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ABSTRACT
We describe theCoefficient-Flow algorithm for calculating the bounding chain of an
(n−1)-boundary on an n-manifold-like simplicial complex S. We prove its correctness
and show that it has a computational time complexity of O(|S(n−1)|) (where S(n−1)

is the set of (n− 1)-faces of S). We estimate the big-O coefficient which depends
on the dimension of S and the implementation. We present an implementation,
experimentally evaluate the complexity of our algorithm, and compare its performance
with that of solving the underlying linear system.

Subjects Algorithms and Analysis of Algorithms, Data Science, Scientific Computing and
Simulation
Keywords Homology, Computational algebraic topology

INTRODUCTION
Topological spaces are by and large characterized by the cycles in them (i.e., closed paths
and their higher dimensional analogues) and the ways in which they can or cannot be
deformed into each other. This idea had been recognized by Poincaré from the beginning
of the study of topology. Consequently much of the study of topological spaces has been
dedicated to understanding cycles, and these are the key features studied by the topological
data analysis community (Edelsbrunner & Harer, 2010).

One key part of topological data analysis methods is to distinguish between different
cycles; more precisely, to characterize different cycles according to their homology class.
This can be done efficiently using cohomology (Pokorny, Hawasly & Ramamoorthy, 2016;
Edelsbrunner, Letscher & Zomorodian, 2002). However, such methods only distinguish
between non-homologous cycles, and do not quantify the difference between cycles. A
possible way to quantify this difference is to solve the problem of finding the chain whose
boundary is the union of the two cycles in question, as was proposed in Chambers &
Vejdemo-Johansson (2015) by solving the underlying linear system, where the authors
also take the question of optimality into account (with regards to the size of the resulting
chain). This line of research ellaborates onDey, Hirani & Krishnamoorthy (2011) where the
authors considered the problem of finding an optimal chain in the same homology class
as a given chain. More recently, in Rodríguez et al. (2017) the authors have taken a similar
approach to ours using a combinatorial method to compute bounding chains of 1-cycles
on 3-dimensional simplicial complexes.
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In this paper, we explore the geometric properties of simplicial n-manifolds to provide
an algorithm that is able to calculate a chain whose boundary is some prescribed (n−1)-
dimensional cycle, andwe show that the proposed algorithmhas a complexitywhich is linear
in the number of (n−1)-faces of the complex. This is substantially faster than calculating
a solution to the linear system as considered in Chambers & Vejdemo-Johansson (2015),
for which the complexity would be, at least, quadratic on the number of n-dimensional
faces (Gloub & Van Loan, 1996).

Background
In what follows wemake extensive use of sequences. Therefore, for any n∈N, we abbreviate
x0,...,xn to x0:n.

Simplicial complexes
Given a set of points P ⊆Rn, we define a k-dimensional simplex, or k-simplex, on points
of P as the ordered set [p0:k], where p0:k ∈ P are k+1 affinely independent points and
are called the vertices of [p0:k]. We represent the simplex [p0:k] by the convex hull of the
points p0:k , and we say that two simplices are the same if they have the same points and
the ordering of the points differs only by an even permutation. If the ordering differs by
an odd permutation we say they have opposite orientations.

Since a convex hull of a finite set of points is a bounded closed set, it carries the notion
of a boundary ∂[p0:k] which is defined as:

∂[p0:k] = [p1:k]+ (
k−1∑
i=1

(−1)i[p0:i−1,pi+1:k])+ (−1)k[p0:k−1].

The above sum can be interpreted as a ‘‘union with orientation’’, and multiplying by 1
or −1 is the identity or a reversal of orientation, respectively. Note that if p0:k are affinely
independent, then the boundary of the convex hull does indeed correspond to the union
of the convex hulls of all subsets of {p0:k} with k distinct points.

For example, the boundary of the simplex [p0,p1,p2] is given by:

[p0,p1]−[p0,p2]+[p1,p2]

Applying the only possible orientation-reversing permutation to [p0,p2] gives
[p0,p1]+ [p1,p2]+ [p2,p0]. This corresponds to the union of the edges that form the
boundary of the triangle [p0,p1,p2] oriented in such a way as to form a closed path.
Definition 1. A set of points P ⊆Rn and a set of simplices T = {σ0:N } defines a geometric
simplicial complex S= (P,T ) if any finite subset of a simplex in T is also in T , and given
any two simplices [p0:k],[q0:k ′] ∈ T, the intersection of the convex hulls [p0:k]∩ [q0:k ′] is the
convex hull of {p0:k}∩{q0:k ′} and is also a simplex in T .

