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ABSTRACT
Cybersecurity guarantees the exchange of information through a public channel in
a secure way. That is the data must be protected from unauthorized parties and
transmitted to the intended parties with confidentiality and integrity. In this work, we
mount an attack on a cryptosystembased onmultivariate polynomial trapdoor function
over the field of rational numbers Q. The developers claim that the security of their
proposed scheme depends on the fact that a polynomial system consisting of 2n (where
n is a natural number) equations and 3n unknowns constructed by using quasigroup
string transformations, has infinitely many solutions and finding exact solution is not
possible. We explain that the proposed trapdoor function is vulnerable to a Gröbner
basis attack. Selected polynomials in the corresponding Gröbner basis can be used to
recover the plaintext against a given ciphertext without the knowledge of the secret key.

Subjects Cryptography, Security and Privacy, Theory and Formal Methods, World Wide Web
and Web Science
Keywords Multivariate polynomial system, Gröbner basis, Algebraic cryptanalysis, Public key
cryptosystem

INTRODUCTION
The 21st century is the century of information and technology. Because of the advancements
in the field of information technology, the secure communication has become the most
challenging task. Public key cryptography plays a vital role in this regard. The security of
most of the public key cryptosystems being used is based on the intractability of certain
mathematical problems which are considered to be hard. For instance, the security of RSA
(Rivest, Shamir & Adleman, 1978) relies on the difficulty of integer factorization problem
(IFP) and ElGamal (1985) is based on the hardness discrete logarithm problem (DLP).
But these problems can be solved on quantum computers using Shor’s algorithm (Shor,
1997). It is believed that multivariate public key cryptography is a good alternative in
post-quantum reign for better security and efficiency. The security of a multivariate public
key cryptosystems (MPKCs) relies on the difficulty of solving a system of multivariate
polynomial equations (Ding & Yang, 2009) or isomorphism problem (Tang & Xu, 2012).
In this context, several MPKCs were designed e.g., Matsumoto-Imai multivariate quadratic
polynomial scheme (Matsumoto & Imai, 1988), the Hidden Field Equation method
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(Patarin, 1996), the Oil-Vinegar scheme (Patarin, 1997), etc. However, almost all of these
schemes have been broken through various attacks (Courtois, 2001; Faugère & Joux, 2003;
Patarin, 1995). A survey article on these schemes was written by Wolf & Preneel (2005).
Markovski, Mileva & Dimitrova (2014) have introduced a new multivariate polynomial
trapdoor over the field of rational numbers.

Algebraic attacks (Faugère & Joux, 2003; Kreuzer & galore!, 2009) can be roughly divided
into two categories. Firstly, the attacks which concentrate on specific variety and break
it because of particular properties e.g., Kipnis & Shamir (1998) attack against Oil and
Vinegar. The second category comprises of algorithms generally used to solve multivariate
polynomial system of equations. Examples include the XL algorithm (Courtois et al., 2000),
and the relinearization technique (Kipnis & Shamir, 1999). Buchberger (1965) laid down a
solid foundation ofmodern computational algebra by introducing the idea ofGröbner bases
to address the problem of solving an algebraic system ofmultivariate polynomial equations.
The Gröbner basis method is a general and well established technique to solve polynomial
system of equations (Buchberger, 1976). For some applications of Göbner bases we refer
to Buchberger & Winkler (1998), Buchberger (0000) and Francis & Ambedkar (2018). and
for the detailed theory on computation of Gröbner basis we refer to the comprehensive
books (Cox, Little & O’shea, 1998; Kreuzer & Robbiano, 2000) on computational algebra.
The Buchberger’s algorithm turns out to be very useful to mount an algebraic attack on
any multivariate cryptosystem.

In this article, the cryptanalysis of a multivariate polynomial trapdoor function
(Markovski, Mileva & Dimitrova, 2014) over the field of rational numbers is presented.
The authors claimed that the proposed scheme is based on 2n multivariate polynomial
equations in 3n unknowns and hence has infinitely many solutions to defeat an algebraic
attack. Our cryptanalysis shows that the proposed multivariate scheme is vulnerable to
Gröbner basis attack on the associated system of multivariate polynomial equations.

The rest of the article is organised as: ‘Introduction’ gives the brief description of the
proposed scheme along with the necessary notations and definitions; ‘The Multivariate
Cryptosystem SBIM(Q)’ illustrates the scheme with the example given inMarkovski, Mileva
& Dimitrova (2014); ‘Cryptanalysis’ presents the cryptanalysis of the proposed scheme.

