Definition of rules SendCiph and ReceiveCiph to send and receive a ciphertext in our
framework.

crl [Dec] : {CONT4}
< (ID1[secretKey(ID1,SK) ; KS1]

peer(ID2) cI(ID1,C) CONT1) PS >
net(MSGS)
=>
{CONT4}
< (ID1[sharedKey(ID2,K1) ; KS1]peer(none) CONT1) PS >
net(MSGS)

Figure 27. Definition of conditional rule Dec in our system module KYBER.

Intruder behaviour: When specifying the intruder’s capabilities over our module, we decided to specify712

two rules, Intercept1 and Intercept2, both identical between all the KEMs’ symbolic models.713

The former can be seen in Figure 28, and it binds the intruder with the ability to intercept a sent message714

containing a public key. The intercepted message is modified by extracting the body, that is the public key715

It is carrying, and replacing it with its own public key. This modification makes the receiver think the716

public key received is from the sender when it is not, thus beginning the man-in-the-middle attack. The717

latter is available in Figure 29 and makes the intruder intercept a message sent with a ciphertext. This718

intercepted message is sent by the receiver from the previous fake message and makes Eve send a new719

message but with his own ciphertext. In this way, Eve has in store two ciphertexts, her own and the one720

intercepted.721

6 KEY ENCAPSULATION MECHANISM SPECIFICATIONS722

Now we will look into the underlying equational theories and conditions for the rewrite rules of each723

KEM. On the equational theories, we refer to them as the equations defined in the functional modules724

that make the matching equations from the rules work. On the rewriting conditions, we refer to the725

aforementioned matching equations present in the conditions of the rewrite rules. The specific conditions726

can relate very closely to the specific steps or lines on each algorithm presented in Section 4.2. First, we727

focus on Kyber, then pass on to BIKE, and finally, we explain the case of Classic McEliece.728

6.1 Kyber specification729

Related to the properties explicitly shown in Section 4.2.1, we can model these properties using equations.730

In this case, the target module relates to the decapsulation, KYBER-DEC. This module is where the731

22/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 27 Definition of conditional rule Dec in our systemmodule KYBER.
Full-size DOI: 10.7717/peerjcs.1547/fig-27

crl [Intercept1] : {CONT3}
< (Eve[publicKey(Eve, PK’) ; KS1]peer(none) CONT1) PS >
net(MSGS msg{(ID1,ID2)[sentPK](PK)})
=>
{CONT3}
< (Eve[publicKey(ID1,PK) ; KS1]peer(ID1) CONT1) PS >
net(MSGS msg{(ID1,ID2)[sentPK](PK’)})
if ID1 =/= Eve /\

ID2 =/= Eve /\
ID1 =/= ID2 /\
PK =/= PK’ /\
(publicKey(ID1,PK)) in KS1 == false .

Figure 28. Definition of conditional rule Intercept1 in our system module KYBER.

crl [Intercept2] : {CONT3}
< (Eve[KS1]cI(ID2,Cs’) peer(ID2) CONT1) PS >
net(MSGS msg{(ID1,ID2)[sentC](Cs)})
=>
{CONT3}
< (Eve[KS1]cI(Eve,Cs) peer(ID1) CONT1) PS >
net(MSGS msg{(ID1,ID2)[sentC](Cs’)})
if ID1 =/= Eve /\

ID2 =/= Eve /\
ID1 =/= ID2 /\
Cs =/= Cs’ /\
(cI(ID1,Cs)) in CONT1 == false .

Figure 29. Definition of conditional rule Intercept2 in our system module KYBER.

decompression of a compressed value must take place, and the error cancellation plays a role in removing732

the errors that add noise and makes the KEM difficult to break for an adversary.733

The property between operations Compress and Decompress was presented as a key pillar to this
KEM in Section 4.2.1 with Equation 1. To model the relation, we defined equations

eq Decompress(Compress(X,N),N) = X .

eq Compress(Decompress(X,N),N) = X .

where X is a vector and N is a natural number. The two equations define the commutativity of their relation,734

which is necessary because the protocol applies Compress over Decompress.735

Now, related to the property of error cancellation, since KYBER is a lattice-based KEM, we also
represent in this module the process of eliminating the error from the ciphertext in order to obtain the
message and finally derive the key. The concrete equation is

eq (V1 v+ Decompress(X,N)) v- V2 = Decompress(X,N) .

where X and N are the same from the previous property, and V1 and V2 are vectors. With this equation, we736

represent the ideal case where errors from u’ and v’ are properly cancelled because of subtraction leaving737

alone the Decompress of message m, necessary to compute the shared key. A more specific picture738

can be seen in the following way: Compress(((tr + e2)+Decompress(m,1))− (sT (AT r + e1)),1) ³E739

Compress(Decompress(m,1),1). The left-hand-side term is the complete instanced line four from step740

Dec in Figure 14. Inside this term, we can see that variables V1 and V2 will be instantiated into (tr+ e2)741

and into (sT (AT r + e1) respectively. We get the right-hand side term when reducing the term with742

equations, i.e., the equation for error cancellation.743

KeyGen: Regarding the construction of public and secret keys, this is done through the matching744

equations in the rule’s conditions available in Figure 30. The structure is the one present at the specification745

23/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 28 Definition of conditional rule Intercept1 in our systemmodule KYBER.
Full-size DOI: 10.7717/peerjcs.1547/fig-28

KEMs’ symbolic models. The former can be seen in Fig. 28, and it binds the intruder with
the ability to intercept a sent message containing a public key. The intercepted message is
modified by extracting the body, that is the public key It is carrying, and replacing it with
its own public key. This modification makes the receiver think the public key received is
from the sender when it is not, thus beginning the man-in-the-middle attack. The latter
is available in Fig. 29 and makes the intruder intercept a message sent with a ciphertext.
This intercepted message is sent by the receiver from the previous fake message and makes
Eve send a new message but with his own ciphertext. In this way, Eve has in store two
ciphertexts, her own and the one intercepted.

KEY ENCAPSULATION MECHANISM SPECIFICATIONS
Now we will look into the underlying equational theories and conditions for the rewrite
rules of each KEM. On the equational theories, we refer to them as the equations defined
in the functional modules that make the matching equations from the rules work. On the
rewriting conditions, we refer to the aforementioned matching equations present in the
conditions of the rewrite rules. The specific conditions can relate very closely to the specific
steps or lines on each algorithm presented in ‘Security Fundamentals’. First, we focus on
Kyber, then pass on to BIKE, and finally, we explain the case of Classic McEliece.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 29/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-27
https://doi.org/10.7717/peerjcs.1547/fig-28
http://dx.doi.org/10.7717/peerj-cs.1547

crl [Intercept1] : {CONT3}
< (Eve[publicKey(Eve, PK’) ; KS1]peer(none) CONT1) PS >
net(MSGS msg{(ID1,ID2)[sentPK](PK)})
=>
{CONT3}
< (Eve[publicKey(ID1,PK) ; KS1]peer(ID1) CONT1) PS >
net(MSGS msg{(ID1,ID2)[sentPK](PK’)})
if ID1 =/= Eve /\

ID2 =/= Eve /\
ID1 =/= ID2 /\
PK =/= PK’ /\
(publicKey(ID1,PK)) in KS1 == false .

Figure 28. Definition of conditional rule Intercept1 in our system module KYBER.

crl [Intercept2] : {CONT3}
< (Eve[KS1]cI(ID2,Cs’) peer(ID2) CONT1) PS >
net(MSGS msg{(ID1,ID2)[sentC](Cs)})
=>
{CONT3}
< (Eve[KS1]cI(Eve,Cs) peer(ID1) CONT1) PS >
net(MSGS msg{(ID1,ID2)[sentC](Cs’)})
if ID1 =/= Eve /\

ID2 =/= Eve /\
ID1 =/= ID2 /\
Cs =/= Cs’ /\
(cI(ID1,Cs)) in CONT1 == false .

Figure 29. Definition of conditional rule Intercept2 in our system module KYBER.

decompression of a compressed value must take place, and the error cancellation plays a role in removing732

the errors that add noise and makes the KEM difficult to break for an adversary.733

The property between operations Compress and Decompress was presented as a key pillar to this
KEM in Section 4.2.1 with Equation 1. To model the relation, we defined equations

eq Decompress(Compress(X,N),N) = X .

eq Compress(Decompress(X,N),N) = X .

where X is a vector and N is a natural number. The two equations define the commutativity of their relation,734

which is necessary because the protocol applies Compress over Decompress.735

Now, related to the property of error cancellation, since KYBER is a lattice-based KEM, we also
represent in this module the process of eliminating the error from the ciphertext in order to obtain the
message and finally derive the key. The concrete equation is

eq (V1 v+ Decompress(X,N)) v- V2 = Decompress(X,N) .

where X and N are the same from the previous property, and V1 and V2 are vectors. With this equation, we736

represent the ideal case where errors from u’ and v’ are properly cancelled because of subtraction leaving737

alone the Decompress of message m, necessary to compute the shared key. A more specific picture738

can be seen in the following way: Compress(((tr + e2)+Decompress(m,1))− (sT (AT r + e1)),1) ³E739

Compress(Decompress(m,1),1). The left-hand-side term is the complete instanced line four from step740

Dec in Figure 14. Inside this term, we can see that variables V1 and V2 will be instantiated into (tr+ e2)741

and into (sT (AT r + e1) respectively. We get the right-hand side term when reducing the term with742

equations, i.e., the equation for error cancellation.743

KeyGen: Regarding the construction of public and secret keys, this is done through the matching744

equations in the rule’s conditions available in Figure 30. The structure is the one present at the specification745

23/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 29 Definition of conditional rule Intercept2 in our systemmodule KYBER.
Full-size DOI: 10.7717/peerjcs.1547/fig-29

Kyber specification
Related to the properties explicitly shown in ‘Kyber’, we can model these properties using
equations. In this case, the target module relates to the decapsulation, KYBER-DEC. This
module is where the decompression of a compressed value must take place, and the error
cancellation plays a role in removing the errors that add noise and makes the KEM difficult
to break for an adversary.

The property between operations Compress and Decompress was presented as a key
pillar to this KEM in ‘Kyber’ with Eq. (1). To model the relation, we defined equations

eq Decompress(Compress(X,N),N) = X .
eq Compress(Decompress(X,N),N) = X .
where X is a vector and N is a natural number. The two equations define the

commutativity of their relation, which is necessary because the protocol applies Compress
over Decompress.

Now, related to the property of error cancellation, since KYBER is a lattice-based KEM,
we also represent in this module the process of eliminating the error from the ciphertext
in order to obtain the message and finally derive the key. The concrete equation is

eq (V1 v+ Decompress(X,N)) v- V2 = Decompress(X,N) .
where X and N are the same from the previous property, and V1 and V2 are vectors. With

this equation, we represent the ideal case where errors from u′ and v ′ are properly cancelled
because of subtraction leaving alone the Decompress of message m, necessary to compute
the shared key. A more specific picture can be seen in the following way: Compress(((tr+
e2)+Decompress(m,1))− (sT (AT r+ e1)),1)↓ECompress(Decompress(m,1),1). The left-
hand-side term is the complete instanced line four from step Dec in Fig. 14. Inside this
term, we can see that variables V1 and V2 will be instantiated into (tr + e2) and into
(sT (AT r+e1)) respectively. We get the right-hand side term when reducing the term with
equations, i.e., the equation for error cancellation.

