Detection of offensive terms in resource-
poor language using machine learning
algorithms

Muhammad Owais Raza', Naeem Ahmed Mahoto', Mohammed Hamdi’, Mana
Saleh Al Reshan’, Adel Rajab” and Asadullah Shaikh’

! Department of Software Engineering, Mehran University of Engineering and Technology Jamshoro, Jamshoro,
Pakistan

? Department of Computer Science, Najran University, Najran, Najran, Saudi Arabia
* Department of Information Systems, Najran University, Najran, Najran, Saudi Arabia

ABSTRACT

The use of offensive terms in user-generated content on different social media platforms
is one of the major concerns for these platforms. The offensive terms have a negative
impact on individuals, which may lead towards the degradation of societal and
civilized manners. The immense amount of content generated at a higher speed
makes it humanly impossible to categorise and detect offensive terms. Besides, it is
an open challenge for natural language processing (NLP) to detect such terminologies
automatically. Substantial efforts are made for high-resource languages such as English.
However, it becomes more challenging when dealing with resource-poor languages
such as Urdu. Because of the lack of standard datasets and pre-processing tools
for automatic offensive terms detection. This paper introduces a combinatorial pre-
processing approach in developing a classification model for cross-platform (Twitter
and YouTube) use. The approach uses datasets from two different platforms (Twitter
and YouTube) the training and testing the model, which is trained to apply decision tree,
random forest and naive Bayes algorithms. The proposed combinatorial pre-processing
approach is applied to check how machine learning models behave with different
combinations of standard pre-processing techniques for low-resource language in
the cross-platform setting. The experimental results represent the effectiveness of the
machine learning model over different subsets of traditional pre-processing approaches
in building a classification model for automatic offensive terms detection for a low

Submitted 19 December 2022
Accepted 18 July 2023
Published 29 August 2023

Corresponding author
Mohammed Hamdi,
mahamdi@nu.edu.sa

Academic editor
Jyotismita Chaki

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.1524

© Copyright
2023 Raza et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

resource language, i.e., Urdu, in the cross-platform scenario. In the experiments, when
dataset D1 is used for training and D2 is applied for testing, the pre-processing approach
named Stopword removal produced better results with an accuracy of 83.27%. Whilst,
in this case, when dataset D2 is used for training and D1 is applied for testing, stopword
removal and punctuation removal were observed as a better preprocessing approach

with an accuracy of 74.54%. The combinatorial approach proposed in this paper
outperformed the benchmark for the considered datasets using classical as well as
ensemble machine learning with an accuracy of 82.9% and 97.2% for dataset D1 and
D2, respectively.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning, Network
Science and Online Social Networks
Keywords Classification model, Resource-poor language, Offensive terms, Machine learning

How to cite this article Raza MO, Mahoto NA, Hamdi M, Reshan MSA, Rajab A, Shaikh A. 2023. Detection of offensive terms in
resource-poor language using machine learning algorithms. Peer] Comput. Sci. 9:¢1524 http://doi.org/10.7717/peerj-cs.1524

https://peerj.com/computer-science
mailto:mahamdi@nu.edu.sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1524
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

INTRODUCTION

The advancements in information and communication technologies have decreased
barriers and have flooded immense amounts of user-generated content. Social media,
including Facebook, Twitter and other such platforms, have offered discourse and raised
viewpoints about numerous topics and stories around the world (Peters ef al., 2022). The
caveat is the misuse and provocation of hate and offence. The trend in cyberbullying and
online harassment is on the rise due to the liberty of social media platforms (Masadeh,
Davanager & Muaad, 2022). The offence, harassment and cyberbullying are grave concerns
on social networking platforms. The challenge is the detection of such contemplative views
in user-generated content. Manually, it is next to impossible to recognize and filter out
offensive comments in online discussions. Machine learning (ML) and natural language
processing (NLP) are the evidence to cope with such challenges in the existing literature.
Several approaches have been employed to detect offensive and hate terms in online
text, such as lexicon-based approach (Gitari et al., 2015), n-gram approach (Ptaszynski
et al., 2019; Sigurbergsson & Derczynski, 2019), and ensemble learning (Pelle, Alcantara ¢»
Moreira, 2018).

The methods for detecting offensive language for resource-rich languages (e.g., English)
have been proposed in abundance, as shown in this section. Although multilingual content
is available on social media platforms, yet little efforts have been made to cater for the
resource-poor languages (Cunliffe et al., 2022). This has increased the need for automatic
offensive language detection systems for low or poor-resource languages. There are
some research studies for the languages such as German (Schneider et al., 2018), Danish
(Sigurbergsson & Derczynski, 2019), and Arabic (Alakrot, Murray & Nikolov, 2018). These
studies about low-resource language have used ML approaches with a single dataset for
both training and testing. The success of the classification model for low-resource languages
in this world of numerous social media sites relies on available resources such as datasets
and pre-processing tools and its evaluation of cross-platform data to reduce generalization
error.

This study proposes combinatorial pre-processing techniques along with cross-platform
datasets for the development of a classification model using classical machine learning
methods. Deep learning and transfer learning are beyond the scope of this study, and thus,
these learning approaches are not applied. The major contributions of this study are:

1. Highlighting and discussing the impact of standard pre-processing approaches over
cross-platform abusive language datasets.

2. Evaluation of pre-processing approach over the performance on classifier for offensive
language detection for cross-platform datasets.

3. Beating state-of-the-art results over benchmarked dataset for YouTube comments
using a combination of standard pro-processing steps.

The rest of the paper is structured as follows: the ‘Literature Review’ section reports a
literature review and relevant studies. The ‘Methodology’ section shows the methodology
employed in this study. The ‘Experimental Results’ section discusses the experimental
results and finally, conclusions are drawn in the ‘Conclusions and Future work’ section.

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

LITERATURE REVIEW

Recently, the attention of computational linguistics is growing to analyse the immoral
conduct of individuals on social networking sites like Facebook (Gitari et al., 2015), and
Twitter (Schneider et al., 2018). Groups and individuals from all over the globe post
messages on social networking sites and receive dozens of negative or positive responses or
comments on the posted things. These remarks generally include derogatory terms or harsh
language due to the sheer differences among individuals of different ethnicity, religion,
culture, or nations (Burnap ¢ Williams, 2015). These abusive or despised statements
initiate cyberbullying

This existing literature in the field of abusive language detection and profanity detection
includes (Agrawal & Awekar, 2018; Nobata et al., 2016; Malmasi & Zampieri, 2018). In
Ptaszynski, Eronen ¢» Masui (2017) researchers use different classification methods for
cyberbullying detection, including support vector machines, naive Bayes, k-nearest
neighbours, J48, JRip, random forest, and convolutional neural network (CNN), and
the results indicate that CNN outperforms the other classifiers by more than 11 percent
in F-score. Ibrahim, Torki ¢ El-Makky (2018) suggests a combination of three models:
CNN, bidirectional long short-term memory (BLSTM), and bidirectional gated recurrent
unit neural network (BGRU). The suggested method separates prediction into two parts
and outperforms existing techniques in terms of the Fl-score. Because the dataset is
significantly unbalanced, several data augmentation approaches are applied to address the
class imbalance issue. Van Aken et al. (2018) compares several DL methods and shallow
learning methods and presents an ensemble model that surpasses all individual models.
Individual models include BLSTM, long short-term memory (LSTM), CNN, BGRU with
attention, logistic regression, and the word embeddings utilised were based on Fastext and
Glove. The most common feature selection techniques are bag of the word (Watanabe,
Bouazizi & Ohtsuki, 2018), and n-grams (Rani ¢ Ojha, 2019).