THE MULTIVARIATE CRYPTOSYSTEM SBIM(Q)
The trapdoor function under consideration uses the multivariate polynomials, usually
quadratic, over Q, the field of rational numbers. The public key of this trapdoor function
mainly consists of 2 n multivariate polynomials in 3 n unknowns r1,...,rn,s1,...,s2n. The
variables ri;i=1 ,...,n usually contain the information content, whereas the variables
si;i=1 ,...,2n contain the redundant information. The redundant information is added
for the security purpose. So, if we use a plaintext comprising of n rational numbers for
the encryption purpose, we will get a ciphertext consisting of 2 n rational numbers.
The quasigroup string transformations are used to construct the public key. These
transformations are obtained from quasigroups represented in matrix form. The private
key of this cryptosystem comprises of different 1×n and n×n matrices over the field of
rational numbers, and one 2n×2n matrix.
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Recall that a groupoid (G,f ) having unique left as well as right inverses for each element
in G with respect to the binary operation f is called a quasigroup. The binary operation
f :G→G is then called a quasigroup bipermutation. From the binary operation f on the
quasigroup G we can derive two new quasigroup bipermutation f (23) and f (13) as follows:

f (x1,x2)= x3 ⇔ f (23)(x1,x3)= x2 ⇔ f (13)(x3,x2)= x1.

The next theorem gives a way to construct quasigroup bipermutation from matrices
over a field F.
Theorem 2.1. (Markovski, Mileva & Dimitrova, 2014) Consider two nonsingular square
matrices A and B of order m over a field F. Let C be a row vector (1×mmatrix) over the
field F. Then the following mapping is a quasigroup bipermutation on Fm.

f (r1,...,rm;s1,...,sm)= (r1,...,rm) ·A+ (s1,...,sm) ·B+C, (1)

where ri,si ∈ F. The new quasigroup bipermutations f (13) and f (23) are defined in the
following way as:

f (13)(r1,...,rm;s1,...,sm)= (r1,...,rm)A−1+ (s1,...,sm)(−BA−1)−CA−1,

f (23)(r1,...,rm;s1,...,sm)= (r1,...,rm)(−AB−1)+ (s1,...,sm)B−1−CB−1. (2)

Note that, in the above representation, instead of elements ri,si ∈ F, we can
use polynomials Xi and ri over F as inputs for the mapping f , then the output
f (X1,...,Xn;r1,...,rn) will also be a polynomial.

Construction
In this section we describe the construction of the proposed trapdoor multivariate public
key cryptosystem (Markovski, Mileva & Dimitrova, 2014). From now on the field F is Q,
the field of rational numbers. A positive integer n is used as a parameter of the scheme.
The main global parameter is a multivariate polynomial ring in 3n indeterminates over
the field of rational numbers Q. The construction is based on three algorithms. That is,
a Key Generation algorithm, an encryption algorithm and the corresponding decryption
algorithm as described in the next sections. The message space is the set of all n-tuples
(a1,...,an)∈Q.

Key generation
The key generation process comprises of the following steps:
1. Choosing Polynomials: Let r1,...,rn,s1,...,s2n denote the variables on Q. Choose n

multivariate polynomials P1,...,Pn over Q in n variables r1,...,rn in a way that the
system of equations
P1(r1,...,rn)= b1,

P2(r1,...,rn)= b2,

... ... ... (3)

Pn(r1,...,rn)= bn,
has a unique solution r1= a1,...,rn= an; ai ∈R for any bi ∈Q. Here, R denotes the
field of real numbers. Next, choose nmore multivariate polynomials Pn+1,...,P2n over
Q with variables r1,...,rn,s1,...,s2n over Q.
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2. Applying Transformation: First choose a random permutation τ on the set of integers
{1,2,...,2n} and then apply it onPi to obtain the newpolynomialsXi such thatXi= Pτ (i)
for all i ∈ {1,2,...,2n}. Use these polynomials to define the vectors x= (X1,...,Xn)
and y= (Xn+1,...,X2n). Now t− and t ′−transformations are applied to obtain new
polynomials as follows:
(a) Define t−transformation: Choose a random vector l1= (`11,...,`1n)∈Qn known

as leader and then define two quasigroup bipermutations f1 and f2 by randomly
choosing non singular n×n matricesMi,Ni (i= 1,2) as follows:
f1(l1;x)= l1 ·M1+x ·N1; f2(x′;y)= x′ ·M2+y ·N2, (4)
where x′= f1(l1;x) and set y′= f2(x′;y).

(b) Define t ′−transformation: Use the vector y ′ and another random leader l2 ∈Qn

where l2 = (`21,...,`2n) to define new quasigroup bipermutations f3 and f4 by
randomly choosing non singular n×n matricesMi,Ni (i= 3,4) as follows:
f3(y′;l2)= y′ ·M3+ l2 ·N3, f4(x′;y

′′

)= x′ ·M4+y
′′

·N4, (5)
where y

′′

= f3(y′;l2). Again set x
′′

= f4(x′;y
′′

).
These two t− and t ′− transformations are necessary. Continuing this way, we can
define more pairs of t−,t ′− quasigroup bipermutations from y

′′

and x
′′

by choosing
new leaders li ∈Qn and n×n random matrices Ni,Mi in the same way as in the above
Eqs. (4) and (5).

