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ABSTRACT
Supplier selection is a critical decision-making process for any organization, as it
directly impacts the quality, cost, and reliability of its products and services. However,
the supplier selection problem can become highly complex due to the uncertainties
and vagueness associated with it. To overcome these complexities, multi-criteria
decision analysis, and fuzzy logic have been used to incorporate uncertainties and
vagueness into the supplier selection process. These techniques can help organizations
make informed decisions and mitigate the risks associated with supplier selection.
In this article, a complex picture fuzzy soft set (cpFSS), a generalized fuzzy set-like
structure, is developed to deal with information-based uncertainties involved in the
supplier selection process. It can maintain the expected information-based periodicity
by introducing amplitude and phase terms. The amplitude term is meant for fuzzy
membership, and the phase term is for managing its periodicity within the complex
plane. The cpFSS also facilitates the decision-makers by allowing them the opportunity
to provide their neutral grade-based opinions for objects under observation. Firstly, the
essential notions and set-theoretic operations of cpFSS are investigated and illustrated
with examples. Secondly, a MADM-based algorithm is proposed by describing new
matrix-based aggregations of cpFSS like the core matrix, maximum and minimum
decision value matrices, and score. Lastly, the proposed algorithm is implemented in
real-world applications with the aim of selecting a suitable supplier for the provision
of required materials for construction projects. With the sensitivity analysis of score
values through Pythagorean means, it can be concluded that the results and rankings of
the suppliers are consistent. Moreover, through structural comparison, the proposed
structure is proven to bemore flexible and reliable as compared to existing fuzzy set-like
structures.
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INTRODUCTION
For every organization, choosing a supplier is a crucial decision-making process because it
has an immediate impact on the reliability, pricing, and quality of their goods and services.
The supplier selection problem (SSP), however, can become extremely complicated
because of the ambiguities and uncertainties that surround it. After going through the
literature (Saputro, Figueira & Almada-Lobo, 2022; De Boer, Labro & Morlacchi, 2001;
Altinoz, Kilduff & Winchester Jr, 2001; Bhutta, 2003; Jain, Benyoucef & Deshmukh, 2009;
Amorim et al., 2016), some of the complexities are:
1. Uncertainty in supplier performance: Given how challenging it is to precisely anticipate

suppliers’ future performance, there is always some degree of uncertainty around their
performance as the chosen provider. The success of the provider may be impacted by a
number of variables, including market trends, natural disasters, labour strikes, etc. The
supplier selection problem may become very complex as a result of these uncertainties.

2. Vagueness in decision criteria: The selection criteria for suppliers are sometimes
nebulous and imprecise. For instance, several organizations may interpret the criterion
’’quality’’ in different ways. The supplier selection process may become extremely
complex as a result of ambiguity, which may give rise to various interpretations and
judgments.

3. Incomplete information: The choice of a provider may become more difficult if there
is little or incomplete information available about them. The supplier’s financial
soundness, production capability, and quality management procedures may not be
fully disclosed to organizations. As it is challenging to make an informed judgment
based on insufficient information, this missing information may make the supplier
selection process extremely complex.

4. Multiple criteria: Typically, the SSP takes into account a number of factors, including
price, quality, delivery time, and supplier reputation. Prioritizing these criteria might
be difficult because they may contradict one another. Furthermore, the weights given to
each criterion can change depending on the requirements of the organization, making
the supplier selection problem extremely complex.
Organizations can utilize decision-making techniques like multi-criteria decision

analysis, and fuzzy logic to include uncertainty and ambiguity in the SSP in order to
get around these challenges. These methods can aid businesses in decision-making and
risk mitigation related to supplier selection. Dealing with informational uncertainties has
been a challenging problem for researchers. Several algebraic models have already been
introduced to cope with such informational ambiguities. Picture fuzzy set (pFS) (Cuong
& Kreinovich, 2013) has much significance in this regard. It is an extension of Zadeh’s
fuzzy set (ZFS) Zadeh1, Atanassov’s intuitionistic fuzzy set (AIFS) (Atanassov, 1986) and
refined pythagorean fuzzy set (Saeed, Ahmad & Rahman, 2023). Saha, Reddy & Kumar
(2022) discussed the classification problem based on the formulations of fuzzy similarity
measures and Archimedean-Dombi aggregation operator. Since the ZFS measures the
belongingness of an element under observation by its relevant membership grade between
0 and 1 and the AIFS computes such feature by its relatedmembership and nonmembership
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grades that both take values from [0,1] provided that the sum of both membership and
non membership grades must lie in [0,1]. But in pFS, the belongingness of an element
in a universal set is characterized by three dimensional function which assigns positive
membership grade, neutral membership grade and negative membership grade within
[0,1] such that the sum of these three components must be contained in [0,1]. In fact, the
pFS is introduced to tackle the situations where human opinions involve multiple options
like no, refusal, yes. This feature has increased the flexibility of pFS. The idea of pFS has
attracted the attention of many researchers like Cuong & Pham (2015) introduced some
fuzzy logic operators for pFS. Singh (2015) and Ganie, Singh & Bhatia (2020) computed
correlation coefficient for pFS with discussion on their properties and applications.
Wei (2018) and Wei & Gao (2018) formulated similarity measures for pFS with their
implementation in various fields. As information-based periodicity is often observed in
raw data embedded with uncertainties. To cope with such situation, the idea of pFS has
been extended to complex picture fuzzy set (cpFS) (Akram, Bashir & Garg, 2020a; Qu et
al., 2022) which is the generalization of complex fuzzy set (cFS) (Ramot et al., 2002) and
complex intuitionistic fuzzy set (cIFS) (Alkouri & Salleh, 2012). In cpFS, the codomain of
a three dimensional function is a unit circle in the complex plane which is characterized
by two terms: amplitude term and phase term. First term denotes the membership value
and the second term represents its periodicity. Yazdanbakhsh & Dick (2018) and Tamir,
Rishe & Kandel (2015) made systematic reviews on cFS logic. Hu et al. (2018) formulated
the distance between cFSs and discussed the continuity of cFS operations. Garg & Rani
(2019) and Garg & Rani (2020) discussed the various information measures, aggregation
operations and ranking techniques for cIFSs. Akram, Bashir & Garg (2020b) and Liu,
Akram & Bashir (2021) investigated some aggregation operators of cpFSs and applied
them in decision making problems. The above-mentioned fuzzy set-like models are not
compatible with parameterization mode; therefore, to make adequate with such setting,
Molodtsov (1999) introduced the idea of soft set (SST). Thus, the theories of FS, IFS,
pFS, cFS, cIFS and cpFS are extended for soft set to develop novel structures fuzzy soft
set (FSS) (Maji, Biswas & Roy, 2001a), intuitionistic fuzzy soft set (IFSS) (Maji, Biswas &
Roy, 2001b), picture fuzzy soft set (pFSS) (Cuong & Kreinovich, 2014), complex fuzzy soft
set (cFSS) (Thirunavukarasu, Suresh & Ashokkumar, 2017), complex intuitionistic fuzzy
soft set (cIFSS) (Kumar & Bajaj, 2014; Ali et al., 2021) and complex picture fuzzy soft
set (cpFSS) (Shanthi, Umamakeswari & Saranya, 2022) respectively. Rahman et al. (2020),
Ihsan et al. (2021) and Ihsan, Saeed & Rahman (2021) made rich contributions refinement
in fuzzy set-like structures and convexity in SST-like environments.

