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ABSTRACT
Background: With the wide application of CT scanning, the separation of
pulmonary arteries and veins (A/V) based on CT images plays an important role for
assisting surgeons in preoperative planning of lung cancer surgery. However,
distinguishing between arteries and veins in chest CT images remains challenging
due to the complex structure and the presence of their similarities.
Methods: We proposed a novel method for automatically separating pulmonary
arteries and veins based on vessel topology information and a twin-pipe deep
learning network. First, vessel tree topology is constructed by combining scale-space
particles and multi-stencils fast marching (MSFM) methods to ensure the continuity
and authenticity of the topology. Second, a twin-pipe network is designed to learn the
multiscale differences between arteries and veins and the characteristics of the small
arteries that closely accompany bronchi. Finally, we designed a topology optimizer
that considers interbranch and intrabranch topological relationships to optimize the
results of arteries and veins classification.
Results: The proposed approach is validated on the public dataset CARVE14 and our
private dataset. Compared with ground truth, the proposed method achieves an
average accuracy of 90.1% on the CARVE14 dataset, and 96.2% on our local dataset.
Conclusions: The method can effectively separate pulmonary arteries and veins and
has good generalization for chest CT images from different devices, as well as
enhanced and noncontrast CT image sequences from the same device.

Subjects Bioinformatics, Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer
Vision, Data Mining and Machine Learning
Keywords Pulmonary artery-vein segmentation, Twin-pipe network, Topology reconstruction,
Chest CT images, Preoperative planning

INTRODUCTION
Lung cancer is a significant global health concern with high morbidity and mortality rates
(Siegel et al., 2022). In 2020, an estimated 19.3 million new cancer cases and nearly 10
million cancer deaths are expected worldwide, and lung cancer remains the leading cause
of cancer deaths, accounting for around 18% of all cancer deaths. Computed tomography
(CT), with its high resolution and ability to show the fine structures and density differences
of lung tissues, has become a major tool for thoracic surgeons to screen, diagnose and treat
diseases. Currently, in the clinic, surgeons generally manually reconstruct lung anatomy by
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using commercial medical software such as IQQA (Xu et al., 2019) and Mimics, which can
then be used to analyze lung disease and the anatomical relationships among pulmonary
arteries, veins, airways (Guo et al., 2022), and nodules (Zheng et al., 2021). However,
manual reconstruction of arteries and veins is time-consuming and visually demanding
due to the large quantity of CT data, which puts a heavy burden on surgeons. Moreover,
the accurate separation of lung veins and arteries plays a crucial role in diagnosing and
evaluating lung diseases such as lung cancer. Therefore, automatic and rapid vessel
segmentation and separation of arteries and veins through CT scans is crucial for
clinical diagnosis and can provide better survival prediction for lung cancer patients
(Haq et al., 2022).

At present, the automatic separation of pulmonary arteries and veins from CT scans has
become a popular topic in research. However, this task exist several difficulties, which can
be attributed to the following reasons. Firstly, arteries and veins are indistinguishable due
to their similar intensity values in noncontrast CT images. Secondly, the vessel tree
structure is extremely complex and dense, with arteries and veins close to each other and
intertwined. And finally, artifacts, partial volume effects, and patient-specific vessel tree
structural abnormalities cause difficulty in A/V separation.

Recently, deep learning-based methods have demonstrated powerful feature extraction
and analysis capabilities, and have achieved remarkable results in medical image analysis
(Abedalla et al., 2021; Nguyen et al., 2021). With the development of deep learning, lung
vessel segmentation has been widely explored (Nam et al., 2021). Although these studies
have had a certain theoretical basis and achieved satisfactory results, there are still some
intractable problems in the results after the segmentation of vessels. For example, the
pulmonary vessel is a typical tree-like structure, with thick and thin vessels connected and
numerous bifurcations. Existing deep learning methods rarely consider the topological
information of the vessel structure, which can result in the separated arteries and veins
being discontinuous or with breaks in the vessel branches. Additionally, tubular vessels in
the lungs are small and have thin walls, making them difficult to detect and classify
accurately using deep learning methods. These vessels are often mistaken for noise or
artifacts in the image, leading to misclassification or missed detection. Furthermore, due to
the similarity in size, shape, and appearance of arteries and veins, they may be difficult to
distinguish in medical images and can be confused with each other after the A/V
separation.

To address these concerns, we propose a pulmonary A/V separation method using
topology information and a twin-pipe network. Our contributions are summarized as
follows:

1) To address the discontinuity problem in A/V trees after separation, a vessel tree
topology is constructed by combining scale-space particles and multi-stencils fast
marching (MSFM) to ensure the continuity and authenticity of the topology
reconstruction.

2) To address the poor separation effect of tubule vessels, a twin-pipe network is proposed
to learn the multiscale differences between arteries and veins, as well as the
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characteristics of small arteries that are closely accompanied by bronchi, given that
arteries and bronchi tend to accompany each other.

3) To address the intertwining of arteries and veins, a topology optimizer is designed that
considers both interbranch and intrabranch topological relationships to optimize the
A/V classification results.