Most of the available literature on this use case primarily focuses on English because
of the huge availability of NLP resources for English such as big annotated datasets and
NLP toolkits. But for resource-poor languages such as Urdu very limited resources are
available. This limits the research in this area but also makes it an ideal resource-poor
language to tackle the problem of abusive language detection. As in Akhter et al. (2021)
researchers have used machine learning and deep learning techniques to understand
which technique performed well on Roman Urdu and Nastaliq Urdu scripts. In order to
improve collaboration and contribution in the field of Urdu abusive language detection,
a competition was arranged to come up with novel ways to detect the abusive language in
Urdu Nastaliq script (Amjad et al., 2022). Urdu, a language spoken mainly in Pakistan and
India, is considered a low-resource language in terms of natural language processing (NLP)
research. Urdu has been the focus of this study, especially, aiming at the specific challenges
of detecting offensive terms in Urdu. It is an open challenge in Urdu due to the fact that
it lacks comprehensive language resources and tools, such as annotated corpora, lexicons,
and part-of-speech taggers. These resources are necessary for developing and evaluating

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 3/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

LU e e b
5P LT

LL}O}U"JJJJ;JG

Figure 1 Nastaliq Urdu alphabet.

Full-size @ DOI: 10.7717/peerjcs.1524/fig-1

offensive language detection models. Besides, Urdu has a rich vocabulary and uses multiple
scripts, which further complicates the task of detecting offensive terms in the language.
Urdu is available in two scripts one is Roman, and the other is Nastaliq. In this study, the
Nastalig-styled Urdu script is used. Nastaliq Urdu is morphologically very rich. Figure 1
shows the alphabet and structure of Nastaliq Urdu. It is right-to-left written language. It is
context-sensitive but there is no capitalization. The Urdu language is an important research
language in South Asia (Daud, Khan ¢ Che, 2017) with more than 230 million speakers
worldwide (Amjad et al., 2022). Due to complex morphology, grammatical restriction, and
low availability of resources, automatic detection of abusive language detection is a layered
and complex machine learning task. Because of the aforementioned problems, very limited
work is done in this area and it is the reason for picking Urdu as a use case of this study.
Several machine learning techniques have been used to detect the offensive language
in Urdu, as Hussain, Malik & Masood (2022) used embedding to train the classifier,
Humayoun (2022) used feature combination, Ali et al. (2022) used transfer learning,
and Das, Banerjee ¢» Mukherjee (2022) used data bootstrapping Table 1 shows machine
learning (ML) and deep learning (DL) techniques for classification, datasets used for
the model, pre-processing technique and feature selection (i.e., term frequency-inverse
document frequency (TFIDF), n-gram, lexicon or word embeddings). All of these studies
use linear pre-processing (a complete dataset is pre-processed at once using all adopted
pre-processing steps linearly). The classification model is trained on the dataset from a
single social media platform that restricts the usage and validity of the model. In this
study, machine learning is used, where the model is trained and tested on cross-platform
datasets using different machine learning algorithms. Unlike other studies, the focus of
this study is not to come up with a novel ML solution for the detection of offensive terms
in resource-poor language to the problem but to study the effects of existing resources

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 4/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-1
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Table 1 Research studies for resource-poor language—Urdu.

Reference Language Technique Cross platform Pre-processing Feature

dataset selection
Amijad et al. (2021) Urdu ML DL No Linear TFIDF
Hagq et al. (2020) Urdu ML No Linear Manual Lexicon
Das, Banerjee & Saha (2021) Urdu ML DL No Linear Word embeddings
Akhter et al. (2020) Urdu ML No Linear N-Gram
Humayoun (2022) Urdu ML No Linear TFIDF

for pre-processing on a cross-platform data and answer that can these techniques be so
efficient that these can outperform a SOTA results for the dataset using combinatorial
pre-processing (pre-processing techniques where combinations of existing standard
preprocessing are applied). The following research questions are developed based on the
literature review performed in this study.

RQ1: What is the impact of combining different standard pre-processing steps over
the performance of automatic detection of offensive terms in low-resource language?
From Table 1, it can be seen that linear prep-processing approaches are being used in the
literature. Thus, there is a need to study the impact of combining different preprocessing
techniques.

RQ2: What were the most suitable combination of prep-processing techniques for
effective results over those datasets? The ‘Literature review’ section of this study also
reports studies in which ML techniques were considered suitable for certain cases. The
reported studies raised a similar question for prep-processing techniques.

RQ3: How do the models in this study perform when compared to results from the
models in the literature in Akhter et al. (2020) ?

METHODOLOGY

Figure 2 represents the methodology adopted in this research study. There are four main
blocks: (i) data gathering, (ii) pre-processing, (iii) training & testing set selection and
(iv) modelling and evaluation. The details of each block are discussed in detail in the
following.

Data gathering
For the purpose of this study, two cross-platform datasets have been gathered for detecting
offensive language, one from Twitter platform (Amjad et al., 2022) (referred to as D;) and
the other from YouTube (referred to as D,). The type of text on both platforms is different
so these datasets are ideal for answering the research question discussed in the introduction.
The D, dataset comprised of 2,400 tweets containing offensive language in Urdu. The
statistics of the datasets used in this study are reported in Fig. 3. The D; is a balanced
dataset with 1,187 offensive tweets and 1,213 non-offensive tweets. Likewise, D, is also a
balanced dataset with 1,109 offensive comments and 1,062 non-offensive comments.
A sample representation of datasets D; and D, are shown as word clouds in Figs. 4
and 5 respectively displaying the most prominent words. The word cloud is created using

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 5/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Combinatorial

m =

Logisitic Regression
Data Modeling SVM

Naive Bayes
Random Forest

I

Accuracy
Precision
Recall

F1 Score
Modeling and Evaluation

Combinatorial

Stopword Removal
Data Cleaning Accent Removal
Punctuation Removal

H TFADF ‘

Data Preprocessing

88,

i Twitter YouTube
| Dataset Dataset

Data Collection

Data Engineering

1
Dataset Selection H

Training and testing selection |

Figure 2 Methodology diagram.
Full-size tal DOI: 10.7717/peerjcs.1524/fig-2

Abusive and No-Abusive label count

B Abusive [No-Abusive
1250

1000
750
500

250

Twitter Youtube

Dataset

Figure 3 Statistics of the datasets.
Full-size &4l DOI: 10.7717/peerjcs.1524/fig-3

Matplotlib and WordCloud package in Python. The words in the word cloud are from text
columns from both datasets. The parameters defined for the word cloud are the usage of
available stopwords, size of fonts, number of most frequent words and colourmap to have
a consistent colour theme for both word clouds.

