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ABSTRACT
Background. Clustering analysis discovers hidden structures in a data set by partition-
ing them into disjoint clusters. Robust accuracy measures that evaluate the goodness of
clustering results are critical for algorithmdevelopment andmodel diagnosis. Common
problems of clustering accuracy measures include overlooking unmatched clusters,
biases towards excessive clusters, unstable baselines, and difficulties of interpretation.
In this study, we presented a novel accuracy measure, J-score, to address these issues.
Methods. Given a data set with known class labels, J-score quantifies how well the
hypothetical clusters produced by clustering analysis recover the true classes. It starts
with bidirectional set matching to identify the correspondence between true classes and
hypothetical clusters based on Jaccard index. It then computes two weighted sums of
Jaccard indices measuring the reconciliation from classes to clusters and vice versa. The
final J-score is the harmonic mean of the two weighted sums.
Results. Through simulation studies and analyses of real data sets, we evaluated the
performance of J-score and compared with existing measures. Our results show that
J-score is effective in distinguishing partition structures that differ only by unmatched
clusters, rewarding correct inference of class numbers, addressing biases towards
excessive clusters, and having a relatively stable baseline. The simplicity of its calculation
makes the interpretation straightforward. It is a valuable tool complementary to other
accuracy measures. We released an R/jScore package implementing the algorithm.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Data
Science
Keywords Cluster analysis, Accuracy metrics

INTRODUCTION
Cluster analysis is an unsupervised data mining technique that partitions data into groups
based on similarity (Rodriguez et al., 2019). It is a valuable approach to discover hidden
structures and has broad applications in pattern recognition. Many clustering methods
have been developed and data sets are subject to cluster analysis constantly (Alashwal
et al., 2019; Caruso et al., 2017; Saxena et al., 2017). To evaluate algorithm performance,
select models, and interpret partition structures, a robust measure of clustering accuracy is
imperative.

Cluster analysis speculates that subsets of the input data belong to different classes
and aims to discover these classes by partitioning data into hypothetical clusters.
When true class labels of input data are known, accuracy of clustering results can be
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assessed on how well hypothetical cluster assignments recover true class labels (Halkidi,
Batistakis & Vazirgiannis, 2001). Intuitively, the assessment involves first establishing the
correspondence between true classes and hypothetical clusters (i.e., set matching) (Rezaei
& Fränti, 2016), then quantifying the overall goodness of match. For example, given a
true class, the hypothetical cluster sharing the largest number of data points with it may
be regarded as the best match. The fraction of total unmatched data points aggregated
over all classes is then reported as an H-score (Meilă & Heckerman, 2001). The best cluster
matched to a class can also be determined to maximize the harmonic mean of precision
and recall rates (i.e., F1-score). Weighting F1-scores over all classes produces an F-score
to represent the overall accuracy (Sundar, Chitradevi & Geetharamani, 2012). However,
because set matching reports only the best cluster matched to each class, ‘‘stray’’ clusters
that are unmatched to any classes do not contribute to the final accuracy score. When two
hypothetical partition structures differ solely by stray clusters, these accuracy measures are
unable to distinguish them (Meilă, 2007; Rosenberg & Hirschberg, 2007).

To address this ‘‘problem of matching’’, several measures have been developed that
circumvent set matching. Instead of creating specific class-cluster pairs, mutual agreement
between all classes and all clusters is calculated based on data points that are consistently
grouped together (mutual presence) or separately (mutual absence) in the two partition
structures (Cheetham & Hazel, 1969). For example, Rand index RI (Rand, 1971) and its
adjusted formARI (Hubert & Arabie, 1985) search among all possible pairs of data points to
find those that are mutually present or absent and calculate the ratios. Normalized mutual
information (NMI)measures the geometric mean of entropy of the two partition structures
(Strehl & Ghosh, 2002). Variation of information (VI) criterion and the normalized form
NVI first compute the mutual information between the two partition structures, then
derives the amount of information change when representing one partition structure
with the other. V-measure uses conditional entropy to estimate skewness of data points
in a cluster towards a class (homogeneity) or vice versa (completeness) and calculate the
harmonic mean (Rosenberg & Hirschberg, 2007). However, information theoretic based
measures have a known bias towards excessive small-sized clusters because a large number
of mutually absent data points can inflate the amount of mutual information (Amelio &
Pizzuti, 2015; Lei et al., 2017; Vinh, Epps & Bailey, 2010).