Our method is evaluated on our private database and on the public dataset CARVE14
(Charbonnier et al., 2015). Furthermore, we evaluated our method on another device and a
CT scan of an arterial enhancement model to demonstrate its generalizability across
different devices.

The rest of this article is organized as follows. In “Methods” shows the proposed
approach to solve the A/V separation problem in noncontrast CT images. “Experiments”
mainly introduces the experiment methods, including data sources, experimental setup
details, and evaluation metrics. Then, in “Results”, the experimental results, the ablation
experiment, and the generalization experiment are presented. “Discussion” elaborates on
the discussion. Finally, “Conclusion” concludes this article.

RELATED WORKS
Although pulmonary A/V separation is a difficult problem, many scholars have proposed
methods in the past decade. Studies have shown that the vasculature within the lungs is
highly variable, but some inherent anatomical properties are usually present. One such
property is that arteries in the lungs typically follow the bronchial tree, while veins tend to
run in the interstitial spaces between the branches. As shown in Fig. 1, the arteries with
accompanying bronchi are not evident when the vessels are near the hilum of the lung. As
the arteries move away from the hilum, the bronchi begin to follow the arteries closely.
Some methods rely on bronchial features for A/V separation. For instance, Tozaki et al.
(2001) used information about distances between vessel segments and bronchi to separate
arteries and veins, and Nakamura et al. (2005) classified pulmonary arteries and veins
based on the distance from the bronchi region to the vessel segment and the distance from
the nearest interlobar to the vessel. Similarly, Bülow et al. (2005) based upon the fact that
the pulmonary artery tree accompanies the bronchial tree, designed a method of
“arterialness” to classify each vessel segment. These pulmonary A/V separation methods
rely on the quality of airway segmentation, while the use of bronchial features to aid A/V
separation is rarely applied in deep learning. Our method takes this into account.

Another type of A/V separation study focuses on the anatomical priors of the vessels
themselves, using information on their connectivity to separate arteries and veins. For
example, Saha et al. (2010) proposed a method to separate A/V of pulmonary using
morphological features of vessels. The approach involves selecting seed points and utilizing
fuzzy distance transformation for tracking to ensure vessel connectivity. Finally, arteries
and veins points are separated through multiscale iterative growth. Wala et al. (2011)
designed an automated trace-based separation scheme that tracked arterial seed points
from the basal pulmonary artery region and detected bifurcations to separate the artery
from other nearby isometric structures. Park et al. (2013) proposed a method to find
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voxel-based trees with minimal construction energy inside vessel segmentation and
divided them into a group of subtrees that share the same A/V classification. Additionally,
Kitamura et al. (2016) designed a method to classify pulmonary artery and vein voxels
based on vascular connection information and energy minimization of high-order
potentials. However, these methods are usually semi-automatic or dependent on specific
CT quality. Besides, the use of the anatomical priors for the pulmonary A/V separation
method is susceptible to limitations of the anatomical structures themselves, such as
bronchial leakage, vessel adhesions and discontinuity.

Moreover, several new ideas for automatic A/V separation have been proposed.
Charbonnier et al. (2015) proposed a method to convert vessel segmentation into a
geometric graph representation. Payer et al. (2016) proposed an automated algorithm for
A/V separation based on two integer programming. Through integer programming,
parameter tuning was carried out to extract subtrees, and A/V separation was performed.
The method used local information to detect the attached arteries and veins in the
geometric graph to generate subgraphs. Then, the volume difference between arteries and
veins was used for classification. Park, Bajaj & Gladish (2018) developed a method that
utilizes sphere inflation tracking from the endpoint to the heart. This approach aims to
differentiate between bifurcation and crossover points and automatically detect the
pulmonary trunk. Jimenez-Carretero et al. (2019) proposed a new pulmonary A/V
separation scheme, in which a specialized graph-cut method was designed to ensure the
connectivity and consistency of the vessel subtrees. Yu et al. (2021) proposed a combined
algorithm for pulmonary A/V separation based on a subtree relationship to separate the

Figure 1 The process of pulmonary vessels moving away from the hilum accompanied by the bronchi
on CT. Vessels close to the hilum (A) and away from the hilum (B), red dashed rectangles highlight
airways (yellow dotted circle) associated with arteries and veins at different levels.

Full-size DOI: 10.7717/peerj-cs.1537/fig-1
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adhesion points of the vessel tree structure. Generally, these methods are effective on the
image with noise-free or uniform intensities but require complex parameter adjustment
and parameter sensitive.

