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ABSTRACT
This study employs the principles of computer science and statistics to evaluate the
efficacy of the linear random effect model, utilizing Lasso variable selection techniques
(including Lasso, Elastic-Net, Adaptive-Lasso, and SCAD) through numerical simula-
tion and empirical research. The analysis focuses on the model’s consistency in variable
selection, prediction accuracy, stability, and efficiency. This study employs a novel
approach to assess the consistency of variable selection across models. Specifically, the
angle between the actual coefficient vector β and the estimated coefficient vector β̂
is computed to determine the degree of consistency. Additionally, the boxplot tool of
statistical analysis is utilized to visually represent the distribution of model prediction
accuracy data and variable selection consistency. The comparative stability of each
model is assessed based on the frequency of outliers. This study conducts comparative
experiments of numerical simulation to evaluate a proposed model evaluation method
against commonly used analysismethods. The results demonstrate the effectiveness and
correctness of the proposed method, highlighting its ability to conveniently analyze the
stability and efficiency of each fitting model.

Subjects Data Science, Scientific Computing and Simulation
Keywords Linear random effect model, Variable selection, Coefficient consistency, Prediction
accuracy, Boxplot, Stability

INTRODUCTION
Statistical modeling aims to attain two objectives: namely, the attainment of a high
level of prediction accuracy and the establishment of robust inferential and explanatory
capabilities of the model. The classical linear statistical model is a highly effective and
extensively utilized statistical technique that retains superior inferential capabilities over
nonlinear models in addressing real-world problems. Several novel approaches, including
polynomial regression, spline regression, local regression, generalized additive model, and
partial linear model, have been developed based on this model, which can be viewed as
its advancement and expansion. The process of selecting variables is a crucial aspect of
modeling, and the comparative evaluation of its diverse techniques is a current area of
focus within the realm of statistics research.

How to cite this article Hou D, Zhou W, Zhang Q, Zhang K, Fang J. 2023. A comparative study of different variable selection methods
based on numerical simulation and empirical analysis. PeerJ Comput. Sci. 9:e1522 http://doi.org/10.7717/peerj-cs.1522

https://peerj.com/computer-science
mailto:20210634@wzu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1522
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.1522


Tibshirani (1996) introduced the Least Absolute Shrinkage and Selection Operator
(Lasso) penalty-based variable selection method, which has been widely adopted due
to its ability to enhance model prediction and inference by simplifying the model.
Longitudinal data with random effects are a crucial type of data in various fields such
as biomedicine, clinical trials, meteorological observation, industrial engineering, and e-
commerce platforms. Consequently, it is imperative to undertake comprehensive research
on Lasso techniques for variable selection within the context of linear random effect
models. Additionally, novel approaches for conducting comparative analyses of multiple
variable selection methods should be investigated. Over the last decade, numerous
studies have been conducted both domestically and internationally on the theory and
practical implementation of the Lasso regression method. The Adaptive Group Lasso
method was investigated by Wang & Leng (2008), while the Graphical Lasso method was
explored by Yuan & Lin (2007). Wang & Yin (2008) introduced the sMave method and its
corresponding iterative algorithm in their investigation of the single index model. Zeng,
He & Zhu (2012) explored the estimation and variable selection of the single index model,
utilizing the penalty partial derivative and proposing the sim-LASSOmethod. This method
effectively eliminates the impact of partial derivative points equaling zero on estimation
while simultaneously compressing coefficients. In the field of high-dimensional and
ultra-high-dimensional models, a comprehensive review of numerous research findings
was conducted by Niu & Li (2021). In their research, Fan & Lv (2008) examined the
utilization of an ultra-high dimensional variable selection method in the generalized linear
model. They introduced the sure independence screening (SIS) method, which employs
a marginal screening approach to assess the significance of each covariate based on the
Pearson correlation between the response variable and a single covariate. This method
enables preliminary dimensionality reduction, reducing the number of covariates to a level
where traditional penalty variable selection methods can be effectively applied. Yuan & Lin
(2007) conducted a systematic investigation into the correlation between Lasso and Bayes
(Fan & Lv, 2008). They employed the LARS algorithm to accomplish the computation
of Bayes posterior distribution in scenarios involving a high number of dimensions.
The approach of maximizing marginal likelihood was employed and presented a viable
technique for the selection of Lasso’s penalty parameter (Yuan & Lin, 2005). In her study,
Jing (2013) employs the inverse Bayes formulae (IBF) to develop two novel algorithms
that rely on non-iterative sampling techniques. These algorithms demonstrate a rapid
and efficient solution to the Bayesian Lasso problem (Jing, 2013). In 2019, Li (2020) made
enhancements to the Bayesian Lasso estimation technique and introduced the Bayesian
Adaptive Lasso estimation method, which is tantamount to adaptive Lasso. To assess the
inferential explanatory capability of the model, numerous studies in this domain measure
the coherence of model variable selection through the computation of true positive rate
(sensitivity) and true negative rate (specificity) (Trevor, Robert & Martin, 2020; Wood,
2018; Wang & Li, 2018; Wu, 2015; Gao, 2015), or the likelihood of predictive variable
inclusion in the model (Liang & Feng, 2016; Rodgers & Nicewander, 1988; Xu, 2022). The
evaluation of the Lasso variable selection method’s model quality was conducted in
literature through the utilization of cc, which represents the average number of correctly
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selected predictive variables, cd, which denotes the average number of correctly eliminated
unrelated predictive variables, and the accuracy of coefficient estimate β̂ (Siwei, 2021; Lei,
2022). The quality of the fitted model was assessed in Literature through the comparison
of PMSE, which stands for ‘‘the test mean square error of the model’’, IC, which represents
‘‘the number of non-zero coefficients incorrectly identified as zero’’, and C, which denotes
‘‘the number of zero coefficients correctly identified as zero’’ (Xu, 2022; Yanbiao, 2011).
The application of SIS involves the reduction of dimensionality of high-dimensional data
with varying correlation coefficients, followed by the utilization of distinct Lasso variable
selection techniques for fitting purposes (Yuan & Lin, 2005; Luo, 2021; Gao, 2011). The
assessment of the fitted model’s quality involves a comparison of the precision of the
regression coefficient β̂ for each model.

