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ABSTRACT
Due to situational fluidity and intrinsic uncertainty of emergency response, there
needs to be a fast vehicle routing algorithm that meets the constraints of the situation,
thus the receiving-staging-storing-distributing (RSSD) algorithm was developed.
Benchmarking the quality of this satisficing algorithm is important to understand the
consequences of not engaging with the NP-Hard task of vehicle routing problem.
This benchmarking will inform whether the RSSD algorithm is producing acceptable
and consistent solutions to be used in decision support systems for emergency
response planning. We devise metrics in the domain space of emergency planning,
response, and medical countermeasure dispensing in order to assess the quality of
RSSD solutions. We conduct experiments and perform statistical analyses to assess
the quality of the RSSD algorithm’s solutions compared to the best known solutions
for selected capacitated vehicle routing problem (CVRP) benchmark instances. The
results of these experiments indicate that even though the RSSD algorithm does not
engage with finding the optimal route solutions, it behaves in a consistent manner to
the best known solutions across a range of instances and attributes.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Routing, VRP in emergency planning and response, Experimental analysis of algorithms,
Satisficing computational methods, Benchmarking, Medical counter measure distribution

INTRODUCTION
The problem addressed in this article is motivated by the need to calculate routes for the
delivery of medical countermeasures (MCMs) to points of dispensing (PODs) during a
bio-emergency. This problem is characterized by situational fluidity and intrinsic
uncertainty of disaster response. We have implemented and evaluated an algorithm for
solving a specific instance of a capacitated, multi-vehicular routing problem. The
algorithm described in this article is a revised version of one that was originally proposed
in a dissertation by Urbanovsky (2018). Henceforth, we will call the algorithm discussed in
this article RSSD (Receiving-staging-storing-distributing algorithm). The rational for
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using RSSD lies in the need to re-compute delivery routes quickly in frequent succession to
explore solutions under changing conditions. RSSD utilizes a satisficing problem criteria
and does not attempt to optimize. For problems that require solutions that are in
compliance with stated constraints, the RSSD algorithm generates solutions quickly as it
does not attempt to optimize the solution once a compliant solution is found. In this work,
we describe RSSD and quantify the consequences of RSSD not engaging with the NP-Hard
nature of the vehicle routing problem by benchmarking RSSD against best known
solutions.

Regional public health preparedness planners (PHPPs) are tasked with creating plans
for the delivery of MCMs to their regions’ population in the case of a bio-emergency, for
instance the accidental or deliberate release of anthrax. Current plans use the POD model,
where there are pre-selected locations within the public health region, at which MCMs are
dispensed to the public (Abbey, Aaby & Herrmann, 2013; Gorman, 2016). Each POD
serves a corresponding sub-population represented by a set of population blocks in
proximity to its location. The demand for MCMs are the sum of the population of the
block groups identified as served by the POD, the population count data are obtained from
the most recent United States’ Decennial Census or American Community Survey
(Jimenez, Mikler & Tiwari, 2012; O’Neill et al., 2014). Once an emergency has been
declared, the United States federal government makes available MCM resources, which are
delivered to a predetermined regional receiving, staging, and storing (RSS) site/s (i.e.,
depot/s).

Given a specific time to complete delivery, the feasibility of the solution is a function of
the number and capacity of available vehicles. Hence, this problem represents an instance
of a capacitated, multi-vehicular routing problem. Vehicle routing or travelling salesman
problems are known to be NP-Hard, and coupled with situational fluidity and uncertainty
of the problem, the complexity and its upper bound become more confounded. In disaster
response, where time and performance capabilities are limited, it is often preferable to
work towards a feasible or satisficing set of MCM distribution routes, rather than to engage
with an NP-Hard problem of finding the optimal. Satisficing is a term famously coined by
Simon (1956); he purports that it is rational to change the bounds of a complex cost
function from searching for the optimal to one that satisfices the constraints appropriately.

When given the capacity of vehicles and the available delivery time, RSSD computes
satisficing, feasible routes. Each of those routes satisfice the given constraints, i.e., “good
enough for jazz.” The article will focus on the comparison to known best solution sets
(Uchoa et al., 2017) in order to determine the level of quality of solutions produced by
RSSD. In what follows, we will describe RSSD and benchmark it to assess the consequences
of a satisficing algorithm. The article is organized as follows: first, the ‘Background’ sections
present an overview of the domain space of RSSD and a ‘RelatedWorks’ section. Following
this is the ‘Problem Description’, which describes the algorithm and benchmarking
methods utilized. Afterwards, we present the ‘Results’ of the benchmarking RSSD
experiments; and lastly, the ‘Conclusion’ contains the implications of the results,
limitations, and possible future works.
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BACKGROUND
To describe RSSD with an American idiom, it is “good enough for jazz,” or good enough to
suit the purposes of the situation, while knowing that the results will be suboptimal. To fill
a specific niche within emergency planning, response, and medical countermeasure
delivery, a version of this capacitated, multi-vehicular routing algorithm described in this
article was formulated in previous work by Urbanovsky (2018). This RSSD algorithm was
utilized in a future iteration of the REsponse PLan ANalyzer (RE-PLAN), a decision
support system for emergency planning and response, as described in O’Neill et al. (2014).
All of RE-PLAN’s versions and modules were developed in collaboration with the Texas
department of public health and have been used for planning activities in public health
regions in Texas and California (O’Neill, Poole & Mikler, 2021).