KeyGen. Regarding the construction of public and secret keys, this is done through the
matching equations in the rule’s conditions available in Fig. 30. The structure is the one
present at the specification and previously depicted in Fig. 14, where public key PK is the

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 30/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-29
http://dx.doi.org/10.7717/peerj-cs.1547

and previously depicted in Figure 14, where public key PK is the matrix A, obtained through function746

generateA, multiplied by the secret key s plus a sampled error e. For the secret key SK, we assumed747

it to be the output value from a CBD using the function sampleS, so no further operations are needed748

for its computation.749

if SK := sampleS(second(G(SAM1))) /\
PK := ((generateA(first(G(SAM1))) m* SK)

v+
sampleE(second(G(SAM1)))) .

Figure 30. Conditions of rule KeyGen in the symbolic model of Kyber.

Enc: As in the KeyGen rule, the conditions of Enc are used to construct the needed cryptography750

elements. In this case, a ciphered text c consisting of a pair of ciphered texts, denoted as c1 and c2. Both751

elements are specified following the operations in Figure 14. The conditions constructing the two elements752

of C are available in Figure 31. Before them, we also had to define variables U and V that represent753

the vectors u and v, respectively. Constant values du and dv symbolically represent the corresponding754

constants from the parameters of the protocol.755

if ID1 =/= ID2 /\
U := ((tpM(M1) m* sampleR’(SAM2)) v+ sampleE1(SAM2)) /\
V := (((tpV((M1 m* V1) v+ V2) dot sampleR’(SAM2))

v+
sampleE2(SAM2)) v+ Decompress(SAM1,1)) /\

C1 := Compress(U,du) /\
C2 := Compress(V,dv) /\
C := ([C1,C2]) .

Figure 31. Conditions of rule Enc in the symbolic model of Kyber.

Dec: Figure 32 shows the multiple conditions necessary to compute the shared key, denoted with variable756

K1. The matching equations for U’ and V’ allow us to extract the original U and V, presented in Figure 31,757

thanks to the equational theory regarding functions Compress and Decompress. Furthermore, the758

definition of the shared key K1 matches the equational theory for error cancellation represented by759

Equation 2.760

if ID1 =/= ID2 /\
ID2 =/= none /\
U’ := Decompress(first(C),du) /\
V’ := Decompress(second(C),dv) /\
K1 := Compress(V’ v- tpV(SK) dot U’, 1) .

Figure 32. Conditions of rule Dec in the symbolic model of Kyber.

6.2 BIKE specification761

We specify the necessary equations in the functional module BIKE-DEC on the equational theory for this762

code-based KEM. Two main properties must be addressed to treat the ciphertext; both were explained in763

Section 4.2.2. The first property addresses the failure rate of the decoder being zero, thus returning the764

original errors. The second property relates to the exclusive or operation performed over the message m765

with the hash function L over the errors.766

For the specification of the always correct application of the decoder, we specify the equation

eq decoder((P0 p* P1) p+ (P2 p* P3), P1, P3) = [P0,P2] .

24/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 30 Conditions of rule KeyGen in the symbolic model of Kyber.
Full-size DOI: 10.7717/peerjcs.1547/fig-30

and previously depicted in Figure 14, where public key PK is the matrix A, obtained through function746

generateA, multiplied by the secret key s plus a sampled error e. For the secret key SK, we assumed747

it to be the output value from a CBD using the function sampleS, so no further operations are needed748

for its computation.749

if SK := sampleS(second(G(SAM1))) /\
PK := ((generateA(first(G(SAM1))) m* SK)

v+
sampleE(second(G(SAM1)))) .

Figure 30. Conditions of rule KeyGen in the symbolic model of Kyber.

Enc: As in the KeyGen rule, the conditions of Enc are used to construct the needed cryptography750

elements. In this case, a ciphered text c consisting of a pair of ciphered texts, denoted as c1 and c2. Both751

elements are specified following the operations in Figure 14. The conditions constructing the two elements752

of C are available in Figure 31. Before them, we also had to define variables U and V that represent753

the vectors u and v, respectively. Constant values du and dv symbolically represent the corresponding754

constants from the parameters of the protocol.755

if ID1 =/= ID2 /\
U := ((tpM(M1) m* sampleR’(SAM2)) v+ sampleE1(SAM2)) /\
V := (((tpV((M1 m* V1) v+ V2) dot sampleR’(SAM2))

v+
sampleE2(SAM2)) v+ Decompress(SAM1,1)) /\

C1 := Compress(U,du) /\
C2 := Compress(V,dv) /\
C := ([C1,C2]) .

Figure 31. Conditions of rule Enc in the symbolic model of Kyber.

Dec: Figure 32 shows the multiple conditions necessary to compute the shared key, denoted with variable756

K1. The matching equations for U’ and V’ allow us to extract the original U and V, presented in Figure 31,757

thanks to the equational theory regarding functions Compress and Decompress. Furthermore, the758

definition of the shared key K1 matches the equational theory for error cancellation represented by759

Equation 2.760

if ID1 =/= ID2 /\
ID2 =/= none /\
U’ := Decompress(first(C),du) /\
V’ := Decompress(second(C),dv) /\
K1 := Compress(V’ v- tpV(SK) dot U’, 1) .

Figure 32. Conditions of rule Dec in the symbolic model of Kyber.

6.2 BIKE specification761

We specify the necessary equations in the functional module BIKE-DEC on the equational theory for this762

code-based KEM. Two main properties must be addressed to treat the ciphertext; both were explained in763

Section 4.2.2. The first property addresses the failure rate of the decoder being zero, thus returning the764

original errors. The second property relates to the exclusive or operation performed over the message m765

with the hash function L over the errors.766

For the specification of the always correct application of the decoder, we specify the equation

eq decoder((P0 p* P1) p+ (P2 p* P3), P1, P3) = [P0,P2] .

24/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 31 Conditions of rule Enc in the symbolic model of Kyber.
Full-size DOI: 10.7717/peerjcs.1547/fig-31

matrix A, obtained through function generateA, multiplied by the secret key s plus a
sampled error e. For the secret key SK, we assumed it to be the output value from a CBD
using the function sampleS, so no further operations are needed for its computation.

Enc. As in the KeyGen rule, the conditions of Enc are used to construct the needed
cryptography elements. In this case, a ciphered text c consisting of a pair of ciphered texts,
denoted as c1 and c2. Both elements are specified following the operations in Fig. 14. The
conditions constructing the two elements of C are available in Fig. 31. Before them, we also
had to define variables U and V that represent the vectors u and v, respectively. Constant
values du and dv symbolically represent the corresponding constants from the parameters
of the protocol.

Dec. Figure 32 shows themultiple conditions necessary to compute the shared key, denoted
with variable K1. The matching equations for U’ and V’ allow us to extract the original U
and V, presented in Fig. 31, thanks to the equational theory regarding functions Compress
and Decompress. Furthermore, the definition of the shared key K1matches the equational
theory for error cancellation represented by Eq. (2).

BIKE specification
We specify the necessary equations in the functional module BIKE-DEC on the equational
theory for this code-based KEM. Two main properties must be addressed to treat the
ciphertext; both were explained in ‘BIKE’. The first property addresses the failure rate of
the decoder being zero, thus returning the original errors. The second property relates to
the exclusive or operation performed over the message m with the hash function L over
the errors.

For the specification of the always correct application of the decoder, we specify the
equation

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 31/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-30
https://doi.org/10.7717/peerjcs.1547/fig-31
http://dx.doi.org/10.7717/peerj-cs.1547

and previously depicted in Figure 14, where public key PK is the matrix A, obtained through function746

generateA, multiplied by the secret key s plus a sampled error e. For the secret key SK, we assumed747

it to be the output value from a CBD using the function sampleS, so no further operations are needed748

for its computation.749

if SK := sampleS(second(G(SAM1))) /\
PK := ((generateA(first(G(SAM1))) m* SK)

v+
sampleE(second(G(SAM1)))) .

Figure 30. Conditions of rule KeyGen in the symbolic model of Kyber.

Enc: As in the KeyGen rule, the conditions of Enc are used to construct the needed cryptography750

elements. In this case, a ciphered text c consisting of a pair of ciphered texts, denoted as c1 and c2. Both751

elements are specified following the operations in Figure 14. The conditions constructing the two elements752

of C are available in Figure 31. Before them, we also had to define variables U and V that represent753

the vectors u and v, respectively. Constant values du and dv symbolically represent the corresponding754

constants from the parameters of the protocol.755

if ID1 =/= ID2 /\
U := ((tpM(M1) m* sampleR’(SAM2)) v+ sampleE1(SAM2)) /\
V := (((tpV((M1 m* V1) v+ V2) dot sampleR’(SAM2))

v+
sampleE2(SAM2)) v+ Decompress(SAM1,1)) /\

C1 := Compress(U,du) /\
C2 := Compress(V,dv) /\
C := ([C1,C2]) .

Figure 31. Conditions of rule Enc in the symbolic model of Kyber.

Dec: Figure 32 shows the multiple conditions necessary to compute the shared key, denoted with variable756

K1. The matching equations for U’ and V’ allow us to extract the original U and V, presented in Figure 31,757

thanks to the equational theory regarding functions Compress and Decompress. Furthermore, the758

definition of the shared key K1 matches the equational theory for error cancellation represented by759

Equation 2.760

if ID1 =/= ID2 /\
ID2 =/= none /\
U’ := Decompress(first(C),du) /\
V’ := Decompress(second(C),dv) /\
K1 := Compress(V’ v- tpV(SK) dot U’, 1) .

Figure 32. Conditions of rule Dec in the symbolic model of Kyber.

6.2 BIKE specification761

We specify the necessary equations in the functional module BIKE-DEC on the equational theory for this762

code-based KEM. Two main properties must be addressed to treat the ciphertext; both were explained in763

Section 4.2.2. The first property addresses the failure rate of the decoder being zero, thus returning the764

original errors. The second property relates to the exclusive or operation performed over the message m765

with the hash function L over the errors.766

For the specification of the always correct application of the decoder, we specify the equation

eq decoder((P0 p* P1) p+ (P2 p* P3), P1, P3) = [P0,P2] .

24/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 32 Conditions of rule Dec in the symbolic model of Kyber.
Full-size DOI: 10.7717/peerjcs.1547/fig-32

eq decoder((P0 p* P1) p+ (P2 p* P3), P1, P3) = [P0,P2] .
where P0, P1, P2 and P3 are variables to represent polynomials. These variables play
an important role, given their positions. Notice that c0 = e0+ e1h, where h= h1h−10 .c0
is the first component of the ciphertext c , as we saw in ‘Security Fundamentals’ for
BIKE. Notice that decoder receives three inputs: c0 multiplied by h0, h0 and h1. If we
expand and apply the distributive operation of the product over addition, we get that
c0h0= (e0+ e1h)h0= (e0+ e1(h1h−10))h0= e0h0+ (e1(h1h−10))h0= e0h0+ e1h1. This final
term matches perfectly with the left-hand side of the equation we just defined. This is only
possible if we know the exact values for h0 and h1, which are not derivable from h. In detail,
variables P0 and P2 match with errors e0 and e1 respectively, meanwhile variables P1 and
P3 match with h0 and h1 respectively.