Identifying correspondence between classes and clusters is also helpful for algorithm
evaluation and model diagnosis. For example, ‘‘stray’’ clusters unmatched to any classes
and ‘‘split’’ classes matched to multiple clusters help pinpoint weaknesses in a clustering
algorithm. Because set-matching-free measures do not provide such information, post hoc
processing to identify class-cluster pairs needs to be performed, often using set-matching
approaches these measures try to avoid at the first place. Given the disconnection,
assessment based on set-matching-free measures may not align with interpretations of
class-cluster pairs.

In this study, we introduce J-score, a novel clustering accuracy measure that supports
four desirable properties. First, it performs set matching to identify correspondence
between classes and clusters. Second, set matching is bidirectional, which finds clusters
best aligned to classes and vice versa. Subsequent accuracy calculation thus incorporates
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both matched and unmatched clusters to address the ‘‘problem of matching’’. Third, it is
based on Jaccard index (Cheetham & Hazel, 1969) that is calculated using data points of
mutual presence, avoiding the impact of mutual absence on accuracy assessment. Thus,
it is robust to partition structures with excessive small-sized clusters. Fourth, its value is
bounded between 0 and 1. We illustrate the behavior of J-score with theoretical proofs,
extensive simulations, and applications to real benchmark datasets.

MATERIALS & METHODS
Portions of this text were previously published as part of a preprint (Ahmadinejad & Liu,
2021).

J-Score
Let D represent a data set containing N samples that are categorized into T true classes.
Clustering analysis ofD produces K hypothetical clusters, each containing a disjoint subset
of N. The class and cluster assignments of these samples are stored in a matrix M, which
has N rows and two columns. For a given sample in row i, the first column corresponds to
the class label ti ∈T and the second column corresponds to the cluster assignment ki ∈K .
For a specific pair of class t and cluster k, the sets Vt and Vk consist of samples for which
Mi∈1:N ,1= t andMi∈1:N ,2= k, respectively. The Jaccard index is calculated as

It ,k =
|Vt ∩Vk |

|Vt ∪Vk |
(1)

where |?| denote the size of a set.

Bidirectional set matching
To establish the correspondence between T and K , we first consider each class as the
reference and identify its best matched cluster (T→K ). Specifically, for a class t we search
for a cluster k that has the highest Jaccard index,

It =max
kεK

(
It ,k
)
. (2)

We then reverse the direction of matching, i.e., consider each cluster as reference and
identify its best matched class (K→T ) using a similar procedure. For a cluster k ∈K , we
search for a class t ∈T with the highest Jaccard index,

Ik =max
tεT

(
It ,k
)

(3)

Calculating overall accuracy
To quantify the overall accuracy, we aggregate Jaccard indices of individual clusters and
classes, accounting for their relative sizes (i.e., number of data points). We first compute a
weighted sum of It across all classes as R=

∑
t∈T (

|Vt |
N It ), and a weighted sum of Ik across

all clusters as P =
∑

k∈K (
|Vk |
N Ik). We then take their harmonic mean as J score,

J =
2×R×P
R+P

(4)
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Implementation
We implemented J -score calculation in R language and released an jScore package in
R/CRAN repository.