This study presents a novel approach to assess the consistency of variable selection in
regression models by calculating the Angle between the ‘‘true coefficient vector’’ β and the
‘‘estimated coefficient vector’’ β̂. The Angle is then used to evaluate the accuracy of model
predictions and is visualized using boxplots. The distribution of Angle and Err (mean
square error) is presented to provide an intuitive understanding of the data. Additionally,
the stability of each model is compared based on the number of abnormal values. The
present study employs a methodology that integrates numerical simulation and empirical
analysis to compare and scrutinize the Lasso variable selection techniques. Concurrently,
numerical simulation experiments are conducted to juxtapose the model evaluation
technique posited in this manuscript with the conventional analytical methodologies.
The findings of the experiment indicate that the outcomes of the model derived in this
investigation are in agreement with the established theory and the pertinent research in this
domain. This approach exhibits not only accuracy and efficacy, but also the advantageous
attributes of facilitating the evaluation of stability and effectiveness of individual fitting
models. The present study utilizes median values for the model performance indicators
Angle and Err, in contrast to the commonly employed index average value found in the
aforementioned literature. This approach effectively mitigates the influence of outliers
in the data on statistical analysis, thereby enhancing the precision of the fitted model’s
performance evaluation. The present study employs the ten-fold cross validation technique
to obtain the penalty parameter λ for the model. As per the suggestion put forth by Fan
& Li (2001), the value of parameter α in SCAD is 3, whereas the weight coefficient γ
in Adaptive Lasso is 1. Further investigation is required to establish the parameters in
the penalty function, taking into account the diverse data characteristics and application
background conditions of the model. Secondly, with regards to the prevalent issue of data
contamination in the current gathered datasets, it is imperative to conduct further research
on the resilience of the model.

MODEL AND VARIABLE SELECTION METHODS
A classical linear regression model is described as:

yi=β0+
p∑

j=1

xijβj+ei i= 1,2,...,n (1)
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There are n groups of observations, each of which consists of an output variable yi
and p associated predictive variables xi = (xi1,xi2,...,xip)T .β0 and β = (β1,β2,...,βp)T

are unknown parameters and ei is the error term. The objective of linear regression is to
forecast the response variable based on the explanatory variables and to determine the
significance of the explanatory variables. The primary task involves the estimation of the
unknown parameter β. The conventional approach involves minimizing the objective
function’s least square method.

minimize
β0,β

n∑
i=1

yi−β0−
p∑

j=1

xijβj

2

(2)

In Eq. (2), it is generally observed that none of the least squares estimates of β are
equivalent to zero. When the value of p is high, the ultimate model becomes challenging
to elucidate. Additionally, in cases where n is less than p, the outcomes of the least squares
estimations are non-unique, and there exist an infinite number of solutions that can render
the objective function to be equivalent to zero. Hence, it is imperative to restrict (regularize)
the process of estimation by incorporating a penalty function. The penalty function can be
categorized into two types based on the degree of concavity, namely convex penalty (e.g.,
Lasso, Adaptive Lasso) and non-convex penalty (e.g., SCAD, MCP, etc.).

The convex function is defined on a convex set S which is meet the conditions:
∀x1,x2 ∈ S,∀a∈ [0,1], there is

f (ax1+(1−a)x2) ≤ af (x1) + (1 − a)f (x2).
(Definition of S: for ∀x1,x2 ∈ S,∀a∈ [0,1], when x = ax1+(1−a)x2, x ∈ S)

The utilization of convex penalty can guarantee the singular nature of the solution.
Additionally, proficient algorithms exist to obtain estimators that exhibit favorable
attributes of stability and sparsity. However, it is important to note that these estimators
are only partial in nature and lack Oracle properties.

The utilization of the non-convex penalty can effectively achieve coefficient sparsity while
satisfying the Oracle properties. However, due to its non-convex nature, the uniqueness
of solutions cannot be guaranteed, resulting in the emergence of multiple local optima.
Consequently, the stability of the results may be relatively poor. Furthermore, the inclusion
of a concave parameter in the penalty function results in heightened computational
complexity.

The penalty function can be categorized into two types, namely the Penalized Residual
Sums of Squares and the penalty likelihood function, based on the specific models
employed. In the context of a general linear regression model (LM) with a normally
distributed dependent variable, an identity joining function, and a loss function that
involves the sum of squares of residuals, the penalty residuals are utilized to calculate
the sum of squares. The penalty likelihood function can be utilized in various statistical
distributions, including the Poisson distribution, binomial distribution, and gamma
distribution of dependent variables. Additionally, it can be applied to the exponential
cluster of connection function. The loss function is a generalized linear model of the
likelihood function, which encompasses models such as the logistic regression model and
the Poisson regression model.
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With parameter set β = (β1,β2,...,βp)T as the study object, on the basis ofOLS, increase
the constraint conditions about the β, the penalty function pλ(|β|), thus, to establish the
punishment least squares estimation (Penalized Least Squares, PLS)

β̂ = argmin


n∑

i=1

yi−β0−
p∑

j=1

xijβj

2

+

p∑
j=1

pλ(
∣∣βj∣∣)

 (3)

Different variable selection methods can be constructed when we select different penalty
functions.

Lasso method and basic characteristics
Tibshirani (1996) introduced a technique for selecting variables. The fundamental concept
underlying Lasso involves the imposition of penalty factors to restrict the L1 norm of the
estimator β, building upon the framework of Ordinary Least Square (OLS) estimation
(Tibshirani, 1996).

As for the data set with p predictive variables and n predictive variable-response variable
pairs

{
(xi,yi)

}n
i=1, we could use Lasso to find an estimate of β̂ that can better fit the data

through minimization of RSS(β̂).

RSS
(
β̂
)
= argmin︸ ︷︷ ︸

β̂

n∑
i=1

yi−
p∑

j=1

βjxij

2

+λ

p∑
j=1

∣∣βj∣∣ (4)

λ≥ 0 is the Penalized Parameter, λ
∑p

j=1

∣∣βj∣∣ is compression constraints.

β̂ = argmin
{∥∥y−xβ∥∥22}s.t ‖β‖≤ t . (5)

t ≥ 0 is a tuning Parameter, which controls the intensity of compression. If the Parameter
obtained by the least squares is estimated as β0, Lasso can be compression as long as
t <

∑p
j=1

∣∣∣β̂0
j

∣∣∣. In addition, for some models with small absolute values, the coefficient is
compressed to zero. Therefore, the inequality ‖β‖≤ t effectively limits the parameter space
and makes the final model explicable.