The properties of the exclusive or operation are represented with the equations
eq D xorD 0 = D .
eq D xorD D=0 .
where D is a variable to represent any of our previously defined data types. Thanks to this

property, we can extract from c1=m⊕L(e0,e1) the original messagem. This is seen in Fig.
15, specifically in line three where c1⊕L(e ′)= c1⊕L(e0,e1)= (m⊕L(e0,e1))⊕L(e0,e1), and
with the application of both equations we get m since the variable D represents something
of type Data, and it is first instantiated as L(e0,e1) with the second equation, and latter as
m with the first equation.

Also, new equations might arise regarding possible properties from possible BIKE
implementations of the cryptographic primitives. A clear example is the encapsulation
algorithm for treating the input values of the hash function L. As Aragon et al. (2017)
dictates for this case, the procedure is first to process L(e0) and then L(e1), concatenating
both results. The main issue would be that an implementer might approach this by adding
the values and performing L, i.e., L(e0+e1). This leads to a new equality where L(e0,e1) =
L(e0+e1). This property is represented in our specification as

eq L([P0,P1]) = L(P0 p+ P1) .
This equation states that when the hash function L receives a pair of values P0 and P1,

then it is equivalent to applying L to the addition of P0 and P1.

KeyGen. On the specific conditions related to the conditional rule KeyGen, we can notice
in Fig. 33 that we only symbolically represent the computation of the public key. The
reason to omit the representation of any possible secret key is that it can be recovered later
in terms of the components used to compute the public key. Remember, from Fig. 15 that

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 32/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-32
http://dx.doi.org/10.7717/peerj-cs.1547

if PK := (second(SAM2) p* inv(first(SAM2))) .

Figure 33. Conditions of rule KeyGen in the symbolic model of BIKE.

where P0, P1, P2 and P3 are variables to represent polynomials. These variables play an important767

role, given their positions. Notice that c0 = e0 + e1h, where h = h1h−1
0 . c0 is the first component of the768

ciphertext c, as we saw in Section 4.2 for BIKE. Notice that decoder receives three inputs: c0 multiplied769

by h0, h0 and h1. If we expand and apply the distributive operation of the product over addition, we get770

that c0h0 = (e0 + e1h)h0 = (e0 + e1(h1h−1
0))h0 = e0h0 +(e1(h1h−1

0))h0 = e0h0 + e1h1. This final term771

matches perfectly with the left-hand side of the equation we just defined. This is only possible if we know772

the exact values for h0 and h1, which are not derivable from h. In detail, variables P0 and P2 match with773

errors e0 and e1 respectively, meanwhile variables P1 and P3 match with h0 and h1 respectively.774

The properties of the exclusive or operation are represented with the equations

eq D xorD 0 = D .

eq D xorD D = 0 .

where D is a variable to represent any of our previously defined data types. Thanks to this property, we775

can extract from c1 = m·L(e0,e1) the original message m. This is seen in Figure 15, specifically in776

line three where c1·L(e′) = c1·L(e0,e1) = (m·L(e0,e1))·L(e0,e1), and with the application of both777

equations we get m since the variable D represents something of type Data, and it is first instantiated as778

L(e0,e1) with the second equation, and latter as m with the first equation.779

Also, new equations might arise regarding possible properties from possible BIKE implementations of
the cryptographic primitives. A clear example is the encapsulation algorithm for treating the input values
of the hash function L. As (Aragon et al., 2017) dictates for this case, the procedure is first to process
L(e0) and then L(e1), concatenating both results. The main issue would be that an implementer might
approach this by adding the values and performing L, i.e. L(e0+e1). This leads to a new equality where
L(e0,e1) = L(e0+e1). This property is represented in our specification as

eq L([P0,P1]) = L(P0 p+ P1) .

This equation states that when the hash function L receives a pair of values P0 and P1, then it is equivalent780

to applying L to the addition of P0 and P1.781

KeyGen: On the specific conditions related to the conditional rule KeyGen, we can notice in Figure 33782

that we only symbolically represent the computation of the public key. The reason to omit the repre-783

sentation of any possible secret key is that it can be recovered later in terms of the components used to784

compute the public key. Remember, from Figure 15 that the KeyGen algorithm is defined to first sample785

two values (h0,h1)
D←−Hw, and uses them in the computation of the public key h = h1h−1

0 . Finally, it786

samples a value σ $←−M which is stored alongside values (h0,h1) as a private key. We decided not to787

model the last sampling since it is for later use in the Dec step if the decoder fails. Since such a path is788

not possible because we assume zero decoding failure rate, as stated in the assumptions of Section 5.1.3,789

we simplify the model.790

Enc: The conditions of Enc are built to model all the steps of the encapsulation without exception.791

Figure 34 shows, between others, the computation of the errors as E0 and E1, the definition of the792

ciphertext as a tuple stored in Cs and the computation of the shared key through the hashing function K793

using the sampled value SAM1 and the ciphertext Cs.794

Dec: With a similar structure, the conditions of the rewrite rule for Dec are defined to represent all795

aspects present in the specification. Figure 35 depicts such a representation. It is important to note that796

since we didn’t store the full secret key, we can, in a very elegant way, prepare the decoder to extract the797

errors from the first component of the ciphertext, as we explained before in this section with the property798

related to the decoder. Furthermore, the equational theory regarding the exclusive or operation helps to799

obtain the value m. It is now that the equational theory plays an important role, both for the decoder800

and for the exclusive or operation xorD.801

25/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 33 Conditions of rule KeyGen in the symbolic model of BIKE.
Full-size DOI: 10.7717/peerjcs.1547/fig-33

if ID1 =/= ID2 /\
Es := H(SAM1) /\
E0 := first(Es) /\
E1 := second(Es) /\
Cs := [(E0 p+ (E1 p* (PK))), (SAM1 xorD L(Es))] /\
SK := K(SAM1, Cs) .

Figure 34. Conditions of Enc in the symbolic model of BIKE.

if ID1 =/= ID2 /\
ID2 =/= none /\
Es := decoder(first(Cs) p* first(Hs), first(Hs), second(Hs)) /\
E0 := first(Es) /\
E1 := second(Es) /\
M := second(Cs) xorD L(Es) /\
SK := K(M, Cs) .

Figure 35. Conditions of rule Dec in the symbolic model of BIKE.

6.3 Classic McEliece specification802

Module CM-DEC contains the equational theory representing the property between operations ENCODE
and DECODE. This property was first given in Equation 3, and the translation into Maude syntax is

eq DECODE(ENCODE(E,T),T’) = E .

In this equation, we can see the use of three variables to represent different values. Variable E represents803

the error encoded in the encapsulation step. Variable T represents the public key used to encode the error.804

Finally, variable T’, i.e. gamma prime, represents the value used in the decapsulation step as a secret key805

in order to decode the encoded error properly. This equation might seem very general and wide since806

multiple values with no relations between them can match with its right-hand side.807

KeyGen: The adaptation from the specification code provided by (Chou et al., 2022) to our symbolic808

model regarding the key generation step represented by rule KeyGen is done directly over function809

SeededKeyGen from Figure 16. This function is essentially the key generation algorithm. It comprises810

many other functions we use to obtain certain values to construct the public and secret keys. For the811

public key PK, we can see in Figure 36 that it is the resulting value at the head from the matrix generation812

function known as MATGEN. In the case of the secret key SK, it is not a specific value but a set of values.813

The set of values for the secret key comprises a sample SAM1 and some elements from the output of814

MATGEN and other elements that derive from them.815

Enc: The encapsulation algorithm is straightforward. Figure 37 shows that we only need to model three816

values. First, the error is represented with variable ER through the result of the function FIXEDWEIGHT.817

Then we set variable C, which represents the ciphertext, as the encoding of the error with the public key.818

if E := G(SAM1) /\
D’ := lastL(E) /\
S := firstN(E) /\
ALPHAQ := FIELDORDERING(E) /\
GAMMA := [IRREDUCIBLE(E), segmentN(ALPHAQ)] /\
AUX := MATGEN(GAMMA) /\
GAMMA’ := [elem(3, AUX), elem(4, AUX)] /\
PK := head(AUX) /\
ALPHA := (second(GAMMA’) elemN(ALPHAQ) ALPHAQ) /\
SK := (SAM1 elem(2, AUX) first(GAMMA’) ALPHA S) .

Figure 36. Conditions of rule KeyGen in the symbolic model of Classic McEliece.

26/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 34 Conditions of Enc in the symbolic model of BIKE.
Full-size DOI: 10.7717/peerjcs.1547/fig-34

the KeyGen algorithm is defined to first sample two values (h0,h1)←DHw , and uses them

in the computation of the public key h= h1h−10 . Finally, it samples a value σ
$
←Mwhich is

stored alongside values (h0,h1) as a private key. We decided not to model the last sampling
since it is for later use in the Dec step if the decoder fails. Since such a path is not possible
because we assume zero decoding failure rate, as stated in the assumptions of ‘BIKE’, we
simplify the model.

Enc. The conditions of Enc are built to model all the steps of the encapsulation without
exception. Figure 34 shows, between others, the computation of the errors as E0 and E1,
the definition of the ciphertext as a tuple stored in Cs and the computation of the shared
key through the hashing function K using the sampled value SAM1 and the ciphertext Cs.

Dec. With a similar structure, the conditions of the rewrite rule for Dec are defined to
represent all aspects present in the specification. Figure 35 depicts such a representation. It
is important to note that since we didn’t store the full secret key, we can, in a very elegant
way, prepare the decoder to extract the errors from the first component of the ciphertext,
as we explained before in this section with the property related to the decoder. Furthermore,
the equational theory regarding the exclusive or operation helps to obtain the value m. It is
now that the equational theory plays an important role, both for the decoder and for the
exclusive or operation xorD.

Classic McEliece specification
Module CM-DEC contains the equational theory representing the property between
operations ENCODE and DECODE. This property was first given in Eq. (3), and the translation
into Maude syntax is

eq DECODE(ENCODE(E,T),T’) = E .
In this equation, we can see the use of three variables to represent different values.

Variable E represents the error encoded in the encapsulation step. Variable T represents the
public key used to encode the error. Finally, variable T’, i.e., gamma prime, represents the
value used in the decapsulation step as a secret key in order to decode the encoded error

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 33/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-33
https://doi.org/10.7717/peerjcs.1547/fig-34
http://dx.doi.org/10.7717/peerj-cs.1547

if ID1 =/= ID2 /\
Es := H(SAM1) /\
E0 := first(Es) /\
E1 := second(Es) /\
Cs := [(E0 p+ (E1 p* (PK))), (SAM1 xorD L(Es))] /\
SK := K(SAM1, Cs) .

Figure 34. Conditions of Enc in the symbolic model of BIKE.

if ID1 =/= ID2 /\
ID2 =/= none /\
Es := decoder(first(Cs) p* first(Hs), first(Hs), second(Hs)) /\
E0 := first(Es) /\
E1 := second(Es) /\
M := second(Cs) xorD L(Es) /\
SK := K(M, Cs) .

Figure 35. Conditions of rule Dec in the symbolic model of BIKE.

6.3 Classic McEliece specification802

Module CM-DEC contains the equational theory representing the property between operations ENCODE
and DECODE. This property was first given in Equation 3, and the translation into Maude syntax is

eq DECODE(ENCODE(E,T),T’) = E .