Distribution of J-Score
Proposition 1. J-score is bounded between (0, 1], with the maximum value of 1 reached
when hypothetical clusters match true classes perfectly.
Proof of Proposition 1. Based on the theorem of Jaccard index (Cheetham & Hazel, 1969),
It ,k in Eq. (1) ranges from 0whenVt andVkshare no commondata point (i.e., |Vt ∩Vk | = 0)
to 1 when data points in Vt and Vk overlap completely (i.e., |Vt ∩Vk | = |Vt ∪Vk |). It is
easy to derive that It in Eq. (2) obtains the maximum value of 1 when class t is paired with
a perfectly matched cluster. Similarly, Ik in Eq. (3) maximizes to 1 when cluster k is paired
with a perfectly matched class.
Lemma 1.1 If all classes have perfectly matched clusters and vice versa, R and P in Eq. (4)
equal to 1 regardless of the fraction of data points in each class and cluster, giving rise to
J = 1.
Lemma 1.2 If at least one class or cluster cannot find a perfectly matched counterpart,
the corresponding It and Ik will be less than 1. Consequently, R and P will be less than 1,
resulting in J < 1.

Because Lemma 1.1 and 1.2 exhaust all possible scenarios of bidirectional matches,
J-score has a maximum value of 1 when classes and clusters have complete agreement.
Meanwhile, bidirectional matching ensures that each and every class will be matched to a
cluster sharing at least one data point, and vice versa. Therefore, R, P , and J are all non-zero
positive values.
Proposition 2. The baseline value of J-score is obtained from clustering results from a
useless algorithm that randomly assigns data points into an arbitrary number of clusters.
This baseline value is not constant.
Proof of Proposition 2. A useless clustering algorithm implies Mi,1 and Mi,2 are
independent. By this definition, we derive the following lemmas.
Lemma 2.1. Denote Vt ,k = Vt ∩Vk as the set of data points that have class label t ∈ T
and belong to cluster k ∈ K . Because a useless clustering algorithm produces M where
Mi,1 and Mi,2 are independent, Pr

(
Mi,1= t ,Mi,2= k

)
= Pr(Mi,1 = t ) ·Pr(Mi,2 = k). As

Pr
(
Mi,1= t

)
=
|Vk |
N and Pr

(
Mi,2= k

)
=
|Vt |
N , the expected value of

∣∣Vt ,k
∣∣= N · |Vk |

N ·
|Vt |
N =

|Vk ||Vt |
N .

Lemma 2.2. Denote f (x)= ax
bx+c with x,a,b,c> 0. Because d

dx f (x)=
ac

(bx+c)2
is strictly

greater than zero, f (x) is a strictly increasing function.
For a given class-cluster pair (t ,k), the Jaccard index in Eq. (1) It ,k = |Vt∩Vk |

|Vt∪Vk |
=

|Vt ,k|

|Vt |+|Vk |−|Vt ,k|
. By Lemma 2.1, It ,k can be reduced to |Vt ||Vk |/N

|Vt |+|Vk |−|Vt ||Vk |/N
=

|Vt ||Vk |
(N−|Vt |)|Vk |+N |Vt |

.

Lemma 2.2 shows It ,k strictly increases as |Vk | increases. Thus, Eq. (2) It =maxkεK
(
It ,k
)
is

further reduced to |Vt ||Vk_max |

(N−|Vt |)|Vk_max |+N |Vt |
≡ I0t , where

∣∣Vk_max
∣∣ is the maximum of {|Vk∈K |}.

Similarly, Ik in Eq. (3) is reduced to |Vk ||Vt_max |

(N−|Vk |)|Vt_max |+N |Vk |
≡ I0k , where

∣∣Vt_max
∣∣ is the

maximum of {|Vt∈T |}. According to Eq. (4), J0= 2×R0×P0
R0+P0

, where R0=
∑

t∈T (
|Vt |
N I0t ), and
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P0=
∑

k∈K (
|Vk |
N I0k). Because R0 and P0 are strictly positive, J0 is strictly positive. J0 is also

a function of {|Vk∈K |} and {|Vtt∈T |} as
∣∣Vk_max

∣∣, ∣∣Vt_max
∣∣ are functions of {|Vk∈K |} and

{|Vt∈T |}.
J0 is the J-score by comparing clustering results from a useless algorithm with the true

class labels. J0 varies by the number of true and hypothetical clusters and has no single value.
For example, suppose that the N data points are equally distributed across the total |K |
clusters and total |T | true classes, i.e., |Vk | =N/|K | and |Vt | =N/|T |. Using the formula
in Proposition 2, J0= 1

|T |+|K |−1 , which decreases as |T | or |K | increases. This means the
minimum value of J-score varies even for the same data set. It maximizes when all data
points are grouped into a single cluster. It minimizes when each data point is assigned to a
separate cluster.