It can be proved that the relation between t and λ (Wu, 2015) is

t =
p∑

j=1

sign(β̂0
j ) · β̂

0
j −p

λ

2
. (6)

The estimator β̂ can be computed through numerical approximation techniques, such as
coordinate descent and minimum angle regression.

The fundamental attributes of Lasso entail pursuing the sparse representation of the
model, essentially. The aforementioned procedure is executed through the optimization
of a function problem that comprises a combination of a loss and a penalty term. In cases
where a set of predictive variables exhibit high correlation, Lasso regression may select one
variable while disregarding the others, leading to unstable outcomes. This indicates that
collinearity cannot be effectively and accurately addressed.
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Adaptive Lasso method and basic characteristics
It can be seen from Lasso analysis that Lasso penalty function is the same for all the
estimators in β = (β1,β2,...··· ,βp). However, if the penalty function can be made to give
a smaller penalty to the larger estimators, thus effectively reducing the model’s bias while
ensuring the sparsity of the model. Therefore, Zou (2006) proposed Adaptive Lasso, in
which the punishment parameter can be adjusted according to the size of the estimator,
instead of λ being a fixed punishment in Lasso (Liang & Feng, 2016). Before the Adaptive
Lasso in

∥∥βj∥∥ increase weight coefficient ŵj =
1
|β̂j|

γ ,γ constant is greater than zero, Zou

advised to choose a
√
n consistent estimator satisfy, which uses least squares estimator β̂

as the initial estimator, β̂j= β̂OLS, Adaptive Lasso is in the form of

β̂ = argmin
β

∥∥y−Xβ∥∥22+λ p∑
j=1

ŵj
∥∥βj∥∥1. (7)

By formula Eq. (7), when γ ≥ 1, if some components of the initial estimate of β̂ are
large (such as β̂j), the weight of the corresponding punishment item weight coefficient
ŵj =

1
|β̂j|

γ relative to other components, so the Adaptive - Lasso has the following features:
(1) The utilization of a penalty function serves to decrease the bias of the Lasso estimator,
while simultaneously guaranteeing the accuracy of the estimator.

(2) It also proves that Adaptive Lasso can satisfy the following Oracle properties with an
appropriate λ value:

(a) The consistency of variable selection:{
j,β̂j 6= 0

}
=

{
j,βj 6= 0

}
, S0.

(b) Asymptotic normality:
√
n
(
β̂−βS0

) d
→N (0,σ 2).

* S0 is the active set of predictive variables
S0=

{
j :β0

j 6= 0,j = 1,2,......,p
}
,

Ŝ(λ)=
{
j : β̂j(λ) 6= 0,j = 1,2,......,p

}
,

Ŝ(λ) Is a nonzero coefficient subscript set of parameters estimated by Lasso method.
According to the CV method to get λ̂CV , eventually get Ŝ(λ̂CV ) which has a high

probability to include S0 and
∣∣Ŝ(λ̂CV )≤min(n,p)

∣∣.
(3) The Adaptive Lasso method conforms to the three characteristics of the penalty

function introduced by Fan and Li, namely impartiality, parsimony, and continuity. These
attributes are an advancement over the Lassomethod. However, the Adaptive Lassomethod
still encounters challenges in effectively addressing collinearity.

Elastic Net method and basic features
The Ridge regression technique is distinguished by its ability to evenly allocate weights
to associated characteristic variables. Conversely, the Lasso method is not capable of
effectively addressing collinearity. In response, it introduced the Elastic Net approach,
which combines the strengths of both Ridge and Lasso regression techniques. Specifically,
Elastic Net is a convex combination of Ridge and Lasso regression (Rodgers & Nicewander,
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1988).

β̂ = argmin
β∈Rp

∥∥y−Xβ∥∥22+λ1
p∑

j=1

∣∣βj∣∣+λ2 p∑
j=1

β2
j

 (8)

The penalty term is Pλ
(∣∣βj∣∣)= λ1 ∣∣βj∣∣+λ2∣∣βj∣∣2, λ1, λ2 are two nonnegative punishment

parameters, order a= λ2
λ1+λ2

,

β̂ = argmin
β∈Rp

∥∥y−Xβ∥∥22+(1−a)
p∑

j=1

∣∣βj∣∣+a p∑
j=1

β2
j

 (9)

Penalty term Pλ
(∣∣βj∣∣)= (1−a)∑p

j=1

∣∣βj∣∣+ a
∑p

j=1β
2
j at zero point is the guide, for

∀a> 0 is strictly convex.
To: X∗(n+p)×p=

1
√
1+λ2

( X√
λ2I

)
, Y ∗n+p=

(Y
0

)
,

γ = λ1√
1+λ2

, β∗=
√
1+λ2β,

then
β̂∗= argminβ∗∈Rp

{∥∥y∗−X∗β∗∥∥22+γ∑p
j=1

∣∣∣β∗j ∣∣∣}.
Therefore, the Elastic Net problem can be converted to the Lasso problem. The optimal

Elastic Net solution β̂∗ can be found on β̂ = 1
√
1+λ2

β̂∗. Because Ip×p is full rank, considering
the composition of X∗(n+p)×p and it has p columns, the Lasso matrix X∗(n+p)×p (matrix rank
p), the applied matrix is X(n+p)×p. Therefore, Elastic Net can select up to p variables which
solved Lasso can only select amaximumof n (n< p) variables. According to the findings, the
Elastic Net technique is capable of selecting group variables, meaning that it can effectively
select multiple highly correlated independent variables. This addresses the issue commonly
encountered with Lasso regression methods, which tend to select only one variable and
disregard the others. This approach is appropriate for certain application scenarios that
require analysis of the correlation between dependent variables and predictive variables
exhibiting group characteristics. Examples of such scenarios include variable screening and
prediction of gene expression profile data.

SCAD method and basic features
In their study, Fan & Li (2001) introduced a non-convex penalty function with the aim of
attaining unbiasedness of the estimator β. This penalty function ensures that the penalty
on the coefficient decreases as the coefficient estimator increases, thereby ensuring the
approximate unbiasedness of large coefficients.

β̂ = argmin
βεRp

∥∥y−Xβ∥∥22+
p∑

j=1

Pλ
(∣∣βj∣∣)

, (10)

Pλ(
∣∣βj∣∣)P is the penalty term. The proposed method is a continuously differentiable

penalty function, called smooth cohesion absolute deviation penalty SCAD (Smoothly
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Clipped Absolute Deviation Penalty).