Relevant literature
Supply chain management (SCMG) is the management of the stream of merchandise
and services between producers and sites. This can contain the shifting and collection
of unprocessed stuff, under-process work evaluation, prepared materials, and the order
placement formalities from the production point to the utilization point. Due to the
involvement of various criteria, SCMG has been considered as a multi-criteria decision-
making (MCDM) problem with the association of uncertainties by the researchers (Erceg
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&Mularifović, 2019; Tamošaitiene et al., 2017). Chen & Su (2022) used blockchain plus to
optimize trust propagation on SCMG. Xiao, Chen & Li (2012) employed an innovative
approach to discuss SSP by integrating the ideas of FCM and FSS with the consideration
of risk factors. Zulqarnain et al. (2021a) and Zulqarnain et al. (2021b) introduced the
notions of aggregation average operators with ordered weights under Pythagorean FSS
and validated the notions by applying them in SSP. Chang (2019) made a discussion
on SSP based on aggregation average operators with weights under IFSS. Chatterjee,
Mukherjee & Kar (2018)used the ideas of linguistic terms, rough sets, and fuzzy numbers for
approximating the various aspects of SSP. Wang, Cheng & Huang (2009) and Junior, Osiro
& Carpinetti (2014)discussed SSP by adopting the fuzzyAHP and fuzzy TOPSIS techniques.
Büyüközkan & Çifçi (2011) and Büyüközkan & Göçer (2017) argued the sustainability of
SSP by considering incomplete information and axiomatic design respectively. Patra &
Mondal (2016) integrated the techniques of FS risk analysis and the balanced solution to
study SSP. Agarwal, Biswas & Hanmandlu (2013) generalized IFSS with the entitlement of
themoderator’s opinion about the original evaluation and applied the generalized structure
to SSP. García et al. (2013) designed a robust decision support method for the evaluation
of suppliers in SSP by considering Kraljic’s terminology, i.e., basic products. Thao (2021)
used Archimedean t-conorms to formulate divergence measures and entropies for IFS
and validated the idea by applying it in SSP. Similarly, Zhao et al. (2017) and Khaleie,
Fasanghari & Tavassoli (2012) discussed SSP by adopting MCDM techniques under the
IFS environment. Liu & Wang (2022) generalized the idea of FSS and applied it in SSP.

Research motivation
With the keen observation of contributions provided in the above-mentioned literature, it
is clear that the following important features of decision-making have been ignored:
1. While dealing with large amounts of data, the periodicity of information is often

encountered, which may greatly affect the decision. This kind of issue is managed by
using complex settings that tackle periodicity with the help of amplitude and phase
terms.

2. Sometimes the decision-makers intend to be neutral while approximating any
alternative based on suitable attributes. This issue is usually resolved with the
entitlement of a suitable neutral grade, which increases the flexibility and reliability of
the decision system.

3. Computational complexities lead to a decrease in the readability and understanding of
any concept, therefore, it is pertinent to use easy and understandable computations to
attract and facilitate the multidisciplinary community.
In the present study, all the above-stated issues are addressed by characterizing the idea

of cpFSS. Its complex part (amplitude and phase terms) is meant to manage the first issue,
and the picture fuzzy setting is meant to capture the second issue. Similarly, the third issue
is addressed by using easy computations based on matrix manipulations.

Salient contributions
The main objectives of this study are outlined as:
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1. The concept of cpFSS discussed by Shanthi, Umamakeswari & Saranya (2022) is
reviewed and modified with the characterization of some new properties and
aggregation operations.

2. By considering the nature of SCMG as an uncertainMCDM problem, a robust decision
support system is designedwhich is assisted by the proposal of an algorithmbased on the
aggregation operations of cpFSSs for selecting appropriate suppliers for construction
projects.
The remaining article is systematized as some essential terms are recalled in

‘Preliminaries’, elementary notions of cpFSS and its aggregation operations are
conceptualized in ‘Characterization of elementary notions of CPFSSS’, an MCDM based
decision support system is constructed in ‘Application of CPFSS in decision-making’ and
the article is concluded in the last section.

PRELIMINARIES
This section recalls some definitions which are necessary for understanding the main
concept. The symbols Ŝ, I[0,1], j and 2Ŝ denote the initial space of objects, closed unit
interval,

√
−1 and power set of Ŝ.

Definition 2.1 (Zadeh, 1965) If M̂T̂ (ŝ) is the truth membership grade of ŝ ∈ Ŝ then FS
ÂF is defined as ÂF =

{(
ŝ,M̂T̂ (ŝ)

)
: ŝ∈ Ŝ

}
where M̂T̂ : Ŝ→ I[0,1] is membership mapping

provided that 0≤ M̂T̂ (ŝ)≤ 1. The family of all fuzzy subsets is represented by 6FS.

Definition 2.2 (Atanassov, 1986) If M̂T̂ (ŝ) and M̂F̂ (ŝ) are truth and false membership
grades of ŝ ∈ Ŝ then IFS ÂIF is defined as ÂIF =

{(
ŝ,〈M̂T̂ (ŝ),M̂F̂ (ŝ)〉

)
: ŝ∈ Ŝ

}
where

M̂T̂ ,M̂F̂ : Ŝ→ I[0,1] are membership mappings provided that 0≤ M̂T̂ (ŝ)+ M̂F̂ (ŝ)≤ 1 with
hesitancy grade M̂Ĥ (ŝ)= 1− (M̂T̂ (ŝ)+ M̂F̂ (ŝ)) within I[0,1]. The family of all IF-subsets is
represented by 6IFS.

Definition 2.3 (Cuong & Kreinovich, 2013) If M̂P̂(ŝ), M̂N̂e(ŝ) and M̂N̂ (ŝ) are posi-
tive, neutral and negative membership grades of ŝ ∈ Ŝ then pFS �̂ is defined as �̂ ={(
ŝ,〈M̂P̂(ŝ),M̂N̂e(ŝ),M̂N̂ (ŝ)〉

)
: ŝ∈ Ŝ

}
where M̂P̂ ,M̂N̂e,M̂N̂ : Ŝ→ I[0,1] are membership

mappings provided that 0≤ M̂P̂(ŝ)+ M̂N̂e(ŝ)+ M̂N̂ (ŝ)≤ 1 with refusal membership grade
M̂R̂(ŝ)= 1− (M̂P̂(ŝ)+M̂N̂e(ŝ)+M̂N̂ (ŝ)) within I[0,1].