Simulations to evaluate performance
To simulate an input data set D with known class labels, we generated random numbers
based on Gaussian distributions G(µ,0.05) where µ is the mean and 0.05 is the fixed
standard deviation. Data points generated from the same Gaussian distribution belonged
to the same class. We then mixed data points of different classes to produce the input data.
Class labels of these data points were ground truth.

Given an input data set D with N data points, we used three approaches to simulate a
hypothetical partition structure. The first approach simulated a pre-determined partition
structure, in which the total number of clusters K , the size of each cluster Nk , and the
assignment of each data point to a cluster were specified manually. The second approach
simulated a random partition structure. Here, only the value ofK was pre-specified.Nk was
determined by randomly choosing K integers that summed to N =

∑K
1 Nk . Assignment

of data points to clusters was also random, which was achieved by first repeating each k
value by Nk times to create an ordered list of cluster labels, then permutating these labels.
The third approach simulated splitting or merging classes. Given the pre-specified value of
K , classes to be split or merged and the splitting ratio were randomly selected under the
constraint that N =

∑K
1 Nk .

Analysis of real datasets
We used two benchmark datasets to evaluate the performance of J-score and other accuracy
measures. The first data set contains observations of 150 iris plants categorized into three
true classes (50 Setosa, 50 Versicolor, and 50 Virginica) (Anderson, 1935). The second data
set contains information of 178 wines categorized into three true classes (59 cultivar_1,
71 cultivar_2, and 48 cultivar_3) (Aeberhard, Coomans & DeVel, 1994). We performed
K-means clustering analysis and agglomerative hierarchical clustering analysis of the scaled
features. For K-means clustering, we used the kmeans() function in R with the default
Hartigan-Wong algorithm, 10 random initialization sets (nstart =10), and 10 maximum
iterations (iter.max =10), and tested a series of K values from 2 to 10. For hierarchical
clustering, we used the dist() function in R to calculate pairwise Euclidean distance, the
hclust() function to build a dendrogram with the ‘‘ward.D2’’ algorithm, and the cutree()
function with a series of K values from 2 to 10 to create disjoint clusters. Given the true
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classes in the input data and the clusters identified from clustering analysis, we computed
various accuracy measures to find the best number of clusters that maximizes the accuracy.
Ideally, the best number of clusters shall be 3 for both the Iris data set and theWine data set.
Deviation from the expected number indicates errors associated with a specific accuracy
measure.

Computation and comparison of various accuracy measures
We compared J-score with commonly used clustering accuracymeasures. To compute ARI,
RI, NMI, NVI, and V-measure, we used the R/aricode and R/clevr packages. To compute F-
andH-score, we used an in-house developed R functions based on the published algorithms
(Meilă & Heckerman, 2001; Fung, Wang & Ester, 2003).

RESULTS
J-Score addresses the “problem of matching”
The ‘‘problem of matching’’ arises when an accuracy measure fails to consider the presence
of stray clusters in the evaluation process. J-score addresses this issue via bidirectional
set matching, which enables the recovery of stray clusters. To illustrate the advantages of
bidirectional over unidirectional set matching, we conducted simulation experiments in
which the number of hypothetical clusters was set to be equal to, less than, or greater than
the number of true classes. For each scenario, we measured the similarity between the true
partition structure and the hypothetical partition structure using H-score and F-score,
which utilizes unidirectional T→ K matching, as well as J-score, which incorporates
bidirectional matching.