P
(
βj |λ,a

)
=


λ
∣∣βj∣∣ ∣∣βj∣∣≤ λ,
2aλ

∣∣βj∣∣− ∣∣βj∣∣2−λ2
2(a−1)

λ<
∣∣βj∣∣< aλ,

(a+1)λ2

2

∣∣βj∣∣≥ aλ,

(11)

Take the derivative of the penalty function SCAD, get

P
′ (
βj |λ,a

)
=


sgn(βj)λ

∣∣βj∣∣≤ λ
sgn(βj)(αλ−

∣∣βj∣∣)/(α−1) λ<
∣∣βj∣∣< aλ

0
∣∣βj∣∣≥ aλ

(12)

Thus, its coefficient estimate speed of punished decreases with the coefficient estimators∣∣βj∣∣ increases, namely when the βj absolute value is larger, SCAD penalty is constant, when
the βj absolute value is small, the smaller the absolute value of the coefficient of the degree of
compression than the LASSOmethod is bigger and therefore better able to induce the sparse
structure, t is convenient for screening and obtaining a sparse subset of variables. Therefore,
SCAD guarantees the unbiasedness of large coefficients. Not differentiable at the origin, but
continuously differentiable at (−∞,0) ∪ (0,+∞), a local quadratic approximation is used
to obtain a local optimal solution while ensuring sparsity and continuity. Fan, Huang, and
Kim respectively proved that N-SCAD (conventional), H-SCAD (high dimensional), and
UH-SCAD (super high dimensional) have Oracle properties under certain hypothetical
conditions, and have the advantage over Adaptive Lasso in that it does not require prior
access to the consistent estimator of

√
n to β̂0. It is important to note that the local optimal

solution may not always coincide with the global optimal solution. Numerical methods
often yield a particular local solution, thereby creating a disparity between theoretical and
practical applications. Consequently, research in this area remains a prominent topic of
interest.

Numerical simulation and comparative analysis
This study conducts a comparative analysis of the penalty function of Lasso, Adaptive
Lasso, Elastic-Net, and SCAD variable selectionmethods under varying conditions through
numerical simulation. The study also examines the applicable application scenarios of these
methods.

Themodel’s performance was assessed using four indicators, namely: (1) the consistency
of model variable selection, (2) the mean square error, (3) the efficiency of the model
algorithm, and (4) the stability of the model. Regarding the evaluation of the consistency
of model variable selection, the false discovery rate and false exclusion rate methods as
well as the calculation of the probability of predictive variables entering the model were
not utilized in our approach (Jing, 2013; Wood, 2018; Xu, 2022; Min, 2022; Chu, 2018;
Hastie, Tibshirani & Wainwright, 2015; Bai & Zhao, 2005). However, we choose variable
selection compatibility of the model to be found through calculating the Angle between
uniformed estimated coefficient vector β̂ and the uniformed true coefficient vector β
Angle= 180

π
arccos

(
βT β̂

)
reflection coefficient estimation accuracy, namely consistency
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(
{
j : β̂j 6= 0

}
=
{
j :βj 6= 0

}
, S0; S0 is the active set of predictive variables). The Angle

is closer to zero, the higher the degree of compatibility between β and β̂, the stronger
the model interpretation ability (geometric interpretation of Pearson correlation coefficient
formula) (Liang, Feng & Song, 2016). Err = 1

n
∑(

ŷ0−y0
)2, the mean square error of the

predicted variable obtained from the training set which can be carried to the model, the
mean square error of the response variable ŷ0 and the actual response value y0 in the test
set can reflect the prediction accuracy of the model. If the predicted response value is close
to the actual response value, 1Err will be small; the stability of the model was assessed by
utilizing the boxplot tool to examine the outliers of Angle and Err across various variable
selection methods. This approach provided insight into the robustness of the established
model. The evaluation of the model algorithm’s efficiency is based on the duration of time
taken by the computer to perform a regression fitting.

Four indicators were used to evaluate the model performance:
Angle:consistency of model variable selection;

—- Evaluate the explanatory power of the model
Err:mean square error;

—- Evaluate the prediction accuracy of the model
Outliers:Evaluate the stability of model
Time:Evaluate the efficiency of model algorithm

Design of simulated data set
Our data are generated from the following linear random effects model

Y =Xβ+Zδ+ε (13)

yn×1 is the response variable, Xn×p is the design matrix of the prediction variable, Zn×q

is the design matrix of the random effect variable, which is constructed in the same
way as X, q≤ p.βp×1 is a nonrandom parameter vector called deterministic effect, δq×1
is a random parameter vector called random effect, εn×1 is a random noise vector. δ
follows the normal distribution with zero mean and G covariance matrix. δ∼N (0,G),
ε follows normal distribution, ε∼N (0,R), R= σ 2In , cov (δ,ε)= 0. In order to design
the simulation data set, the function mvrnorm() in MASS package is firstly used to
design the n×p dimensional multivariate normal simulation matrix about the prediction
variable X, Xn×p is the prediction variable, let βp×1 = (1,1.2,3.2,4.1,−5,0,...0︸ ︷︷ ︸

45

)- is the

coefficient vector, and yn×1 is the response variable. The model discussed is the sparse
model, εn×1 is the random noise vector, which is independently identically distributed
and follows the standard normal distribution, εn×1∼N (0,In), X and ε are independent.
The numerical simulation experiment was repeated for 300 times, and the data in the X
matrix was updated each run. In this study, the mean value of the prediction variables
in each column of the X matrix was designed to be a random variable mu ∼N (0,In)
subject to normal distribution instead of constant, to simulate the internal fluctuation
of the prediction variables and the non-homogeneity of the random factors Zδ between
individuals. The fitted model has linear random effects. The extent of collinearity exhibited
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by the predictor variable X is strongly associated with the correlation coefficient that
exists between them. In order to assess collinearity, experimental designs are implemented
that incorporate correlation coefficients. A correlation coefficient of 1 corresponds to
complete collinearity, while a coefficient of 0 indicates the absence of collinearity. As the
correlation coefficient approaches 1, the degree of collinearity between variables increases.
The dataset was partitioned into two subsets, namely the training set and the test set. Four
variable selection techniques, namely Lasso, Elastic-Net, SCAD, and Adaptive Lasso, were
employed to perform regression modeling on the dataset. The evaluation model was based
on the average value of four indicators obtained from conducting a numerical simulation
experiment for a total of 300 times.