Definition 2.4 (Akram, Bashir & Garg, 2020a; Qu et al., 2022) If M̂P̂(ŝ), M̂N̂e(ŝ) and
M̂N̂ (ŝ) are positive, neutral and negative membership grades of ŝ∈ Ŝ then cpFS 2̂ is defined
as 2̂=

{(
ŝ,〈M̂P̂(ŝ),M̂N̂e(ŝ),M̂N̂ (ŝ)〉

)
: ŝ∈ Ŝ

}
where M̂P̂ ,M̂N̂e,M̂N̂ : Ŝ→C[0,1] are complex

fuzzy membership mappings such that M̂P̂(ŝ)= αP̂(ŝ)exp
jβP̂ (ŝ), M̂N̂e(ŝ)= αN̂e(ŝ)exp

jβN̂e (ŝ)

and M̂N̂ (ŝ)= αN̂ (ŝ)exp
jβN̂ (ŝ) provided that 0≤ αP̂(ŝ)+αN̂e(ŝ)+αN̂ (ŝ)≤ 1 and 0≤

βP̂(ŝ)+βN̂e(ŝ)+βN̂ (ŝ)≤ 2π . The αP̂(ŝ),αN̂e(ŝ), αN̂ (ŝ) are called the amplitude terms
and βP̂(ŝ),βN̂e(ŝ), and βN̂ (ŝ) are known as phase terms. The refusal membership grade
M̂R̂(ŝ)= [1−αP̂(ŝ)−αN̂e(ŝ)−αN̂ (ŝ)]exp

j[2π−βP̂ (ŝ)−βN̂e (ŝ)−βN̂ (ŝ)] within C[0,1]. The family
of all cpFSs over Ŝ is symbolized as 1cpFS(Ŝ).
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Definition 2.5 (Molodtsov, 1999) If 4̂ is consisting of attributes then an SST 9̂ is defined
as 9̂ =

{(
â,ζ̂ (â)

)
: â∈ 4̂

}
where ζ̂ : 4̂→ 2Ŝ is an approximate mapping with ζ̂ (â) as

â-approximate element in Ŝ.

Definition 2.6 (Maji, Biswas & Roy, 2001a) If 4̂ is consisting of attributes then FSS 9̂F is
defined as 9̂F =

{(
â,ζ̂F (â)

)
: â∈ 4̂

}
where ζ̂F : 4̂→6FS is an approximate mapping with

ζ̂F (â) as â-approximate element in Ŝ.

Definition 2.7 (Maji, Biswas & Roy, 2001b) If 4̂ is consisting of attributes then an IFSS
9̂IF is defined as 9̂IF =

{(
â,ζ̂IF (â)

)
: â∈ 4̂

}
where ζ̂IF : 4̂→ 6IF is an approximate

mapping with ζ̂IF (â) as â-approximate element in Ŝ.

CHARACTERIZATION OF ELEMENTARY NOTIONS OF
CPFSSS
This section is aimed to investigate some elementary notions and operations of cpFSSs
after modifying the concepts provided by Shanthi, Umamakeswari & Saranya (2022).
Definition 3.1 If 3̂ is the subset of a set 4̂ consisting of attributes and M̂P̂(â),
M̂N̂e(â), M̂N̂ (â) are positive, neutral and negative membership grades of â ∈ 3̂ then
the cpFSS 5̂ is defined as where M̂P̂ ,M̂N̂e,M̂N̂ : 3̂→1cpFS(Ŝ) are complex fuzzy
approximate mappings such that M̂P̂(â)= αP̂(â)exp

jβP̂ (â), M̂N̂e(â)= αN̂e(â)exp
jβN̂e (â)

and M̂N̂ (â)= αN̂ (â)exp
jβN̂ (â) provided that 0 ≤ αP̂(â)+ αN̂e(â)+ αN̂ (â) ≤ 1 and

0≤ βP̂(â)+βN̂e(â)+βN̂ (â)≤ 2π . The αP̂(â),αN̂e(â), αN̂ (â) are called the amplitude
terms and βP̂(â),βN̂e(â), and βN̂ (â) are known as phase terms. The refusal membership
grade

M̂R̂(â)= [1−αP̂(â)−αN̂e(â)−αN̂ (â)]exp
j[2π−βP̂ (â)−βN̂e (â)−βN̂ (â)]

withinC[0,1]. For convenience, 〈αP̂(â)expjβP̂ (â),αN̂e(â)expjβN̂e (â),αN̂ (â)expjβN̂ (â)〉 is called a
complex picture fuzzy soft number (cpFSN). The family of all cpFSSs over Ŝ is symbolized
as 1cpFSS(Ŝ).

Example 3.2 Let Ŝ = {ŝ1, ŝ2, ŝ3, ŝ4} be an initial space of objects and 4̂ =

{â1,â2,â3,â4,â5,â6} be a set of attributes with 3̂= {â1,â2,â5,â6} ⊆ 4̂ then approximate
elements of cpFSS 5̂ are computed as

δ̂(â1)=


(
ŝ1,〈0.11expj2π(0.22),0.25expj2π(0.31),0.42expj2π(0.15)〉

)
,(

ŝ2,〈0.23expj2π(0.18),0.32expj2π(0.21),0.51expj2π(0.22)〉
)
,(

ŝ3,〈0.33expj2π(0.25),0.35expj2π(0.30),0.20expj2π(0.45)〉
)
,(

ŝ4,〈〉0.15expj2π(0.30),0.21expj2π(0.45),0.33expj2π(0.60)〈〉
)
,

δ̂(â2)=


(
ŝ1,〈0.12expj2π(0.24),0.26expj2π(0.30),0.35expj2π(0.40)〉

)
,(

ŝ2,〈0.22expj2π(0.31),0.25expj2π(0.34),0.28expj2π(0.37)〉
)
,(

ŝ3,〈0.23expj2π(0.32),0.26expj2π(0.35),0.29expj2π(0.38)〉
)
,(

ŝ4,〈0.24expj2π(0.33),0.27expj2π(0.36),0.30expj2π(0.39)〉
)
,
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δ̂(â5)=


(
ŝ1,〈0.11expj2π(0.41),0.12expj2π(0.31),0.40expj2π(0.51)〉

)
,(

ŝ2,〈0.21expj2π(0.30),0.24expj2π(0.33),0.27expj2π(0.36)〉
)
,(

ŝ3,〈0.22expj2π(0.31),0.25expj2π(0.34),0.28expj2π(0.37)〉
)
,(

ŝ4,〈0.23expj2π(0.32),0.26expj2π(0.35),0.29expj2π(0.38)〉
)
,

δ̂(â6)=


(
ŝ1,〈0.13expj2π(0.44),0.14expj2π(0.55),0.44expj2π(0.66)〉

)
,(

ŝ2,〈0.25expj2π(0.18),0.28expj2π(0.21),0.31expj2π(0.24)〉
)
,(

ŝ3,〈0.26expj2π(0.19),0.29expj2π(0.22),0.32expj2π(0.25)〉
)
,(

ŝ4,〈0.27expj2π(0.20),0.30expj2π(0.23),0.33expj2π(0.26)〉
)
.

The cpFSS 5̂ is constructed as 5̂= {(â1,δ̂(â1)),(â2,δ̂(â2)),(â5,δ̂(â5)),(â6,δ̂(â6))}. It can
be represented in matrix notation as 5̂=〈0.110.22,0.250.31,0.420.15〉 〈0.230.18,0.320.21,0.510.22〉 〈0.330.25,0.350.30,0.200.45〉 〈0.150.30,0.210.45,0.330.60〉〈0.120.24,0.260.30,0.350.40〉 〈0.220.31,0.250.34,0.280.37〉 〈0.230.32,0.260.35,0.290.38〉 〈0.240.33,0.270.36,0.300.39〉
〈0.110.41,0.120.31,0.400.51〉 〈0.210.30,0.240.33,0.270.36〉 〈0.220.31,0.250.34,0.280.37〉 〈0.230.32,0.260.35,0.290.38〉
〈0.130.44,0.140.55,0.440.66〉 〈0.250.18,0.280.21,0.310.24〉 〈0.260.19,0.290.22,0.320.25〉 〈0.270.20,0.300.23,0.330.26〉

.
Definition 3.3 For 5̂1, 5̂2 ∈ 1cpFSS(Ŝ) then following set theoretic operations are valid:
1. 5̂1 ⊆ 5̂2 if α1P̂(â)≤ α

2
P̂
(â), α1

N̂e
(â)≥ α2

N̂e
(â), α1

N̂
(â)≥ α2

N̂
(â) and β1

P̂
(â)≤ β2

P̂
(â),

β1
N̂e
(â)≥β2

N̂e
(â), β1

N̂
(â)≥β2

N̂
(â).