For ground truth, we generated 100 random numbers Di ( i= 1,...,100) belonging
to three classes. Specifically, D1,...,10 from a Gaussian distribution G(1,0.05) constituted
class Ta, D11,...,40 ∈G(2,0.05) constituted class Tb, and D41,...,100 ∈G(3,0.05) constituted
class Tc (Fig. 1A). We first examined hypothetical partition structures that contained more
clusters than classes. In one simulation, we grouped the data points into four clusters (Fig.
1B). Clusters K1 and K2 consisted of all data points from classes Ta and Tb, respectively;
Cluster K3 consisted of D41,...,80 that are two thirds of data points from Tc ; and cluster
K4 consisted of the remaining data points from Tc . Because the number of hypothetical
clusters exceeded the number of true classes, stray clusters were inevitable. Indeed, all three
approaches despite using different T→ K algorithms, identified K1, K2, and K3 as the
cluster best matched to Ta, Tb, and Tc , respectively, and left K4 unmatched. The H-score
(0.20) and the F-score (0.88) were calculated based on the goodness of Ta→K1, Tb→K2,
and Tc→K3 matches, with no information contributed byK4. The ‘‘problem of matching’’
occurred when we split the unmatched K4 cluster into two clusters K4.1 and K4.2 (Fig. 1C).
This splitting obviously reduced the overall accuracy of the partition structure. But H-score
and F-score remained unchanged because K4.1 and K4.2 were stray clusters and did not
contribute to the final scores. J-score rescued these stray clusters in the K→T matching
step, identifying Tc as the class best matched to K4.1 and K4.2. Then, all clusters and classes
contributed information to the final J-score. As expected, the J-score dropped from 0.77
to 0.75 after the splitting.
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Figure 1 Simulations to illustrate the ‘‘problem of matching’’. Scatter plots show 100 data points with
indices ranging from 1 to 100 and values randomly generated from Gaussian distributions. Colors denote
different classes or clusters. (A) The ground truth partition structure contains three classes. Class sizes are
displayed in the table. (B–E) Hypothetical partition structures. Various scores and set matching results are
displayed in the tables next the scatter plots. H-score and F-score perform unidirectional T to K match-
ing based on the number of shared data points (NS) and F1 metric, respectively. J-score performs bidirec-
tional T to K and K to T matching based on Jaccard Index. Square brackets indicate pairs inferred by T to
K matching, where each class is paired with a cluster. Because this matching is anchored on classes, some
clusters are not matched to any classes, thus ‘‘stray’’ clusters. Specifically, K4 in panel B, K4.1 and K4.2 in
panel C, K2 in panel D and K2.1 and K2.2 in panel E are stray clusters. Curly brackets indicate pairs in-
ferred by K to T matching where each cluster is an anchor and paired with a best match class.

Full-size DOI: 10.7717/peerjcs.1545/fig-1

Stray clusters exist even when there are fewer clusters than classes. In one simulation,
we created a hypothetical partition structure consisting of two clusters. Specifically, cluster
K1 mixed 70% of the data points from each class. The remaining data points were grouped
into cluster K2 (Fig. 1D). After the T→K matching step, K1 was repeatedly identified
as the best matched cluster for all three classes, leaving K2 as a stray cluster. In another
hypothetical partition structure, we kept cluster K1 untouched and split K2 into K2.1

and K2.2 that were stray clusters as well (Fig. 1E). Again, because these two hypothetical
partition structures differ only by stray clusters, H-score and F-score failed to distinguish
them. J-score correctly reported a higher value for the first structure than the second
structure (0.39 vs. 0.38).

J-score reflects correct inference of class numbers
An important objective of cluster analysis is to infer the number of classes in input data. A
robust accuracy measure shall reward a hypothetical partition structure if it contains the
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correct number of clusters and penalize incorrect ones, as well as accounting for assignment
of individual data points to each cluster. Using simulated data and real benchmark data sets,
we examined how J-score and other measures varied with the number of clusters. Because
H-score and NVI measure distances, we converted them to 1-H and 1-NVI, respectively,
to measure similarities.