For any d we define the d-skeleton of T by T d
= {σ ∈T |dimσ 6 d} and the d-th level

as T (d)
={σ ∈T |dimσ = d}.

Given two simplices σ ,τ we write τ C σ if τ ⊂ σ and dimτ = dimσ −1 which can be
read as ‘‘τ is a top-dimensional face of σ ’’. Note that C is not transitive, and therefore it is
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not a preorder. Its transitive closure, τ <σ however, defines a preorder. We can thus read
τ <σ as ‘‘τ is contained in the boundary of σ ’’ or simply ‘‘τ is a face of σ ’’.

We say that a simplicial complex S= (P,T ) has dimension d if d is the largest integer
such that T (d)

6=∅.
Definition 2. A d-dimensional simplicial complex S= (P,T ) is called a d-manifold-like
simplicial complex if

• for every τ ∈T d−1 there exists some σ ∈T (d) such that σ > τ , and
• if dimτ = (d−1) then there are at most two σ ∈T (d) satisfying σ > τ .

Note that a triangulation of a d-manifold is a manifold-like simplicial complex, however
the definition also includes other spaces like triangulations of manifolds with boundary
and the pinched torus.

Algebraic description
We will focus on finite geometric simplicial complexes S= (P,T ) (where |P|,|T |<∞).
Since such an S has a finite number of simplices, we can define for each level 06 k6 dim(S)
an injective function ιk : T (k)

→ N such that ιk(T (k))= {1,...,|T (k)
|}; we call ι an

enumeration of T (k). From this we define the chain complex associated with S.
Definition 3. Given a simplicial complex S= (P,T ) the chain complex associated with S
is defined as the pair {(Ck(S),dk)}+∞k=0 where the Ck(S) are vector spaces defined as Ck(S)=
R|T (k)

| and the dk are linear maps dk : Ck(S)→ Ck−1(S) defined on basis elements as

dk(ei)=
∑

τ∈∂(ι−1k (i))

o(i,τ )eιk−1(τ )

where o(i,τ ) is the orientation of τ induced by the boundary of σ = ι−1k (i).

It can be shown that dk ◦ dk+1 = 0, which allows us to define, for each k, the k-th
homology group of S as

Hk(S)= ker(dk)/im(dk+1).

By a slight abuse of notation, for a simplicial complex S= (P,T ) and a k-chain c , we
write cσ for the coefficient corresponding to σ , eσ for the corresponding basis element and
d for the appropriate boundary map whenever these are clear from their contexts.

We call the elements p∈Ck(S) such that dp= 0, k-cycles. Two k-cycles p,p′ are said to be
homologous if there exists a chain c ∈Ck+1(S) such that dc = p−p′, so that p−p′ is called a
k-boundary. This defines k-homology as the group of k-cycles quotiented by the homology
relation.

Problem description and contribution
We are interested in the bounding chain problem, that is, given a cycle p, we want to decide
whether or not p is a boundary, and in case it is, provide a witness in the form of a chain c
such that ∂c = p; we call c a bounding chain of p. To achieve this, we further specialize the
problem to
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1Which corresponds to the number of
(k − 1)- and k-faces of the complex,
respectively.

solve: ∂c = p

subject to: cσ = v, (1)

where p is a specified (n−1)-boundary in an n-manifold-like simplicial complex S, σ is
an n-simplex, and v is a pre-specified real number. In general, the equation ∂c = p has
more than one solution c , therefore by adding the constraint cσ = v we are able to make
this solution unique.

The Coefficient-Flow algorithm that we present solves this restricted form of the
bounding chain problem (by providing one such bounding chain if it exists) and has
computational time complexity of O(|S(n−1)|). Furthermore, we show how the parameters
σ and v can be done away with in cases where the chain is unique, and we discuss how this
algorithm can be used to find a minimal bounding chain.