The collected datasets are pre-processed in order to transform them into a suitable format
for further processing. This study proposes a combinatorial pre-processing approach using
standard pre-processing techniques. The details are described in the following subsections.

Pre-processing

Data pre-processing steps in this study consist of two main operations: (i) data cleaning
data and (ii) feature engineering. To clean data, stopword removal (SR), punctuation
removal (PR) and accent removal (AR) are performed.

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 6/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-2
https://doi.org/10.7717/peerjcs.1524/fig-3
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Full-size Gal DOI: 10.7717/peerjcs.1524/fig-4

Figure 5 Word cloud of D, dataset.
Full-size Gal DOI: 10.7717/peerjcs.1524/fig-5

Stopword removal (SR)

Stopword are usually in large quantities but have the least significance in the text
classification. For instance, is, are, am, was, were, the, a, an etc are examples of stopwords
in English and Fig. 6 shows the example of stopwords in Urdu. These words are removed
in the process of stopword removal. An example of stopword removal is given in Fig. 7.

Punctuation removal (PR)
Punctuation removal is the process of removing all the punctuation in a given sentence
example of punctuation removal is given in Fig. 7.

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 7125

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-4
https://doi.org/10.7717/peerjcs.1524/fig-5
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Sample Stopwords List

Urdu English Urdu English Urdu English
BT And ol You & Was

oy Now] Come k> Like
Lol Our b Close 22 Give
Ky If aSG Because b3 Part
ol They © You &S Put

Figure 6 Sample stopwords list for Urdu.
Full-size & DOI: 10.7717/peerjcs.1524/fig-6

Urdu Text Preprocessing
Puntuation Removal

Urdu English
& $Sw S? Can do?
Before After

& g S? & S S

Stopword Removal

Urdu English
o Olul (g9 UyS (ulsSo o Ao It's easy to talk nonsense on
Twitter
Before After
o Ol (59 B)S lsSo o AT Ol plsSs o ABs5
Accent Removal
Urdu English
Caunlgys pplac Cls A Supreme Court application
Before After
Cuwlgsys pplae CIs Cusl a5 gadae il

Figure 7 Text cleaning inputs and results.
Full-size & DOI: 10.7717/peerjcs.1524/fig-7

Accents removal (AR)

Accent removal is the process of removing accents from the accented Unicode characters
in Urdu text; it can be done in two ways (1) by changing them into ASCII (2) by removing
them completely. An example of accent removal is given in Fig. 7.

Urdu is among resource-poor languages as discussed above, which does not have a
standard list of stopwords. Therefore, the list of stopwords in Urdu are created, which is
available at GitHub (https:/github.com/Delta-Sigma/urdu-stopwordsblob/masterurdu_
stopwords.txt). The stopword list contains 265 commonly used words in the Urdu language,
that have the least significance. Later, punctuation removal and accent removal operations
are performed for cleaning the datasets. These two operations (i.e., PR and AR) are
performed using urduhack library (https:/github.com/urduhack). The three operations

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 8/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-6
https://doi.org/10.7717/peerjcs.1524/fig-7
https://github.com/Delta-Sigma/urdu-stopwords/blob/master/urdu_stopwords.txt
https://github.com/Delta-Sigma/urdu-stopwords/blob/master/urdu_stopwords.txt
https://github.com/urduhack
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Table2 Recursive pre-possessing iterations.

Iteration # Stopword Punctuation Accent TF-IDF Dataset
removal (SR) removal (PR) removal (AR) scheme
1 N X X v D,
2 v v X v D,
3 v v v v D,
4 v X X v D,
5 v v X v D,
6 v v v v D,

SR, PR and AR are performed stand-alone as well as in combination Combinatorial
Pre-processing for the development of the classification model on cross-platform datasets.

The term frequency-inverse document frequency (TF-IDF) scheme is used as vector
space representation (vectorization) model in this study. The reason behind using TE-IDF
is the evidence in the literature that it performs better than the other vectorization schemes
such as bag-of-words and n-grams. TF-IDF is a measure to calculate the significance of a
word in a document and it is computed as follows:

N
Wi’jztﬁ’j*logd_f (1)

where W ; represents the significance of a word in document, #f; ; shows the number of
times i occurs in j and df; shows number of documents which contains i. N is the total
number of documents.

The combinatorial pre-processing approach is applied with multiple iterations. The
number of feature vectors and labels used for modelling is the same as the number of
iterations. Table 2 shows the iterations and combination of pre-processing techniques used
in each iteration. Iteration 1 (record number 1 in Table 2) shows that the feature vector
created is cleaned with stopword removal (SR) and uses TF-IDF scheme is applied for the
dataset D;. Similarly, iteration 2 shows that both SR and PR are applied in conjunction
with the TF-IDF scheme for D;. The 3rd iteration represents SR, PR, and AR cleaning
techniques applied with TF-IDF feature engineering for D;. Likewise, the combinatorial
approach is also applied to the dataset D,. Thus, Table 2 reports these six (06) iterations
for both datasets. Each iteration produces a vector containing a maximum of 10,000 words
in the vocabulary.

Training testing sets

The considered cross-platform datasets D; and D, have been used for the training and
testing using the split percentage method of validation. The study proposes the use of
datasets from different platforms for training and dataset from entirely different platform
testing, thus, the training set can be taken at different percentages from one dataset and
tests can be performed on the entirety of the other dataset as shown in Table 3. The
four experiments with 100%, 80%, 70% and 60% are taken as training sets from D;. The
developed model is used for testing over a D,. Likewise, four experiments with 100%, 80%,
70% and 60% were taken as training sets from D, and tested on complete D;.

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 9/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Table 3 Training testing sets scenarios.

Scenario Experiments Training (%) Testing (%)
Scenario 1 1 D, (100) D, (100)

2 D, (80) D, (100)

3 D, (70) D, (100)

4 D, (60) D, (100)
Scenario 2 5 D, (100) D, (100)

6 D, (80) D; (100)

7 D, (70) D, (100)

8 D, (60) D, (100)

Modelling and evaluation

The machine learning algorithms used in the study are well established, namely, decision
tree (DT), logistic regression (LR), support vector machine (SVM), naive Bayes (NB), and
random forest (RF). The selection of machine learning algorithms in this study has been
made carefully keeping several factors as the selection criteria such as the availability of
data, the research questions, and the complexity of the problem. Besides, due to the small
or limited number of instances in the considered datasets, these selected algorithms deem
suitable for this study. The considered machine learning algorithms usually perform well
when applied to small datasets. The details of the machine learning algorithms applied in
the experimental set-up are described in the following.

Decision tree

A decision tree (DT) is a general-purpose predictive modelling method with applications
in a variety of fields. It is among the most commonly used and practical supervised learning
methods. DT is a tree-like graph in which nodes represent the points at which a feature is
selected and pose a question; edge denotes the answers to the question, and leaves show the
actual class label. They are employed in nonlinear decision-making. The DT method has

several advantages over other methods: (a) It is simple to interpret and understand. (b) It
is simple to depict graphically. (c) It can handle both quantitative and qualitative data. (d)
It necessitates minimal data preparation. (e) It handles large datasets well. Figure & shows
a simple example of a decision tree employed for weather prediction (Matzavela ¢ Alepis,
2021).