To minimize the confounding effect between class number inference and data point
assignment, we simulated hypothetical partition structures by splitting or merging true
classes. For ground truth, we generated 1,000 random numbers belonging to 10 classes. We
varied the number of clusters K from 1 to 50. For each hypothetical partition structure,
we computed seven accuracy measures including J-score, F-score, V-measure, RI, ARI,
NMI, and NVI. We repeated this process 200 times for each K value and examined the
mean and variance of each score. Since the number of true classes was 10, we expected
these scores should peak at K = 10. This was indeed the case for J-score, F-score, ARI, and
NMI (Fig. 2A). These scores also decreased sharply as K deviated from 10, penalizing both
deficient and excessive clusters. However, V-measure, RI, and NVI peaked incorrectly at
K = 13, overestimating the number of classes (Fig. 2B). These two measures penalized
excessive clusters only slightly. Even when K = 50 corresponding to overestimation by
400%, these scores decreased only by 5% from their peak values. To examine if J-score
remains robust when the number of classes decreases and the class size increases, we
simulated 1,000 random numbers belonging to five classes. Again, J-score peaked at correct
inferences of class counts (Fig. 2C) while all the other scores overestimated (Fig. 2D).
These results are consistent with previous reports of biases towards excessive clusters using
existing accuracy measures (Amelio & Pizzuti, 2015; Lei et al., 2017; Vinh, Epps & Bailey,
2010). J-score is vigorous in this perspective.

We then examined the performance of these accuracy measures by applying them to
clustering results of two real datasets. The first benchmark data set contains 150 iris plants
belonging to three true classes. We performed K-means clustering of these plants. A key
initial parameter of K-means is the number of clusters (K ) to partition the data points into.
Because K is unknown in priori, we varied K from 2 to 10. A robust accuracy measure
is expected to maximize when K is equal to the number of true classes. Indeed, J-score,
along with ARI, RI, F-score, and NMI, peaked at K = 3, identifying the correct number of
clusters. H-score, NVI, and V-measure maximized at K = 2, underestimating the number
of clusters (Fig. 3A). To further examine the performance of these measures, we randomly
sampled 90% of the Iris data set and repeated the above analysis 100 times. J-score, F-score,
and NMI were the top performers, maximizing at K = 3 across all 100 tests (Fig. 3B).
Conversely, H-score, NVI, and V-measure always underestimated the number of clusters,
maximizing at K = 2 across all tests (Fig. 3C). ARI and RI made overestimations in 2% and
5% of the tests, respectively, maximizing at K = 4 or 5.

The second benchmark data set contains 178 wines belonging to three true classes. We
performed agglomerative hierarchical clustering of these wines. Although hierarchical
clustering does not need to know the value of K when building dendrograms, this
information is required when cutting the tree to create disjoint clusters. We again varied
K from 2 to 10. All measures except H-score maximized at K = 3 (Fig. 3D). We then
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Figure 2 Simulations to illustrate inferences of the number of classes. (A, B) Simulations using a data
set containing 1,000 data points from 10 true classes. For each accuracy measure, mean scores of 200 hy-
pothetical partition structures containing a given number of clusters are displayed. Error bars represent
standard deviations. Diamonds mark the inferred number of classes by the corresponding accuracy mea-
sures. J-score, NMR and ARI made correct inferences (A) and others made incorrect inferences (B). (C,
D) Simulations using a data set containing 1,000 data points from five true classes. Only J-score made the
correct inference (C) and others made incorrect inferences (D).

Full-size DOI: 10.7717/peerjcs.1545/fig-2

randomly sampled 90% of the Wine data set and repeated the analysis 100 times. J-score,
NMI, NVI, and V-measure were the top performers, maximizing at K = 3 across all 100
tests (Fig. 3E). ARI, F-score, and RI made overestimations in 2–5% of the tests (Fig. 3F).
H-score always made underestimations, maximizing at K = 2.

These results from analyzing simulated data and real data consistently supported that
J-score is robust at inferring the correct number of clusters.