In 2004, through the cities readiness initiative (CRI), many regional public health
departments across the United States were mandated to create plans for dispersing
preventative antibiotics to the public in the case of a large-scale accidental or intentional
release of biochemicals (Nelson et al., 2010; Avchen, LeBlanc & Kosmos, 2018). One of the
modes of dispensing proposed by CRI is the POD model. The planning stage for the POD
model is pre-incident and is often revisited with an audit. The activation stage is in the
event of an accidental or deliberate release of biochemicals. For both stages, the RSSD
algorithm must meet certain conditions that are unique to each stage.

In the planning stage, PHPPs must calculate the demands for the PODS, create
preliminary routes from depot/s to PODs, and identify the number of vehicles needed.
With POD demands, identified POD and RSS locations, a time constraint, and a capacity
constraint, the RSSD algorithm generates routes and identifies the number of vehicles
necessary. The identification of the number of vehicles needed is essential in this planning
stage. See Fig. 1 for a timeline of the planning stage. It is clear in this timeline that there is
revisiting of steps in order to improve the plan. Thus, it is conducive to planning that the
routing algorithm allows for quick and consecutive creation of solutions.

In the activation stage, the timeline of events for a response is stochastic see Fig. 1. There
is a 96-h window from a release of biochemicals to when MCMs must be completely
dispensed to the public. At “hour 0”, an incident occurs; and depending on the type of
incident, the discovery can be instantaneous or, if the incident is insidious in nature, can
take as long as the onset of symptoms and subsequent diagnosis/es from medical
professionals. The time to detect the release is unknown and is indicated on the timeline
with a “?” and a dotted line. It is essential specifically for anthrax, for those impacted to
receive the antibiotics soon after exposure, otherwise, the antibiotics will have minimal
impact on the course of infection. Without the distribution of MCMs quickly,
hospitalization for those exposed will be necessary to neutralize the bacterial infection and
could result in overcrowding of emergency rooms.

Once the event is characterized as a release, the public health department will inform the
strategic national stockpile (SNS) that such an event has occurred and the region needs to
be pushed MCMs. The SNS will then work to deliver the MCMs needed to the region’s
central depot(s) within 12 h of notification. The length of time it takes for the SNS to
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deliver the MCMs to the regional depot is also dynamic and is dependent on the
undisclosed location/s of SNS’ warehouses and the risk assessment of such an event in that
public health region (Center for Disease Control, 2014; Neumeister & Gray, 2021).
Therefore, in order to utilize the time available effectively, it is potentially necessary to
reroute with a decreased or increased time constraint dependent on the time remaining.

Due to unforeseen circumstances, some PODs from the initial plan are unable to be
activated leaving the planned routes unusable. This then requires an adjustment to the
demand served at PODs, and a recalculation of the routes. The step at which consecutive
runs of RSSD might happen is highlighted in the Activation Stage of Fig. 1. This portion of
the timeline is unpredictable, therefore, a routing algorithm that produces feasible
solutions quickly is essential.

Both the planning stage and activation stage require quick solutions because of the need
to rerun routes based on a variety of factors. Most public health departments do not have
access to adequate computing infrastructure with the capabilities to run complex
optimizers quickly. With all the constraints that the algorithm must perform under, the
choice to use a greedy algorithm with a couple of metaheuristics stems from avoiding
engagement in this NP-Hard problem; instead, the focus is to ensure the routes created
meet the specified time constraint and capacity constraint. The RSSD algorithm’s solutions
are feasible routes within these constraints and satisfice the needs of PHPPs in both the
planning and activation stage.

Related work
The unpredictable nature of disaster situations requires a modified approach to the
capacitated vehicle routing problem (CVRP) to include a number of context specific
constraints that are inherently variable and often only loosely defined. This can present
some unique challenges within the vehicle routing problems (VRPs) within emergency
planning, response, and MCM distribution. During our literature review, we were unable
to find any algorithms that matched the same criteria or solved the exact same problem as
the RSSD algorithm; however, we did discover algorithms in a similar application domain.

Figure 1 Timeline of response and activation stages in the case of an accidental or deliberate release
of anthrax. The highlighted portions of the timeline represent the expected times at which the RSSD
algorithm will be run to generate time and capacity compliant solutions. The algorithm may be run
multiple times during both the planning and activation stages.

Full-size DOI: 10.7717/peerj-cs.1541/fig-1
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See Table 1 for the strengths and weaknesses of some of these algorithms and RSSD
algorithm. Table 1 contains check marks and × marks to indicate some of the unique
aspects of the chosen algorithms. Brief descriptions of the algorithms and article
contributions are included below.