In recent years, many researchers have attempted to solve the problem of A/V
separation using deep learning techniques, which offer better robustness and stability.
Nardelli et al. (2018) proposed a convolutional neural network for A/V classification of
pulmonary lobar vessel particles, an initial A/V classification is performed for each particle
in the extracted vessel tree using CNN. The final classification result was obtained by a
graph-cut strategy that combined connectivity and pre-classification information. Zhai
et al. (2019) designed a network linking the CNN and graph convolutional network (GCN)
to combine local image information with graph connection information to train the
constructed graph, and the A/V separation results were obtained. Although U-Net is a
common method in medical image segmentation, few works have been done in recent
years for A/V separation. Qin et al. (2021) proposed learning tube-sensitive U-Net for lung
A/V classification and anatomy prior of lung context map and distance transform map is
combined to detect more arterioles and veins. Heitz et al. (2021) relies on three-paths 2.5D
U-Net networks along axial, coronal, and sagittal slices to extract the tubular structures of
the lung. These networks have partly solved the problems in pulmonary A/V separation,
however, none of them consider the complex structures and topological connectivity of the
lung vessels. Confusion and discontinuity of the pulmonary arteries and veins remained,
especially in the hilar, adhesions, and terminal vessel regions.

METHODS
The overall framework of the pulmonary A/V separation method in this article is shown in
Fig. 2, including vessel tree topology extraction module, twin-pipe network, and topology
optimizer. Portions of this text were previously published as part of a preprint (https://
arxiv.org/abs/2103.11736).

In the vessel tree topology extraction module, the vessel tree is segmented by 3D U-Net
from the chest CT images, and the topology is extracted from the vessel tree. Then, the
distance transform is used to guide and compensate for the missing points. In the twin-
pipe network, 3D patches are taken from each particle on the topological tree as the
centers. The vessel segment and the tubule vessel are then trained separately to derive the
preliminary classification results of the vessel particles. In the final optimizer module, the
topology of the subtrees and their branches are extracted from the topological tree, the
branch confidence is calculated, and subtrees are pruned to optimize A/V classification
using topological connectivity. Finally, the arteries and veins of pulmonary topology are
reconstructed, and the reconstructed A/V and separately segmented arteries and veins near
the hilum are fused to obtain the final result.

Vessel tree topology module
The proposed method begins with vessel tree segmentation. Vessel trees are extracted by
using 3D U-Net with the patch of [256, 256, 16]. Then, a complete topological vessel tree is
constructed by topological extraction of the vessel tree. Due to the applicability of the
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skeleton algorithm and the characteristics of the vessel tree itself, it is often not available to
obtain accurate results of skeleton structure. To obtain a better topological veesel tree, we
flexibly combine scale-space particles (Estépar et al., 2012) and the multi-stencils fast
marching (MSFM) (Liu et al., 2018), superior to some existing special methods such as
thinning, geometry, shortest path, etc., the specific steps are as follows.

Firstly, based on the characteristics of the vessel tubular structure, scale-space particles
reconstruction is used to extract the initial skeleton of the vessel and obtain the local
information of the vessel mask. The scale-space particle sampling method exploits the
theory of linear scale-space to localize the features of the image described by the Hessian.
The vessel tree is represented as a set of particles, each of which contains vessel scale,
orientation, and intensity information. Therefore, particles are represented as X = {xi},
where xi represents a particle point. However, after vessel tree reconstruction, the vessels
are discontinuous due to the inability of this method to identify non-tubular structures,
such as the bifurcation of vessels, resulting in local point loss. Additionally, there is no
parent-child relationship between the particles.

Secondly, the skeleton extraction algorithm based on distance transform can maintain
the connectivity of vessel tree. The MSFM is used to extract information about global
connectivity from the vessel mask. The potential terminal points and the root node are
obtained by calculating the distance map. Then, the vessel trajectory is obtained by
iteratively tracing from the terminal points to the root node. During this process, the
branch online confidence score is calculated in the time map to determine whether the
trace iteration should be updated or stopped. In this article, we take the 3D vessel mask as
input, aim to output the vessel skeleton tree G, and assign a 3D spatial coordinate and
radius to each vessel skeleton tree G node. The degree of each vessel tree node can be
between 1 and 3. However, the radius of each node of the obtained vessel tree is only an
approximation and does not really reflect the vessel tubular shape. There are some
differences between the reconstructed results and the real vessel tree.
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Figure 2 Overview of the proposed method of pulmonary A/V separation including three modules: vessel tree topology extraction, twin-pipe
network, and topology optimizer. Full-size DOI: 10.7717/peerj-cs.1537/fig-2
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Finally, in order to ensure the continuity and authenticity of the topology
reconstruction, we flexibly combined the global and local information of the vessel
skeleton. In this article, a particle-based 26-neighborhood search method is adopted to
extract the topological structure of the vessels by guiding the time map to make up for the
lost vessel particles. vessel particles can be classified into three categories: terminal points
(or false-positive terminal points), branching points, and bifurcating points. We indicate
the number of points in the 26 neighborhoods of vessel particles xi as�26(xi). The values of
�26ðxiÞ is different based on the type of particle xi. For the terminal points, �26ðxiÞ ¼ 1.
Branching points are assigned �26ðxiÞ ¼ 2. Bifurcating points have �26ðxiÞ. 2. Further
discrimination is needed due to the presence of branch point loss or branch fracture
resulting in false positive terminal points. Travel in the direction of the terminal vessel
points, and if the terminal point is still on the vessel mask after traveling, it is considered a
false positive terminal point, where the travel distance is between one and two scales.
Otherwise, it is considered the true terminal point. For the false positive terminal points,
the trajectory of the lost vessel points is obtained by MSFM in the time map, in which the
time map is calculated from the 3D distance map. Finally, the complete topology tree is
obtained. Based on the extracted topology tree, the information from each particle is used
to construct the graph structure we need. Through the category of particle points and the
parent-child node relationship between particles, we redefined a graph T = fX; eg
composed of nodes X = {xi} and edges e = {eij}. Node are defined as eij = 1, when �(xi) = 2.
The process of the vessel tree topology extraction method is shown in Fig. 3. And
compared with the scale-space particles, the advantages of the vessel tree topology
extraction in this article are shown in Fig. 4.