In this equation, we can see the use of three variables to represent different values. Variable E represents803

the error encoded in the encapsulation step. Variable T represents the public key used to encode the error.804

Finally, variable T’, i.e. gamma prime, represents the value used in the decapsulation step as a secret key805

in order to decode the encoded error properly. This equation might seem very general and wide since806

multiple values with no relations between them can match with its right-hand side.807

KeyGen: The adaptation from the specification code provided by (Chou et al., 2022) to our symbolic808

model regarding the key generation step represented by rule KeyGen is done directly over function809

SeededKeyGen from Figure 16. This function is essentially the key generation algorithm. It comprises810

many other functions we use to obtain certain values to construct the public and secret keys. For the811

public key PK, we can see in Figure 36 that it is the resulting value at the head from the matrix generation812

function known as MATGEN. In the case of the secret key SK, it is not a specific value but a set of values.813

The set of values for the secret key comprises a sample SAM1 and some elements from the output of814

MATGEN and other elements that derive from them.815

Enc: The encapsulation algorithm is straightforward. Figure 37 shows that we only need to model three816

values. First, the error is represented with variable ER through the result of the function FIXEDWEIGHT.817

Then we set variable C, which represents the ciphertext, as the encoding of the error with the public key.818

if E := G(SAM1) /\
D’ := lastL(E) /\
S := firstN(E) /\
ALPHAQ := FIELDORDERING(E) /\
GAMMA := [IRREDUCIBLE(E), segmentN(ALPHAQ)] /\
AUX := MATGEN(GAMMA) /\
GAMMA’ := [elem(3, AUX), elem(4, AUX)] /\
PK := head(AUX) /\
ALPHA := (second(GAMMA’) elemN(ALPHAQ) ALPHAQ) /\
SK := (SAM1 elem(2, AUX) first(GAMMA’) ALPHA S) .

Figure 36. Conditions of rule KeyGen in the symbolic model of Classic McEliece.

26/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 35 Conditions of rule Dec in the symbolic model of BIKE.
Full-size DOI: 10.7717/peerjcs.1547/fig-35

if ID1 =/= ID2 /\
Es := H(SAM1) /\
E0 := first(Es) /\
E1 := second(Es) /\
Cs := [(E0 p+ (E1 p* (PK))), (SAM1 xorD L(Es))] /\
SK := K(SAM1, Cs) .

Figure 34. Conditions of Enc in the symbolic model of BIKE.

if ID1 =/= ID2 /\
ID2 =/= none /\
Es := decoder(first(Cs) p* first(Hs), first(Hs), second(Hs)) /\
E0 := first(Es) /\
E1 := second(Es) /\
M := second(Cs) xorD L(Es) /\
SK := K(M, Cs) .

Figure 35. Conditions of rule Dec in the symbolic model of BIKE.

6.3 Classic McEliece specification802

Module CM-DEC contains the equational theory representing the property between operations ENCODE
and DECODE. This property was first given in Equation 3, and the translation into Maude syntax is

eq DECODE(ENCODE(E,T),T’) = E .

In this equation, we can see the use of three variables to represent different values. Variable E represents803

the error encoded in the encapsulation step. Variable T represents the public key used to encode the error.804

Finally, variable T’, i.e. gamma prime, represents the value used in the decapsulation step as a secret key805

in order to decode the encoded error properly. This equation might seem very general and wide since806

multiple values with no relations between them can match with its right-hand side.807

KeyGen: The adaptation from the specification code provided by (Chou et al., 2022) to our symbolic808

model regarding the key generation step represented by rule KeyGen is done directly over function809

SeededKeyGen from Figure 16. This function is essentially the key generation algorithm. It comprises810

many other functions we use to obtain certain values to construct the public and secret keys. For the811

public key PK, we can see in Figure 36 that it is the resulting value at the head from the matrix generation812

function known as MATGEN. In the case of the secret key SK, it is not a specific value but a set of values.813

The set of values for the secret key comprises a sample SAM1 and some elements from the output of814

MATGEN and other elements that derive from them.815

Enc: The encapsulation algorithm is straightforward. Figure 37 shows that we only need to model three816

values. First, the error is represented with variable ER through the result of the function FIXEDWEIGHT.817

Then we set variable C, which represents the ciphertext, as the encoding of the error with the public key.818

if E := G(SAM1) /\
D’ := lastL(E) /\
S := firstN(E) /\
ALPHAQ := FIELDORDERING(E) /\
GAMMA := [IRREDUCIBLE(E), segmentN(ALPHAQ)] /\
AUX := MATGEN(GAMMA) /\
GAMMA’ := [elem(3, AUX), elem(4, AUX)] /\
PK := head(AUX) /\
ALPHA := (second(GAMMA’) elemN(ALPHAQ) ALPHAQ) /\
SK := (SAM1 elem(2, AUX) first(GAMMA’) ALPHA S) .

Figure 36. Conditions of rule KeyGen in the symbolic model of Classic McEliece.

26/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 36 Conditions of rule KeyGen in the symbolic model of Classic McEliece.
Full-size DOI: 10.7717/peerjcs.1547/fig-36

properly. This equation might seem very general and wide since multiple values with no
relations between them can match with its right-hand side.
KeyGen. The adaptation from the specification code provided by Chou et al. (2022) to
our symbolic model regarding the key generation step represented by rule KeyGen is done
directly over function SeededKeyGen from Fig. 16. This function is essentially the key
generation algorithm. It comprises many other functions we use to obtain certain values
to construct the public and secret keys. For the public key PK, we can see in Fig. 36 that it
is the resulting value at the head from the matrix generation function known as MATGEN.
In the case of the secret key SK, it is not a specific value but a set of values. The set of values
for the secret key comprises a sample SAM1 and some elements from the output of MATGEN
and other elements that derive from them.

Enc. The encapsulation algorithm is straightforward. Figure 37 shows that we only need
to model three values. First, the error is represented with variable ER through the result
of the function FIXEDWEIGHT. Then we set variable C, which represents the ciphertext, as
the encoding of the error with the public key. Finally, as with all KEMs, the shared key
computation comes from one of the encapsulation step sides. To this end, we modelled
the hash function H with a preset value one along the error and ciphertext as subsequent
parameters.

Dec. The algorithm for the decapsulation is portrayed in Fig. 38. Two elements from
the secret key SK are extracted to construct what is then stored in variable GAMMA’. This
variable represents 0′ from line 2 at step Dec in Fig. 16. With this newly constructed value

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 34/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-35
https://doi.org/10.7717/peerjcs.1547/fig-36
http://dx.doi.org/10.7717/peerj-cs.1547

if ID1 =/= ID2 /\
ER := FIXEDWEIGHT(PK) /\
C := ENCODE(ER, PK) /\
K1 := H(1, ER, C) .

Figure 37. Conditions of rule Enc in the symbolic model of Classic McEliece.

if ID1 =/= ID2 /\
ID2 =/= none /\
S := last(SK) /\
GAMMA’ := [elem(3, SK), elem(4, SK)] /\
ER := DECODE(C,GAMMA’) /\
K1 := H(1, ER, C) .

Figure 38. Conditions of rule Dec in the symbolic model of Classic McEliece.

Finally, as with all KEMs, the shared key computation comes from one of the encapsulation step sides.819

To this end, we modelled the hash function H with a preset value one along the error and ciphertext as820

subsequent parameters.821

Dec: The algorithm for the decapsulation is portrayed in Figure 38. Two elements from the secret key822

SK are extracted to construct what is then stored in variable GAMMA’. This variable represents Γ′ from823

line 2 at step Dec in Figure 16. With this newly constructed value and the application of DECODE over C824

with GAMMA’, we get the original error thanks to our equational theory. Finally, similar to the previous825

step, the shared key is computed with the same inputs, thus obtaining the same key.826

There are some capabilities an intruder might want to perform in BIKE. These capabilities take827

advantage of possible design vulnerabilities, allowing an intruder to subtract certain information from828

another participant that might later come as valuable knowledge. The new capabilities imply two rules829

depicted in Figure 39. The first rule implies that an intruder might modify or send a message where830

the public key sent to Bob is equal to one. This public key was not generated by the intruder using the831

key generation function and thus has certain implications. One implication is that upon its construction,832

h0 == h1, so when computing pk = h1 ∗(h0)
−1 = 1. Also, with this public key, the encapsulation function833

becomes the identity function. The second rule represents the capabilities of the intruder to differentiate834

from a message the two components of the ciphertext, i.e. c0 and c1. Also, the conditions of the second835

rule represent the intruder taking advantage of the design vulnerability regarding the implementation of836

hash function L to obtain the generated value mB, which is the basis for the shared key, depicted in the837

rule as SK, computation.838

7 VERIFICATION839

This section explains the verification tools we applied to the system specification defined in the previous840

section. Specifically, we verify our symbolic models by two methods. The first verification method is841

through reachability analysis. With it, we explore all the possible executions of our model and confirm no842

dangerous or illegal states are present. The second verification method is a more formal process called843

model checking. Using this tool, we specify some properties in linear temporal logic (LTL) and use the844

built-in model checker in Maude to verify the symbolic models.845

7.1 Reachability verification846

Using the search command, we verify if the model behaves as expected, which means checking if847

states of interest exist. We conduct reachability analysis from two initial states, init1 and init2. An848

example of the first initial state was already explained with Figure 21 for the case of KYBER. Nevertheless,849

Figure 40 shows a template to define initial states in any of our specified KEMs. The second initial state,850

init2, defines our global state with a set of samples SAMPLEX such that each sample set has two sample851

values available. The extension of sample values is the main difference with the first initial state init1.852

The possibility of having two sample options for each sampling set allows our model to simulate two key853

exchange sessions of any of the KEMs. Furthermore, common to all KEMs, initX also specifies three854

27/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 37 Conditions of rule Enc in the symbolic model of Classic McEliece.
Full-size DOI: 10.7717/peerjcs.1547/fig-37

if ID1 =/= ID2 /\
ER := FIXEDWEIGHT(PK) /\
C := ENCODE(ER, PK) /\
K1 := H(1, ER, C) .

Figure 37. Conditions of rule Enc in the symbolic model of Classic McEliece.

if ID1 =/= ID2 /\
ID2 =/= none /\
S := last(SK) /\
GAMMA’ := [elem(3, SK), elem(4, SK)] /\
ER := DECODE(C,GAMMA’) /\
K1 := H(1, ER, C) .

Figure 38. Conditions of rule Dec in the symbolic model of Classic McEliece.