Shen, Dessouky & Ordóñez (2009) and Shen, Ordóñez & Dessouky (2009), in two articles,
propose a mix integer heuristic model with a focus of mitigating some uncertainties in the
road network. Their assumptions include: (1) that the demands and time between PODs
are unknown at the time of plan creation and, (2) when PODs are activated the demands at
each POD location will not be met by the MCMs delivered. As a result of these
assumptions, they derived a two-step algorithm approach for the planning stage and the
operational phases. In the planning stage, their first algorithm optimally solves the routes
(Shen, Dessouky & Ordóñez, 2009) and in the activation stage, they use a stochastic routing
algorithm that optimizes the amount of demand that is not met (Shen, Ordóñez &
Dessouky, 2009). Qin et al. (2017) propose an update to a Genetic Algorithm utilizing a
single-depot VRP after an emergency, where supplies are limited. They attempt to
minimize the distance and number of vehicle costs. Gharib et al. (2018) propose an
artificial neural fuzzy inference system of clustering the demand points by crisis severity
and other criteria. Once these clusters are formed, the points in the cluster are prioritized.
They then used two commodity distribution models, MO Firefly and NSGA-II, for their
heterogeneous fleet and multi-depot problem. Li & Chung (2018) purport that stochastic
programming may not work in emergency situations and therefore deterministic models
like CVRP and SDVRP are more robust in applications where the probability distribution
is unknown. They propose a robust CVRP and SDVRP using robust optimization
techniques to be used in disaster relief routing. Goli & Malmir (2020) use a covering tour
approach with fuzzy demand to minimize the arrival time of the last vehicle to nodes. They
utilize a mathematical model solved by credibility theory and harmony search algorithm to

Table 1 A selection of similar algorithms to RSSD within emergency planning and response.

Attributes/Algorithm Shen, Dessouky & Ordóñez (2009) and
Shen, Ordóñez & Dessouky (2009)

Qin et al.
(2017)

Gharib et al.
(2018)

Li & Chung
(2018)

Goli &
Malmir
(2020)

RSSD
algorithm

Unknown number of
vehicles

× × × × × ✓

Capacity constraint ✓ × × ✓ ✓ ✓

Time constraint ✓ ✓ ✓ ✓ × ✓

Multi-depot × ✓ ✓ ✓ × ✓

Heterogeneous fleet × × ✓ × ✓ ×

Assume unknown
demand

✓ ✓ × × ✓ ×

Prioritize specific nodes × × ✓ × ✓ ×

Attempting to optimize ✓ ✓ ✓ ✓ ✓ ×

Satisficing strategy × × × × × ✓
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decide which points are not mandatory, using this they are able to send vehicles to nodes
that have the most need.

The described algorithms create solutions that deliver products from a depot to nodes in
emergency situations with time and/or capacity constraints. These algorithms, including
RSSD, have formulated the VRP differently in each case. As a result, we determined that it
would not be adequate to directly compare algorithms and their solutions due to the
differences in the problems being solved. We chose to benchmark the solutions of RSSD
against best known solutions for CVRP, treating these best known solutions as a form of
ground truth.

Satisficing and “Good enough” approaches in VRP

Routing literature that uses the satisficing, “good enough,” or bounded rationality
frameworks are often focused on optimizing how much a routing algorithm can violate
constraints and still be feasible or optimize “enough.” This type of variant of VRP is
described by Oyola, Arntzen & Woodruff (2018) as within the problem space of stochastic
vehicular routing and chance-constrained routing. Vidal, Laporte & Matl (2020)
characterize this type of VRP as deterministic with a focus on reliability and goal of
mitigating risk of failure. Jaillet, Qi & Sim (2016) propose an alternate method of utilizing
uncertainty while routing with a violation index that allows routes to satisfice or partially
meet constraints by a certain threshold, and thus satisfice the needs of the delivery
company. Nguyen et al. (2016) build upon Jaillet, Qi & Sim (2016) by using the satisficing
index in relation to potential customer dissatisfaction with the lateness of delivery. The use
of “satisficing” or focus on “good enough” in these VRPs formulations are how much not
to optimize. In contrast to these VRP formulations that focus on how much not to
optimize, our approach involves changing the overall objective of the algorithm to produce
solutions that are sufficient, satisfactory, or satisficing.

Benchmark dataset repositories
Many VRP benchmark datasets exist, often tailored to specific applications or variants of
VRP. Research proposing new VRP algorithms frequently use custom datasets to
demonstrate their algorithms’ performance. While it is important to understand the
algorithm in its application space, it is also valuable to compare to other solutions so to
evaluate quality.

A popular VRP dataset repository is VRP-REP, which is an open-data platform and
reported in Mendoza et al. (2014). When this article was being developed, there were 87
references to this repository, and 32,124 downloads of datasets. Gunawan et al. (2021) give
an extensive literature review of the VRP benchmark datasets that are available on the
VRP-REP website.

Another repository of datasets is the capacitated vehicle routing problem library
(CVRPLIB), which was published by Uchoa et al. (2017). This repository contains well-
known and often used CVRP datasets since 1959. One of the goals for this repositry as
stated by Uchoa et al. (2017) was to create a repository of CVRP that all researchers within
the field could use when benchmarking their CVRP algorithms. For most instances in this
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repository, there are a reported known best known route solutions. The provided best
known solution has been found by differing CVRP algorithms and this best known
solution can help evaluate the results of other CVRP algorithm solutions. We chose to use
datasets from CVRPLIB to benchmark our algorithm due to the availability of the best
known solutions that we can treat as ground truth. We opted to not include datasets from
the VRP-REP repository in our assessments for a few reasons: not all have best-known
solutions, most datasets have differing formats; and there are specific attributes within the
CVRPLIB datasets, which will be discussed later, that we found particularly valuable for
our analysis.

PROBLEM DESCRIPTION
This ‘Problem description’ section is split into two distinct parts: ‘Algorithm overview’ and
‘Benchmarking methods’. The ‘Algorithm overview’ subsection contains a brief overview
of RSSD, a version of the algorithm that was first published in Urbanovsky (2018) and was
used within a later version of RE-PLAN that was reported in O’Neill et al. (2014). The
‘Benchmarking methods’ subsection outlines the methods used in order to evaluate RSSD
using one of the datasets in the CVRPLIB repository (Uchoa et al., 2017).