Related work
In Chambers & Wang (2013) the authors address the problem of computing the area
of a homotopy between two paths on 2-dimensional manifolds, which can be seen
as a generalization of the same problem, for 2-dimensional meshes via the Hurewicz
map (Hatcher, 2002). In Chambers & Vejdemo-Johansson (2015) the authors provide a
method for calculating the minimum area bounding chain of a 1-cycle on a 2d mesh, that
is the solution to the problem

argmin carea(c)= p, where ∂c = p (2)

and p is a 1-chain on a given simplicial complex. This is done by using optimizationmethods
for solving the associated linear system. These methods however have time complexity
lower-bounded by matrix multiplication time which is in �(min(n,m)2) where n,m are
the number of rows and columns of the boundary matrix1 (Davie & Stothers, 2013). This
complexity quickly becomes prohibitive when we handle large complexes, such as one
might find when dealing with meshes constructed from large pointclouds.

More recently, in Rodríguez et al. (2017) the authors proposed a method for computing
bounding chains of 1-cycles in 3-dimensional complexes, using a spanning tree of the dual
graph of the complex.

In Dey, Hirani & Krishnamoorthy (2011) the authors address the related problem of
efficiently computing an optimal cycle p′ which is homologous to a given cycle p (with Z
coefficients). This is a significant result given that in Chambers, Erickson & Nayyeri (2009)
the authors proved that this cannot be done efficiently (i.e., in polynomial time) for 1-cycles
using Z2 coefficients, a result that was extended in Chen & Freedman (2011) to cycles of
any dimension.

METHODOLOGY
For any simplicial complex S, and any pair of simplices σ ,τ ∈ S such that, τ C σ , we define
the index of τ with respect to σ as 〈τ ,∂σ 〉= 〈eτ ,deσ 〉 (Forman, 1998). Note that the index
corresponds to the orientation induced by the boundary of σ on τ and can be computed
in O(d) time by the following algorithm:
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Index(σ ,τ ):
param: σ - k-simplex represented as a sorted list of indices of points.
param: τ - (k−1)-face of σ represented as a sorted list of indices.

1: for each i← 0...dimτ :
2: if τi 6= σi:
3: orientation← (−1)i

4: break loop
5: return orientation

By inspecting the main loop we can see that Index(σ ,τ ) returns (−1)i where i is the
index of the first element at which σ and τ differ. We assume τ is a top dimensional face of
σ , so if σ = [s0:d], then by definition τ = [s0:(i−1),s(i+1):d] for some i, and so the coefficient
of τ in the boundary of σ is (−1)i as per the definition of the boundary operator. This is
also the index of the first element at which τ and σ differ, since they are represented as
sorted lists of indices.

The following is an intuitive result, that will be the basis for the Coefficient-Flow
algorithm that we will present in the sequel.
Proposition 1. Let S be a manifold-like simplicial complex, let c be an n-chain on S and
p its boundary. Then for any pair of n-simplices σ 6= σ ′ with ∂σ ∩∂σ ′={τ } we have:

cσ =〈τ ,∂σ 〉(pτ −〈τ ,∂σ ′〉cσ ′).

Proof. If we expand the equation ∂c = p, we get pτ =
∑

τCω〈eτ ,d(cωeω)〉, recall that by
definition d(cωeω)=

∑
νCω〈ν,∂ω〉cωeν ; and so we get pτ =

∑
τCω〈τ ,∂ω〉cωeτ .

Now since S is a manifold-like simplicial complex and τ = ∂σ ∩∂σ ′, then σ ,σ ′ are the
only cofaces of τ , and hence we have:

pτ =〈τ ,∂σ 〉cσ +〈τ ,∂σ ′〉cσ ′

which can be reorganized to cσ =
pτ−〈τ ,∂σ ′〉cσ ′
〈τ ,∂σ 〉

. Finally, since the index 〈τ ,∂σ 〉 is either 1
or −1, we can rewrite this equation as:

cσ =〈τ ,∂σ 〉(pτ −〈τ ,∂σ ′〉cσ ′)

Next, we present an algorithm to calculate a bounding chain for a (n− 1)-cycle in
an n-manifold-like simplicial complex. The algorithm proceeds by checking every top-
dimensional face σ , and calculating the value of the chain on adjacent top-dimensional
faces, using Proposition 1.

In order to prove that the Coefficient-Flow algorithm solves problem (1), will use the
fact that we can see the algorithm as a traversal of the dual graph.
Definition 4. Given an n-dimensional simplicial complex S, recall that the dual graph is a
graph G(S)= (V ,E) with set of vertices V = S(n) and (σ ,σ ′)∈ E if dim(σ ∩σ ′)= n−1.