Twin-pipe network
The twin-pipe network is designed to improve the preliminary classification accuracy by
learning the differences in A/V characteristics caused by different scales. One pipeline
network is trained on the full vessel graph to learn image information and global
connectivity, while the other pipeline network is specifically trained on the tubule vessel
graph. Taking into account the physiological feature of small arteries accompanying the

Figure 3 The proposed vessel tree topology extraction process. The initial topology is obtained by the
scale-space particles, and the final vessel tree topology is obtained by refining the initial topology under
the guidance of MSFM. Full-size DOI: 10.7717/peerj-cs.1537/fig-3
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small trachea, the twin-pipe network incorporates the CT original images and the vessel
enhancement images as input patches. This enables the network to learn additional
distinguishing features of pulmonary arteries and veins. Finally, the preliminary
classification results are obtained through the mutual correction module.

The network structure is shown in Fig. 5. Twin-pipe network is made up of two non-
local CNN-GCN classifiers. Traditional CNN networks have limitations in capturing long-
range dependencies that extract the global understanding of visual scenes. In this article,
we consider both image information and connectivity information by connecting Non-

Figure 4 Results of the vessel tree topology extraction method. The left column is the result of the
scale-space particles, and the right column is the result of our proposed vessel tree topology extraction,
and the circles highlight the local skeleton points extracted from the topology. Black arrow points to the
regions where the topology points are lost, and blue topology points indicate that our method makes up
for the lost points. The local circular display position has been translated, rotated, and enlarged from the
original image position. Full-size DOI: 10.7717/peerj-cs.1537/fig-4

Figure 5 Architecture of the twin-pipe network for preliminary A/V separation.
Full-size DOI: 10.7717/peerj-cs.1537/fig-5
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local CNN and graph convolutional network (GCN). The Non-local CNN (Sun et al.,
2020) considers the global context information of the image, while the GCN module
(Selvan et al., 2020) can learn the local and graph connection information. Combining
these two modules together is useful for analyzing the vessel tree. In order to connect the
Non-local CNN with GCN, this article adapts the end-to-end method of CNN connecting
GCN proposed by Zhai et al. (2019). The definition of the GCN layer is as follows:

Hðlþ1Þ ¼ rðWHðlÞ�ðlÞÞ (1)

The input of layer (L + 1) is the output of layer (L), the input size ofHðlþ1Þ is N � Fðlþ1Þ,
and the size of output HðlÞ is N � FðlÞ, where W is the weight matrix of nodes X. �ðlÞ is a
hierarchical training parameter matrix, rð�Þ is an activation function, such as ReLU
function. Image feature matrix Y, the output of Non-local CNN network, is taken as the
input of GCN layer.

Hðlþ1Þ ¼ rðWY�ðlÞÞ;where Y ¼ �ðPjhÞ (2)

P is the local image patches centered around each particle, oriented perpendicularly to
the blood vessel. Each image patch with the size of S = [32, 32, 3] is labeled as artery or vein
according to the center voxel, i.e., yi 2 {1, 2}. �ðÞ is a general Non-local CNN layer. h is the
Non-local CNN network training parameter.

To train the twin-pipe network, a set of n nodes and their corresponding image patches
are randomly selected from graph T. These selected nodes and patches are represented as
N with a size of n � S. The image patches of their neighbors are also required as we use
GCN networks. Neighbor patches are denoted by MNwhich has the size m� n� S, where
m is the number of neighbors. N and the neighborhood MN are the input of the network.
We can extract each branch subgraph from graph T, and each branch subgraph is either an

Figure 6 The process of topology tubule branch extraction, the columns from left to right are
topology subtree, topology branch, topology tubule branch. The different color segments represent
different categories. Due to the complex and changeable structure of the vessel tree, the display position
has been translated, rotated, and enlarged from the original image position.

Full-size DOI: 10.7717/peerj-cs.1537/fig-6
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artery or a vein. The tubule vessel graph is the set of tubule branches in the full vessel
graph, we perform vessel enhancement and normalization on the original image to
enhance the differences between arterioles and small trachea. The extraction process is
shown in Fig. 6. The twin-pipe network is trained and predicts whether each central voxel
is an artery or a vein.