The implementation of RSSD used for the experiments in this article are set on a
Euclidean Plane; therefore, distance and time are considered equivalent and will be used
interchangeably. Below, the term instance is used to describe a distinct set of vertices and
their locations on different graphs. These vertices are interchangeably referred to as nodes;
commonly, in VRP literature, nodes are written as customers. For reference, Table 2
contains symbols and definitions that are used throughout the following subsections.

Algorithm overview
The RSSD algorithm utilizes a greedy approach to identify time and capacity compliant
delivery routes for the distribution of MCMs to PODs. The RSSD algorithm attempts to
solve a version of the vehicle routing problem (VRP) that can be described as an open,
capacitated, homogeneous multi-vehicular, MCM distribution, and multi-depot delivery

Table 2 Symbols and their definitions.

Symbol Definition

G Graph, G, composed of G(V, E)

V All node and depot/s locations, each with a corresponding demand

n Number of nodes

E Edges between all nodes

D Distance matrix between all V

p p � V , set of depot/s and do not have a demand

tðriÞ t([list of vertices]) returns the sum of the distance between the nodes in explicit order

cðriÞ c([list of vertices]) returns the sum of the demand of all nodes in the route

s Time constraint

w Capacity constraint
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VRP. The RSSD algorithm guarantees that the generated delivery routes are both time and
capacity compliant without requiring the number of routes (or number of vehicles) as
input. RSSD has been created to satisfice the constraints of MCM delivery during the
planning and activation stages. Although, in this article, we focus on the use of RSSD after
a deliberate or accidental release of biochemicals, the routing algorithm can be used in
situations where: the number of vehicles required is unknown, a time and capacity
constraint must be met, and a need exists for a quick convergence (i.e., solutions in
seconds). A version of this algorithm was previously reported inUrbanovsky (2018). A flow
chart of the algorithm is included below, Fig. 2. Appendix A includes further modes of
explaining the algorithm: (1) RSSD in algorithm notation; and (2) text version of the
flowchart, Fig. 2. The version of RSSD as described below and used for running the
experiments has been implemented in a Python3 Jupyter Notebook and published at www.
doi.org/10.17605/OSF.IO/5H3GS.

The RSSD algorithm performs under five assumptions: (1) all demand can be met; (2)
capacity of the vehicles is homogeneous; (3) vehicles leave the depot at the same time; (4)
routes have no minimum time; and (5) vehicles do not return to the depot. Due to these
assumptions, RSSD can rely on creating solutions that will serve all the demand of the
PODs, use the same capacity and time constraint for all routes, and create open routes.

Consider a graph G defined on a Euclidean plane G ¼ ðV ;EÞ, composed of a vertex set
of PODs V ¼ fv1; v2;…vng which includes a depot set, p � V , and a directed,
symmetrical edge set from which a distance matrix, D, is made. The distance matrix, D
contains all distances between each pair of nodes, Dij ¼ tðvi; vjÞ. In a non-Euclidean graph
implementation, the edges may not be symmetrical because of one-way roads and/or
inclusion of traffic conditions. For every vi, there is a demand cðviÞ, except for the depot/s
p, where the demand is 0, cðpÞ ¼ 0. When implemented within a biomedical emergency
context, each node’s demand can be equal to the population of the catchment area that is
being served by the POD. The time constraint for the length of the route, s, and the
capacity constraint of the vehicles carrying the supplies, w, are also given. In the RE-PLAN
implementation, the time constraint is chosen by the public health preparedness planners,
and can be a range of time, where for every value within the range, solutions will be
produced. The capacity constraint in the RE-PLAN implementation is the amount of
individual MCMs an eighteen-wheeler can carry, which for an anthrax outbreak is around
211,200 doses. The output of the algorithm is a set of ordered lists made up of a number of
v 2 V , called routes R ¼ fr1; r2;…rmg where r1 ¼ v1; v2;…vk. For each rm, there is the
distance that the route covers tðrmÞ, and the total demand being served on the route is
cðrmÞ. This graph and its variables are input of the RSSD algorithm, which is depicted in
Fig. 2.

The first step of the algorithm is to check if routes can be created with the given time
constraint, 8vi 2 fV\pg, maxðtðvi; pÞÞ � s. This checks to see if the maximum distance
from the vertices to their closest depot is less than the time constraint. If one of the
distances from a vertex to the closest depot is greater than the time constraint, routes
cannot be created and RSSD will return an empty set. After this initial check, another check
on the capacity constraint is executed for every node. For every node that has a greater
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demand than the capacity constraint, 8vi 2 fV\pg; cðviÞ � w, a route will be created from
the depot to that node R [ ri : vi. The demand needed to be met at that node is then
updated cðviÞ� ¼ w.