The numerical simulation is carried out in the following two scenarios.
(1) n� p, where the number of observed samples n is much larger than the conventional

data set with the number of predictive variables P, n:p= 2500:50; The correlation coefficient
between the predictive variables was cor = 0.2/0.4/0.6/0.8/0.98.

(2) high dimensional data set which satisfying log
(
p
)
= na(0< a< 1)

n:p =40:50; Correlation coefficient cor =0.2/0.4/0.6/0.8/0.98
We use R to analyze and complete numerical simulation, mainly using the following

software packages that MASS, car, psych, glmnet, ncvreg, msgps, ISLR etc. We select
parameters in software analysis:

For SCAD, we used ncvreg(), where the gamma parameter selection is 3.7 (i.e., the
punishment function where a is recommended by Fan); alpha = 1 (MCP/SCAD penalty);
When n<p, lambda.min is set to 0.05 instead of 0.001;

For Adaptive Lasso, we used msgps(): where gamma parameter selection is 1 (i.e., γ
in the penalty function); Initial estimators, as suggested by Zou when n� p, select the
minimum square estimator that meets the requirements of

√
n convergence β̂j= β̂OLS as

the initial estimator, corresponding to the parameter Lambda= 0; If n<p, Lambda= 0.001
as the initial estimate of β̂j= β̂ridge .

For Elastic-net, we used msgps() where alpha =0.5;
For Lasso, we used msgps() where alpha defaults to 1;
For SCAD, we used local quadratic approximation to obtain the locally optimal

solution. We can obtain the Lambda of Lasso, Adaptive Lasso and Elastic-net that
used Generalized-Cross-Validationg(GCV ) to solve the optimal value and obtain the
corresponding coefficient value β̂.

Numerical simulation result analysis
(1) First examine n:p =2500:50 (number of samples on the training set: number of
predictors); Number of trial repeats m =300, the correlation coefficient is cor =0.2/0.
4/0.6/0.8/0.98

Numerical simulation obtains Angle, Err boxplot (Fig. 1), the time data (Table 1) and
Angle median-correlation coefficient, Err median ∼correlation coefficient relationship
curve (Fig. 2).

(2) Comparative analysis. In the context of a large sample size (n �p) and without
accounting for model stability, this study examines the accuracy of model predictions
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Figure 1 Angle and err boxplots.
Full-size DOI: 10.7717/peerjcs.1522/fig-1

and the coincidence of model coefficients when the correlation coefficient is less than 0.8.
According to the results, SCAD exhibited the highest performance, trailed by Adaptive-
Lasso and Lasso. The reason for this is that SCAD is capable of attaining an approximately
unbiased estimation of large coefficients through the design of its penalty function.
Theoretically, Adaptive-Lasso can improve variable selectivity by weighting corrections
to the Lasso penalty terms, However, the results of this numerical simulation experiment
show that the two perform basically the same in terms of variable selectivity (For Adaptive
Lasso iterative solution of the minimum loss function, Zou (2006) proposed that to obtain
satisfactory Oracle properties which required an initial estimator β̂0 with fully satisfies the
√
n consistency. It is difficult to achieved whaterver using coordinate descent method or

gradient descent method for iterative solution. The models fitted in these four methods
all perform well in terms of prediction accuracy (Err ≤1.005), where the irreducible
error ε∼N(0,1) is an upper bound on the prediction accuracy of y, maximum value is 1
(i.e.,1Err ≤ 0.005). In cases where a group of predictors exhibit strong correlation (i.e.,
cor>0.8), the model’s variable selection compatibility Angle experiences a rapid decline.
However, themodel’s Err remains relatively small and is largely unaffected by the increasing
impact of the correlation coefficient. Hence, the model constructed amidst the presence of
pronounced collinearity among the predictor variables is apt for forecasting the outcome
based on the predictor variables. However, it is not conducive for making inferences
regarding the association between each predictor variable and the response variable.

The evaluation of model stability and algorithm efficiency can be performed through
the utilization of Angle, Err boxplot, and regression fitting timetable Time. The convex
penalty function possesses favourable stability properties that can enhance the performance
of models constructed through the utilization of Lasso, Elastic-Net, and Adaptive-Lasso
techniques.

The Lasso algorithm is characterized by its simplicity and efficiency, which results
in a notably high speed of model fitting. Thus, the Lasso method is highly appropriate
for modeling in scenarios where the number of observations is greater than the number
of predictor variables, and the degree of collinearity among the predictor variables is
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Table 1 Regression fitting schedule Time (s).

Regression
method

Time/cor=0.2 Time/cor=0.4 Time/cor=0.6 Time/cor=0.8 Time/
cor=0.98

Elastic-Net 1.9883 2.3013 2.2543 2.3370 2.3300
Lasso 1.8800 2.0140 1.9773 1.9900 2.1473
SCAD 2.2453 2.6367 4.1060 4.5927 12.4660
Adaptive-Lasso 2.0137 1.8079 1.9650 1.9113 1.8607

Notes.
Computer processor: Intel(R) Core(TM) i7-10710U CPU 1.10 GHz 1.61 GHz.

Figure 2 Relationship graphics.
Full-size DOI: 10.7717/peerjcs.1522/fig-2

minimal. Elastic-Net exhibits superior stability under conditions of high correlation
coefficients, rendering it appropriate for application scenarios characterized by predictive
variables possessing group attributes. The complexity of SCAD’s penalty functions, owing
to their non-convex nature, results in a model form that is more intricate than that of
Lasso, Elastic-Net, and Adaptive Lasso. Additionally, the iterative algorithm employed
in SCAD runs notably slower, and the instability of the local quadratic approximation
algorithm is evidenced by the Angle and Err in the boxplot with the highest number
of outliers. Furthermore, models fitted using this method exhibit poor stability. (3)
Next, consider the n:p =40:50 (number of samples on the training set: number of predictors)
high-dimensional dataset; The number of test replicates m =300 and the correlation
coefficient was cor =0.2/0. 4/0.6/0.8/0.98. The study conducted a numerical simulation
and generated several graphical and tabular outputs, including a boxplot of Angle and Err
(Fig. 3), a table of time data (Table 2), and a curve depicting the relationship between
the median of Angle-correlation coefficient and Err-correlation coefficient (Fig. 4).
(4) Comparative analysis. Upon analyzing the Angle and Err indicators, it can be concluded
that SCAD exhibits superior performance. However, when compared to the state of affairs
pertaining to a large sample data, the Angle indicator exhibits a significant increase by
several to dozens of times. The interpretability of models constructed by the four classical
methods is notably weak when dealing with high-dimensional data. The Lasso, SCAD, and
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Figure 3 Angle and err boxplots.
Full-size DOI: 10.7717/peerjcs.1522/fig-3

Table 2 Regression fitting schedule time (s).