Topology optimizer
In order to separate arteries and veins, topological subtrees and topological branches are
extracted from the topological tree T. Topological subtrees S are roughly extracted from
root nodes through the uniform distribution of arteries and veins, and then refined
according to tubular features and scale information. Specifically, extract the subtree root
node in T, and then traverse each subtree root node until it reaches the terminal points to
obtain the corresponding subtree. However, due to the presence of arterial and venous
interlacing, it is possible that arterial subtrees contain venous branches, which is inevitable.
The topological branch B is extracted from the backtracking path of the endpoints. In this
process, the bifurcation points and terminal points are identified as the endpoints,
ensuring that each branch is either an artery or a vein. The results of a topology subtree and
topology branch are shown in Fig. 6.

Though the twin-pipe network can learn local, global, and connectivity information,
spatial inconsistency may still occur during classification. Therefore, after the preliminary
classification of the twin-pipe network, we apply a topology optimizer based on the vessel
tree structure to refine the classification. First of all, for the local patch corresponding to
each particle, the preliminary probability is given by the twin-pipe network. If the
probability is greater than 0.5, the node is an artery. Otherwise, it is a vein. Then, the
subtree si is obtained from the extracted topological subtree S. The categorization of each
subtree (artery or vein) is determined by the number of particles within the subtree that are
predicted to be arteries or veins. Finally, the branch confidence of each subtree is
calculated. When the subtree category and the branch category are inconsistent, and the
branch has higher confidence, appropriate pruning is performed to correct the predicted
results. The confidence calculation depends on the initial number of predicted arteries and
veins in the subtree or branch.

In order to reconstruct the pulmonary artery and vein tree, based on the prediction
result of the central particle and the scale information of the corresponding topological
point, the vessel voxels in the scale space area of the topological point are labeled to belong
to a category. It is then fused with vessels near the hilum for final A/V tree results.

EXPERIMENTS
Data description
The CT data in this article consist of three categories: Siemens-Non-16, GE-Non-8, and
GE-A-8, these datasets are from a well-known local first-line 3A hospital. Our method was
trained and validated on the Siemens-Non-16 dataset, and ablation experiments are also
performed. Then, using GE-Non-8, GE-A-8 dataset, and the publicly available dataset
CARVE14 for generalization experiments. The three types of data were selected because
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the imaging quality of different devices and the image intensity under a contrast agent at
different periods had an uncertain influence on pulmonary A/V separation. We describe
three types of datasets in detail as follows:

1) Siemens-Non-16 datasets, a total of 16 cases, in which CT data were obtained by a
Siemens scanner without a contrast agent.

2) GE-Non-8 datasets, a total of eight cases, in which CT data were obtained by a GE
scanner without a contrast agent.

3) GE-A-8 datasets, a total of eight cases, in which CT data were obtained by a GE scanner
with a contrast agent flowing through the artery.

The axial images of these CT data were resampled to 512 × 512 sizes, and the slice
thickness varied from 0.625 to 1 mm. To more accurately evaluate the effectiveness of our
method, manual A/V annotations repeatedly confirmed by two experienced chest experts
were used as the reference standard for evaluation.

For the purpose of data equalization, eight out of the 10 fully annotated noncontrast CT
scans from the public CARVE14 datasets were randomly selected to verify the
generalization of our method. The CT data was from a Philips scanner with an axial image
reconstruction of 512 × 512 sizes and a thickness of 1.0 mm.

Evaluation metrics
To evaluate the effectiveness of the proposed method, we compare our method with the
manual reference standard. The A/V separation effect is evaluated by the predictive
accuracy of the vessel skeleton particles as an indicator. For this purpose, we calculate the
accuracy of vessel particles, the percentage of correct A/V predictions.

Accuracy ¼ TP þ TN
TP þ FN þ TN þ FP

(3)

Then, the sensitivity and specificity (considering arteries as the positives) are also
computed, indicating the prediction accuracy of arterial or venous, respectively. Also the
Dice Similarity Coefficient (DSC) is used to evaluate the effectiveness of the method.

Sensitivity ¼ TP
TP þ FN

(4)

Specificity ¼ TN
TN þ FP

(5)

DSCðP;GÞ ¼ 2� jP \ Gj
jPj þ jGj (6)

where P and G denote the predicted mask and ground truth, respectively. arterial points
are positive samples, and venous ones are negative samples, TP, TN are the number of
correctly predicted arterial and venous points; FP, FN are the number of incorrectly
predicted arterial and venous points. In all experiments, the accuracy rate is considered the
main evaluation measure. The sensitivity, specificity and DSC are also analyzed to
complete the evaluation of the experiments.
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Experimental setup details
Training was performed by running on the Windows10 with Intel Core i7-9700 CPU
(3.00 GHz), 32 GB RAM, and NVIDIA RTX 2080 GPU with 8 GB of memory. The
twin-pipe network used the deep learning framework “Tensorflow.Keras” with version
1.12.0. In the training process, we used the SGD optimizer with a momentum of 0.9 and
cross-entropy loss function for 150 epochs. The learning rate was 1e−3, and the batch size
was 128.