The Time Compliant (yellow) section ensures created routes are within the given time
constraint s by surrounding a function, Spatial Partition (green), with a while loop that
runs until all routes are time compliant 8ri 2 R; tðriÞ � s. The Spatial Partition function,
first identifies the nodes with the maximum distance from one another, vi; vj ¼ maxðD\pÞ,
not including the depot/s. These two nodes vi; vj are selected as the first nodes of two

Figure 2 Flowchart of RSSD algorithm. Full-size DOI: 10.7717/peerj-cs.1541/fig-2
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routes, vi 2 ra and vj 2 rb. This metaheuristic was implemented because it is unlikely that
the two furthest apart nodes will be on the same route given a time constraint. Next, these
two routes, each composed of one node, will add the closest node to itself. The route with
the shortest distance tðraÞ � tðrbÞ will then add the next closest node to the either end of
the routeminðDr0c ;V ;Dr�1

c ;VÞ. The routes will iteratively add the closest node to either end of
the route, with the route that is currently the shortest being the one to add a node next.
This continues until all of the nodes have been added to one of the routes,
jra [ rbj ¼ n� jpj. When all nodes are added to either ra or rb, the closest depot will be
added to the closest end of the routes. Then tðraÞ and tðrbÞ will be checked against the time
constraint, s. If either route is over s that route will be sent through the Time Compliant
section once again, but only with the nodes within the route as part of the distance matrix
D and vertex set V is updated to only contain nodes from the route ri. This Time Compliant
section recursively repeats until every route meets the given time constraint.

The Capacity Compliant (purple) portion of the algorithm takes in the time compliant
routes and ensures they meet the capacity constraint, w. The set of routes R that do not
meet the capacity constraint, cðriÞ � w have the closest nodes to the depot pruned
vx ¼ minðtðri; pÞÞ until ri meets the capacity constraint. The nodes that are pruned from
the non-capacity compliant routes are added to a new route, pr. This metaheuristic is
implemented because pruning nodes that are closest to the depot will more likely result in a
route that is time compliant. If the new route of pruned nodes do not meet the time
constraint, it is sent through the Time Compliant portion of the algorithm until every route
made up of the pruned nodes meets the time constraint. Then the capacity constraint is
again checked. If the routes composed of the pruned nodes do not meet the capacity
constraint, these routes will go through the capacity compliant portion again. This process
is repeated until all routes are time and capacity compliant. When all routes, R, are
compliant the final solutions are returned.

The RSSD algorithm is composed of two main sections that separately ensure time and
capacity compliance. The time compliance portion relies on the metaheuristic that nodes
furthest apart in a graph, are less likely to meet a given time constraint when in the same
route. This section of the algorithm can also be thought of as clustering nodes together to
identify nodes for routes and could potentially be used in other domains when the number
of routes is not provided. The capacity portion of the algorithm relies on the metaheuristic
that the nodes closest to the depot when pruned from non-capacity compliant routes will
more likely create a time compliant route. RSSD is a simple, quick, and greedy algorithm
that was designed to fit the needs of public health preparedness planners by providing the
number of routes and creating solutions that are time and capacity compliant.

Benchmarking methods
To benchmark the quality of RSSD solutions, we utilize best known solutions from the
CVRPLIB (Uchoa et al., 2017) as if they are the ground truth. We were unable to find any
algorithms that solve the exact same problem as RSSD, therefore, benchmarking the RSSD
algorithm to such algorithms would not yield a fair comparison. Instead of comparing the
RSSD algorithm to another algorithm, we endeavor to benchmark the solutions from
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RSSD to a best known set of solutions within the CVRP domain so to evaluate the overall
performance of the RSSD’s route solutions.

As discussed in Related Works, the CVRPLIB repository contains regularly used CVRP
benchmarking datasets. Many of the solutions have a designated best known solution
within the problem space of CVRP. The algorithms that produce the best known solutions
create closed, primarily capacity-optimized, and secondly distance-optimized routes.
Although RSSD produces open routes and does not optimize for capacity nor time, the
VRP that RSSD is ultimately solving is a CVRP, and thus using route solutions within this
problem space is relevant to compare the solution results.

We focus our analysis on one dataset from CVRPLIB, which is listed as ‘Uchoa et al.
(2014)’ and also designated with an ‘X’ in the online repository. This dataset was published
along with the CVRPLIB repository in Uchoa et al. (2017). Every instance in dataset ‘X’ is
on a [0, 1,000] � [0, 1,000] grid. The locations of the depot are varied from central (C), at
the origin (E), or randomly placed in the grid (R). The positions of the nodes are either
random (R), clustered (C), or partially random and clustered (RC). The demand
distributions for the nodes are uniform (U); small values between 1–10 or 5–10; large
values between 1–100 or 50–100; dependent on quadrant (Q); or many small values and a
few large values (SL). The combinations of these attributes in the datasets are split close to
uniformly across the 100 instances in the dataset. Each instance in the dataset includes a
capacity constraint, the locations of all nodes (including the depot), and the demands at
each node.

The first portion of the benchmarking section reports CPU time between algorithms
that engage in the NP-Hard task of identifying an optimal solution and RSSD which
instead satisfices for the above described instances. Although, we find that comparing
algorithms not helpful in our benchmarking process, we felt that comparing the CPU times
of the algorithms reported in Uchoa et al. (2017) and RSSD as evidence for choosing a
satisficing approach over engaging with the NP-Hard nature of the of the problem. In
Uchoa et al. (2017), they report three algorithms’ CPU time in minutes for each of the
instances in dataset ‘X.’ These three algorithms are iterated local search-based matheuristic
(ILS-SP), the unified hybrid genetic search (UHGS), and branch-cut-and-price (BRS). We
will combine their table with the RSSD process run-time in the ‘Results’ section. The ILS-
SP and UHGS tests were conducted on Xeon CPU with 3.07 gigahertz and 16 gigabytes of
RAM on an Oracle Linux Server 6.4 as reported in Uchoa et al. (2017). UHGS was given a
high termination criterion of up to 50,000 consecutive iterations without improvement
(Uchoa et al., 2017). The BCP tests were run on a single core of an Intel i7-3960X 3.30
gigahertz processor with 64 gigabytes RAM as reported in Uchoa et al. (2017). The RSSD
tests were conducted on an Intel i5-10500 3.10 gigahertz processor, with 32 gigabytes of
RAM. The implementation of RSSD for this article was not parallelized, therefore, all
processes were conducted on one core, see notebook published at at www.doi.org/10.
17605/OSF.IO/5H3GS.