Logistic regression

Logistic regression (LR) is also another effective supervised machine learning approach
for binary classification. Logistic regression fits well as a linear regression for classification
tasks. To predict a binary output variable, logistic regression employs the logistic function
shown in Eq. (2). The major distinction between logistic regression and linear regression is
the range of logistic regression, which is limited to 0 and 1. Furthermore, logistic regression
unlike linear regression doesn’t really require a linear connection between input and output
variables. This is because the odds ratio is transformed using a nonlinear log transformation

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 10/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Rain

Sunny Overcast
Normal Strong Weak
NO YES NO YES

Figure 8 Decision tree example.
Full-size & DOI: 10.7717/peerjcs.1524/fig-8

(Belyadi & Haghighat, 2021).

_ 1
_l—l-ex'

The input variable in the sigmoid function Eq. (2) is x. Consider feed values ranging from

LR

(2)

—20 through 20 into logistic function as shown in Fig. 9. The inputs have been converted
to values ranging from 0 to 1.

Support vector machine

The support vector machine (SVM) is a prominent supervised learning technique that
is used for both classification and regression problems. However, it is mostly utilised for
classification tasks. The goal of the SVM algorithm is to find the optimum decision or line
boundary for categorising n-dimensional space such that fresh data points be placed at the
proper category in future. A hyperplane is the optimal choice boundary. SVM selects the
extreme vectors/points that aid in the creation of the hyperplane. Consider Fig. 10 that
shows two distinct categories separated by a hyperplane or decision boundary (Mohammadi
etal., 2021).

Naive Bayes

Bayesian classifiers are a type of classification method that is based on Bayes’ Theorem.
It is a group of algorithms that all share a similar proposition, namely that every pair of
characteristics being categorised is independent of one another. Bayes’ theorem, often called
the Bayes rule, is a mathematical formula used to calculate the likelihood of a hypothesis
given past knowledge. It is determined by the conditional probability (Bhavani ¢& Kumar,

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 11/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-8
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Sigmoid (Logistic Function)

12

Sigmoid Function

-25 25

Input

Figure 9 Logistic regression employed to a range of —20 through 20.
Full-size Gl DOI: 10.7717/peerjcs.1524/fig-9

M;);lgiunm Positive
Hyperplane
N\
\ AR /
YO @
4

oo

Maximum
Margin
Hyperplane

Support
Vectors

Negative Hyperplane

>

Full-size Gal DOI: 10.7717/peerjcs.1524/fig-10

Figure 10 SVM representation.

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 12/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-9
https://doi.org/10.7717/peerjcs.1524/fig-10
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Training Training Training
Data Data Data
1 2 n
Training
Set
Voting

Test Set (averaging)

Prediction

Figure 11 Random forest working principle.
Full-size Gal DOI: 10.7717/peerjcs.1524/fig-11

2021). The formula for the Bayes rule is shown in Eq. (3).

P(AIB) = P(B|A)*P(A). 3)
P(B)

Random forest
Random forest is a well-known machine-learning algorithm. It may be applied to both
regression and classification problems. It is built on the notion of ensemble methods,
which is the process of merging numerous classifiers to resolve a complicated issue and
enhance the model’s performance. It comprises decision trees on different subsets of the
provided dataset and chooses the average to enhance the predicted accuracy of that dataset
(as the name implies—random forest). Instead of depending on a decision tree classifier,
the random forest collects the forecasts from each tree and predicts the output depending
on the voting of predictions (Sumathi ¢ Pugalendhi, 2021). Figure 11 shows the working
principle for the random forest as discussed.

After modelling the next step is to evaluate the performance of different machine learning
algorithms with experimental set-up. The performance evaluation metrics used in this study

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 13/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-11
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

are accuracy, precision, recall and F-measure. Details of the considered evaluation metrics
are described as follows.

Accuracy

Accuracy metric of a model is shown as the ratio of correctly predicted text labels to the

total number of instances in the dataset. Accuracy is computed as reported in Eq. (4).
T,+T,

Tp + Tn + Fp +Fn

(4)

Accuracy =

where T), is true positive, Tn refers true negative, F, shows false positive and F,, means
false negative.

Precision
An algorithm’s precision is given as the ratio of correctly predicted value with the total
number of predicted values. It is calculated as shown in Eq. (5).
Ty

Accuracy = .

(5)

Recall
Recall of a model is a metric that is represented as the ratio of correctly classified values
divided by the total number of values in the dataset. It is computed by Eq. (6).
TP

. 6
Ty+Fy (©

Accuracy =

F-measure

F1 score also called F-measure is the harmonic mean of the values. It is considered a a
reliable metric, which includes both precision and recall in computing its value. F1 score is
harmonic or precision and recall. F1 score provides a balance between precision and recall.
Further, F1 score relatively suits better when the distribution of class labels is imbalanced.
It is computed by Eq. (7).

2k precision x recall

F — measure =

(7)

precision+recall

EXPERIMENTAL RESULTS

The goal of the study is to develop a generalized model using a dataset (i.e., training set)
and the developed model is evaluated with an entirely disjoint dataset (i.e., testing set).
The effect of combinational pre-processing techniques is observed to minimize generalized
errors. The adopted recursive pre-processing approach has been evaluated using two
different scenarios: (1) The dataset D; is used as a training set using the validation method
of split percentage and D, is applied as a testing set. (2) The dataset D, is used for training
the model using the split percentage method and D is used as a testing set. The details
about experiments for both scenarios are reported in Table 3 and their results are discussed
in the following.

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 14/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Table 4 Experimental Results (Scenario 1).

Pre-processing method: SR

Training dataset: D, Testing dataset: D,

Split (%) Algorithms Accuracy (%) Precision (%) Recall (%) F-measure (%)

100 DT 83.27 85.13 83.11 83.52
LR 75.25 80.19 74.40 75.68
SVM 74.06 78.78 73.16 74.48
NB 58.34 59.02 56.94 57.98
RF 75.94 81.25 75.07 76.38
80 DT 69.45 74.11 68.19 69.90
LR 72.03 77.51 70.82 72.49
SVM 71.94 77.62 70.68 72.41
NB 57.65 58.35 56.06 57.27
RF 75.12 80.00 74.26 75.54
70 DT 72.81 78.22 71.69 73.27
LR 72.49 78.73 71.18 72.97
SVM 71.06 77.51 69.56 71.56
NB 57.00 57.35 55.86 56.69
RF 75.25 80.19 74.40 75.68
60 DT 71.47 77.34 70.14 71.96
LR 72.44 78.83 71.10 72.93
SVM 70.37 76.91 68.77 70.88
NB 55.07 55.27 53.72 54.73
RF 74.06 79.70 72.99 74.51
Scenario 1

The dataset D; is used for the training (model trained on tweets) and dataset D, is used for
the purpose of testing. Split percentage is used for the validation because cross-validation
method does not support the aim of the study, which uses different datasets for the training
and testing purposes. D; is split into 100%, 80%, 70% and 60% for training as reported in
Table 3.