Regression
method

Time/cor
=0.2

Time/cor =0.4 Time/cor =0.6 Time/cor =0.8 Time/cor =0.98

Elastic-Net 0.334 0.328 0.358 0.396 0.502
Lasso 0.286 0.285 0.293 0.293 0.345
SCAD 0.135 0.141 0.154 0.156 0.201
Adaptive-Lasso 0.308 0.312 0.362 0.338 0.410

Figure 4 Relationship graphics.
Full-size DOI: 10.7717/peerjcs.1522/fig-4

Adaptive-Lasso variable selection methods have produced models with prediction errors of
less than 3. These models may be suitable for application scenarios where high prediction
accuracy is not a requirement. In cases where the correlation coefficient between variables
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exceeds 0.8, the respective indicators of the model experience a rapid decline, thereby
rendering the model’s guiding significance null and void.

The unsuitability of the Lasso-like classical variable selection method, which is
appropriate for conventional data, for modeling high-dimensional data has been
demonstrated through numerical simulation. Over the past decade, there has been a
surge in research on high-dimensional models in the field of statistics both domestically
and internationally. Numerous modeling theories and application practices have surfaced
for various forms of high-dimensional data (Niu & Li, 2021). These have proven to be a
potent means of managing vast quantities of information during the age of big data.

Comparative experiment and result discussion
The evaluation of the quality of the fitted model for Lasso, Elastic-Net, Adaptive-Lasso,
and SCAD variable selection methods, as per literature, involves the computation of the
average of correctly selected predictive variables (‘‘cc’’), the average of correctly eliminated
unrelated predictive variables (‘‘cd’’), and the accuracy of coefficient estimation β̂ (Rodgers
& Nicewander, 1988). The evaluation of the efficacy of the fitted model in literature is
conducted through a comparison of the test mean square error (PMSE), the count of
non-zero coefficients that are erroneously identified as zero (‘‘IC’’), and the count of
zero coefficients that are correctly identified as zero (‘‘C’’) (Yanbiao, 2011). The literature
employs the use of SIS as a means of reducing the dimensionality of high-dimensional
data with varying correlation numbers. Subsequently, the fitting process is carried out
using Lasso, Adaptive-Lasso, Elastic-Net, and SCAD methods. The resulting regression
coefficients β̂ of each model are then compared to assess the efficacy of the fitting model.
All of the findings indicate that the most effective approach for SCAD fitting involves
the utilization of non-convex penalty function regression. From a new perspective, this
study proposes to calculate the Angle= 180

π
arccos

(
βTβ̂

)
between the unitized estimation

coefficient vector β̂ and the unitized true coefficient vector βto evaluate the consistency
of variable selection of the fitted model, and analyze with the help of boxplot tool the
distribution and stability of Angle. In order to demonstrate the efficacy and practicality of
the proposed approach, a comparative study is undertaken between the model evaluation
technique presented in this manuscript and conventional analytical methods, under
identical conditions.

The linear mixed random effects model is described as Y = Xβ + Zδ+ ε. This
study discusses the sparse model. The coefficient vector of the real model is set as
β = (1,1.2,−3.2,4.1,−5,0,...,0︸ ︷︷ ︸

45

), in which the number of non-zero coefficients is 5,

and the number of zero coefficients is 45. The study conducted numerical simulation
experiments in the context of large sample and high dimension. The experiments involved
varying correlation coefficients of 0.2, 0.6, and 0.98, and were repeated 300 times. Please
refer to Tables 3 and 4 for the obtained outcomes.

Cor: correlation coefficient between predictive variables.
Angle(Median, Outliers): median and number of outliers are given to evaluate

respectively the explanatory power and stability of the model
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Table 3 Selection rate/rejection rate (cor=0.6;m= 300).

n:p= 2500:50 n:p= 40:50

Regression
method

VC Selection
rate

VD Rejection
rate

VC Selection
rate

VD Rejection
rate

Elastic-Net 5 100% 0.093 ≈ 0 5 100% 0.057 ≈ 0
Lasso 5 100% 24.5 53.8% 4.98 99.6% 5.99 13.3%
SCAD 5 100% 45 100% 4.66 93.1% 43.6 96.7%
Adaptive-Lasso 5 100% 26.2 58.2% 4.91 98.2% 4.78 10.6%

Table 4 Coefficient estimation accuracy (cor=0.6;m= 300).

n:p =2500:50 n:p =40:50
Regression
method

Coefficient
estimate
error

Coefficient
estimate
error

Elastic-Net 0.0135 0.474
Lasso 0.0162 0.210
SCAD 0.0121 0.147
Adaptive-Lasso 0.0134 0.288

Err (Median , Outliers):(Mean square error of the model)
median and number of outliers are given to evaluate respectively the prediction accuracy

and stability of the model
CC: the mean of the number of non-zero coefficients selected
CD: the mean of the number of zero coefficients selected
CEMR: the average error of coefficient estimation β̂
Table 3 presents the four indicators proposed by this study, namely Angle Median,

Angle Outliers, Err Median, and Err Outliers, along with the three commonly used
indicators in the research field pertaining to correctly selected predictive variables
(represented by ‘‘CC’’), correctly eliminated irrelevant variables (represented by ‘‘CD’’),
and the average error of coefficient estimation β̂ (represented by ‘‘CEMR’’), under the
condition of a large sample (n � p).The numerical simulation results indicate that:
(1) Of the four variable selection methods, namely Lasso, Elastic-Net, Adaptive-Lasso,
and SCAD, the latter exhibits superior performance. Specifically, SCAD yields the smallest
median angle, which reflects the consistency of variable selection, and achieves a 100%
elimination rate for the ‘‘cd’’ value, indicating the removal of irrelevant variables. The
model’s prediction accuracy, as represented by the median of Err, is at its lowest point,
while the estimation error of coefficient β̂ is minimized. Elastic-Net, akin to Lasso and
Adaptive-Lasso, exhibits limited capacity to effectively shrink non-relevant variables.
(2) The performance metrics of Lasso, Elastic-Net, Adaptive-Lasso, and SCAD, which
are four variable selection techniques, exhibit a decline with the increase in correlation
‘‘cor’’ among the predictive variables. However, SCAD continues to demonstrate superior
performance among the four methods.
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(3) The Angle and Err outliers presented in this study can serve as a means to delineate
the stability of the model. Empirical evidence confirms the theoretical assertion that the
SCAD model’s stability is compromised by the non-convexity of its penalty function and
the instability of the local quadratic approximation algorithm.