The goal of our research is to benchmark the solutions of RSSD to the published ‘X’ best
known solutions from CVRPLIB (Uchoa et al., 2017). Two aspects of the best known
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solutions need to be mitigated: the closed routes in the ‘X’ solution set and the lack of a
given time constraint. To fix the closed routes attribute of the solutions, we calculated the
final metrics by removing the longest edge that joins the route to the depot, thus making
the routes open. To resolve the absence of a time constraint for the instances, we use the
best known solution’s longest route distance (again excluding the longest segment to the
depot) as the time constraint, s.

To measure the quality of the best known and RSSD solutions, we utilize three metrics
that quantify consequential components in the domain of MCM dispersal at the time of
plan activation. When evaluating the RSSD solution set, it was particularly imperative that
we analyzed whether the utilization of resources (e.g., vehicles) was excessive as a result of
RSSD’s lack of optimization. We assumed that the utilization of resources would be higher
using the non-optimized, satisficing RSSD algorithm to produce the routes but we
endeavored to find out how much. Using our three metrics, we quantify this trade-off for
not engaging with and/or sidestepping this NP-Hard problem.

The UnCap metric is a measure of the percentage of unused capacity in relation to the
sum of the demand of all nodes in the instance. It is an indication of potentially excessive
routes/vehicles in the solution than necessary.

UnCap ¼ ðjRj � wÞ � cðVÞ
cðVÞ (1)

where R is the set of routes in a solution, w is the capacity constraint, V is the set of nodes,
and cðVÞ is the demand of all nodes. RSSD does not optimize for capacity, but it does
perform certain metaheuristics in order to make better-informed greedy decisions. The
closer the metric is to 0 indicates the less unused capacity in relation to the sum of all
demands. Even with these meta-heuristics, we expected to see a significant difference
between the best known and RSSD solutions in terms of unused capacity.

The RngMax metric measures the range between the solution’s route distances and
evaluates the variance in route sizes. All PODs in a region must open at the same time in
order to reduce the possibility of over-crowding at the PODs that open first. This amount
measures potential excess resources of guards at POD locations. RngMax is a ratio between
the maximum route distance and minimum route distance over the maximum route
distance.

RngMax ¼ maxðtðRÞÞ �minðtðRÞÞ
maxðtðRÞÞ (2)

where R is the set of routes in a solution and tðRÞ is route distance. A high value of the
RngMax metric indicates a large variance in route lengths. If some routes are significantly
longer than others, guards may be required for longer for the PODs that have already
received deliveries on shorter routes. When routes have similar distances, PODs along each
route will be served around the same time. The closer the RngMax score is to 0, the less
distance in between the route ranges.
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The NoR metric is a ratio of the solution’s number of routes over the total number of
nodes. This is similar to unused capacity in that it measures excessive use of resources, but
instead with focusing on the number of nodes in relation to number of routes.

NoR ¼ jRj
n

(3)

where R is the set of routes and n is the total number of nodes. This ratio is a measure of
how much of a route per node is in the instance, and also allows for uniform comparison
across all instances in a dataset. Dividing by the total number of nodes in an instance
normalizes the metric and allows for comparison across all instances. The lower the
number of routes the fewer resources (vehicles, etc.) that need to be reserved in the case of
plan activation. A smaller value of this metric for an instance indicates that fewer routes are
needed to serve the number of nodes.

For further evaluation, we will compare metrics across a set of characteristic attributes
of the instance. These attributes of an instance include: depot location, node positioning,
demand distribution, number of nodes in an instance, time constraint length, capacity
constraint size, and the sum of all node demands. This analysis is in order to quantify
whether there are significant differences of quality of the solutions produced when the
graph has a specific attribute. These attributes are features of each dataset (location of
nodes/depot, demand distribution, etc.) that can be binned across a continuum and
compared across all instances.

The difference between the mean metric (UnCap, RngMax, NoR) for the best known
and RSSD solutions is taken to indicate the compared quality of the solutions for that
metric. When the difference is negative, the best known solutions have a lower value for
that metric, and when the difference is positive the RSSD metric is lower. A difference of 0
indicates the RSSD and best known solutions perform the same.

For the mean difference values, a trendline is computed to allow for quantitative
analysis of potential patterns across the attributes continuum (increase in the attribute
quantity or randomness). This trendline is a simple least squares fitting line. If the
coefficient of determination value or R2 is high, this indicates that the data fits the linear
regression model. If R2 value is high and the slope of the trendline is 0, this indicates that
the RSSD and the best known set of solutions do not behave differently based on the
continuum of the attribute.