RESULTS
The evaluation structure of the method in the article is as follows. First, this article presents
the results of our method on the Siemens-Non-16 dataset, as well as the results of the A/V
separation methods in recent years. Second, the ablation experiments are performed on the
Siemens-Non-16 dataset to validate each component of the proposed method. In addition,
the generalization experiments are carried out to verify the proposed method performance
from the GE-Non-8 dataset, the GE-A-8 dataset, and the CARVE14 dataset.

Comparison with recent A/V separation methods
Table 1 presents the pulmonary A/V separation study results in recent years. As shown in
Table 1, Yu et al. (2021) obtained an average accuracy of 85% in pulmonary A/V separation
based on subtree relationships and anatomical knowledge. Under the voxel-based
evaluation system, Payer et al. (2016) implemented A/V separation on enhanced CT based
on two integer programming with an interactive accuracy of 96.3%. Charbonnier et al.
(2015) used tree partitioning and peripheral vessel matching to classify arteries and veins
with a median accuracy of 89.0% on noncontrast CT.Qin et al. (2021) designed end-to-end
A/V separation method, which was directly realized by learning tubule-sensitive CNNs. In
addition, no presegmentation or postprocessing was designed in the pipeline to avoid error
accumulation, and this method reached 90.3% in noncontrast CT. Under the particle-
based evaluation system, Zhai et al. (2019) proposed a new network for end-to-end
training, which greatly reduced the algorithm complexity and its dependence on
parameters. The proposed CNN-GCN method improved lung A/V separation was
compared with the baseline CNNmethod.Nardelli et al. (2018) used deep learning to solve
parameter optimization and automatically learn the difference between pulmonary A/V.
The overall accuracy of this method reached 94% in noncontrast CT. Jimenez-Carretero
et al. (2019) demonstrated a significant improvement in separation on noncontrast CT
using the graph-cut method. Compared with the manual reference standard, the proposed
A/V separation method in this article achieved an average accuracy of 96.2% and a DSC of
81.7% on the Siemens-Non-16 dataset. It can be seen that the accuracy of the proposed
method for A/V classification is significantly improved compared to other methods. But at
the same time we also note that the relatively small improvement in the DSC can be
attributed to the limitations of using DSC as a quality metric for tubular and curved
structures. The Dice coefficient tends to focus on accurately assessing the main large
vessels rather than ensuring the global topological connectivity of the branch vessels
(Banerjee et al., 2022).
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Ablation experiments
We investigate the effectiveness of the key components of the proposed method, including
the twin-pipe network and topological postprocessing optimization.

Twin-pipe network

To verify the effectiveness of the proposed twin-pipe network, we trained and tested on the
Siemens-Non-16 dataset and compared and analyzed the preliminary classification
accuracy of tubule vessels using the proposed twin-pipe network and baseline Non-local
CNN-GCN network. As shown in Table 2, the classification accuracy, sensitivity, and
specificity of the baseline network on the tubule vessels were 91.2%, 86.5%, and 94.8%,
respectively. By comparison, the classification accuracy, sensitivity, and specificity of the
proposed twin-pipe network on the tubule vessels were 91.8%, 88.1%, and 94.7%,
respectively. That is, the twin-pipe network outperformed the baseline network. The
experimental results indicate that the baseline network has lower accuracy in classifying
tubule vessels at the distal end compared to classifying full vessels. This is primarily
because the features of tubule vessel branches are noticeably inconsistent with those of the
main vessel branches, and they are susceptible to the influence of tubule bronchial
branches and partial volume effects. However, the use of a twin-pipe network approach
effectively enhances the accuracy of classifying distal tubule vessels. In other words, the
twin-pipe network outperforms the baseline network in terms of performance. It
effectively overcomes the impact of different scales, particularly in learning the closely
related information of distal bronchial and arterial branches.

Table 1 An overview of the results of recent methods.

DSC Accuracy Evaluation method Data type and cases

Yu et al. (2021) — 85.0% Branch number CT-10

Payer et al. (2016) — 96.3% Voxel Enhanced CT-25

Charbonnier et al. (2015) — 89.0% Voxel Noncontrast CT-55

Qin et al. (2021) 82.4% 90.3% Voxel Noncontrast CT-55

Zhai et al. (2019) 75.2% 77.8% Particle Enhanced CT-11

Nardelli et al. (2018) — 94.0% Particle Noncontrast CT-21

Jimenez-Carretero et al. (2019) — 89.1% Particle Noncontrast CT-48

Our approach 81.7% 96.2% Particle Noncontrast CT-16

Note:
For each metric, the top-performing method is shown in bold.

Table 2 Preliminary classification results of a baseline network (Non-local CNN-GCN network) and
twin-pipe network presented in this article.