Finally, as with all KEMs, the shared key computation comes from one of the encapsulation step sides.819

To this end, we modelled the hash function H with a preset value one along the error and ciphertext as820

subsequent parameters.821

Dec: The algorithm for the decapsulation is portrayed in Figure 38. Two elements from the secret key822

SK are extracted to construct what is then stored in variable GAMMA’. This variable represents Γ′ from823

line 2 at step Dec in Figure 16. With this newly constructed value and the application of DECODE over C824

with GAMMA’, we get the original error thanks to our equational theory. Finally, similar to the previous825

step, the shared key is computed with the same inputs, thus obtaining the same key.826

There are some capabilities an intruder might want to perform in BIKE. These capabilities take827

advantage of possible design vulnerabilities, allowing an intruder to subtract certain information from828

another participant that might later come as valuable knowledge. The new capabilities imply two rules829

depicted in Figure 39. The first rule implies that an intruder might modify or send a message where830

the public key sent to Bob is equal to one. This public key was not generated by the intruder using the831

key generation function and thus has certain implications. One implication is that upon its construction,832

h0 == h1, so when computing pk = h1 ∗(h0)
−1 = 1. Also, with this public key, the encapsulation function833

becomes the identity function. The second rule represents the capabilities of the intruder to differentiate834

from a message the two components of the ciphertext, i.e. c0 and c1. Also, the conditions of the second835

rule represent the intruder taking advantage of the design vulnerability regarding the implementation of836

hash function L to obtain the generated value mB, which is the basis for the shared key, depicted in the837

rule as SK, computation.838

7 VERIFICATION839

This section explains the verification tools we applied to the system specification defined in the previous840

section. Specifically, we verify our symbolic models by two methods. The first verification method is841

through reachability analysis. With it, we explore all the possible executions of our model and confirm no842

dangerous or illegal states are present. The second verification method is a more formal process called843

model checking. Using this tool, we specify some properties in linear temporal logic (LTL) and use the844

built-in model checker in Maude to verify the symbolic models.845

7.1 Reachability verification846

Using the search command, we verify if the model behaves as expected, which means checking if847

states of interest exist. We conduct reachability analysis from two initial states, init1 and init2. An848

example of the first initial state was already explained with Figure 21 for the case of KYBER. Nevertheless,849

Figure 40 shows a template to define initial states in any of our specified KEMs. The second initial state,850

init2, defines our global state with a set of samples SAMPLEX such that each sample set has two sample851

values available. The extension of sample values is the main difference with the first initial state init1.852

The possibility of having two sample options for each sampling set allows our model to simulate two key853

exchange sessions of any of the KEMs. Furthermore, common to all KEMs, initX also specifies three854

27/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 38 Conditions of rule Dec in the symbolic model of Classic McEliece.
Full-size DOI: 10.7717/peerjcs.1547/fig-38

and the application of DECODE over C with GAMMA’, we get the original error thanks to our
equational theory. Finally, similar to the previous step, the shared key is computed with
the same inputs, thus obtaining the same key.
Dec. There are some capabilities an intruder might want to perform in BIKE. These
capabilities take advantage of possible design vulnerabilities, allowing an intruder to
subtract certain information from another participant that might later come as valuable
knowledge. The new capabilities imply two rules depicted in Fig. 39. The first rule implies
that an intruder might modify or send a message where the public key sent to Bob is equal
to one. This public key was not generated by the intruder using the key generation function
and thus has certain implications. One implication is that upon its construction, h0== h1,
so when computing pk = h1 ∗ (h0)−1 = 1. Also, with this public key, the encapsulation
function becomes the identity function. The second rule represents the capabilities of the
intruder to differentiate from a message the two components of the ciphertext, i.e., c0
and c1. Also, the conditions of the second rule represent the intruder taking advantage
of the design vulnerability regarding the implementation of hash function L to obtain
the generated value mB, which is the basis for the shared key, depicted in the rule as SK,
computation.

VERIFICATION
This section explains the verification tools we applied to the system specification defined in
the previous section. Specifically, we verify our symbolic models by two methods. The first
verification method is through reachability analysis. With it, we explore all the possible
executions of our model and confirm no dangerous or illegal states are present. The second
verification method is a more formal process called model checking. Using this tool, we

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 35/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-37
https://doi.org/10.7717/peerjcs.1547/fig-38
http://dx.doi.org/10.7717/peerj-cs.1547

crl [Step1-IdentityAttack] : {CONT3}
< (Eve[KS1]CONT1) PS >
net(MSGS msg{(Alice,Bob)[sentPK](PK)})
=>
{CONT3}
< (Eve[publicKey(Alice,PK) ; KS1]CONT1) PS >
net(MSGS msg{(Alice,Bob)[sentPK](1)})
if PK =/= 1 .

crl [Step2-IdentityAttack] : {CONT3}
< (Eve[KS1]CONT1) PS >
net(MSGS msg{(Bob,Alice)[sentC](Cs)})
=>
{CONT3}
< (Eve[sharedKey(Bob, SK) ; KS1]CONT1) PS >
net(MSGS msg{(Bob,Alice)[receivedC](Cs)})
if M := (second(Cs)) xorD L(first(Cs)) /\

SK := K(M,Cs) .

Figure 39. New capabilities an intruder might use to learn certain values in BIKE without following the
scheme.

participants populating the network, Alice, Eve and Bob, each with an empty set of keys and without a855

set peer. We define the network of messages as being initially empty.856

eq initX = {SAMPLESX}
< (Alice[emptyK]peer(none))

(Eve[emptyK]peer(none))
(Bob[emptyK]peer(none)) >

net(emptyM) .

Figure 40. Definition template of an initial state for any of our system modules representing a KEM.

For each of these two initial states, we check two things:857

• Correctness of our model, i.e. the existence of a state where two participants have successfully858

shared a key. This is achieved with the command presented at Figure 41, where initX is one of859

the initial states. The right-hand side shows there are two honest participants, i.e. Alice and860

Bob, who have succeeded in the application of the protocol, i.e. they share the same key in their861

respective pool of keys. Such keys can only be obtained through the rewriting computation of our862

symbolic model thanks to the rules we defined to model the participant behaviour.863

• Presence of vulnerabilities or attacks. Specifically, we search for an instance in the state space tree864

in which a man-in-the-middle attack has happened. This endeavour is achieved with the command865

depicted in Fig. 42, where the final state specifies three participants in the global state. The866

command can be translated so the state we are looking for has two participants with identifiers ID1867

and ID2 that share the same key but with different participant identifiers. Moreover, a key has been868

shared between participants ID2 and ID3 in the same way, where the participant identifiers differ869

between them. With it, we are trying to search for states where participants ID1 and ID3 think they870

have shared the same key when in reality, both are different, thus resulting in a man-in-the-middle871

attack.872

7.1.1 Correctness873

The search for states where the protocol terminates is successful for both initial states in any of the three874

symbolic models. This means honest participants, Alice and Bob, share the same key after following875

the specified rules. This demonstrates that our model works regarding the respective specifications of876

Kyber (Avanzi et al., 2019), Bike (Aragon et al., 2017) and Classic McEliece (Chou et al., 2022).877

28/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 39 New capabilities an intruder might use to learn certain values in BIKE without following the
scheme.

Full-size DOI: 10.7717/peerjcs.1547/fig-39

crl [Step1-IdentityAttack] : {CONT3}
< (Eve[KS1]CONT1) PS >
net(MSGS msg{(Alice,Bob)[sentPK](PK)})
=>
{CONT3}
< (Eve[publicKey(Alice,PK) ; KS1]CONT1) PS >
net(MSGS msg{(Alice,Bob)[sentPK](1)})
if PK =/= 1 .

crl [Step2-IdentityAttack] : {CONT3}
< (Eve[KS1]CONT1) PS >
net(MSGS msg{(Bob,Alice)[sentC](Cs)})
=>
{CONT3}
< (Eve[sharedKey(Bob, SK) ; KS1]CONT1) PS >
net(MSGS msg{(Bob,Alice)[receivedC](Cs)})
if M := (second(Cs)) xorD L(first(Cs)) /\

SK := K(M,Cs) .

Figure 39. New capabilities an intruder might use to learn certain values in BIKE without following the
scheme.

participants populating the network, Alice, Eve and Bob, each with an empty set of keys and without a855

set peer. We define the network of messages as being initially empty.856

eq initX = {SAMPLESX}
< (Alice[emptyK]peer(none))

(Eve[emptyK]peer(none))
(Bob[emptyK]peer(none)) >

net(emptyM) .

Figure 40. Definition template of an initial state for any of our system modules representing a KEM.

For each of these two initial states, we check two things:857

• Correctness of our model, i.e. the existence of a state where two participants have successfully858

shared a key. This is achieved with the command presented at Figure 41, where initX is one of859

the initial states. The right-hand side shows there are two honest participants, i.e. Alice and860

Bob, who have succeeded in the application of the protocol, i.e. they share the same key in their861

respective pool of keys. Such keys can only be obtained through the rewriting computation of our862

symbolic model thanks to the rules we defined to model the participant behaviour.863

• Presence of vulnerabilities or attacks. Specifically, we search for an instance in the state space tree864

in which a man-in-the-middle attack has happened. This endeavour is achieved with the command865

depicted in Fig. 42, where the final state specifies three participants in the global state. The866

command can be translated so the state we are looking for has two participants with identifiers ID1867

and ID2 that share the same key but with different participant identifiers. Moreover, a key has been868

shared between participants ID2 and ID3 in the same way, where the participant identifiers differ869

between them. With it, we are trying to search for states where participants ID1 and ID3 think they870

have shared the same key when in reality, both are different, thus resulting in a man-in-the-middle871

attack.872

7.1.1 Correctness873

The search for states where the protocol terminates is successful for both initial states in any of the three874

symbolic models. This means honest participants, Alice and Bob, share the same key after following875

the specified rules. This demonstrates that our model works regarding the respective specifications of876

Kyber (Avanzi et al., 2019), Bike (Aragon et al., 2017) and Classic McEliece (Chou et al., 2022).877

28/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 40 Definition template of an initial state for any of our systemmodules representing a KEM.
Full-size DOI: 10.7717/peerjcs.1547/fig-40

specify some properties in linear temporal logic (LTL) and use the built-in model checker
in Maude to verify the symbolic models.

Reachability verification
Using the search command, we verify if the model behaves as expected, which means
checking if states of interest exist. We conduct reachability analysis from two initial states,
init1 and init2. An example of the first initial state was already explained with Fig. 21
for the case of KYBER. Nevertheless, Figure 40 shows a template to define initial states in
any of our specified KEMs. The second initial state, init2, defines our global state with
a set of samples SAMPLEX such that each sample set has two sample values available. The
extension of sample values is the main difference with the first initial state init1. The
possibility of having two sample options for each sampling set allows our model to simulate
two key exchange sessions of any of the KEMs. Furthermore, common to all KEMs, initX
also specifies three participants populating the network, Alice, Eve and Bob, each with
an empty set of keys and without a set peer. We define the network of messages as being
initially empty.
For each of these two initial states, we check two things:

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 36/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-39
https://doi.org/10.7717/peerjcs.1547/fig-40
http://dx.doi.org/10.7717/peerj-cs.1547

search initX
=>!
{ CONT4:Content }
< (Alice[sharedKey(Bob,K1:SKey) ; KS1]CONT1)
(Bob[sharedKey(Alice,K1:SKey) ; KS2]CONT2) PS >

net(MSGS) .

Figure 41. Command template for a key agreement session of any KEMs of our framework in Maude.

search initX
=>*
{ CONT }
< (ID1[sharedKey(ID3,K1) ; KS1]CONT1)
(ID2[sharedKey(ID1,K1) ; sharedKey(ID3,K2) ; KS2]CONT2)
(ID3[sharedKey(ID1,K2) ; KS3]CONT3) >

net(MSGS) .

Figure 42. Command template to search for a man-in-the-middle attack of any KEMs of our framework
in Maude.