To further compare the means, we perform statistical tests that can indicate if the means
of the dependent variables (the attribute categories) and the independent variables (the
mean difference for the three metrics) perform significantly differently. The One-Way
ANOVA p-values were used when Levene’s test results were not significant; the Welch
ANOVA is used when the result of Levene’s test were significant. If there is significance
between the variables based on the p-values from the ANOVA tests, the Games-Howell
posthoc test was performed. TheWelch ANOVA and the Games-Howell posthoc test were
chosen for their robustness against datasets that violate the homogeneity of varianc and
equal sample sizes. With only 100 instances in the ‘X’ dataset and fewer than 20 instances
in each attribute category, these results may be affected by the law of small numbers. These

McDaniel et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1541 13/22

http://dx.doi.org/10.7717/peerj-cs.1541
https://peerj.com/computer-science/


statistical tests were performed on SPSS Version 28 and the queries utilized and every
instance’s results are published at www.doi.org/10.17605/OSF.IO/5H3GS.

RESULTS
First, we compare RSSD CPU processing times to those reported in Uchoa et al. (2017), for
ILS-SP, UHGS, and BRS, see Fig. 3. These three algorithms engage in the NP-Hard nature
of the problem of attempting to generate optimal solutions and take longer to produce
accepted solutions compared to the RSSD algorithm. The stopping criteria that was chosen
for UHGS (Uchoa et al., 2017) appears excessively high (up to 50,000 consecutive iterations
without improvement) and therefore the CPU time for this algorithm could be considered
inflated. For all instances, RSSD produces a solution (ranging from 101 to 1,001 nodes) in
less than a minute. See Appendix B for two more charts on the processing times (Figs. B1
and B2).

Across all instances, the distribution of our devised three metrics, UnCap, RngMax, and
NoR, are reported in Fig. 4. See Appendix C for Table C1 of the mean, min, max, and
standard deviations. The best known solution’s mean UnCap metric is �0.03% capacity
unused of the instance’s total demand; comparatively to the RSSD solutions, which have an
average unused capacity �25%. This result is not surprising in that the best known
solutions are created by algorithms for which optimizing for capacity usage is priority. The
results of the mean RngMax metric indicate that the RSSD solutions have a smaller
variance among the route lengths in a solution than that of the best known solution set.
The mean NoR metric’s results are that the best known solutions have �0.127 routes per
node on average, and the RSSD have �0.152 routes per node. The NoR difference of

Figure 3 Four algorithms’ CPU times in minutes (y-axis) over all instances by number of nodes (x-
axis). Full-size DOI: 10.7717/peerj-cs.1541/fig-3
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�0.026 overall is not excessive and indicates that although the RSSD algorithm does not
engage in optimization and has a higher UnCap score, there is not a large difference in the
number of routes per solution over all the instances. For each of the metrics, the RSSD
solutions have a much wider variance in scores in comparison to that of the best known
solutions’. This is indicative of the greediness of RSSD and was expected. For the results of
each variable and metric for each instance, see the document published at www.doi.org/10.
17605/OSF.IO/5H3GS.

The next step is to evaluate whether or not there is a trend over the course of an increase
of attribute (number of nodes, time constraint, capacity constraint, randomness etc.) and
the quality of the solution. Figures 5 and 6 contain the distributions for the best known and
RSSD solutions for each attribute for each metric as well as the trendline of the plotted
differences (best known minus RSSD) of the solutions means. The columns in the graphs
represent categorical groupings of nodes based on the attributes of the instances. Table 3
contains the grouping label (e.g., 1–9), the criteria for grouping (e.g., range: 101–190 or
label: center) and the number (n) per grouping. The quality of the solution is defined as the
similarity of trends between the best known and the RSSD solutions.

The trendline’s slopes across all of the attributes and metrics stayed close to 0 in Figs. 5
and 6. This indicates that as the increase in the attributes’ value (e.g., the more nodes in an
instance) or the increase in randomness (e.g., depot position), there were not significant
trends in the RSSD solutions quality in comparison to that of the best known solutions.
The highest R2 values for the trendlines were: the attributes depot positioning (0.98), and
node positioning (0.96) by the UnCap metric; capacity constraint (0.6) by RngMax and;
time constraint (0.9) and node positioning (0.89) by NoR. This indicates that the slope of
the trendline is more accurate in representing the trend of these attributes. The depot
positioning (0.037) and node positioning (0.056) by theUnCapmetric had the largest slope
values. For depot positioning, as the location became more random, the RSSD and best
known solutions converged closer in UnCap. As the node positioning became more

Figure 4 Distribution across the three metrics for all instances. Full-size DOI: 10.7717/peerj-cs.1541/fig-4
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random, the RSSD had a larger mean value in UnCap and the difference trended
downward, the quality of the RSSD solutions diminished in relation to the randomness of
node positions in instances.

The last step in benchmarking is to evaluate if there are any significant differences in
quality between groupings among attributes for each of the difference metrics. The null
hypothesis is that there are no differences among the attribute groupings therefore there
should not be any significant difference among the groups. The three difference metrics
underwent multiple statistical tests as explained in Benchmarking Methods. The results
when there are significant differences between groups are shown in Table 4.

There were 15 pairs of groupings that were significantly different out of 405 total paired
groupings. The UnCapmetric had significant differences between some groups by capacity
constraint, node positioning, and demand distribution. This indicates that for these

Figure 5 Compare means graphs for number of nodes, time constraint, capacity constraint, and sum of demands.
Full-size DOI: 10.7717/peerj-cs.1541/fig-5

McDaniel et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1541 16/22

http://dx.doi.org/10.7717/peerj-cs.1541/fig-5
http://dx.doi.org/10.7717/peerj-cs.1541
https://peerj.com/computer-science/


attributes, the optimal and RSSD behaved significantly different within these groupings.
The RngMax had significant difference between one pair within the attribute Time
Constraint. The NoR metric had the most pairs of groupings that behaved differently
among the three metrics, with difference among groupings in Time Constraint, Capacity
Constraint, Depot Positioning, and Node Positioning. From this, we can expect RSSD
results to behave differently than a given ground truth if the instances meet these criteria.