Acc. (%) Sens. (%) Spec. (%)

Baseline in full vessels 91.6 88.4 94.1

Baseline in tubule vessels 91.2 86.5 94.8

Twin-pipe in tubule vessels 91.8 88.1 94.7

Note:
For each metric, the top-performing method is shown in bold.
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Topology optimizer

To prove that the proposed topology optimizer is reasonable, we design different topology
strategy optimizers to compare and analyze the experimental results. This approach
includes the following: the twin-pipe network precision (based on particle), the topology
branch refining precision (based on branch), the topology subtree refining precision (based
on subtree), and the proposed topology optimizer refinement precision. Table 3 shows an
overview of the accuracy under different topology strategy optimizers and reports
sensitivity and specificity. The lowest accuracy is based on particles due to the possible
spatial inconsistency of the separation results. Therefore, topological sub-trees or
topological branches constraint need to be used to maintain consistency. However, due to
A/V interleaving, there may be inconsistencies between branch categories and the subtree
categories they belong to, which may limit its effectiveness in achieving higher accuracy.
The topology optimizer we propose outperforms other approaches in accuracy by
calculating the calculated branch confidence and correcting incorrect branches.

Generalization experiments
To verify the generalization of the proposed method, we performed validation on three
datasets of different types: the GE-Non-8 dataset from another device GE, the GE-A-8
dataset from another arterial enhancement model, and the publicly available CARVE14
dataset. Table 4 shows the summary of case results under different types of CT scans, The
proposed method achieved an accuracy of 93.8% and a DSC of 80.7% on the GE-Non-8
dataset. Similarly, under the influence of dynamic changes in the arterial enhancement
effect with time and contrast agent dose, the characteristics varied, and the difficulty of
A/V separation increased. In the GE-A-8 dataset, the proposed method still achieved an
accuracy of 94.8% and a DSC of 81.4%. These results proved that the proposed method

Table 3 Overview of the results obtained compared to other postprocessing refinement strategies.

Acc. (%) Sens. (%) Spec. (%)

Based on particle 91.8 89.1 94.1

Based on branch 95.3 93.2 96.9

Based on subtree 93.2 92.2 94.1

Our approach 96.2 94.1 97.8

Note:
For each metric, the top-performing method is shown in bold.

Table 4 Overview of the results obtained under different types of CT scans.

DataSet Method DSC. (%) Acc. (%) Sens. (%) Spec. (%)

The GE-Non-8 Our approach 80.7 93.8 92.0 95.5

The GE-A-8 Our approach 81.4 94.8 91.8 97.7

CARVE14 Charbonnier et al. (2015) — 89.0 — —

Qin et al. (2021) — 90.3 — —

Our approach 78.8 90.1 90.7 89.8
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maintained high classification accuracy under different devices and modes. In addition, we
verified the proposed method on the public CARVE14 dataset, and two proposed artery-
vein classification methods were evaluated: Charbonnier et al. (2015) and Nardelli et al.
(2018). Due to the difficulties in annotating this dataset, some voxels were annotated as
uncertain vessels. Moreover, pulmonary vessels near the hilum were not annotated, which
resulted in a lack of continuity in the vessel tree. As a result, there exists a gap between
these annotations and clinical applications. Thus, some critical components of the
proposed method were used for simple prediction, and a competitive classification
accuracy of 90.1% and a DSC of 78.8% was obtained. With the experimental results, we
clearly demonstrate the accuracy and generalization ability of the proposed method for
different datasets and situations. These results support the effectiveness and feasibility of
the proposed method.

DISCUSSION
The proposed end-to-end framework constructs topological trees by extracting vessels
from CT and obtains preliminary classification results through a twin-pipe network.
Subsequently, a topological optimizer is used to refine the A/V classification results and
reconstructs pulmonary A/V through the scale information at last. An objective inter-work
comparison could be difficult due to the difference in medical data sets and
implementation, so our experiments are mainly conducted on our own CT data. The
experimental results in Table 1 indicate that the average accuracy of the proposed method
can reach 96.2% compared with that of manual reference annotation. The experimental
results in Table 4 show that our method is also applicable to CT images from different
devices and different modes, thus the proposed method has good generalization.

Pulmonary A/V separation is a challenging problem in medical image analysis. The
separation ought to overcome the complexity of the pulmonary structure as well as the
relatively limited resolution of CT images. Our evaluation method for A/V separation is
mainly based on topological particles rather than voxel classification. The reason is that in
clinical practice, surgeons focus more on the structural branching direction of vessels,
consistent with the evaluation system based on topological particles. A/V separation
provides effective information for surgical planning and navigation, while proximal
vascular extension aids surgeons in locating vessels more quickly. Therefore, the final A/V
separation results include vessels close to the hilum of the lung, as shown in Fig. 7. Our
evaluation system for the A/V separation method does not include vessels near the hilum,
mainly because the vessels near the hilum are abnormally large and non-tubular, and the
vessel topology could not be extracted.