Proposition 2. If S is a manifold-like simplicial complex, where G(S) is connected, and p
is an (n−1)-boundary, then Coefficient- Flow(p,σ ,v) returns a bounding chain c of p
satisfying cσ = v, if such a boundary exists. Furthermore, the main loop (05–21) is executed
at most O(|S(n−1)|) times.

Carvalho et al. (2018), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.153 5/12

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.153


Coefficient-Flow(p,σ0,v0):
param: p— an n−1 boundary of the simplicial complex S
param: σ0 — an n–simplex from where the calculation will start
param: v0 — the value to assign the bounding chain at sigma
return: c — a bounding chain of p satisfying cσ0 = v0 (if it exists)

6: initialize c and mark every n- and (n−1)-cell of S as not seen.
7: initialize an empty queue Q
8: let τ0 ∈ ∂σ0
9: enqueue (σ0,τ0,v0) into Q.
10: while Q is non-empty:
11: (σ ,τ ,v)← pop first element from Q
12: if σ has been marked seen:
13: if v 6= cσ : the problem has no solution
14: else:
15: if τ has been marked seen: skip
16: cσ← v
17: mark τ and σ as seen
18: for each τ ′ ∈ ∂σ :
19: if σ is the only coface of τ ′:
20: mark τ ′ as seen
21: if pτ ′ 6= 〈∂σ ,τ ′〉v : the problem has no solution
22: else:
23: if τ ′ has not been marked as seen:
24: σ ′← other coface of τ ′

25: v ′←〈∂σ ′,τ 〉(pτ −〈∂σ ,τ 〉v)
26: enqueue (σ ′,τ ′,v ′) into Q
27: return c

Proof.We start by proving the bound on the number of executions of the main loop. This is
guaranteed by the fact that the loop is executed while the queue is non-empty, and a triple
(σ ,τ ,v) can only be inserted in line (21) if τ has not been marked as seen. Furthermore,
since τ has at most two cofaces, say, σ ,σ ′, we can only enqueue τ if we are analyzing σ or
σ ′ and so for each τ , at most two elements are placed in the queue, and hence the main
loop gets executed at most 2|S(n−1)| times.

To prove correctness of the algorithm, we have to prove that it outputs an error if and
only if the problem has no solution, and otherwise it outputs a bounding chain of p with
cσ0 = v .

First, we note that if a face σ is marked as seen, the value of cσ can never be reassigned.
This is because the program branches on whether or not σ has been marked as seen, and
cσ can only be assigned on line (11) which is bypassed if σ has been previously marked as
seen. From this fact we conclude that cσ0 = v0 as it is assigned on line (11) and σ0 is marked
as seen in the first iteration of the main loop.
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Second, note that there is an edge between two n-faces in the dual graph if and only if
they share an (n−1)-face. This implies that as we execute the algorithm, analyze a new
n-face σ and successfully add the other cofaces of elements of the boundary of σ , we add
the vertices neighboring σ in the dual graph. Since the dual graph is connected all of the
nodes in the graph are eventually added, and hence all of the n-faces are analyzed.

Third, we note that for any pair (τ ,σ ) with dimσ = n and τ C σ , either σ is the only
coface of τ , or τ has another coface, σ ′. In the first case, if pτ 6= cσ 〈τ ,∂σ 〉 an error is
detected on line (16). In the second case, assuming that the triple (σ ,τ ,v) is enqueued
before (σ ′,τ ,v ′) we have v ′=〈∂σ ′,τ 〉(pτ −〈∂,σ 〉v) as is assigned in line (20) then

(dc)τ =〈∂σ ,τ 〉v+〈∂σ ′,τ 〉v ′

=〈∂σ ,τ 〉v+〈∂σ ′,τ 〉(〈∂σ ′,τ 〉(pτ −〈∂,σ 〉v))

=〈∂σ ,τ 〉v+pτ −〈∂σ ,τ 〉v = pτ .

Finally, since upon the successful return of the algorithm, this equation must be satisfied
by every pair τ C σ , it must be the case that dc = p. If this is not the case, then there will be
an error in line (08) and the algorithm will abort. �

Note that the connectivity condition can be removed if we instead require a value for
one cell in each connected component of the graph G(S), and throw an error in case there
is an (n−1)-simplex τ with no cofaces, such that pτ 6= 0. Furthermore, the algorithm can
be easily parallelized using a thread pool that iteratively processes elements from the queue.