Table 4 shows the performance evaluation of considered machine learning algorithms
when recursive pre-processing uses merely the stopword removal (SR) method. It is
observed that DT performed with an accuracy of 83.27%, precision of 85.13%, F1 Score of
83.11% and Recall of 83.52% when 100% of dataset D is used for training and 100% D, as
testing set. NB performance remained bad amongst the considered algorithms for different
experiments. For instance, while a 60% training set is used, naive Bayes produced an
accuracy of 55.65%. It is obvious from the results that when more data is used in training,
the developed models perform better. It may be noticed that it is not necessary that more
cleaning operation leads to a generalised model. Instead, it depends on the pre-processing
operations which lead to producing more matching vocabulary for both datasets.

Machine learning algorithms, inherently, tend to behave differently with a different
dataset. Besides, a combination of more than one pre-processing technique may also cause
different performances in terms of outcomes. It is evident from Fig. 12 that RF performed

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 15/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

F1 Score with stopword and punctuation removal on youtube Dataset
80.00% 7335% 74.36% 73.15% 75.03% 73.90% 74.37% 74.26%

70,009 69.39% 71-07% gg779 7054% 71.21% g9 429 68199 70-82% 70.68%
60.00% 56.88% 53.68% 55.86% 56.06%
o 50.00%
8 40.00%
& 40.00%
i 30.00%
20.00%
10.00%
0.00%
= 3 < % s
> 14 >
(2] £ 7]
13
§
]
c
5

100% Train 60% Train 70% Train 80% Train
Split and Algorithm

SVWM
SVM

Decision Tree
Naive Bayes
Decision Tree
Naive Bayes
Decision Tree
Naive Bayes
Degcision Tree
Naive Bayes

Random Forest |
Random Forest _

Random Fores!

Logistic Regression
Logistic Regression
Logistic Regression
Logistic Regression

Figure 12 F-measure with SR + PR (D, training D, testing).
Full-size &4l DOI: 10.7717/peerjcs.1524/fig-12

better with F-measure when 100% split training is used and achieved the least F-measure
at 60% split. NB performance remained bad in comparison with the other four considered
algorithms. The NB achieved the highest F-measure of 56.88% (100% split training set)
and the least value of 53.68% (60% split training set) is used.

The three pre-processing techniques are combined (i.e., SR + PR + AR) in recursive
pre-processing, the results of this experiment are shown in Fig. 13. RF outperformed other
considered algorithms 75.19% (at 100% split). The poor performance was again produced
by NB with an F-measure of 53.75% (at 60% split).

The experimental results showed that DT outperformed when less number of pre-
processing techniques are applied. However, when the number of pre-processing techniques
has increased the performance of DT decreases because of its reliance on a number of
features which decrease with an increasing number of cleaning operations. The ensemble
nature of RF produced better results with increasing the pre-processing operations. NB
produced poor results for the experiments, the possible reason is its nature of probabilities.
The dataset is unstructured data i.e., text data, thus, the probabilistic approach may not
perform well in these situations.

Scenario 2

This scenario uses dataset D, as training and dataset D, for testing. Table 5 shows the
results of this scenario when SR and PR pre-processing operations are performed. RF
outperformed in this scenario also with accuracy, precision, recall and F1 score of 74.54%,
76.10%, 74.08% and 74.41% respectively at 100% split of training data. Naive Bayes
performed very poorly with almost 60% of accuracy around all the splits (i.e., 100%, 80%,
70% and 60%). The increase in pre-processing operations for RF tends to perform better
than DT.

Figure 14 shows F1 score for the considered algorithms at different splits when a single
pre-processing operation SR (stopword removal) is applied. The outperforming algorithm,
in this case, is DT with F1 score of 73.12% at 100% split. It is observed that the value of F1
score decreases with the decrease in training data. NB performed poorly with the F1 score

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 16/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-12
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

F1 Score with stopword, punctuation and accent removal on youtube Dataset

80.00% 74.65% 74.22% 75.19% 74.87% 74.71%
’ T2.84% 7042% 70.65% ggg19 73.06% 7036% 70.72% go.14% " 60.16% 70.63% 69.90% g

53.75% | | | ‘ 55.80%

2
>
n

70.00%

60.00% 56.76% 55.88%

© 50.00%

Q

3 40.00%

i 30.00%
20.00%
10.00%

0.00%

swi
svt

=
>
0

Naive Bayes
Naive Bayes
Naive Bayes
Naive Bayes

Random Forest | N
Random Forest _
Random Forest _

Decision Tree
Decision Tree
Random Fores
Decision Tree
Decision Tree

Logistic Regression
Logistic Regression
Logistic Regression
Logistic Regression

100% Train 60% Train 70% Train 80% Train
Split and Algorithm

Figure 13 F-measure with SR + PR + AR (D, training D, testing).
Full-size &4l DOI: 10.7717/peerjcs.1524/fig-13

Table 5 Experimental results (Scenario 2).

Pre-processing method: SR + PR
Training dataset: D, Testing dataset: D,
Split (%) Algorithms Accuracy (%) Precision (%) Recall (%) F-measure (%)
100 DT 72.92 74.17 72.49 72.79
LR 70.33 71.05 70.01 70.23
SVM 70.75 72.04 70.23 70.61
NB 59.13 62.09 56.82 59.38
RF 74.54 76.10 74.08 74.41
80 DT 70.71 71.21 70.48 70.62
LR 70.21 70.70 69.97 70.12
SVM 70.54 71.54 70.11 7042
NB 59.50 61.91 57.66 59.73
RF 71.00 71.87 70.63 70.89
70 DT 70.71 71.23 70.48 70.62
LR 69.33 69.81 69.08 69.24
SVM 69.96 70.85 69.55 69.84
NB 59.79 62.84 57.59 60.05
RF 69.96 70.91 69.53 69.84
60 DT 70.17 71.12 69.74 70.05
LR 68.63 69.01 68.40 68.54
SVM 69.75 70.81 69.27 69.62
NB 61.25 62.85 60.22 61.43
RF 66.79 68.73 65.76 66.61

of 57.55% at 100% split. The difference in F-measure scores varies around 2% to 3% for
NB at different splits.

Figure 15 reports three pre-processing techniques (SR, PR and AR) are applied together;
the performance of DT decreases from 73.12% to 72.75% and RF increases from 71.50% to

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 17/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-13
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

F1 Score with Stopword removal on Twitter Dataset

80.00%
73.12%
® 70.24% 70.37% T.70% oo 76% 68.46% 69.38% 69.12% 69.28% 69.78% 70.37% 70.30% 70.13% 70.42% 70.63%

70.00% 65.32%

60.00% 57.55% 60.14% 57.81% 57.87%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

= = =
> > >
7] 0 7

s
>
100% Train 60% Train 70% Train 80% Train
Split and Algorithm

F1 Score

0

Naive Bayes
Naive Bayes
Naive Bayes
Naive Bayes

Rondo Fore. I
Rancom orest I
Random Forest
Random Forest N

Decision Tree
Decision Tree
Decision Tree
Decision Tree

Logistic Regression
Logistic Regression
Logistic Regression
Logistic Regression

Figure 14 F1 score with SR + PR with D as testing.
Full-size Gal DOI: 10.7717/peerjcs.1524/fig-14

72.75% at 100% split. The performance of the model decreases with a decrease in training
percentage. The very poor-performing model throughout the study is naive bayes.