First, we extract vessel topology for the training of the classification network. Currently,
some topology methods such as thinning (Palágyi & Németh, 2017), geodesics and shortest
paths (Chen, Mirebeau & Cohen, 2016), and some other special methods (Liu et al., 2017)
are used to construct vessel topology. However, validating these methods with accuracy is
difficult, mainly because (1) it is difficult for these methods to obtain manual annotations
based on high-resolution images, and (2) these methods pay more attention to vessel
branch direction, bifurcation pixel redundancy, loopback, fracture, etc., We propose a
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vessel tree topology method that fully uses the advantages to solve the topological fracture
problem caused by particle loss. As shown in Fig. 8, topological skeleton nodes are basically
located on the central axis of vessels, and there is no obvious pixel redundancy or fracture
at the bifurcation of vessels.

Second, we design a twin-pipe network for the preliminary classification of A/V and to
improve the classification accuracy of tubule vessels. As shown in Table 2, the classification
accuracy of tubule vessels in the baseline network is lower than that of the full vessels, while
the sensitivity of the twin-pipe network in the tubule vessels is higher than that of the

Figure 8 A case of local vessel and topology construction.
Full-size DOI: 10.7717/peerj-cs.1537/fig-8

Figure 7 An example of manual separation and the A/V separation presented in this article.
Full-size DOI: 10.7717/peerj-cs.1537/fig-7
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baseline network. The experimental results show that the error frequency is lower in the
tubule vessels in the twin-pipe network. That is, the twin-pipe network can effectively
improve the tubule vessel classification accuracy. The experiment proves that: (1) the Non-
local CNN-GCN network can effectively combine local information, global image
information, and graph connection information. Differences in A/V characteristics can be
automatically learned, eliminating the need for complex parameter tuning. (2) The twin-
pipe network effectively captures the differences in A/V characteristics at various scales
and learns the close association between the tubule bronchus and the artery. It is superior
to the baseline Non-local CNN-GCN network and does not depend on the airway
segmentation results.

Finally, the topology optimizer extracts the topology of the subtrees and their branches’
refinement results using the method in “Topology Optimizer”. Then, we use topology
subtrees and topology branches for postprocessing. As shown in Table 3, the proposed
topology optimizer accuracy is superior to that of the subtree-based and branch-based

Figure 9 In an example of A/V separation results, the reconstructed results of different topology
strategy optimizers. The circular area highlights local classification results. Due to the complex and
changeable structure of the vessel tree, the local circular display position has been translated, rotated, and
enlarged from the original image position. Full-size DOI: 10.7717/peerj-cs.1537/fig-9
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topology optimization. Fig. 9 shows the reconstructed results of different topology strategy
optimizers. The results in the first row show that when the number of points on the branch
is small, the branch-based topology optimization method is prone to prediction errors.
This is owing to the branch-based refinement strategy focusing on the relationships within
the branches and ignoring the topological relationships between branches. The second row
shows that topology optimization based on the subtree strategy is prone to prediction
errors in the case of A/V intersection. Due to the complex intertwining of arteries and
veins trees, the points where arteries and veins intersect are often mistaken for arterial
subtree bifurcation points. As a result, venous branches are misclassified as arterial sub-
trees, leading to classification errors.

Figure 10 shows the final separation result of our method at the intersections of the
arteries and veins. The proposed topology optimizer considers the interbranch and
intrabranch relationships. The extracted topological subtree is used to maintain the spatial
connectivity of topological particles. The branch confidence calculated using topological
branches is used to correct the topological subtree. To some extent, our method can solve
the misclassification problem caused by interlaced arteries and veins. This method made
some achievements in A/V separation, but there are still some unavoidable shortcomings.
The method is based on topological particle reconstruction of A/V classification, and some

Figure 10 The results of separation of arterial and venous intersections are shown in this figure. Each
row represents a different location where arteries and veins intersect. The number of columns respec-
tively represents the location of the intersecting arteries and veins in the original CT image, the results of
vessel segmentation, the results of the A/V separation method presented in this article, and the results of
the 3D reconstruction of this location. The blue areas represent the arteries and the red veins.

Full-size DOI: 10.7717/peerj-cs.1537/fig-10
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errors are found between the reconstructed vessel size and the actual situation. Although it
is possible to classify the A/V at the intersections, the scale of the intersections after
reconstruction is abnormal and often results in fractures or abnormal expansion. This
condition occurs because topological particles at non-tubular intersections of arteries and
veins cannot be accurately extracted during topology construction, thereby leading to
topological particle scale mutation or deletion. To apply it to clinical practice, we can
further improve the classification results and performance by optimizing the topology
extraction algorithm and detecting the intersection situation, as well as increase the clinical
applicability through semi-automated graphical user interface interaction operations.

CONCLUSION
In this article, we propose a novel method for automatically separating pulmonary arteries
and veins. This method is applicable for noncontrast CT scans that lack vessel edge
information, and by incorporating vessel topology information, it can resolve adhesions of
arteries and veins and misclassification of small vessels. We extract the vessel skeleton
through the vessel tree topology method, obtain the preliminary classification results after
twin-pipe network training, and use the topology structure information for postprocessing.
Our approach has been tested on the public dataset CARVE14 and our private dataset.
Experimental results show that the proposed method has good performance and
generalizability to CT images from different devices and different modes. The method
proposed in this article will better assist physicians in the planning of surgery for lung
disease.
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