Figure 6 Compare means graphs for depot positioning, node positioning, and demand distribution. Full-size DOI: 10.7717/peerj-cs.1541/fig-6
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CONCLUSION
The RSSD algorithm employs a satisficing strategy to identify solutions that meet the given
time and capacity constraints. The algorithm is quick and does not require the number of
vehicles/routes as input. With its speed and low algorithmic complexity, it is well suited for

Table 3 Attribute labels and ranges.

Attribute Label 1 2 3 4 5 6 7 8 9

Number of
Nodes

range 101–199 200–299 300–399 400–499 500–599 600–799 800–1,001

n 21 22 15 10 9 12 11

Sum of
Demands

range 119–799 800–1,499 1,500–2,999 3,000–4,999 5,000–9,999 10,000–14,999 15,000–19,999 20,000–34,999 35,000–67,057

n 14 10 12 13 12 8 9 12 10

Time
Constraint

range 780–999 1,000–1,199 1,200–1,499 1,500–1,699 1,700–1,999 2,000–2,850

n 15 16 19 23 17 10

Capacity
Constraint

range 19–March 20–49 50–99 100–139 140–199 200–399 400–599 600–899 900–1,816

n 15 11 9 12 10 13 9 10 11

Depot
Positioning

label Center Origin (E) Random

n 32 34 34

Node
Positioning

label Clustered Clustered/
Random

Random

n 32 34 34

Demand
Distribution

label 1–10 5–10 1–100 50–100 Quadrant Many Small,
Few Large

Uniform

n 14 14 14 14 14 14 16

Table 4 Statistical significance of difference of means between groupings.

Metric Attribute Group I Group J Mean difference Sig. 95% Confidence interval

Lower bound Upper bound

UnCap Capacity Constraint 1 5 0.161 0.009 0.031 0.292

5 8 −0.135 0.036 −0.264 −0.006

Node Positioning C R 0.111 0.003 0.034 0.188

Demand Distribution 1–10 SL 0.133 0.003 0.039 0.227

1–100 SL 0.132 0.004 0.034 0.230

Q SL 0.128 0.004 0.033 0.223

RngMax Time Constraint 3 5 −0.114 0.010 −0.208 −0.020

NoR Time Constraint 1 6 −0.030 0.047 −0.059 0.000

2 6 −0.017 0.027 −0.033 −0.002

3 5 −0.017 0.046 −0.034 0.000

3 6 −0.021 0.002 −0.035 −0.006

Capacity Constraint 2 8 −0.014 0.010 −0.025 −0.003

5 8 −0.029 0.036 −0.057 −0.002

Depot Positioning C E −0.012 0.030 −0.023 −0.001

Node Positioning C R 0.012 0.016 0.002 0.023
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the problem for which it was designed in the decision support system, RE-PLAN. To
quantify the lack of engagement in the NP-Hard problem of finding an optimal solution,
we devise three metrics that are relevant within domain. These three metrics take into
account components of the solutions that could result in higher resource utilization. The
UnCAP and NoR metrics quantify a potential overuse of vehicles for routes. The RngMax
metric quantifies a potential excess of guards at POD locations that have already received
resources. These three metrics are appropriate for quantifying the quality of RSSD in
respect to the ground truth as they assess excess use of resources in appropriate ways.

Using these metrics allowed us to benchmarking the RSSD solutions to best known
solutions in a context specific way. This benchmarking is essential in our ability to
understand if the RSSD algorithm produces consistent and acceptable solutions for use.
The methods of benchmarking created and described above are able to address whether or
not this is the case. The RSSD solutions on average have less variance in route length (lower
RngMax scores) than that of the best known solutions, which is beneficial for PHPPs in
timing the beginning of dispensing of MCMs across a region. The means for UnCap and
NoR for the RSSD solutions were higher than that of the optimal, however, the quality of
the solutions were consistent across the attributes of those instances. There were few
grouping pairs that had significant differences, meaning that in general the RSSD and best
known solutions performed similarly. The RSSD algorithm produces competitive solutions
compared with the best known solutions, using the three devised domain-specific metrics.

A major limitation of this benchmarking method is that dataset ‘X’ contained only 100
curated instances (Uchoa et al., 2017). If more instances had the same curated qualities, we
would be able to benchmark the RSSD solutions with more confidence. Another limitation
resulting from the small dataset size, is the groupings for the instance attributes (e.g., Time
Constraint, Capacity Constraint, etc.) were at times small with 7–14 instances per
grouping. These smaller groups could contain disproportionately certain other attributes,
which ultimately could impact the scores of the solutions more so then that of the attribute
grouping being compared.

Future work involves expanding the scope of the RSSD algorithm’s applications,
including its utilization in managing emergency deliveries for drones, planning routes for
public transportation, and incorporating it into algorithms for locating depots. Another
research direction involves investigating partitioning strategies for the initial spatial
partitioning phase of the RSSD algorithm. Additionally, there is potential to devise
additional metrics for assessing generated routes based on energy consumption or closure
risk due to hazards.
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