Comparison with baseline

We compared models created using suggested pre-processing techniques from the
experiments in scenarios 1 and scenario 2. We trained classification models based on
datasets D and D, separately with a stratified split of 15%. The comparative results using
dataset D; with existing studies, our ML models outperformed the XGBOOST (eXtreme
Gradient Boosting) and LGBM (Light Gradient Boosting Machine) models. However, the
proposed combinatorial pre-processing techniques with ML algorithms could not achieve
better results than that of transfer learning models which use pre-processing as well as
neural networks, such as mBERT (multilingual Bidirectional Encoder Representations
from Transformers) and dehatebert-mono-arabic. The experimental results, in which
dataset D; is applied, show that the ML models outperformed all the models reported in
Akhter et al. (2020) for both scenario 1 in section ‘Scenario 1’ and scenario 2 in section
‘Scenario 2’. These results suggest that an objective approach in selecting pre-processing
steps can improve the performance of a simple ML model compared to classical and
boosting techniques.

Answering the research questions (RQs)

The experimental results provide the answers to the research questions (RQs). To answer
RQ1, the results in scenario 1 in section ‘Scenario 1’ and scenario 2 in section ‘Scenario 2’
clearly suggest that pre-processing techniques improve the performance of the classification
model based on cross-platform data. However, the performances of models depend upon
pre-processing approaches and their combinations. The answer to RQ2, it can be observed
from the results that in scenario 1 in section ‘Scenario 1’ where the D; is used for training,
the most effective pre-processing technique is SR, because data in tweets is limited by
characters and also the language used in tweets is substandard. Thus, other pre-processing

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 18/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-14
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

F1 Score with Stopword, punctuation and accent removal on Twitter Dataset

80.00%
72.75% 72.59%
" 69.97% 69.96% ® 7020% gg 470, 69.19% 69.69% 69.20% 69.42% 68.80% 70-34% 69.66% 69.85% 70.94%

70.00% 66.46%
9

60.00% 56.45% 59.34% 57.38% 57.35%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%

s 3 =] =]

> s 2

« o

&

£

s

38

2

§

o

100% Train 60% Train 70% Train 80% Train

s
s s
[12}

Split and Algorithm

F1 Score

ion

»

Decision Tree
Naive Bayes
Random Forest
Decision Tree
Naive Bayes
Random Fores!
Decision Tree
Naive Bayes
Random Foresf
Decision Tree
Naive Bayes

Logistic Regression
Logistic Regression
Logistic Regression
Logistic Regressi

Figure 15 F1 score with SR + PR + AR with D as testing.
Full-size Gal DOI: 10.7717/peerjcs.1524/fig-15

Table 6 Comparison of model performances with existing literature.

Camparison with Existing Literature

Dataset 1 Dataset 2

Model F-1 Measure Model F-1 Measure
dehatebert-mono-arabic Das, Banerjee ¢ Saha (2021) 0.88062 LR 0.972
mBERT Das, Banerjee ¢ Saha (2021) 0.84 RF 0.961

SVM 0.829 SVC 0.959

LR 0.826 SimpleLogistic 0.959

RF 0.822 LogitBoost Akhter et al. (2020) 0.949
XGBoost Das, Banerjee ¢ Saha (2021) 0.76072 DT Akhter et al. (2020) 0.949

LGBM Das, Banerjee ¢ Saha (2021) 0.76667 SVM Akhter et al. (2020) 95.5

techniques would not affect it. In scenario 2 in section ‘Scenario 1’, the combination

of SR and PR performed well because the language used in the comment is standard
and has no limit of characters. AR requires the use of sophisticated language, which is
usually unavailable on social media platforms. Table 6 reports the answer to RQ3, that
is, pre-processing affects significantly over classical machine learning models. However,
pre-processing techniques do not make a significant impact on NLP models such as BERT.
Thus, it is evident from experimental results that pre-processing techniques can improve
the performance of the classification model at a certain level.

This study focused on developing a model using one dataset and evaluating the model
using entirely another dataset. Therefore, the comparison of the results of scenario 1
(details in section ‘Scenario 1’) and scenario 2 (details in section ‘Scenario 2’) to the existing
literature would be biased. However, experiments have been performed to compare the
developed model by applying combinational pre-processing techniques using dataset-1
(dy) as well as dataset-2 (d,) separately. These experiments used the d; for the training
as well as testing in order to compare the results with the existing literature. Similarly,

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 19/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-15
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

experiments were performed using d, using the proposed approach of developing the
model. These experimental results are reported in Table 6 and their confusion matrix for
the developed model using the proposed approach is presented in Fig. 16.

The confusion matrices reported in Fig. 16 show the effectiveness of the proposed
approach in which combinational pre-processing techniques are used to develop the model.
It is observed that using the proposed approach to develop the model outperformed the
models available in the existing literature (see details in Table 6). Thus, it is inferred from
experimental results shown in section ‘Scenario 1’, section ‘Scenario 2’, and Table 6 the
proposed model that adopts combinational pre-processing techniques provides worth
mentioning results. The effectiveness of the proposed approach is observed when the same
dataset is used for the training as well as testing (see Table 6). Besides, it also provided
significant results when one dataset is used for training and an entirely disjoint dataset is
used for the testing (see section ‘Scenario 1’ and section ‘Scenario 2’).

DISCUSSION

The experimental results showed DT performed better amongst other considered
algorithms with an accuracy of 83.72%. The increase in pre-processing operations at the
training model decreases the performance of DT. However, the RF performed vice-versa
than the DT. NB performed poorly throughout the experiments because of its inability to
generate a generalized model. The experiments have been carried out using different split
percentages such as 100%, 80%, 70% and 60%.

The experiments in which D; is used as the training set and SR pre-processing operation
is applied produced better results. Likewise, the experiments, which considered D, as
training and SR + PR, both pre-processing operations applied, yield better results.

The difference in performance when the different dataset is used in training is due to the
different nature of the content available in both datasets (D7 and D,). D, dataset contains
purely comment text while D; also has commentary, which is why when the model is
trained with Dy, it can generalize better as compared to the model trained with D,. The
results from scenario 1 and 2 can’t be used for comparison with existing work as the dataset
for training and evaluation vary from the dataset in existing literature.

The use of machine learning algorithms to detect offensive terms in the text can raise
ethical considerations, particularly in the context of privacy, data protection, and cultural
norms. Machine learning models can be biased because of the data being used as the
training set. Therefore, it should be ensured that the data, being used for training the
models, is representative of the target population and does not perpetuate any biases or
stereotypes. Furthermore, the models need to be transparent and explainable, allowing users
to understand the models’ working mechanisms and the reasons behind their decisions. In
addition, it should be noted that offensive language detection requires access to users’ text
data, which can be sensitive and personal. Thus, data collection and processing be ensured
in compliance with data protection regulations and their intended purposes. The datasets
used in this study are publicly available, hence, data privacy and protection were ensured.