Finally, in the case where it is known that S has an (n−1)-face τ with a single coface,
we do not need to specify σ or v in Coefficient-Flow, and instead use the fact that we
know the relationship between the coefficient pτ and that of its coface in a bounding chain
c of p, i.e., pτ =〈∂σ ,τ 〉cσ . This proves Corollary 1.

Bounding-Chain(p):
param: p— an n−1 boundary of the simplicial complex S
return: c — a bounding chain of p

28: for each τ ∈ Sn−1:
29: if τ has a single coface:
30: σ← the coface of τ
31: v←〈∂σ ,τ 〉pτ
32: break loop
33: c←Coefficient-Flow(p,σ ,v)
34: return c

Corollary 1. If S is a connected n-manifold-like simplicial complex with a connected dual
graph, and has an (n− 1)-face with a single coface, then given an (n− 1)-cycle p on S,
Bounding-Chain(p) returns a bounding chain of p if one exists.
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Implementation details
We will now discuss some of the choices made in our implementation of the Coefficient-
Flow algorithm (https://www.github.com/crvs/coeff-flow). Before we can address the
problem of considering chains on a simplicial complex we first need to have a model of a
simplicial complex. For this, we decided to use a simplex tree model (Boissonnat & Maria,
2014) provided by the GUDHI library (The GUDHI Project, 2015) as it provides a compact
representation of a simplicial complex (the number of nodes in the tree is in bijection with
the number of simplices) which allows us to quickly get the enumeration of a given simplex
σ . Indeed, the complexity of calculating ιk(σ ) is in O(dimσ ).

It is important to compute the enumeration quickly because in our implementation of
Coefficient-Flow we use arrays of booleans to keep track of which faces of the simplicial
complex have been seen before, as well as numerical arrays to store the coefficients of the
cycle and its bounding chain, which need to be consulted at every iteration of the loop.

However, finding the cofaces of the simplicial complex is not as easy in a simplex tree,
since, if σ = [pi0:ik ], this would require to search every child of the root node of the tree
that has an index smaller than i0, followed by every child of the node associated with pi0
and so on, which in the worst case scenario is in O(dimσ |S(0)|). Thus we need to adopt a
different method. For this, we keep a Hasse diagram of the face relation which comprises a
directed graph whose vertices are nodes in the simplex tree and has edges from each face to
its codimension-1 cofaces (see for instance Di Battista & Tamassia (1988)) for more details
of this data-structure). This allows us to find the codimension-1 cofaces of a simplex of S
in O(1) with a space overhead in O(|S|).

With these elements in place, we can analyze the complexity of our implementation of
the Coefficient-Flow algorithm in full:
Lemma 1. The Coefficient-Flow algorithm using a simplex tree and a Hasse diagram has
computational (time) complexity O(d2|S(d−1)|) where d = dimS.

Proof. In Proposition 2 we saw that the Coefficient-Flow algorithm executes the main loop
at most O(|S(d)|) times, so we only need to measure the complexity of the main loop, in
order to obtain its time complexity. This can be done by checking which are the costly
steps:

• In lines (07) and (10) checking whether a face has been marked as seen requires first
computing ιk(τ ) which, as we stated above, has time complexity O(k), with k ≤ d .
• In line (13), computing the faces of a simplex σ requires O(dimσ 2) steps, and yields a
list of size dimσ , hence the inner loop (13–21) is executed dimσ times, where dimσ = d ,
for each element placed in the queue.
• The loop (13–21) requires once again, computing ι(τ ′), and 〈∂σ ,τ 〉, each of these
operations, as we explained before, carries a time complexity O(d).
• All other operations have complexity O(1).

Composing these elements, the total complexity of one iteration of the main loop
is O(max{d,d2,d · d}) = O(d2), which yields a final complexity for the proposed
implementation, of O(d2|S(d−1)|). �
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2We use the least squares conjugate
gradient descent method to solve the
system.