2. The 5̂1 ∩ 5̂2 is another cpFSS 5̂3 with α3
P̂
(â)=min{α1

P̂
(â),α2

P̂
(â)}, α3

N̂e
(â)=

max {α1
N̂e
(â),α2

N̂e
(â)}, α3

N̂
(â)=max {α1

N̂
(â),α2

N̂
(â)} and β3

P̂
(â)=min{β1

P̂
(â),β2

P̂
(â)},

β3
N̂e
(â)=max {β1

N̂e
(â),β2

N̂e
(â)}, β3

N̂
(â)=max {β1

N̂
(â),β2

N̂
(â)}.

3. The 5̂1 ∪ 5̂2 is another cpFSS 5̂4 with α4
P̂
(â)=max {α1

P̂
(â),α2

P̂
(â)}, α4

N̂e
(â)=

min{α1
N̂e
(â),α2

N̂e
(â)}, α4

N̂
(â)=min{α1

N̂
(â),α2

N̂
(â)} and β4

P̂
(â)=max {β1

P̂
(â),β2

P̂
(â)},

β4
N̂e
(â)=min{β1

N̂e
(â),β2

N̂e
(â)}, β4

N̂
(â)=min{β1

N̂
(â),β2

N̂
(â)}.

4. The 5̂c
1 is again cpFSS with αc

P̂
(â)= α1

N̂
(â), αc

N̂e
(â)= α1

N̂e
(â), αc

N̂
(â)= α1

P̂
(â) and

βc
P̂
(â)=β1

N̂
(â), βc

N̂e
(â)=β1

N̂e
(â), βc

N̂
(â)=β1

P̂
(â).

Example 3.4 Reassuming the data from Example 3.2, the following two cpFSSs are
constructed with matrix representations as given below

5̂1=〈0.100.21,0.260.32,0.430.16〉 〈0.220.17,0.330.22,0.520.23〉 〈0.320.24,0.360.31,0.210.46〉 〈0.140.29,0.220.46,0.340.61〉〈0.110.23,0.270.31,0.360.41〉 〈0.210.30,0.260.35,0.290.38〉 〈0.220.31,0.270.36,0.300.39〉 〈0.230.32,0.280.37,0.310.40〉
〈0.100.40,0.130.32,0.410.52〉 〈0.200.29,0.250.34,0.280.37〉 〈0.210.30,0.260.35,0.290.38〉 〈0.220.31,0.270.36,0.300.39〉
〈0.120.43,0.150.56,0.450.67〉 〈0.240.17,0.290.22,0.320.25〉 〈0.250.18,0.300.23,0.330.26〉 〈0.260.19,0.310.24,0.340.27〉

,
5̂2=〈0.110.22,0.250.31,0.420.15〉 〈0.230.18,0.320.21,0.510.22〉 〈0.330.25,0.350.30,0.200.45〉 〈0.150.30,0.210.45,0.330.60〉〈0.120.24,0.260.30,0.350.40〉 〈0.220.31,0.250.34,0.280.37〉 〈0.230.32,0.260.35,0.290.38〉 〈0.240.33,0.270.36,0.300.39〉
〈0.110.41,0.120.31,0.400.51〉 〈0.210.30,0.240.33,0.270.36〉 〈0.220.31,0.250.34,0.280.37〉 〈0.230.32,0.260.35,0.290.38〉
〈0.130.44,0.140.55,0.440.66〉 〈0.250.18,0.280.21,0.310.24〉 〈0.260.19,0.290.22,0.320.25〉 〈0.270.20,0.300.23,0.330.26〉

.
Then 5̂1⊆ 5̂2 and 5̂1∩5̂2=〈0.100.21,0.260.32,0.430.16〉 〈0.220.17,0.330.22,0.520.23〉 〈0.320.24,0.360.31,0.210.46〉 〈0.140.29,0.220.46,0.340.61〉〈0.110.23,0.270.31,0.360.41〉 〈0.210.30,0.260.35,0.290.38〉 〈0.220.31,0.270.36,0.300.39〉 〈0.230.32,0.280.37,0.310.40〉
〈0.100.40,0.130.32,0.410.52〉 〈0.200.29,0.250.34,0.280.37〉 〈0.210.30,0.260.35,0.290.38〉 〈0.220.31,0.270.36,0.300.39〉
〈0.120.43,0.150.56,0.450.67〉 〈0.240.17,0.290.22,0.320.25〉 〈0.250.18,0.300.23,0.330.26〉 〈0.260.19,0.310.24,0.340.27〉

.
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Similarly 5̂1∪5̂2=〈0.110.22,0.250.31,0.420.15〉 〈0.230.18,0.320.21,0.510.22〉 〈0.330.25,0.350.30,0.200.45〉 〈0.150.30,0.210.45,0.330.60〉〈0.120.24,0.260.30,0.350.40〉 〈0.220.31,0.250.34,0.280.37〉 〈0.230.32,0.260.35,0.290.38〉 〈0.240.33,0.270.36,0.300.39〉
〈0.110.41,0.120.31,0.400.51〉 〈0.210.30,0.240.33,0.270.36〉 〈0.220.31,0.250.34,0.280.37〉 〈0.230.32,0.260.35,0.290.38〉
〈0.130.44,0.140.55,0.440.66〉 〈0.250.18,0.280.21,0.310.24〉 〈0.260.19,0.290.22,0.320.25〉 〈0.270.20,0.300.23,0.330.26〉

,
and 5̂c

=〈0.420.15,0.250.31,0.110.22〉 〈0.510.22,0.320.21,0.230.18〉 〈0.200.45,0.350.30,0.330.25〉 〈0.330.60,0.210.45,0.150.30〉〈0.350.40,0.260.30,0.120.24〉 〈0.280.37,0.250.34,0.220.31〉 〈0.290.38,0.260.35,0.230.32〉 〈0.300.39,0.270.36,0.240.33〉
〈0.400.51,0.120.31,0.110.41〉 〈0.270.36,0.240.33,0.210.30〉 〈0.280.37,0.250.34,0.220.31〉 〈0.290.38,0.260.35,0.230.32〉
〈0.440.66,0.140.55,0.130.44〉 〈0.310.24,0.280.21,0.250.18〉 〈0.320.25,0.290.22,0.260.19〉 〈0.330.26,0.300.23,0.270.20〉

.

APPLICATION OF CPFSS IN DECISION-MAKING
This section is aimed to propose an MADM-based algorithm and then explained by a daily
life problem of supplier selection based on aggregations of cpFSSs.

Algorithm 1. This algorithm consists of the following steps:
1. Considering the essential sets and opinions of decisionmakers, construct cpFSS 5̂, i.e.,

5̂=
{(
â,〈αP̂(â)exp

jβP̂ (â),αN̂e(â)exp
jβN̂e (â),αN̂ (â)exp

jβN̂ (â)〉
)
: â∈ 3̂

}
.