7.1.2 Man-In-The-Middle878

Regarding the second search, it returns solutions only for the case of the second initial state init2 over879

the three symbolic models. This implies some trace of state transitions, also known in the security area880

as an attack vector, are present during the simulations, leading to insecure states. We analyze the first881

solution because all other solutions fit this view.882

The attack vector is depicted in Figure 43 as a pseudo-network diagram. Here the participants in our883

model are displayed, with the steps of the protocol represented as boxes and the messages as directed884

arrows. The black dots in the malicious participant, known as EVE, are the intercept capabilities at work.885

As we see depicted by the diagram, when this malicious agent Eve modifies the messages sent by Alice,886

it supplants the identity since the public key of the new message is from Eve. This also takes place the887

other way around, when the message sent by Bob is intercepted, and the ciphertext is modified to the888

one generated by Eve using Alice’s public key. In both cases, Eve uses the gleaned contents to its889

advantage. First, the gleaned public key is used in the Enc step to generate a shared key without Alice890

being aware. Second, after intercepting the second message, Eve can perform the Dec step with the891

gleaned ciphertext since it was encapsulated using her own public key. In this way, Eve possesses the892

necessary information in certain moments to carry out a man-in-the-middle attack between Alice and893

Bob, the two honest participants of the network.894

7.1.3 Design Vulnerability895

Some of the states that the second search command finds for the symbolic model of BIKE are due to896

a vulnerability in the KEM’s design. As stated in Section 6.2, some properties might arise due to poor897

implementation decisions. The combination of these new properties with an intruder taking advantage of898

the possible design flaws leads to cases where the intruder can learn sampling values that can later be899

reused due to implementation decisions.900

A trace of the vulnerability can be found in Figure 44. Here an intruder, let’s refer to it as Eve, might901

choose to start a communication with some honest participant, Bob. Since the intruder could not follow902

the cryptography primitive KeyGen, Eve decides to use a public key h = h1 ∗ (h0)
−1 such that h0 = h1903

so h = 1. Once Bob receives the public key, thinking it is from Alice, he applies the encapsulation904

function with it and sends back a message with the resulting ciphertext. Eve then intercepts the message,905

and if Bob’s implementation satisfies the property L(e0,e1) = L(e0 + e1), then she is able to compute the906

shared key without the need for a decapsulation function. Eve was able to learn critical information using907

a weak key and a vulnerability of the exclusive or function. The specific application of the exclusive or908

operation can be seen at the end of the timeline of Eve in Figure 44. Basically, Eve extracts c0 from909

the sent ciphertext by Bob and uses it in the hash function L to apply the exclusive or operation over the910

29/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 41 Command template for a key agreement session of any KEMs of our framework inMaude.
Full-size DOI: 10.7717/peerjcs.1547/fig-41

• Correctness of our model, i.e., the existence of a state where two participants have
successfully shared a key. This is achieved with the command presented at Fig. 41,
where initX is one of the initial states. The right-hand side shows there are two honest
participants, i.e., Alice and Bob, who have succeeded in the application of the protocol,
i.e., they share the same key in their respective pool of keys. Such keys can only be
obtained through the rewriting computation of our symbolic model thanks to the rules
we defined to model the participant behaviour.
• Presence of vulnerabilities or attacks. Specifically, we search for an instance in the state
space tree inwhich aman-in-the-middle attack has happened. This endeavour is achieved
with the command depicted in Fig. 42, where the final state specifies three participants
in the global state. The command can be translated so the state we are looking for has
two participants with identifiers ID1 and ID2 that share the same key but with different
participant identifiers. Moreover, a key has been shared between participants ID2 and
ID3 in the same way, where the participant identifiers differ between them. With it, we
are trying to search for states where participants ID1 and ID3 think they have shared
the same key when in reality, both are different, thus resulting in a man-in-the-middle
attack.

Correctness
The search for states where the protocol terminates is successful for both initial states in
any of the three symbolic models. This means honest participants, Alice and Bob, share
the same key after following the specified rules. This demonstrates that our model works
regarding the respective specifications of Kyber (Avanzi et al., 2019), Bike (Aragon et al.,
2017) and Classic McEliece (Chou et al., 2022).

Man-in-the-middle
Regarding the second search, it returns solutions only for the case of the second initial state
init2 over the three symbolic models. This implies some trace of state transitions, also
known in the security area as an attack vector, are present during the simulations, leading
to insecure states. We analyze the first solution because all other solutions fit this view.
The attack vector is depicted in Fig. 43 as a pseudo-network diagram. Here, the participants
in our model are displayed, with the steps of the protocol represented as boxes and the
messages as directed arrows. The black dots in the malicious participant, known as EVE, are
the intercept capabilities at work. As we see depicted by the diagram, when this malicious
agent Eve modifies the messages sent by Alice, it supplants the identity since the public

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 37/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-41
http://dx.doi.org/10.7717/peerj-cs.1547

search initX
=>!
{ CONT4:Content }
< (Alice[sharedKey(Bob,K1:SKey) ; KS1]CONT1)
(Bob[sharedKey(Alice,K1:SKey) ; KS2]CONT2) PS >

net(MSGS) .

Figure 41. Command template for a key agreement session of any KEMs of our framework in Maude.

search initX
=>*
{ CONT }
< (ID1[sharedKey(ID3,K1) ; KS1]CONT1)
(ID2[sharedKey(ID1,K1) ; sharedKey(ID3,K2) ; KS2]CONT2)
(ID3[sharedKey(ID1,K2) ; KS3]CONT3) >

net(MSGS) .

Figure 42. Command template to search for a man-in-the-middle attack of any KEMs of our framework
in Maude.

7.1.2 Man-In-The-Middle878

Regarding the second search, it returns solutions only for the case of the second initial state init2 over879

the three symbolic models. This implies some trace of state transitions, also known in the security area880

as an attack vector, are present during the simulations, leading to insecure states. We analyze the first881

solution because all other solutions fit this view.882

The attack vector is depicted in Figure 43 as a pseudo-network diagram. Here the participants in our883

model are displayed, with the steps of the protocol represented as boxes and the messages as directed884

arrows. The black dots in the malicious participant, known as EVE, are the intercept capabilities at work.885

As we see depicted by the diagram, when this malicious agent Eve modifies the messages sent by Alice,886

it supplants the identity since the public key of the new message is from Eve. This also takes place the887

other way around, when the message sent by Bob is intercepted, and the ciphertext is modified to the888

one generated by Eve using Alice’s public key. In both cases, Eve uses the gleaned contents to its889

advantage. First, the gleaned public key is used in the Enc step to generate a shared key without Alice890

being aware. Second, after intercepting the second message, Eve can perform the Dec step with the891

gleaned ciphertext since it was encapsulated using her own public key. In this way, Eve possesses the892

necessary information in certain moments to carry out a man-in-the-middle attack between Alice and893

Bob, the two honest participants of the network.894

7.1.3 Design Vulnerability895

Some of the states that the second search command finds for the symbolic model of BIKE are due to896

a vulnerability in the KEM’s design. As stated in Section 6.2, some properties might arise due to poor897

implementation decisions. The combination of these new properties with an intruder taking advantage of898

the possible design flaws leads to cases where the intruder can learn sampling values that can later be899

reused due to implementation decisions.900

A trace of the vulnerability can be found in Figure 44. Here an intruder, let’s refer to it as Eve, might901

choose to start a communication with some honest participant, Bob. Since the intruder could not follow902

the cryptography primitive KeyGen, Eve decides to use a public key h = h1 ∗ (h0)
−1 such that h0 = h1903

so h = 1. Once Bob receives the public key, thinking it is from Alice, he applies the encapsulation904

function with it and sends back a message with the resulting ciphertext. Eve then intercepts the message,905

and if Bob’s implementation satisfies the property L(e0,e1) = L(e0 + e1), then she is able to compute the906

shared key without the need for a decapsulation function. Eve was able to learn critical information using907

a weak key and a vulnerability of the exclusive or function. The specific application of the exclusive or908

operation can be seen at the end of the timeline of Eve in Figure 44. Basically, Eve extracts c0 from909

the sent ciphertext by Bob and uses it in the hash function L to apply the exclusive or operation over the910

29/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 42 Command template to search for a man-in-the-middle attack of any KEMs of our frame-
work inMaude.

Full-size DOI: 10.7717/peerjcs.1547/fig-42

KeyGen() (PK, SK)

ALICE EVE

Enc(PK) (C,K)

Dec(C, SK) K

BOB

Enc(PK') (C', K')

KeyGen() (PK', SK')

Dec(C', SK') K'

PK PK'

C'C

Figure 43 Diagram depicting a possible step trace that led to theMITM attack of a KEM regarding our
symbolic model.

Full-size DOI: 10.7717/peerjcs.1547/fig-43

key of the new message is from Eve. This also takes place the other way around, when the
message sent by Bob is intercepted, and the ciphertext is modified to the one generated by
Eve using Alice’s public key. In both cases, Eve uses the gleaned contents to its advantage.
First, the gleaned public key is used in the Enc step to generate a shared key without
Alice being aware. Second, after intercepting the second message, Eve can perform the
Dec step with the gleaned ciphertext since it was encapsulated using her own public key.
In this way, Eve possesses the necessary information in certain moments to carry out a
man-in-the-middle attack between Alice and Bob, the two honest participants of the
network.

Design vulnerability
Some of the states that the second search command finds for the symbolic model of BIKE
are due to a vulnerability in the KEM’s design. As stated in ‘BIKE Specification’, some

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 38/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-42
https://doi.org/10.7717/peerjcs.1547/fig-43
http://dx.doi.org/10.7717/peerj-cs.1547

EVE BOB

1

C

Assuming:

L(e0, e1) = L(e0 + e1)

C0 (e0 + e1)

m (m L(e0,e1)) L(C0)

k K(m,C)

m M$

(e0,e1) H(m)

C (e0 + e1,m L(e0,e1))

k K(m,C)

Figure 44 Diagram depicting a step trace in the BIKE symbolic model leading to the leakage of critical
information.

Full-size DOI: 10.7717/peerjcs.1547/fig-44

properties might arise due to poor implementation decisions. The combination of these
new properties with an intruder taking advantage of the possible design flaws leads to cases
where the intruder can learn sampling values that can later be reused due to implementation
decisions.

A trace of the vulnerability can be found in Fig. 44. Here an intruder, let us refer to it as
Eve, might choose to start a communication with some honest participant, Bob. Since the
intruder could not follow the cryptography primitive KeyGen, Eve decides to use a public
key h= h1 ∗ (h0)−1 such that h0= h1 so h= 1. Once Bob receives the public key, thinking
it is from Alice, he applies the encapsulation function with it and sends back a message
with the resulting ciphertext. Eve then intercepts the message, and if Bob’s implementation
satisfies the property L(e0,e1)= L(e0+ e1), then she is able to compute the shared key
without the need for a decapsulation function. Eve was able to learn critical information
using a weak key and a vulnerability of the exclusive or function. The specific application of
the exclusive or operation can be seen at the end of the timeline of Eve in Fig. 44. Basically,
Eve extracts c0 from the sent ciphertext by Bob and uses it in the hash function L to apply
the exclusive or operation over the second part of the sent ciphertext, c1.

Although this design vulnerability may not seem very relevant, it requires some extra
checks by future implementations to ensure that (i) weak keys are not accepted and (ii) a
proper implementation must not satisfy the L(e0,e1)= L(e0+ e1) algebraic property. An
extra possible solution is the use of authentication or integrity checks on the messages in

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 39/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-44
http://dx.doi.org/10.7717/peerj-cs.1547

the network. This makes Bob avoid any message that is not from a trusted participant or
that has been altered.