(4) The metric used to evaluate the effectiveness of a model’s performance. The
present study utilizes median values for Angle and Err, as opposed to mean values. This
methodological choice serves to mitigate the influence of outliers on statistical analyses
and to enhance the precision of the fitted model’s performance evaluation.

Table 4 presents the experimental outcomes of the numerical simulation comparison of
two assessment techniques in high-dimensional settings. The analytical results presented
in Table 4 are equivalent to those displayed in Table 3 when dealing with sizable sample
sizes. Table 4 demonstrates a decline in the indicators of the models acquired through
both evaluation methods. When the correlation coefficient (cor) among the predictor
variables is significantly high, the performance indicators of each model tend to deteriorate
rapidly. This could imply that the model has lost its ability to provide meaningful guidance.
The present comparative analysis demonstrates that the outcomes of the two assessment
techniques utilized for the four variable selection methods are in agreement. This finding
substantiates the efficacy and suitability of the model evaluation method proposed in
this study. Additionally, the stability attributes of the model fitted by the four variable
selection methods are ascertained by scrutinizing the outliers of Angle and Err indices. In
the statistical analysis of Angle and Err, which serve as performance indicators for model
inference and prediction ability, the median value is utilized in lieu of the mean value to
enhance the precision of the analysis outcomes.

EMPIRICAL ANALYSIS AND DISCUSSION
Statistical analysis and modeling provide recommendations regarding the most suitable
model based on the available data. In order to achieve optimal results, it is imperative
to develop a regression model that is both practical and effective, in conjunction with
established professional standards. The present study employs the Heart dataset, which
comprises 462 observations and nine variables, as made available by R. This dataset pertains
to the baseline survey conducted in rural South Africa to investigate coronary risk factors,
and is utilized for empirical analysis in this study. The dataset comprises the subsequent
variables:
sbp: Systolic blood pressure
tobacco: Cumulative tobacco consumption, in kg
ldl: Low-density lipoprotein cholesterol
adiposity: Adipose tissue concentration
famhist: Family history of heart disease (1 =Present, 0 =Absent)
typea: Score on test designed to measure type-A behavior-
obesity: Obesity
alcohol: Current consumption of alcohol
age: Age of subject
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Figure 5 Sbp regression diagnostic graph.
Full-size DOI: 10.7717/peerjcs.1522/fig-5

The dataset is subjected to standardization due to the presence of varying units of
measure for each variable. Subsequently, the dataset is partitioned into two distinct
subsets, namely the training set and the test set. Various variable selection techniques,
including Elastic-Net, Adaptive-Lasso, Lasso, and SCAD, are employed on the training set
alongside cross-validation methods to identify the variables that exert a more significant
influence on systolic blood pressure and to construct a regression model. The model is
validated on the test set, and the mean squared error is computed to assess the efficacy of
the models fitted by various techniques.

Initially, the OLS linear regression model was employed to construct a model of the
dataset, thereby establishing a linear regression association between systolic blood pressure
and other variables. Assess the conformity of the response variable to the statistical
assumptions of the linear regression model, including but not limited to normality,
independence, homoscedasticity, and linear correlation with the predictor variables. Figure
5 displays the statistical characteristics derived from conducting OLS regression on systolic
blood pressure (sbp) in the Heart dataset.

The QQ plot, Residuals vs Fitted plot, and Scale-Location plot suggest that the response
variable sbp adheres to the assumptions of normality, linearity, and homoscedasticity.
However, independence cannot be discerned from the visualizations. There is no inherent
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Table 5 Heart: OLS regressionmodel coefficients.

(Intercept ) tobacco ldl adiposity famhist typea obesity alcohol age

−0.0313 −0.0251 0.0317 0.1329 −0.0953 −0.052 0.0908 0.0846 0.3016

Figure 6 Elastic-Net parsing path and cross-validationMSE graph.
Full-size DOI: 10.7717/peerjcs.1522/fig-6

justification to believe that the systolic blood pressure of an individual has an impact
on another person’s systolic blood pressure. Therefore, it is rational to presume that the
systolic blood pressure also conforms to the principle of independence.

Initially, conduct OLS linear regression analysis on the Heart dataset’s training subset
to establish a linear functional association between systolic blood pressure and diverse
influencing factors. Table 5 displays the estimated coefficients values.

The accuracy of the model was evaluated on the test set by computing the mean square
error of the index, resulting in an error value of 0.92. The OLS model posits that there
exists a relationship between the response variable and all predictors, albeit the response
variable is typically associated with a subset of the predictor variables. Consequently, to
attain variable selection and enhance prediction accuracy, the present study employs the
Lasso regression approach to construct the model and perform comparative analysis.

Elastic-Net
The parsing path of the Elastic-Net penalty function and the cross-validation mean
squared error graph are depicted in Fig. 6. The R programming language’s in-built ten-fold
cross-validation function was utilized to determine the optimal adjustment parameter λ
value of 0.107, which corresponds to the smallest trainingmean square error. Subsequently,
an Elastic Net regression model was fitted using this value, and the resulting regression
coefficients are presented in Table 6.
The model was validated on the test set and the mean square error of the index, which

serves as a measure of the model’s accuracy, was calculated to be Err =0.926. The study
aimed to perform variable selection and identify the factors that significantly affect systolic
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Table 6 Heart: elastic-net-coefficients.

(Intercept ) tobacco ldl adiposity famhist typea obesity alcohol age

0.0333 0.0560 0.1815 0.0127 0.0335 0.1372

Figure 7 Lasso parsing path and cross-validationMSE graph.
Full-size DOI: 10.7717/peerjcs.1522/fig-7

Table 7 Heart: Lasso-coefficients.

(Intercept ) tobacco ldl adiposity famhist typea obesity alcohol age

0.0332 0.0561 0.2015 0.0347 0.1359

blood pressure, including tobacco consumption, adipose tissue concentration, obesity,
alcohol consumption, and age. The quantitative relationship between these factors was
established, with age and adipose tissue concentration found to have the most significant
impact.