2. Represent the cpFSS 5̂ in matrix notation f̂p×q,p,q ∈N, where p and q are the
cardinalities of set of attributes and initial space of objects respectively.

f̂p×q=


ω̂11 ω̂12 ··· ω̂1q

ω̂21 ω̂22 ··· ω̂2q

ω̂31 ω̂32 ··· ω̂3q
...

...
. . .

...

ω̂p1 ω̂p2 ··· ω̂pq


where
ω̂11=

〈
αP̂(â1)(ŝ1)exp

jβP̂ (â1)(ŝ1),αN̂e(â1)(ŝ1)exp
jβN̂e (â1)(ŝ1),αN̂ (â1)(ŝ1)exp

jβN̂ (â1)(ŝ1)
〉

ω̂12=
〈
αP̂(â1)(ŝ2)exp

jβP̂ (â1)(ŝ2),αN̂e(â1)(ŝ2)exp
jβN̂e (â1)(ŝ2),αN̂ (â1)(ŝ2)exp

jβN̂ (â1)(ŝ2)
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂1q=

〈
αP̂(â1)(ŝq)exp

jβP̂ (â1)(ŝq),αN̂e(â1)(ŝq)exp
jβN̂e (â1)(ŝq),αN̂ (â1)(ŝq)exp

jβN̂ (â1)(ŝq)
〉

ω̂21=
〈
αP̂(â2)(ŝ1)exp

jβP̂ (â2)(ŝ1),αN̂e(â2)(ŝ1)exp
jβN̂e (â2)(ŝ1),αN̂ (â2)(ŝ1)exp

jβN̂ (â2)(ŝ1)
〉

ω̂22=
〈
αP̂(â2)(ŝ2)exp

jβP̂ (â2)(ŝ2),αN̂e(â2)(ŝ2)exp
jβN̂e (â2)(ŝ2),αN̂ (â2)(ŝ2)exp

jβN̂ (â2)(ŝ2)
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂2q=

〈
αP̂(â2)(ŝq)exp

jβP̂ (â2)(ŝq),αN̂e(â2)(ŝq)exp
jβN̂e (â2)(ŝq),αN̂ (â2)(ŝq)exp

jβN̂ (â2)(ŝq)
〉

ω̂31=
〈
αP̂(â3)(ŝ1)exp

jβP̂ (â3)(ŝ1),αN̂e(â3)(ŝ1)exp
jβN̂e (â3)(ŝ1),αN̂ (â3)(ŝ1)exp

jβN̂ (â3)(ŝ1)
〉

ω̂32=
〈
αP̂(â3)(ŝ2)exp

jβP̂ (â3)(ŝ2),αN̂e(â3)(ŝ2)exp
jβN̂e (â3)(ŝ2),αN̂ (â3)(ŝ2)exp

jβN̂ (â3)(ŝ2)
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂3q=

〈
αP̂(â3)(ŝq)exp

jβP̂ (â3)(ŝq),αN̂e(â3)(ŝq)exp
jβN̂e (â3)(ŝq),αN̂ (â3)(ŝq)exp

jβN̂ (â3)(ŝq)
〉
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..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂p1=

〈
αP̂(âp)(ŝ1)exp

jβP̂ (âp)(ŝ1),αN̂e(âp)(ŝ1)exp
jβN̂e (âp)(ŝ1),αN̂ (âp)(ŝ1)exp

jβN̂ (âp)(ŝ1)
〉

ω̂p2=
〈
αP̂(âp)(ŝ2)exp

jβP̂ (âp)(ŝ2),αN̂e(âp)(ŝ2)exp
jβN̂e (âp)(ŝ2),αN̂ (âp)(ŝ2)exp

jβN̂ (âp)(ŝ2)
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂pq=

〈
αP̂(âp)(ŝq)exp

jβP̂ (âp)(ŝq),αN̂e(âp)(ŝq)exp
jβN̂e (âp)(ŝq),αN̂ (âp)(ŝq)exp

jβN̂ (âp)(ŝq)
〉
.

3. Transform the matrix f̂p×q into core matrix f̂core
p×q

f̂core
p×q=


ω̂
′

11 ω̂
′

12 ··· ω̂
′

1q

ω̂
′

21 ω̂
′

22 ··· ω̂
′

2q

ω̂
′

31 ω̂
′

32 ··· ω̂
′

3q
...

...
. . .

...

ω̂
′

p1 ω̂
′

p2 ··· ω̂
′

pq


where
ω̂
′

11=
〈
|αP̂(â1)(ŝ1)+αN̂e(â1)(ŝ1)−αN̂ (â1)(ŝ1)|exp

j|βP̂ (â1)(ŝ1)+βN̂e (â1)(ŝ1)−βN̂ (â1)(ŝ1)|
〉

ω̂
′

12=
〈
|αP̂(â1)(ŝ2)+αN̂e(â1)(ŝ2)−αN̂ (â1)(ŝ2)|exp

j|βP̂ (â1)(ŝ2)+βN̂e (â1)(ŝ2)−βN̂ (â1)(ŝ2)|
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂
′

1q=
〈
|αP̂(â1)(ŝq)+αN̂e(â1)(ŝq)−αN̂ (â1)(ŝq)|exp

j|βP̂ (â1)(ŝq)+βN̂e (â1)(ŝq)−βN̂ (â1)(ŝq)|
〉

ω̂
′

21=
〈
|αP̂(â2)(ŝ1)+αN̂e(â2)(ŝ1)−αN̂ (â2)(ŝ1)|exp

j|βP̂ (â2)(ŝ1)+βN̂e (â2)(ŝ1)−βN̂ (â2)(ŝ1)|
〉

ω̂
′

22=
〈
|αP̂(â2)(ŝ2)+αN̂e(â2)(ŝ2)−αN̂ (â2)(ŝ2)|exp

j|βP̂ (â2)(ŝ2)+βN̂e (â2)(ŝ2)−βN̂ (â2)(ŝ2)|
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂
′

2q=
〈
|αP̂(â2)(ŝq)+αN̂e(â2)(ŝq)−αN̂ (â2)(ŝq)|exp

j|βP̂ (â2)(ŝq)+βN̂e (â2)(ŝq)−βN̂ (â2)(ŝq)|
〉

ω̂
′

31=
〈
|αP̂(â3)(ŝ1)+αN̂e(â3)(ŝ1)−αN̂ (â3)(ŝ1)|exp

j|βP̂ (â3)(ŝ1)+βN̂e (â3)(ŝ1)−βN̂ (â3)(ŝ1)|
〉

ω̂
′

32=
〈
|αP̂(â3)(ŝ2)+αN̂e(â3)(ŝ2)−αN̂ (â3)(ŝ2)|exp

j|βP̂ (â3)(ŝ2)+βN̂e (â3)(ŝ2)−βN̂ (â3)(ŝ2)|
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂
′

3q=
〈
|αP̂(â3)(ŝq)+αN̂e(â3)(ŝq)−αN̂ (â3)(ŝq)|exp

j|βP̂ (â3)(ŝq)+βN̂e (â3)(ŝq)−βN̂ (â3)(ŝq)|
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
ω̂
′

p1=
〈
|αP̂(âp)(ŝ1)+αN̂e(âp)(ŝ1)−αN̂ (âp)(ŝ1)|exp

j|βP̂ (âp)(ŝ1)+βN̂e (âp)(ŝ1)−βN̂ (âp)(ŝ1)|
〉

ω̂
′

p2=
〈
|αP̂(âp)(ŝ2)+αN̂e(âp)(ŝ2)−αN̂ (âp)(ŝ2)|exp

j|βP̂ (âp)(ŝ2)+βN̂e (âp)(ŝ2)−βN̂ (âp)(ŝ2)|
〉

..............................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................
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ω̂
′

pq=
〈
|αP̂(âp)(ŝq)+αN̂e(âp)(ŝq)−αN̂ (âp)(ŝq)|exp

j|βP̂ (âp)(ŝq)+βN̂e (âp)(ŝq)−βN̂ (âp)(ŝq)|
〉
.