J-score has a relatively stable baseline
The establishment of a baseline for an accuracy measure serves as a reference point to
evaluate the performance of clustering algorithms and assess their ability to capture
meaningful patterns in the data. It is important to note that the baselines of most clustering
accuracymeasures are not constant (Vinh, Epps & Bailey, 2010). In the proof of Proposition
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Figure 3 Evaluation using real datasets. (A) K-means clustering analysis was applied to the complete Iris
data set. Line plots show scores of various measures change with the number of clusters, i.e., the K value.
Solid lines represent measures that correctly peak at K = 3. Dotted lines represent measures that incor-
rectly peak at K != 3. The vertical line indicates K = 3. Diamonds mark the peak values. (B, C) A to-
tal of 100 K-means clustering analyses were applied, each to 90% of randomly sampled Iris data. Bar plot
(B) shows the frequency of various measures correctly inferring three clusters. Dot plot (C) shows the fre-
quency of the inferred number of clusters. Area of each dot is proportional to the frequency. (D) Agglom-
erative hierarchical clustering was applied to the complete Wine data set. Line plots show scores of vari-
ous measures change with the K value passed to the cutree function. The vertical line indicates K = 3. Di-
amonds mark the peak values. (E, F) A total of 100 hierarchical clustering analyses were applied, each to
90% of randomly sampled Wine data. Bar plot (E) shows the frequency of various measures correctly in-
ferring three clusters. Dot plot (F) shows the frequency of the inferred number of clusters. Area of each
dot is proportional to the frequency.

Full-size DOI: 10.7717/peerjcs.1545/fig-3

2, we showed that the baseline of J-score is also not constant. To further investigate this
phenomenon, we examined how the baseline of each measure varies using simulated data
sets and real data sets.

In the simulation experiments, we computed similarities between two random
hypothetical partition structures. Specifically, we simulated 1,000 random numbers,
randomly assigned them to K clusters, and varied K values from 2 to 50. For each K , we
generated two random hypothetical partition structures and measured their similarities
using various measures. We repeated this process 50 times for each K value. Because these
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Figure 4 Baselines of various measures. (A) Baselines estimated using simulation data. For each K, the
mean score of 50 pairwise similarities between two random partition structures are displayed. Error bars
represent standard deviations. (B, C) Baselines estimated using the real-world data sets, the Iris data (B)
and the Wine data (C). For each K, the mean score of 50 pairwise similarities between a random partition
structures and the true clusters are displayed.

Full-size DOI: 10.7717/peerjcs.1545/fig-4

partition structures were random, their mean pairwise similarities shall be close to the
lowest value of the corresponding accuracy measure and stay constant regardless of the K
value. This was indeed the case for ARI that is designed deliberately to maintain a stable
baseline at 0 (Fig. 4A). The second best was J-score, with the baseline stabilized around
0.08 after the K value reached 12 and higher, i.e., the mean cluster size was less than 83.
However, when K was small, many data points were grouped together simply by chance,
leading to high similarities between random partition structures and consequently high
baseline values. Similar to J-score, the baselines of F-score and H-score quickly dropped as
K increased but stabilized at a higher value (0.16). Conversely, the baselines of NMI, NVI,
and V-measure steadily increased with the K value, showing no signs of stabilization across
the entire range of K values tested. This pattern was consistent with the previous reports
that these measures were biased towards overestimating the number of clusters (Amelio
& Pizzuti, 2015; Vinh, Epps & Bailey, 2010). The baseline of RI looked the most different
from the others, quickly approaching 1 as K increased.

We also examined the baselines of these accuracy measures in real datasets. Specifically,
we randomly assigned the 150 iris plants (Fig. 4B) or 175 wines (Fig. 4C) to K clusters with
K varied from 2 to 50. For each K, we generated a random clustering structure, measured
its similarity to the true partition structure, and repeated this process 50 times. Unlike
the simulated data where the two random clustering structures had the same value of K,
this analysis using real data sets allowed the K value to be different from the number of
true classes. The baselines of the various accuracy measures observed in this analysis were
largely consistent with those observed in the simulated data. The only exception was RI, the
baseline of which approached 0.6 instead of 1, reflecting the large impact of the numbers
of clusters in two partition structures on this measure.
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DISCUSSION
In this study, we present J-score as a clustering accuracy measure that complements
other existing measures. We illustrated the properties of J-score via theoretical inference,
simulation studies, and analyses of real data sets.