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 20/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

170 21 171 20 165 26
Dataset 1
40 129 41 128 L 7 132
SVM LR RF
170 3 169 4 172 1
Dataset 2
10 143 5 148 11 142
SVM LR RF

Figure 16 Confusion matrix for the models in comparison.
Full-size Gal DOI: 10.7717/peerjcs.1524/fig-16

CONCLUSIONS AND FUTURE WORK

This study deals with offensive language detection in Urdu, a resource-poor language
resulting in a challenging task for classification in the field of NLP. The significant
contribution of the study is building several ML classification models for Urdu using
different pre-processing approaches and cross-platform datasets. This study proposes

a combinatorial pre-processing approach that uses different pre-processing operations
stand-alone and combined to build an effective classification model. Five machine learning
algorithms have been applied, namely, DT, LR, SVM, NB, and RF, which are trained using
a dataset and tested on an entirely different dataset. The main limitations of the machine
learning algorithm rise due to the bias in a dataset, thus, resulting in higher generalized
error. Therefore, to avoid such errors, mutually exclusive datasets are used for experiments
in this study.

This study shows the potential of using cross-platform datasets with different pre-
processing approaches to evaluate models to create better generalization of ML models
in offensive language detection. Also, the models created in this study are compared with
benchmarks. The results show that the technique provides better results, hence proving
the pre-processing impacts model performance in terms of cross-platform data, but the
combination of pre-processing techniques may vary from dataset to dataset.

The main limitation of this study is pre-processing operations. Different languages may
have different pre-processing operations in comparison to Urdu. It is, therefore, expected
that performing all operations applied in this study to other low-resource languages may

not provide similar outcomes.

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 21/25

https://peerj.com
https://doi.org/10.7717/peerjcs.1524/fig-16
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

For future research, this study highlights the need for further exploration of low-
resource languages and their specific challenges in abusive term detection. This study
may be considered as an attempt towards investigating offensive term detection for
low-resource languages. Novel machine-learning techniques may be developed that can
improve performance. These systems can help identify and remove offensive content and
reduce the burden on human moderators.

Additionally, modeling may be performed over deep learning models such as RNN,
LSTM and BILSTM and transferring learning models such as BERT. More pre-processing
approaches will also be considered, which is challenging for low-resource language.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received funding from the Deanship of Scientific Research at Najran University
for this research through a grant (NU/RG/SERC/12/33) under the Research Groups
Funding program at Najran University, Kingdom of Saudi Arabia. The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

The Deanship of Scientific Research at Najran University: NU/RG/SERC/12/33.

The Research Groups Funding program at Najran University, Kingdom of Saudi Arabia.

Competing Interests
The authors declare that there are no competing interests.

Author Contributions

e Muhammad Owais Raza conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

e Naeem Ahmed Mahoto conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft.

e Mohammed Hamdi performed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.

e Mana Saleh Al Reshan performed the experiments, performed the computation work,
prepared figures and/or tables, and approved the final draft.

e Adel Rajab performed the experiments, performed the computation work, prepared
figures and/or tables, and approved the final draft.

e Asadullah Shaikh conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Deposition
The following information was supplied regarding data availability:
Data is available at GitHub:

Raza et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1524 22/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

https:/github.com/owais4321/Resource-Poor-Language- Urdu-Dataset

The D1 dataset is available at GitHub: https:/github.com/MaazAmjad/Urdu-abusive-
detection-FIRE2021 (https:/arxiv.org/abs/2207.06710).

Authors: Maaz Amjada, Alisa Zhilab, Grigori Sidorova, Andrey Labunetsc, Sabur Butta,
Hamza Imam Amjadd, Oxana Vitmana and Alexander Gelbukh

Institutions: Instituto Politécnico Nacional (IPN), Center for Computing Research
(CIC), Mexico

Ronin Institute for Independent Scholarship, United States

Independent Researcher, United States,

Moscow Institute of Physics and Technology, Russia

The D2 dataset is available at GitHub: https:/github.com/pervezbes/Urdu- Abusive-
Dataset

Authors: MUHAMMAD PERVEZ AKHTER, ZHENG JIANGBIN, IRFAN RAZA
NAQVI, MOHAMMED ABDEL MAJEED AND MUHAMMAD TARIQ SADIQ

Institutions School of Software and Microelectronics, Northwestern Polytechnical
University, Xian, China,

School of Computer Science and Technology, Northwestern Polytechnical University,
Xian, China

School of Automation, Northwestern Polytechnical University, Xian, China.

Supplemental Information
Supplemental information for this article can be found online at http:/dx.doi.org/10.7717/
peerj-cs.1524#supplemental-information.

REFERENCES

Agrawal S, Awekar A. 2018. Deep learning for detecting cyberbullying across multiple
social media platforms. In: European conference on information retrieval. Cham:
Springer, 141-153.

Akhter MP, Jiangbin Z, Naqvi IR, Abdelmajeed M, Sadiq MT. 2020. Automatic detec-
tion of offensive language for Urdu and Roman Urdu. IEEE Access 8:91213-91226
DOI 10.1109/ACCESS.2020.2994950.

Akhter MP, Jiangbin Z, Naqvi IR, AbdelMajeed M, Zia T. 2021. Abusive language
detection from social media comments using conventional machine learning and
deep learning approaches. Multimedia Systems 28:1-16.

Alakrot A, Murray L, Nikolov NS. 2018. Towards accurate detection of offensive lan-
guage in online communication in Arabic. Procedia Computer Science 142:315-320
DOI10.1016/j.procs.2018.10.491.

Ali R, Farooq U, Arshad U, Shahzad W, Beg MO. 2022. Hate speech detection
on Twitter using transfer learning. Computer Speech ¢ Language 74:101365
DOI 10.1016/j.¢s1.2022.101365.

Amjad M, Zhila A, Sidorov G, Labunets A, Butt S, Amjad HI, Vitman O, Gelbukh A.
2022. UrduThreat@ FIRE2021: shared track on abusive threat identification in Urdu.

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 23/25

https://peerj.com
https://github.com/owais4321/Resource-Poor-Language-Urdu-Dataset
https://github.com/MaazAmjad/Urdu-abusive-detection-FIRE2021
https://github.com/MaazAmjad/Urdu-abusive-detection-FIRE2021
https://arxiv.org/abs/2207.06710
https://github.com/pervezbcs/Urdu-Abusive-Dataset
https://github.com/pervezbcs/Urdu-Abusive-Dataset
http://dx.doi.org/10.7717/peerj-cs.1524#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1524#supplemental-information
http://dx.doi.org/10.1109/ACCESS.2020.2994950
http://dx.doi.org/10.1016/j.procs.2018.10.491
http://dx.doi.org/10.1016/j.csl.2022.101365
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

In: Proceedings of the 13th Annual Meeting of the Forum for Information Retrieval
Evaluation (FIRE °21). Association for Computing Machinery, New York, NY, USA.
9-11 DOI 10.1145/3503162.3505241.