4. Split the core matrix f̂core
p×q into core matrix for amplitude terms f̂core

amp and core matrix
for phase terms f̂core

pha as given below

f̂core
amp=


ω̂
′′

11 ω̂
′′

12 ··· ω̂
′′

1q

ω̂
′′

21 ω̂
′′

22 ··· ω̂
′′

2q

ω̂
′′

31 ω̂
′′

32 ··· ω̂
′′

3q
...

...
. . .

...

ω̂
′′

p1 ω̂
′′

p2 ··· ω̂
′′

pq


p×q

where ω̂
′′

lm = α(âl)(ŝm),l ∈ {1,2,...,p}&m ∈ {1,2,...,q} and

f̂core
pha =


ω̂
′′′

11 ω̂
′′′

12 ··· ω̂
′′′

1q

ω̂
′′′

21 ω̂
′′′

22 ··· ω̂
′′′

2q

ω̂
′′′

31 ω̂
′′′

32 ··· ω̂
′′′

3q
...

...
. . .

...

ω̂
′′′

p1 ω̂
′′′

p2 ··· ω̂
′′′

pq


p×q

where ω̂
′′′

lm=β(âl)(ŝm),l ∈ {1,2,...,p}&m ∈ {1,2,...,q}.
5. Compute maximum decision values Dmax

amp(ŝm), minimum decision values Dmin
amp(ŝm)

and score values Samp(ŝm) for each alternative ŝm,m ∈ {1,2,...,q} from matrix f̂core
amp.

Similarly compute the same values Dmax
pha (ŝm), D

min
pha (ŝm) andSpha(ŝm) from matrix f̂core

pha by
using the following formulae:

Dmax
amp(ŝm)=

p∑
l=1

(1−α(âl)(ŝm))2. (1)

Dmin
amp(ŝm)=

p∑
l=1

(α(âl)(ŝm))2. (2)

Samp(ŝm)=
Dmax
amp(ŝm)+Dmin

amp(ŝm)

m
. (3)

Dmax
pha (ŝm)=

p∑
l=1

(1−β(âl)(ŝm))2. (4)

Dmin
pha (ŝm)=

p∑
l=1

(β(âl)(ŝm))2. (5)

Spha(ŝm)=
Dmax
pha (ŝm)+D

min
pha (ŝm)

m
. (6)
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(to understand the motivation behind this method, let ρ be the Euclidean metric on
Rl, 0= (0,...,0)T ∈ Rl ,1= (1,...,1)T ∈ Rl , and θj =

(
θ1,ûj ,θ2,ûj ,...,θl,ûj

)T
∈ Rl . Thus

S
(
ûj
)
=
[
ρ
(
θj,1

)]2
+
[
ρ
(
θj,0

)]2(j = 1,2,...,k
)
.

6. Compute mean S(ŝm) by using the following formula:

S(ŝm)=
Samp(ŝm)+Spha(ŝm)

2
. (7)

7. Select the alternative with maximum S(ŝm) as optimal recommendation.
The step-wise graphical exploration of Algorithm 1 is presented in Fig. 1.

Implementation of proposed algorithm in real life scenario
This section is aimed to explain the proposed algorithm (i.e., Algorithm 1) with the help
of real life MADM-based scenario which is discussed in the following example.

Example 4.1 Consider a real estate company ‘‘BUILDCO’’ (a hypothetical name) wants
to start a new construction project. The managing director (MD) of the company is very
much concerned about the substandard construction-related materials available in the
market. Therefore the MD has decided to hire the services of a supplier in this regards.
Two internal domestic committees A= {X̂1,X̂2} and B= {X̂3,X̂4} are constituted which
have expert officers of the company. The committee A is meant for initial screening of the
suppliers and the committee B is meant for further evaluation and final ranking of the
suppliers. Three suppliers are short-listed by the committee A which form the initial space
of alternatives Ŝ= {ŝ1, ŝ2, ŝ3}. With mutual understanding, the members of committee B
are agreed on attributes â1= quality cum reliability, â2= affordable cost and â3= service
cum processing. The experts of committeeB provide their opinions for each alternative in
set Ŝ in terms of cpFSNs by considering the attributes. The complete evaluation of suppliers
is accomplished by following the steps of the proposed Algorithm 1.

(1,2) A cpFSS 5̂ is constructed which is presented in matrix notation f̂3×3 as provided
below

f̂3×3 =

ω̂11 ω̂12 ω̂13

ω̂21 ω̂22 ω̂23

ω̂31 ω̂32 ω̂33


where
ω̂11 =

〈
0.08expj2π(0.2),0.4expj2π(0.25),0.03expj2π(0.12)

〉
,

ω̂12 =
〈
0.07expj2π(0.21),0.5expj2π(0.4),0.14expj2π(0.12)

〉
,

ω̂13 =
〈
0.06expj2π(0.21),0.6expj2π(0.35),0.01expj2π(0.2)

〉
,

ω̂21 =
〈
0.16expj2π(0.31),0.6expj2π(0.45),0.06expj2π(0.21)

〉
,

ω̂22 =
〈
0.09expj2π(0.21),0.06expj2π(0.13),0.11expj2π(0.32)

〉
,

ω̂23 =
〈
0.03expj2π(0.11),0.51expj2π(0.5),0.08expj2π(0.21)

〉
,

ω̂31 =
〈
0.07expj2π(0.31),0.42expj2π(0.43),0.05expj2π(0.12)

〉
,

ω̂32 =
〈
0.26expj2π(0.36),0.5expj2π(0.53),0.04expj2π(0.12)

〉
,

ω̂33=
〈
0.08expj2π(0.41),0.34expj2π(0.25),0.03expj2π(0.3)

〉
.
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Figure 1 Step-wise graphical representation of proposed algorithm.
Full-size DOI: 10.7717/peerjcs.1540/fig-1

(3) The matrix f̂3×3 is transformed into core matrix f̂core
3×3

f̂core
3×3=

 〈0.35expj2π(0.33)〉 〈0.43,expj2π(0.59)〉 〈0.65,expj2π(0.36)〉〈0.7,expj2π(0.55)〉 〈0.04,expj2π(0.02)〉 〈0.46,expj2π(0.36)〉
〈0.43,expj2π(0.62)〉 〈0.72,expj2π(0.77)〉 〈0.39,expj2π(0.36)〉

.
(4) The core matrix f̂core

p×q is partitioned into core matrix for amplitude terms f̂core
amp and

core matrix for phase terms f̂core
pha as given below

f̂core
amp =

(
0.35 0.43 0.65
0.43 0.72 0.39

)
3×3

,

and

f̂core
pha =

0.33 0.59 0.36
0.55 0.02 0.36
0.62 0.77 0.36


3×3

.