The advantages of J-score over H-score and F-score measures are achieved via
bidirectional matching to recover unmatched clusters. Although we did not compare
other set matching algorithms such as those using distances between centroids to assign
clusters to classes, the ‘‘problem of matching’’ applies because they are also based on
unidirectional matching. To promote the adoption of bidirectional set matching, we
included a utility function in our R/jScore package that takes in a table of arbitrary
pairwise cluster/class similarity scores, performs bidirectional set matching, and returns
the correspondences. This feature provides valuable information about stray clusters and
split classes when diagnosing clustering results. In fact, because Jaccard index and F1-score
aremonotonically related, one canmodify F-score using this utility function and potentially
solve the ‘‘problem of matching’’ as well.

Compared to measures based on mutual agreement, J-score has three advantages. First,
J-score identifies correspondence between classes and clusters and quantifies pairwise
similarities, which is valuable information for model diagnosis and result interpretation.
One can argue that post hoc set matching may be a remedy for mutual agreement-based
measures. However, it does not fix the disconnect between matched sets and final accuracy
scores, which can mislead model diagnosis and evaluation. Second, J-score does not suffer
from biases toward excessive clusters. A partition structures with many small clusters risk
overfitting.We show that J-score, without additional normalization or correction, performs
equally well to NMI, better than or similar to ARI and NVI that involve complicated
adjustment steps. Third, J-score has a relatively stable baseline when the average cluster
size is not too big, making interpretation of a single accuracy value straightforward. Many
existing measures lack this property except for ARI that specifically adjusts for chance
(Vinh, Epps & Bailey, 2010). However, J-score achieves this without special adjustment,
keeping the algorithm simple and intuitive.

Clustering analysis is an unsupervised learning method. Ground truth class labels are
not available in real-world applications. In these cases, clustering accuracy can be estimated
using internal validity measures such as the R2 score, the silhouette index, and the SDbw
index that quantify within-cluster similarity and between-cluster similarity (Liu et al.,
2010). Alternatively, one can generate two hypothetical partition structures of the same
data set and assess their similarity using a clustering accuracy measure. Because high
similarity implies high reproducibility, multiple hypothetical partition structures grouped
on pairwise similarities can help identify the most reproducible ones. In fact, VI and
NMI were originally developed to assess similarity between two hypothetical partition
structures and later repurposed for comparing hypothetical and true partition structures.
Furthermore, the additional information on matched class-cluster pairs, stray clusters,
and split classes provided by J-score can be used to derive consensus or partial consensus
clusters, and to identify the discrepant clusters for model diagnosis.
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There are no perfect clustering accuracy measures. Like other available measures,
J-score has its weaknesses. For example, it is not a true metric because it does not satisfy the
triangular inequality. However, J-score has many desirable and complementary properties
to existing measures, making it a valuable addition to the toolbox.

To ensure the reproducibility and scientific rigor of our results, we performed multiple
repetitions of each simulation, ranging from 50 to 200 times, and reported the average
performance along with the standard deviation. This approach allows for a robust
assessment of the stability and consistency of the results obtained. For transparent
reporting, we have made all source codes used in generating the simulation data and
analyzing the simulated and real data sets available on the GitHub jScore site as well as
at https://doi.org/10.5281/zenodo.8074044 (Liu, 2023). Other researchers and interested
parties can access and verify the methods employed, reproduce the results, and build upon
the work conducted in this study.

CONCLUSIONS
J-score is a simple and robust measure of clustering accuracy. It addresses the problem of
matching and reduces the risk of overfitting that challenge existing accuracy measures. It
will facilitate the evaluation of clustering algorithms and clustering analysis results that are
indispensable in big data analytics.
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