Belyadi H, Haghighat A. 2021. Machine learning guide for oil and gas using Python: a step-
by-step breakdown with data, algorithms, codes, and applications. Cambridge: Gulf
Professional Publishing.

Bhavani A, Kumar BS. 2021. A review of state art of text classification algorithms. In:
2021 5th international conference on computing methodologies and communication
(ICCMC). Piscataway: IEEE, 1484-1490.

Burnap P, Williams ML. 2015. Cyber hate speech on Twitter: an application of machine
classification and statistical modeling for policy and decision making. Policy ¢
Internet 7(2):223-242 DOI 10.1002/p0oi3.85.

Cunliffe D, Vlachidis A, Williams D, Tudhope D. 2022. Natural language processing for
under-resourced languages: developing a Welsh natural language toolkit. Computer
Speech & Language 72:101311 DOT 10.1016/j.¢cs1.2021.101311.

Das M, Banerjee S, Mukherjee A. 2022. Data bootstrapping approaches to improve low
resource abusive language detection for indic languages. In: Proceedings of the 33rd
ACM conference on hypertext and social media. 32—42.

Das M, Banerjee S, Saha P. 2021. Abusive and threatening language detection in Urdu
using boosting based and BERT based models: a comparative approach. ArXiv
preprint. arXiv:2111.14830.

Daud A, Khan W, Che D. 2017. Urdu language processing: a survey. Artificial Intelligence
Review 47(3):279-311 DOI 10.1007/s10462-016-9482-x.

Gitari ND, Zuping Z, Damien H, Long J. 2015. A lexicon-based approach for hate
speech detection. International Journal of Multimedia and Ubiquitous Engineering
10(4):215-230.

Haq NU, Ullah M, Khan R, Ahmad A, Almogren A, Hayat B, Shafi B. 2020. USAD: an
intelligent system for slang and abusive text detection in PERSO-Arabic-scripted
Urdu. Complexity 2020:1-7.

Humayoun M. 2022. Abusive and threatening language detection in Urdu using super-
vised machine learning and feature combinations. ArXiv preprint. arXiv:2204.03062.

Hussain S, Malik MSI, Masood N. 2022. Identification of offensive language in
Urdu using semantic and embedding models. Peer] Computer Science 8:¢1169
DOI 10.7717/peerj-cs.1169.

Ibrahim M, Torki M, El-Makky N. 2018. Imbalanced toxic comments classification using
data augmentation and deep learning. In: 2018 17th IEEE international conference on
machine learning and applications (ICMLA). Piscataway: IEEE, 875-878.

Malmasi S, Zampieri M. 2018. Challenges in discriminating profanity from hate
speech. Journal of Experimental ¢» Theoretical Artificial Intelligence 30(2):187-202
DOI 10.1080/0952813X.2017.1409284.

Masadeh M, Davanager HJ, Muaad AY. 2022. A novel machine learning-based frame-
work for detecting religious arabic hatred speech in social networks. International
Journal of Advanced Computer Science and Applications 13(9):767-776.

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 24/25

https://peerj.com
http://dx.doi.org/10.1145/3503162.3505241
http://dx.doi.org/10.1002/poi3.85
http://dx.doi.org/10.1016/j.csl.2021.101311
http://arXiv.org/abs/2111.14830
http://dx.doi.org/10.1007/s10462-016-9482-x
http://arXiv.org/abs/2204.03062
http://dx.doi.org/10.7717/peerj-cs.1169
http://dx.doi.org/10.1080/0952813X.2017.1409284
http://dx.doi.org/10.7717/peerj-cs.1524

PeerJ Computer Science

Matzavela V, Alepis E. 2021. Decision tree learning through a predictive model for
student academic performance in intelligent m-learning environments. Computers
and Education: Artificial Intelligence 2:100035.

Mohammadi M, Rashid TA, Karim SHT, Aldalwie AHM, Tho QT, Bidaki M, Rahmani
AM, Hosseinzadeh M. 2021. A comprehensive survey and taxonomy of the SVM-
based intrusion detection systems. Journal of Network and Computer Applications
178:102983 DOI 10.1016/j.jnca.2021.102983.

Nobata C, Tetreault J, Thomas A, Mehdad Y, Chang Y. 2016. Abusive language
detection in online user content. In: Proceedings of the 25th international conference
on world wide web. 145-153.

Pelle R, Alcantara C, Moreira VP. 2018. A classifier ensemble for offensive text detection.
In: Proceedings of the 24th Brazilian symposium on multimedia and the web. 237-243.

Peters C, Schroder KC, Lehaff J, Vulpius J. 2022. News as they know it: Young adults’ in-
formation repertoires in the digital media landscape. Digital Journalism 10(1):62—-86.

Ptaszynski M, Eronen JKK, Masui F. 2017. Learning deep on cyberbullying is always
better than brute force. In: Linguistic and Cognitive Approaches to Dialog Agents.
3-10.

Ptaszynski M, Lempa P, Masui F, Kimura Y, Rzepka R, Araki K, Wroczynski M, Leliwa
G. 2019. Brute-force sentence pattern extortion from harmful messages for cyberbul-
lying detection. Journal of the Association for Information Systems 20(8):1075-1127.

Rani P, Ojha AK. 2019. KMI-coling at SemEval-2019 task 6: exploring N-grams for
offensive language detection. In: Proceedings of the 13th international workshop on
semantic evaluation. 668—671.

Schneider JM, Roller R, Bourgonje P, Hegele S, Rehm G. 2018. Towards the automatic
classification of offensive language and related phenomena in German tweets. In:
14th Conference on Natural Language Processing KONVENS, vol. 2018. 95.

Sigurbergsson GI, Derczynski L. 2019. Offensive language and hate speech detection for
Danish. ArXiv preprint. arXiv:1908.04531.

Sumathi S, Pugalendhi GK. 2021. Cognition based spam mail text analysis us-
ing combined approach of deep neural network classifier and random forest.
Journal of Ambient Intelligence and Humanized Computing 12(6):5721-5731
DOI 10.1007/s12652-020-02087-8.

Van Aken B, Risch J, Krestel R, Loser A. 2018. Challenges for toxic comment classifica-
tion: an in-depth error analysis. ArXiv preprint. arXiv:1809.07572.

Watanabe H, Bouazizi M, Ohtsuki T. 2018. Hate speech on twitter: a pragmatic
approach to collect hateful and offensive expressions and perform hate speech
detection. IEEE Access 6:13825-13835 DOI 10.1109/ACCESS.2018.2806394.

Raza et al. (2023), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.1524 25/25

https://peerj.com
http://dx.doi.org/10.1016/j.jnca.2021.102983
http://arXiv.org/abs/1908.04531
http://dx.doi.org/10.1007/s12652-020-02087-8
http://arXiv.org/abs/1809.07572
http://dx.doi.org/10.1109/ACCESS.2018.2806394
http://dx.doi.org/10.7717/peerj-cs.1524