(5) Maximum decision values Dmax
amp(ŝm), minimum decision values Dmin

amp(ŝm)
and score values Samp(ŝm) for each alternative ŝm,m ∈ {1,2,3} are computed
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from matrix f̂core
amp. Similarly the same values Dmax

pha (ŝm), D
min
pha (ŝm) and Spha(ŝm)

are computed from matrix f̂core
pha by using Eqs. (1)-(6) and are provided as

attributes â1 = quality cum reliability, â2 = affordable cost and â3 = service cum processing. The experts270

of committee B provide their opinions for each alternative in set Ŝ in terms of cpFSNs by considering271

the attributes. The complete evaluation of suppliers is accomplished by following the steps of proposed272

Algorithm 1.273

(1,2) A cpFSS Π̂ is constructed which is presented in matrix notation f̂3×3 as provided below

f̂3×3 =


ω̂11 ω̂12 ω̂13
ω̂21 ω̂22 ω̂23
ω̂31 ω̂32 ω̂33



where
ω̂11 =

〈
0.08exp j2π(0.2),0.4exp j2π(0.25),0.03exp j2π(0.12)

〉
,

ω̂12 =
〈
0.07exp j2π(0.21),0.5exp j2π(0.4),0.14exp j2π(0.12)

〉
,

ω̂13 =
〈
0.06exp j2π(0.21),0.6exp j2π(0.35),0.01exp j2π(0.2)

〉
,

ω̂21 =
〈
0.16exp j2π(0.31),0.6exp j2π(0.45),0.06exp j2π(0.21)

〉
,

ω̂22 =
〈
0.09exp j2π(0.21),0.06exp j2π(0.13),0.11exp j2π(0.32)

〉
,

ω̂23 =
〈
0.03exp j2π(0.11),0.51exp j2π(0.5),0.08exp j2π(0.21)

〉
,

ω̂31 =
〈
0.07exp j2π(0.31),0.42exp j2π(0.43),0.05exp j2π(0.12)

〉
,

ω̂32 =
〈
0.26exp j2π(0.36),0.5exp j2π(0.53),0.04exp j2π(0.12)

〉
,

ω̂33 =
〈
0.08exp j2π(0.41),0.34exp j2π(0.25),0.03exp j2π(0.3)

〉
.

(3) The matrix f̂3×3 is transformed into core matrix f̂core
3×3

f̂core
3×3 =



〈0.35exp j2π(0.33)〉 〈0.43, exp j2π(0.59)〉 〈0.65, exp j2π(0.36)〉
〈0.7, exp j2π(0.55)〉 〈0.04, exp j2π(0.02)〉 〈0.46, exp j2π(0.36)〉
〈0.43, exp j2π(0.62)〉 〈0.72, exp j2π(0.77)〉 〈0.39, exp j2π(0.36)〉

 .

(4) The core matrix f̂core
p×q is partitioned into core matrix for amplitude terms f̂core

amp and core matrix for phase
terms f̂core

pha as given below

f̂core
amp =


0.35 0.43 0.65
0.7 0.04 0.46)

0.43 0.72 0.39


3×3

,

and

f̂core
pha =


0.33 0.59 0.36
0.55 0.02 0.36
0.62 0.77 0.36


3×3

.

(5) Maximum decision values Dmax
amp( ŝm), minimum decision values Dmin

amp( ŝm) and score values Samp( ŝm)274

for each alternative ŝm, m ∈ {1,2,3} are computed from matrix f̂core
amp. Similarly the same values Dmax

pha ( ŝm),275

Dmin
pha( ŝm) and Spha( ŝm) are computed from matrix f̂core

pha by using Equations 1-6 and are provided as276

f̂core
amp ŝ1 ŝ2 ŝ3

Dmax
amp( ŝm) 0.8699 1.3032 0.7754

Dmin
amp( ŝm) 0.3393 0.5492 0.7038

Samp( ŝm) 0.4031 0.6175 0.4931

277

and278
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and
f̂core

pha ŝ1 ŝ2 ŝ3

Dmax
pha ( ŝm) 1.0266 1.5725 0.6069

Dmin
pha( ŝm) 0.5866 0.4325 1.1069

Spha( ŝm) 0.5377 0.6683 0.5713

279

(6) The mean score S( ŝm) is computed by using Equation 7 and is given as280

ŝ1 ŝ2 ŝ3
S( ŝm) 0.4704 0.6429 0.5322

281

(7) Since ŝ2 has achieved the maximum score 0.6429 therefore ŝ2 is recommended for the project. Hence the282

ranking of alternatives is ŝ2 > ŝ3 > ŝ1.283

4.2 Sensitivity analysis-based discussion284

Now sensitivity analysis of score values for suppliers are carried out in this part of the paper to assess the285

stability of obtained results. For this purpose, we have employed different statistical tools like Pythagorean286

means and measures of dispersion to compute the approximate score value for the ranking of suppliers.287

Thus we discuss the following cases:288

1. Geometric Mean: If we apply the idea of geometric mean for the computation of mean score, we
have the equation

S( ŝm) =
√

Samp( ŝm) × Spha( ŝm). (8)

and by this equation, we get the following results:289

ŝ1 ŝ2 ŝ3
S( ŝm) 0.4656 0.6424 0.5308

290

2. Harmonic Mean: If we apply the idea of harmonic mean for the computation of mean score, we
have the equation

S( ŝm) =
2

1
Samp( ŝm)

+ 1
Spha( ŝm)

. (9)

and by this equation, we get the following results:291

ŝ1 ŝ2 ŝ3
S( ŝm) 0.4608 0.6419 0.5293

292

3. Variance: If we use the idea of variance, we the following results:293

ŝ1 ŝ2 ŝ3
S( ŝm) 0.0045 0.0006 0.0015

294

4. Standard Deviation: If we use the idea of standard deviation, we the following results:295

ŝ1 ŝ2 ŝ3
S( ŝm) 0.0673 0.0254 0.0391

296

The readers will be able to determine how the score values affect the ranking or evaluation process of297

the suppliers by using Pythagorean means and measures of dispersion. The computed results and thus298

ranking of suppliers are presented in Table 1. From the Table 1 and Figure 2, it can easily be observed299

that the ranking of ŝ3 is consistent whereas the ranking of ŝ1 and ŝ2 are analogous to each other. In other300

words, ŝ2 is more preferable than ŝ1.301
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S( ŝm) 0.4704 0.6429 0.5322

281

(7) Since ŝ2 has achieved the maximum score 0.6429 therefore ŝ2 is recommended for the project. Hence the282

ranking of alternatives is ŝ2 > ŝ3 > ŝ1.283
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(7) Since ŝ2 has achieved the maximum score 0.6429 therefore ŝ2 is recommended for
the project. Hence the ranking of alternatives is ŝ2> ŝ3> ŝ1.