Lasso
The parsing path of the Lasso penalty function and the cross-validation mean squared error
graph are depicted in Fig. 7. The R language’s in-built ten-fold cross-validation function
was utilized to determine the optimal adjustment parameter λ= 0.0536, which yielded
the smallest training mean square error. Subsequently, a Lasso regression model was fitted
using this parameter, and the resulting regression coefficients are presented in Table 7.
The model should be validated on the test set and the mean square error of the index,
which serves as an indicator of the model’s accuracy, should be calculated. The value of
Err, which is equal to 0.929, should be obtained. Additionally, variable selection should be
performed. In contrast to the Elastic-Net approach, the removal of the obesity term and
the augmentation of the impact factor of adipose tissue concentration on systolic blood
pressure not only streamlines the model, but also possesses a logical basis, as evidenced
by the correlation coefficient of 0.72 obtained from the corr.test() function in the psych
package when analyzing the relationship between the obesity term and adipose tissue
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Figure 8 SCAD parsing path and cross-validationMSE graph.
Full-size DOI: 10.7717/peerjcs.1522/fig-8

Table 8 Heart: SCAD- coefficients.

(Intercept ) tobacco ldl adiposity famhist typea obesity alcohol age

0.0225 −.0053 −0.0351 0.2288 0.0081 0.3915

concentration. The process of parsing exhibits a comparable pattern, and demonstrates a
higher rate of compression as the coefficient experiences an increase in lambda.

SCAD
The parsing path of the SCAD penalty function is illustrated in Fig. 8. The region that is
shaded in the diagram signifies the attainment of a local optimum by SCAD within that
particular area, which consequently leads to the emergence of an unstable solution defect.
Utilize the R programming language’s inherent cross-validation function, specifically the
ten-fold cross-validation method, to derive the adjustment parameter λ= 0.149 at the
point of minimal training mean square error. Subsequently, generate the SCAD fitting
regression model. Table 8 displays the regression coefficients that correspond to the given
data.

The model should be validated on the test set, and the mean square error of the index
that reflects the model’s accuracy, Err =0.946, should be calculated. Additionally, variable
selection should be performed. The study identified and isolated five key factors that
exhibited a significant influence on systolic blood pressure. Additionally, the quantitative
relationship between these factors was elucidated. Nevertheless, the solution provided by
SCAD exhibits instability, and the assigned coefficient of ldl is negative, a result that lacks
plausibility.

Adaptive Lasso
The parsing path of the Adaptive Lasso penalty function is illustrated in Fig. 9. The msgps
package provides adjustment parameters for various variable selection criteria, including
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Figure 9 Adaptive Lasso parsing path.
Full-size DOI: 10.7717/peerjcs.1522/fig-9

Table 9 Heart: Adaptive Lasso-coefficients.

(Intercept ) tobacco ldl adiposity famhist typea obesity alcohol age

0.0305 0.0506 0.2132 0.0450 0.1754

Table 10 Comparison of mean square errors by models.

Method Err

Elastic-Net 0.926
Lasso 0.929
SCAD 0.946
Adaptive-Lasso 0.920

AIC, BIC, GCV, and Cp. The present study has opted for the GCV (ms.tuning = 2.86)
approach to derive an Adaptive Lasso regression model with a good fit. Table 9 displays
the regression coefficients that correspond to the given data.
Themodel is validated on the test set, and themean square error of the index is calculated

to reflect the accuracy of the model, resulting in an error of 0.92. This indicates that variable
selection has been successfully achieved. Table 10 demonstrates the presented information.
The concentration of adipose tissue, age, tobacco and alcohol consumption are identified
as significant factors that exert a greater influence on systolic blood pressure. Further, the
quantitative relationship between these factors is refined for better understanding.

Result analysis:
(1) The Lasso technique is effective in achieving variable selection and identifying the
factors that exert a significant influence on systolic blood pressure. In contrast to the
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Figure 10 β̂ random effect diagram.
Full-size DOI: 10.7717/peerjcs.1522/fig-10

Figure 11 MSE random effect diagram.
Full-size DOI: 10.7717/peerjcs.1522/fig-11
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Elastic-Net approach, the exclusion of the obesity variable and the augmentation of the
determinants of adipose tissue concentration on systolic blood pressure are observed. The
model can be deemed as straightforward and rational, as evidenced by the correlation
coefficient of 0.72 between the obesity term and the adipose tissue concentration. The
process of parsing exhibits a likeness as well, and experiences expedited compression as the
coefficient ascends in tandem with lambda.
(2) The instability of the solution provided by SCAD is evidenced by the negative coefficient
assigned to ldl, which is deemed implausible.
(3) Similar to Lasso, the Adaptive Lasso method effectively eliminated adipose tissue
concentration, age, tobacco, and alcohol as variables that exert a significant influence on
systolic blood pressure. Moreover, the Adaptive Lasso approach yielded the lowest mean
square error.

The utilization of Elastic-Net, Lasso, Adaptive Lasso, and SCAD has been employed in
fitting the random effect of the coefficient estimate β̂ depicted in Fig. 10, as well as the
random effect of the mean square error illustrated in Fig. 11, based on the given design.
To examine and evaluate the stochastic impact of β̂, it is possible to observe. The model
developed through the utilization of Adaptive Lasso and SCAD exhibits a marginally
superior capacity for variable selection in comparison to Elastic-Net and Lasso. The model
coefficients are subject to significant fluctuations under the influence of random effects,
whereas Elastic-Net and Lasso exhibit relatively stable behavior. Both the mean square
error and stability of each model are similarly impacted by random factors. Thus, during
the practical implementation phase, the most suitable technique for variable selection can
be chosen to align with the model requirements.

CONCLUSION
The COVID-19 pandemic remains a significant global concern, as evidenced by data
obtained from public platforms and the Lasso class variable selection method described
in our study. We utilized a linear random effects model to examine the interrelationships
among various factors, including COVID-19 infection rates, mortality rates, population
density, urban population, proportion of individuals aged 65 and older, vaccination
rates, per capita GDP from the previous year, number of hospital beds per thousand
people, human development index, proportion of patients with underlying diseases,
and overall government response index, among others. This information can aid the
government in comprehending the extent of COVID-19 transmission, allowing for the
prompt development and modification of epidemic prevention and control policies.
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