Formal verification
The requirements for using model checking in Maude are two. The first requirement is
to have some predicates specified over our model. The second requirement is to define
some formulas with them. With these two fulfilled, we can then use the model-checking
analysis provided by Maude. It is important to mention that we must also declare some
initial states upon which the formulas would be applied. We used the same initial states
previously defined using the template in Fig. 40.

Predicates
In order to use model checking in Maude, one needs two things: a system module
representing the system to check and some predicates to define properties through
formulas. The system module has already been defined and tested, and now we dive
into the three specified predicates for model checking.

Predicate wantsToShareKey, depicted in Fig. 45, is defined so it holds in a global state
where a participant with identifier ID1 has his own public key, meaning he has performed
the KeyGen step, and there is a message to another participant, with identifier ID2, different
than him. This predicate represents a participant wanting to share a key with another. In
other words, it is the start of any of the specified KEMs.

Predicate sharedAKeyWith, depicted in Fig. 46, is defined so it is true when two
participants, ID1 and ID2, hold the same shared key K1. This predicate would then
represent the end of the KEM execution, fulfilling the previous predicate in which the KEM
was started.

Finally, predicate stolenSharedKey is depicted in Fig. 47. The predicate holds in any
state where the shared key a participant has with another one is present in the pool of keys
of a different participant. It is important to notice that we do not require that the third
participant has or does not have the shared key.

Properties
With the predicates defined, we now specify three properties. One security property stating
something bad never happens. One liveness property to state something good eventually
happens. One property to check the fairness of our system. We write these properties as
LTL formulas, allowing us to explore the execution tree in search of counterexamples. If
no counterexample is found, we can say with assurance that the property holds in our
symbolic model.

SECRECY. The property concerns the assurance that the predicate of stolenSharedKey
is false in any future state. In other words, no participant learns the secret key of another
one in any state of the session. The property is specified for the cases where the secret key
is from Alice or Bob, and the thief is Eve. The property in LTL can be written as

(�¬P)

where P = stolenSharedKey(Alice, Eve).

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 40/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

EVE BOB

1

C

Assuming:

L(e0, e1) = L(e0 + e1)

C0 (e0 + e1)

m (m L(e0,e1)) L(C0)

k K(m,C)

m M$

(e0,e1) H(m)

C (e0 + e1,m L(e0,e1))

k K(m,C)

Figure 44. Diagram depicting a step trace in the BIKE symbolic model leading to the leakage of critical
information.

eq { CONT }
< (ID1[publicKey(ID1,PK) ; KS1]CONT1)
(ID2[KS2]CONT2) PS >

net(MSGS msg{(ID1,ID2)[sentPK]PK})
|=
wantsToShareKey(ID1,ID2) = true .

Figure 45. wantsToShareKey predicate definition in module KEM-PREDS.

eq { CONT }
< (ID1[sharedKey(ID2,K1) ; KS1]CONT1)
(ID2[sharedKey(ID1,K1) ; KS2]CONT2) PS >

net(MSGS)
|=
sharedAKeyWith(ID1,ID2) = true .

Figure 46. sharedAKeyWith predicate definition in module KEM-PREDS.

eq {CONT4}
< (ID1[sharedKey(ID3,K) ; KS1]CONT1)
(ID2[sharedKey(ID1,K) ; KS2]CONT2)
(ID3[KS3]CONT3) >
net(MSGS)
|=
stolenSharedKey(ID1,ID2) = true .

Figure 47. stolenSharedKey predicate definition in module KEM-PREDS.

31/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 45 wantsToShareKey predicate definition in module KEM-PREDS.
Full-size DOI: 10.7717/peerjcs.1547/fig-45

EVE BOB

1

C

Assuming:

L(e0, e1) = L(e0 + e1)

C0 (e0 + e1)

m (m L(e0,e1)) L(C0)

k K(m,C)

m M$

(e0,e1) H(m)

C (e0 + e1,m L(e0,e1))

k K(m,C)

Figure 44. Diagram depicting a step trace in the BIKE symbolic model leading to the leakage of critical
information.

eq { CONT }
< (ID1[publicKey(ID1,PK) ; KS1]CONT1)
(ID2[KS2]CONT2) PS >

net(MSGS msg{(ID1,ID2)[sentPK]PK})
|=
wantsToShareKey(ID1,ID2) = true .

Figure 45. wantsToShareKey predicate definition in module KEM-PREDS.

eq { CONT }
< (ID1[sharedKey(ID2,K1) ; KS1]CONT1)
(ID2[sharedKey(ID1,K1) ; KS2]CONT2) PS >

net(MSGS)
|=
sharedAKeyWith(ID1,ID2) = true .

Figure 46. sharedAKeyWith predicate definition in module KEM-PREDS.

eq {CONT4}
< (ID1[sharedKey(ID3,K) ; KS1]CONT1)
(ID2[sharedKey(ID1,K) ; KS2]CONT2)
(ID3[KS3]CONT3) >
net(MSGS)
|=
stolenSharedKey(ID1,ID2) = true .

Figure 47. stolenSharedKey predicate definition in module KEM-PREDS.

31/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 46 sharedAKeyWith predicate definition in module KEM-PREDS.
Full-size DOI: 10.7717/peerjcs.1547/fig-46

EVE BOB

1

C

Assuming:

L(e0, e1) = L(e0 + e1)

C0 (e0 + e1)

m (m L(e0,e1)) L(C0)

k K(m,C)

m M$

(e0,e1) H(m)

C (e0 + e1,m L(e0,e1))

k K(m,C)

Figure 44. Diagram depicting a step trace in the BIKE symbolic model leading to the leakage of critical
information.

eq { CONT }
< (ID1[publicKey(ID1,PK) ; KS1]CONT1)
(ID2[KS2]CONT2) PS >

net(MSGS msg{(ID1,ID2)[sentPK]PK})
|=
wantsToShareKey(ID1,ID2) = true .

Figure 45. wantsToShareKey predicate definition in module KEM-PREDS.

eq { CONT }
< (ID1[sharedKey(ID2,K1) ; KS1]CONT1)
(ID2[sharedKey(ID1,K1) ; KS2]CONT2) PS >

net(MSGS)
|=
sharedAKeyWith(ID1,ID2) = true .

Figure 46. sharedAKeyWith predicate definition in module KEM-PREDS.

eq {CONT4}
< (ID1[sharedKey(ID3,K) ; KS1]CONT1)
(ID2[sharedKey(ID1,K) ; KS2]CONT2)
(ID3[KS3]CONT3) >
net(MSGS)
|=
stolenSharedKey(ID1,ID2) = true .

Figure 47. stolenSharedKey predicate definition in module KEM-PREDS.

31/35PeerJ Comput. Sci. reviewing PDF | (CS-2023:04:84747:1:1:NEW 3 Jul 2023)

Manuscript to be reviewedComputer Science

Figure 47 stolenSharedKey predicate definition in module KEM-PREDS.
Full-size DOI: 10.7717/peerjcs.1547/fig-47

KEY SHARING. This liveness property checks that whenever Alice wants to share a key
with Bob, they eventually do so. This natural language description can be expressed in LTL
notation as

�(P→♦Q)

where P = wantsToShareKey(Alice, Bob) and Q= sharedAKeyWith(Alice, Bob).
Even though Eve is not specified in the formula it is present in the analyzed execution
paths.

FAIRNESS. This property assures that whenever Alice wants to share a key with Bob,
they do so infinitely many often. It is important to note that even though the malicious
participant, Eve, is not explicit in the formula, it is present in the analyzed execution paths.
The property in LTL can be expressed from the natural language description as

�♦(P→♦Q)

where P and Q are defined as in the previous formula.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 41/47

https://peerj.com
https://doi.org/10.7717/peerjcs.1547/fig-45
https://doi.org/10.7717/peerjcs.1547/fig-46
https://doi.org/10.7717/peerjcs.1547/fig-47
http://dx.doi.org/10.7717/peerj-cs.1547

Results
About the execution of our LTL formulas, we have applied the three of them over our two
initial states, init1 and init2, for the three protocols. The results are that both initial
states accomplish the liveness (KEY SHARING) and fairness property when Alice and Bob
want to share a key, in any of the three KEMs symbolic models. We get different results
per the security property concerning SECRECY. For the KEM’s symbolic models of Classic
McEliece and Kyber, the property holds in the initial state init1. In the case of the initial
state init2, it does not hold due to theMITM attack that was reported with the reachability
analysis. In the case of the symbolic model of BIKE, the only case where the property holds
is in the initial state init1 when the participant is Alice and the thief is Eve. The property
does not hold when the participant is Bob, due to the design’s vulnerability, and when the
initial state is init2, because of the MITM attack.

To replicate these experiments, in the GitHub repository, there is a text file named
as each of the KEMs. These documents present the commands one needs to execute to
replicate the search and model checking we have presented.

CONCLUSION
This article provides a framework for the symbolic specification and analysis of lattice and
code-based KEMs. We use our framework to symbolically specify and analyze three KEMs,
one being lattice-based and the other two being code-based. We have proven the presence
of a man-in-the-middle attack on the three KEMs through reachability analysis in Maude.
Furthermore, to extend our model’s verification, three LTL formulas, specifying liveness,
fairness and security properties, have been applied withMaude’s LTLModel Checker. With
the verification results, we can assure that Kyber, BIKE and McEliece are not safe from
classical adversaries if no authentication or integrity of the messages is available or defined.
Furthermore, BIKE suffers from a design vulnerability that should not be left unchecked.
We propose, as a solution, the inclusion of some form of check over the encapsulation
function to avoid using insecure or weak keys.

For future work, we plan to improve the analysis by conducting extended model
checking to verify the complete correctness of our symbolic models. We also aim to
extend the framework in order to represent the key encapsulation mechanism properties
better. We also consider using protocol analysis tools, such as Maude-NPA, to specify
these or other KEMs and check their security in a more thoughtful analysis, i.e., for an
unbounded number of sessions. We could also extend the system representation to use
the objects feature from Maude, making it closer to other high-level languages and more
understandable for non-experts in formal methods. Using this new feature, we could
specify multiple layers of protocols and check the interaction between them. For example,
add capabilities of authentication or signatures above any KEM and perform the analyses
we have made, in this article, to check if the results are equivalent.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 42/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
Víctor García and Santiago Escobar were supported by the grant PID2021-122830OB-C42
funded by MCIN/AEI/10.13039/501100011033 and ERDF A way of making Europe and
by the grant PCI2020-120708-2 funded by MICIN/AEI/10.13039/501100011033 and by
the European Union NextGenerationEU/PRTR. Kazuhiro Ogata was supported by JST
SICORP Grant Number JPMJSC20C2, Japan. Sedat Akleylek was supported by TUBITAK
under Grant No. 121R006. Ayoub Otmani was supported by FAVPQC project funded
by CNRS and by the grant ANR-22-PETQ-0008 PQ-TLS funded by Agence Nationale
de la Recherche (ANR) within France 2030 program. There was no additional external
funding received for this study. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
MCIN/AEI/10.13039/501100011033: PID2021-122830OB-C42.
ERDF A way of making Europe.
MICIN/AEI/10.13039/501100011033: PCI2020-120708-2.
European Union NextGenerationEU/PRTR.
JST SICORP: JPMJSC20C2, Japan.
TUBITAK: 121R006.
FAVPQC project funded by CNRS: ANR-22-PETQ-0008 PQ-TLS.
Agence Nationale de la Recherche (ANR) within France 2030 program.