Sensitivity analysis-based discussion
Now sensitivity analysis of score values for suppliers are carried out in this part of the
article to assess the stability of obtained results. For this purpose, we have employed
different statistical tools like Pythagorean means and measures of dispersion to compute
the approximate score value for the ranking of suppliers. Thus we discuss the following
cases:
1. Geometric Mean: If we apply the idea of geometric mean for the computation of mean

score, we have the equation
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S( ŝm) 0.4704 0.6429 0.5322

281
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ŝ1 ŝ2 ŝ3
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words, ŝ2 is more preferable than ŝ1.301
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2. Harmonic Mean: If we apply the idea of harmonic mean for the computation of mean
score, we have the equation
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1
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Spha(ŝm)
. (9)

and by this equation, we get the following results:
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ŝ1 ŝ2 ŝ3
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3. Variance: If we use the idea of variance, we the following results:
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4. Standard Deviation: If we use the idea of standard deviation, we the following results:
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S( ŝm) =
2

1
Samp( ŝm)
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The readers will be able to determine how the score values affect the ranking or evaluation
process of the suppliers by using Pythagorean means and measures of dispersion. The
computed results and thus ranking of suppliers are presented in Table 1. From the Table 1
and Fig. 2, it can easily be observed that the ranking of ŝ3 is consistent whereas the ranking
of ŝ1 and ŝ2 are analogous to each other. In other words, ŝ2 is more preferable than ŝ1.

Comparison based discussion
As discussed earlier, several researchers (Erceg & Mularifović, 2019; Tamošaitiene et al.,
2017; Chen & Su, 2022; Xiao, Chen & Li, 2012; Zulqarnain et al., 2021a; Zulqarnain et al.,
2021b; Chang, 2019; Chatterjee, Mukherjee & Kar, 2018; Wang, Cheng & Huang, 2009;
Junior, Osiro & Carpinetti, 2014; Büyüközkan & Çifçi, 2011; Büyüközkan & Göçer, 2017;
Patra & Mondal, 2016; Agarwal, Biswas & Hanmandlu, 2013; García et al., 2013; Thao,
2021; Zhao et al., 2017; Khaleie, Fasanghari & Tavassoli, 2012; Liu & Wang, 2022) have
made rich contributions in SCMG and SSP with uncertainties; however, the contributions
of scholars (Zulqarnain et al., 2021b;Chang, 2019;Chatterjee, Mukherjee & Kar, 2018; Patra
& Mondal, 2016;Agarwal, Biswas & Hanmandlu, 2013) are observed to be themost relevant
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Table 1 Sensitivity analysis-based comparison.

Techniques S(ŝ1) S(ŝ2) S(ŝ3) Ranking

Arithmetic Mean 0.4704 0.6429 0.5322 ŝ2> ŝ3> ŝ1
Geometric Mean 0.4656 0.6424 0.5308 ŝ2> ŝ3> ŝ1
Harmonic Mean 0.4608 0.6419 0.5293 ŝ2> ŝ3> ŝ1
Variance 0.0045 0.0006 0.0015 ŝ1> ŝ3> ŝ2
Standard Deviation 0.0673 0.0254 0.0391 ŝ1> ŝ3> ŝ2

to the proposed study. Therefore, their computational findings are analyzed for comparison
with the computed results of the proposed approaches. This kind of computation-based
comparison is presented in Table 2. As in the proposed study, only three suppliers are
evaluated and ranked; therefore, for the sake of comparison, the computation-based results
of the first three suppliers are considered from the above-mentioned references, and the
results of the remaining suppliers are omitted due to their irrelevancy to this study. From
Table 2, it is clear that the proposed approach is more reliable and trustworthy due to
consistent results, i.e., very small values that usually lead to converging solutions with fewer
error expectations. It is also pertinent to note that the ranking of suppliers is still consistent
with the existing studies, even after considering complex settings.
Moreover, the above-mentioned references are inadequate with the following issues:

1. The periodicity of information is frequently faced while dealing with huge amounts of
data, which may have a significant impact on the decision to make. Complex settings
that address periodicity with the use of amplitude and phase terms are used to manage
this type of problem.

2. Sometimes, while approximating any alternative based on relevant characteristics, the
decision-makers seek to stay neutral. The awarding of a suitable neutral grade typically
resolves this problem, increasing the decision system’s adaptability and dependability.

3. It is important to employ simple and straightforward calculations to appeal to and
assist the diverse community because computational complexity reduces the readability
and understanding of any topic.
The idea of cpFSS is characterised in the current work in order to address all the concerns

mentioned above. The picture fuzzy option is intended to capture the second issue, while
its complicated component (amplitude and phase terms) is intended to handle the first.
The third problem is similarly handled by applying quick calculations based on matrix
operations.

In Table 3, the abbreviations MrF, NMrF, NMrGd, AmpTrm, PhasTrm, ParaT, ×, and
X are meant for membership function, non membership function, neutral membership
grade, amplitude term, phase term, parameterization tool, invalid, and valid respectively.

CONCLUSION
This study is the blend of two dependent phases; in the first phase a novel fuzzy soft set-like
structure, complex picture fuzzy soft set (cpFSS), is investigated and its set theoretic
operations are characterized with the support of examples. The cpFSS is more reliable and
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Figure 2 Comparison of scores obtained by statistical tools.
Full-size DOI: 10.7717/peerjcs.1540/fig-2

Table 2 Computations based comparison.

References S(ŝ1) S(ŝ2) S(ŝ3) Ranking

Zulqarnain et al. (2021b) 0.167 0.242 0.267 ŝ3> ŝ2> ŝ1
Chang (2019) 0.353 0.224 0.229 ŝ1> ŝ3> ŝ2
Chatterjee, Mukherjee & Kar (2018) 56.250 54.610 64.790 ŝ3> ŝ1> ŝ2
Patra & Mondal (2016) 0.943 0.918 0.895 ŝ1> ŝ2> ŝ3
Agarwal, Biswas & Hanmandlu (2013) 0.640 0.310 0.180 ŝ1> ŝ2> ŝ3
Proposed 1 0.005 0.001 0.002 ŝ1> ŝ3> ŝ2
Proposed 2 0.067 0.025 0.039 ŝ1> ŝ3> ŝ2

flexible as compared to cFS, cIFS, cpFS, cFSS and cIFSS as it has the capability to tackle
the limitations of these models. In the second phase, a robust decision support system is
constructed with the proposal of an MADM-based algorithm by using new matrix-based
aggregations of cpFSS. Further, this algorithm is explained with the help of decision
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Table 3 Structural comparison.

References MrF NMrF NMrGd AmpTrm PhasTrm ParaT

Zadeh (1965) X × × × × ×

Atanassov (1986) X X × × × ×

Cuong & Kreinovich (2013) X X X × × ×

Ramot et al. (2002) X × × X X ×

Molodtsov (1999) × × × × × X

Maji, Biswas & Roy (2001a) X × × × × X

Maji, Biswas & Roy (2001b) X X × × × X

Thirunavukarasu, Suresh & Ashokkumar (2017) X × × X X X

Kumar & Bajaj (2014) X X × X X X

Proposed structure X X X X X X

making scenario for the selection of suitable supplier to meet the material requirements
of construction project. As far as the advantageous features of the proposed study are
concerned, it is worth noting that the proposed study is more flexible and reliable as it
has the capability to address most of the shortcomings encountered by existing FS-like
structures. The major advantages of this study are outlined as:
1. It entitles amplitude and phase terms to cope with periodicity of information.
2. It entitles refusal grade to assist the experts for providing neutral opinions regarding

the approximation of suppliers based on suitable attributes.
3. It provides an easy way of presenting mathematical computations in the form of matrix

manipulations.
4. It generalizes most of the existing FS-like structures that proves its flexibility.
Some significant managerial implications regarding SSP with uncertain structure

are risk management, contingency planning, technological integration, and continuous
improvement and learning. By addressing these managerial implications and integrating
with this study, companies can navigate the complexities associated with SSP under
uncertainties, enhancing supply chain resilience, and maintaining a competitive advantage
in the marketplace.
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