Figure 1 Examples of bounding chains: the edges in blue form cycles in the mesh, and the faces in red
form the corresponding bounding chain as computed by the Coefficient-Flow algorithm. In (A) we
depict the mesh of the Stanford Bunny The Stanford 3D scanning repository (1994) and in (B) we show the
mesh of a Bee Smithsonian (2013). In both these meshes we depict examples of bounding chains, where
the edges in blue form cycles, and the faces in red form the corresponding bounding chain as computed
by the Coefficient-Flow algorithm. In both cases the depicted bounding chains correspond to the op-
timal bounding chains (w.r.t. the number of faces), these can by obtained by choosing σ0 and v0 so as to
yield the desired chain. In this case, since the two complexes are topological spheres and the cycles are sim-
ple cycles (meaning they are connected and do not self-intersect), there are only two possible bounding
chains that do not include all the faces of the complex, which can be obtained by running the algorithm
three times, choosing σ0 arbitrarily, and setting v0 to be 0,n or−n where n =maxτ∈S(1) |pτ |. In the case of
non-simple cycles, more alternatives would exist.

Full-size DOI: 10.7717/peerjcs.153/fig-1

Example runs and tests
In Fig. 1 we provide an example of the output of the Coefficient-Flow algorithm for the
mesh of the Stanford bunny (The Stanford 3D scanning repository, 1994) and the eulaema
meriana bee model from the Smithsonian 3D model library (Smithsonian, 2013).

For comparison, we performed the same experiments using the Eigen linear algebra
library (Eigen, 2017) to solve the underlying linear system,2 and summarized the results
in Table 1. This allowed us to see that even though both approaches remain feasible with
relatively large meshes, solving the linear system consistently underperforms using the
Coefficient-Flow algorithm.

Even though Coefficient-Flow is expected to outperform a linear system solver (an
exact solution to a linear system has�(n2) time complexity), we wanted to test it against an
approximate sparse system solver. Such solvers (e.g., conjugate gradient descent (Gloub &
Van Loan, 1996)) rely on iterative matrix products, which in the case of boundary matrices
of dimension d can be performed in O((d+1)n) where n is the number of d-dimensional
simplices, placing the complexity of the method in �((d+1)n). In order to observe the
difference in complexity class we performed randomized tests on both implementations.
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3Since boundary matrices are naturally
sparse, and we are computing an
approximate solution, the complexity can
be improved beyond the aforementioned
�(n2).

Table 1 Timing for computation of bounding chains using Coefficient-Flow, and using Eigen in
several meshes. ‘‘Bunny’’ and ‘‘Bee (Sample)/Bee (Full)’’ refer to the meshes in Figs. 1A and 1B, respec-
tively. The mesh ‘‘Bee (Full)’’ is the one obtained from Smithsonian (2013), whereas the one labeled ‘‘Bee
(Sample)’’ is a sub-sampled version of it.

Mesh Faces Edges Vertices Eigen Coefficient-Flow

Bunny 69 663 104 496 34 834 2.073 (s) 0.48911 (s)
Bee (Sample) 499 932 749 898 249 926 116.553 (s) 3.04668 (s)
Bee (Full) 999 864 1 499 796 499 892 595.023 (s) 7.15014 (s)

Figure 2 Running times for a calculating the bounding chain of a cycle as a function of the number of
edges (A), and Log–log plot of the same data (B).

Full-size DOI: 10.7717/peerjcs.153/fig-2

In this scenario we made a mesh on a unit square from a random sample. By varying the
number of points sampled from the square, we effectively varied the resolution of the
mesh. Finally, at each resolution level we snapped a cycle onto the mesh, and computed
its bounding chain using both Coefficient-Flow and by solving the sparse linear system as
before. We plotted the timings in Fig. 2 from where we can experimentally observe the
difference in the complexity class between our algorithm and the solution to the sparse
linear system.

Furthermore by analyzing the Log-Log plot in Fig. 2B, we can confirm our complexity
estimates by analyzing the slope of the lines where the samples are distributed, i.e., solving
the sparse linear system is approximatelyO(n1.7) complexity,3 whereas Coefficient-Flow
displays linear complexity.

CONCLUSION AND FUTURE WORK
While the problem of finding a bounding chain for a given cycle in a simplicial complex
remains a challenging one for large complexes, we showed that this problem can be solved
efficiently for codimension-1 boundaries. We implemented and tested our algorithm and
have provided complexity bounds for its run-time.

However, this leaves open the question of finding bounding chains for boundaries of
higher codimension, for which solving a large sparse linear system is still, to the best of
our knowledge, the only feasible approach, save for codimension 2 cycles in dimension
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3 (Rodríguez et al., 2017). In the future we would like to generalize our algorithm to be
able to work with cobounding cochains (i.e., in cohomology), as well as considering the
optimality question (i.e., finding the minimal bounding chain w.r.t. some cost function).
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