Competing Interests
Sedat Akleylek is an Academic Editor for PeerJ.

Author Contributions
• Víctor García conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Santiago Escobar conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.
• Kazuhiro Ogata conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.
• Sedat Akleylek analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.
• AyoubOtmani analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The source code is available at GitHub and Zenodo:

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 43/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

- https://github.com/v1ct0r-byte/PQC-in-Maude/releases/tag/v1.0.0.
- Víctor García Valero. (2023). v1ct0r-byte/PQC-in-Maude: PeerJ Computer Science

(v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.8099002.

REFERENCES
Abadi M, Rogaway P. 2002. Reconciling two views of cryptography (the computa-

tional soundness of formal encryption). Journal of Cryptology 15(2):103–127
DOI 10.1007/s00145-001-0014-7.

Aragon N, Barreto PS, Bettaieb S, Bidoux L, Blazy O, Deneuville J-C, Gaborit P,
Ghosh S, Gueron S, Güneysu T, Melchor CA, Misoczki R, Persichetti E, Richter-
Brockmann J, Sendrier N, Tillich J-P, Vasseur V, Zémor G. 2017. Bike: bit flipping
key encapsulation. Lyon, France: Hyper Articles en Ligne (HAL).

Avanzi R, Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe
P, Seiler G, Stehlé D. 2019. Crystals-kyber algorithm specifications and supporting
documentation. In: NIST PQC Round 2(4).

Bae K, Meseguer J, Ölveczky PC. 2014. Formal patterns for multirate distributed real-
time systems. Science of Computer Programming 91:3–44
DOI 10.1016/j.scico.2013.09.010.

BarbosaM, Barthe G, Bhargavan K, Blanchet B, Cremers C, Liao K, Parno B. 2021. Sok:
Computer-aided cryptography. In: 42nd IEEE Symposium on Security and Privacy, SP
2021, San Francisco, CA, USA, 24–27 May 2021. Piscataway: IEEE, 777–795.

Basin D, Cremers C, Dreier J, Sasse R. 2022. Tamarin: verification of large-scale,
real-world, cryptographic protocols. IEEE Security & Privacy 20(3):24–32
DOI 10.1109/MSEC.2022.3154689.

Blanchet B. 2012. Security protocol verification: symbolic and computational models. In:
International Conference on Principles of Security and Trust. Cham: Springer, 3–29.

Blanchet B, Cheval V, Cortier V. 2022. Proverif with lemmas, induction, fast sub-
sumption, and much more. In: 2022 IEEE Symposium on Security and Privacy (SP).
Piscataway: IEEE, 69–86.

Blanchet B, Smyth B, Cheval V, Sylvestre M. 2018. Proverif 2.00: automatic crypto-
graphic protocol verifier, user manual and tutorial. 05–16.

Bobba R, Grov J, Gupta I, Liu S, Meseguer J, Ölveczky P, Skeirik S. 2018. Design, formal
modeling, and validation of cloud storage systems using maude. In: Campbell RH,
Kamhoua CA, Kwiat KA, eds. Assured cloud computing, chapter 2. New York: John
Wiley & Sons, 10–48.

Chen S, Meseguer J, Sasse R,Wang HJ, Wang YM. 2007. A systematic approach to
uncover security flaws in gui logic. In: 2007 IEEE Symposium on Security and Privacy
(SP’07). Piscataway: IEEE, 71–85.

Cheval V, Kremer S, Rakotonirina I. 2018. The DEEPSEC prover. In: International
Conference on Computer Aided Verification. Cham: Springer, 28–36.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 44/47

https://peerj.com
https://github.com/v1ct0r-byte/PQC-in-Maude/releases/tag/v1.0.0
https://doi.org/10.5281/zenodo.8099002
http://dx.doi.org/10.1007/s00145-001-0014-7
http://dx.doi.org/10.1016/j.scico.2013.09.010
http://dx.doi.org/10.1109/MSEC.2022.3154689
http://dx.doi.org/10.7717/peerj-cs.1547

Chou T, Cid C, UiB S, Gilcher J, Lange T, Maram V,Misoczki R, Niederhagen R, Pater-
son K, Persichetti E. 2022. Classic mceliece: conservative code-based cryptography,
23 October 2022. Available at https://classic.mceliece.org/credits.html .

Clavel M, Durán F, Eker S, Lincoln P, Martí-Oliet N, Meseguer J, Talcott C. 2007. All
about maude-a high-performance logical framework: how to specify, program, and verify
systems in rewriting logic, Vol. 4350. Cham: Springer.

Cortier V, Kremer S, Warinschi B. 2011. A survey of symbolic methods in com-
putational analysis of cryptographic systems. Journal of Automated Reasoning
46(3):225–259 DOI 10.1007/s10817-010-9187-9.

Cremers CJ. 2008. The scyther tool: Verification, falsification, and analysis of security
protocols. In: International conference on computer aided verification. Cham: Springer,
414–418.

Dolev D, Yao A. 1983. On the security of public key protocols. IEEE Transactions on
Information Theory 29(2):198–208.

Durán F, Eker S, Escobar S, Martí-Oliet N, Meseguer J, Rubio R, Talcott C. 2020.
Programming and symbolic computation in maude. Journal of Logical and Algebraic
Methods in Programming 110:100497.

Eker S, KnappM, Laderoute K, Lincoln P, Meseguer J, Sonmez K. 2001. Pathway logic:
symbolic analysis of biological signaling. In: Biocomputing 2002. World Scientific,
400–412.

Eker S, Meseguer J, Sridharanarayanan A. 2004. The maude LTL model checker.
Electronic Notes in Theoretical Computer Science 71:162–187.

Escobar S, Meadows C, Meseguer J. 2006. A rewriting-based inference system for the
nrl protocol analyzer and its meta-logical properties. Theoretical Computer Science
367(1–2):162–202.

Escobar S, Meadows C, Meseguer J. 2009. Maude-NPA: cryptographic protocol analysis
modulo equational properties. In: Foundations of security analysis and design V.
Cham: Springer, 1–50.

García V. 2022.Modeling and verification of the post-quantum key encapsulation
mechanism kyber using Maude. Master’s thesis, Master’s Degree in Software Systems
Engineering and Technology, Universitat Politècnica de València.

García V, Escobar S, Ogata K. 2022.Modeling and verification of the post-quantum
key encapsulation mechanism KYBER using maude. In: Akleylek S, Escobar S,
Ogata K, Otmani A, eds. Proceedings of the international workshop on formal analysis
and verification of post-quantum cryptographic protocols co-located with the 23rd
international conference on formal engineering methods (ICFEM 2022), Madrid, Spain,
October 24, 2022, volume 3280 of CEUR Workshop Proceedings. 32–49.

Gazdag S-L, Grundner-Culemann S, Guggemos T, Heider T, Loebenberger D. 2021. A
formal analysis of IKEv2’s post-quantum extension. In: Annual Computer Security
Applications Conference. 91–105.

Gazeau I, Kremer S. 2017. Automated analysis of equivalence properties for security
protocols using else branches. In: Computer Security–ESORICS 2017: 22nd European

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 45/47

https://peerj.com
https://classic.mceliece.org/credits.html
http://dx.doi.org/10.1007/s10817-010-9187-9
http://dx.doi.org/10.7717/peerj-cs.1547

Symposium on Research in Computer Security, Oslo, Norway, September 11–15, 2017,
Proceedings, Part II 22. Cham: Springer, 1–20.

Grover LK. 1996. A fast quantum mechanical algorithm for database search. New York:
Association for Computing Machinery (ACM).

Hülsing A, Ning K-C, Schwabe P,Weber F, Zimmermann PR. 2021. Post-quantum
wireguard. In: 2021 IEEE Symposium on Security and Privacy (SP). Piscataway: IEEE,
304–321.

Jacomme C, Klein E, Kremer S, Racouchot M. 2023. A comprehensive, formal and
automated analysis of the edhoc protocol. In: USENIX Security’23-32nd USENIX
Security Symposium.

KatelmanM, Keller S, Meseguer J. 2012. Rewriting semantics of production rule sets.
Journal of Logic and Algebraic Programming 81(7–8):929–956
DOI 10.1016/j.jlap.2012.06.002.

Liu S, Ölveczky PC, Meseguer J. 2015.Modeling and analyzing mobile ad hoc networks
in real-time maude. Journal of Logical and Algebraic Methods in Programming
85(1):34–66.

Martí-Oliet N, Verdejo-López JA. 2000. Implementing CCS in maude. In: Actas de las
VIII Jornadas de Concurrencia: Cuenca, 14 a 16 de junio de 2000. Universidad de
Castilla-La Mancha, 81–96.

Meier S, Schmidt B, Cremers C, Basin D. 2013. The tamarin prover for the symbolic
analysis of security protocols. In: International conference on computer aided verifi-
cation. Cham: Springer, 696–701.

Meseguer J. 1992. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science 96(1):73–155 DOI 10.1016/0304-3975(92)90182-F.

Meseguer J. 1993. A logical theory of concurrent objects and its realization in the maude
language. In: Agha G, Wegner P, Yonezawa A, eds. Research directions in concurrent
object-oriented programming. Cambridge: MIT Press, 314–390.

Meseguer J, Roşu G. 2007. The rewriting logic semantics project. Theoretical Computer
Science 373:213–237 DOI 10.1016/j.tcs.2006.12.018.

Ramsdell J, Guttman J. 2018. CPSA4: a cryptographic protocol shapes analyzer. Available
at https://github.com/mitre/cpsaexp.

Shor PW. 1994. Algorithms for quantum computation: discrete logarithms and factoring.
In: Proceedings 35th annual symposium on foundations of computer science. Piscat-
away: IEEE, 124–134.

Stehr M-O, Meseguer J, Ölveczky PC. 2001. Rewriting logic as a unifying framework for
petri nets. In: Unifying Petri Nets. Cham: Springer, 250–303.

Talcott C, Eker S, KnappM, Lincoln P, Laderoute K. 2003. Pathway logic modeling of
protein functional domains in signal transduction. In: Biocomputing 2004. World
Scientific, 568–580.

Tran DD, Do CM, Escobar S, Ogata K. 2022a.Hybrid post-quantum tls formal specifica-
tion in maude-npa-toward its security analysis? Available at http://ceur-ws.org .

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 46/47

https://peerj.com
http://dx.doi.org/10.1016/j.jlap.2012.06.002
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1016/j.tcs.2006.12.018
https://github.com/mitre/cpsaexp
http://ceur-ws.org
http://dx.doi.org/10.7717/peerj-cs.1547

Tran DD, Ogata K, Escobar S, Akleylek S, Otmani A. 2022b. Formal specification
and model checking of lattice-based key encapsulation mechanisms in Maude. In:
Rewriting Logic and its Applications 14th International Workshop, WRLA 2022. 26.

Tran DD, Ogata K, Escobar S, Akleylek S, Otmani A. 2022c. Formal specification and
model checking of saber lattice-based key encapsulation mechanism in Maude.
In: Proceedings of the 34th International Conference on Software Engineering and
Knowledge Engineering.

García et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1547 47/47

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1547