3. The Public Key: Let the integer s≥ 0 be the number of additional transformations
applied. Note that the last transformation was accomplished by randomly chosen
leader l2+p and quasigroup bipermutations f3+s and f4+s applied on some n−tuples
of multivariate polynomials v and w. When the last applied transformation was a
t−transformation, we write f3+s(l2+s;v) :− (A1,...,An) and f4+s((A1,...,An);w) :−
(An+1,...,A2n). Whereas if the last applied transformation was a t ′−transformation,
we let f3+s(w;l2+s) :− (A1,...,An) and f4+s(v;(A1,...,An)) :− (An+1,...,A2n). Finally,
choose a random non singular matrix R over Q of order 2n×2n and compute the
public key, (Z1,...,Z2n), a new set of 2n polynomials as,
(Z1,...,Z2n)= (A1,...,A2n) ·R.
Clearly, each polynomial Zi= Zi(r1,...,rn,s1,...,s2n) is a multivariate polynomial in
the 3n variables.

4. The Private Key: The permutation τ , all the leaders li and all the matrices Mi, Ni, R,
which were used to generate the public key, constitute the private key. Here we remark
that all the leaders and the matrices are not necessarily required to be different but
there should be at least two different leaders and at least four different matrices for
defining the bipermutations.

Encryption
To encrypt a message M = (a1,...,an) inQn, first choose 2n random rational numbers
b1,...,b2n and then evaluate all the public polynomials Zi by setting rj = aj;j=1 ,...,n and
sk = bk; k=1 ,...,2n to compute the ciphertext c= (c1,...,c2n). That is, the components of
the ciphertext c are the rational numbers computed as follows:

c1 =Z1(a1,...,an,b1,...,b2n),
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c2 =Z2(a1,...,an,b1,...,b2n),

... ... ... ... (6)

c2n =Z2n(a1,...,an,b1,...,b2n).

Decryption
To decrypt a ciphertext c= (c1,...,c2n), the receiver will first compute the inverse of the
private matrix R and compute the 2n-tuple (e1,...,e2n)= (c1,...,c2n) ·R−1 and split
it into two halve to obtain C1 = (e1,...,en) and C2 = (en+1,...,e2n). Depending on
how the polynomials si’s were obtained, the receiver has to then apply either a u− or
u′−transformation to undo the effect of t− and t ′−transformations:
1. u−transformation: If the last transformationwas a t−transformation defined by a leader

l2+s and bipermutations f3+s and f4+s, then the receiver will apply a u−transformation
defined by the parasstrophes f (23)3+s and f (23)4+s to obtainM1,M2 ∈Qn as follows:
M1= f (23)3+s (l2+s;C1), M2= f (23)4+s (C1;C2).

2. u′−transformation: If the last transformation was a t ′−transformation defined
by a leader l2+s and bipermutations f3+s and f4+s, then the receiver will apply a
u− transformation defined by the parasstrophes f (13)3+s and f (13)4+s to obtain M1,M2 ∈Qn

as follows:
M1= f (13)3+s (C2;l2+s), M2= f (13)4+s (C1;C2).
Note that, we have to apply u− or u′−transformations in the reverse order (from

downward-up way). After each application of these transformations, we get n−tuples of
rational numbers. In the end, instead of polynomial tuples x and y we get n−tuples of
rational numbers p= (p1,...,pn) and q= (pn+1,...,p2n). Finally, the inverse permutation
τ−1 is applied on (p1,p2,...,p2n) to get

(b1= pτ−1(1),...,b2n= pτ−1(2n)).

Use the values of b1,...,bn in the system Eq. (3) to get polynomial system of n equations in
n unknowns. Solve the obtained system to get the required messageM = (a1,...,an)∈Qn.

Remark 2.2. The trapdoor function described above takes plaintext in the form of n−tuple
of rational numbers as input and returns the corresponding ciphertext in the form of
2n−tuple of rational numbers as output. For the further details we refer to Markovski,
Mileva & Dimitrova (2014).

CRYPTANALYSIS
The underlying hard problem in the above described multivariate trapdoor cryptosystem
is that a polynomial system of equations consisting of 2n equations in 3n unknowns has
infinite number of solutions. Therefore, finding the exact solution is not possible. For a
given ciphertext (c1,...,c2n) the attacker can make the following system using the public
key polynomials (s1,...,s2n).

Z1(r1,...,rn,s1,...,s2n) = c1,
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Z2(r1,...,rn,s1,...,s2n) = c2,

... ... ... (7)

Z2n(r1,...,rn,s1,...,s2n)= c2n.

The authors claim that, if the public key is produced by choosing suitable polynomials
then the above system (Eq. (7)) has infinitely many solutions for the unknowns r1,...,rn
and s1,...,s2n. Therefore, an attacker cannot find the actual plaintext in this way. They
proposed that using quadratic polynomials for n= 4, a much secure key can be generated.
Here, we try different attacks to check its security. First of all, it is obvious that the private
key consists of several matrices over the field of rational numbers and certain quasigroup
bipermutations which shows that the key space is infinite. So the brute force attack is not
possible even if the degree of the polynomials is known. Before we introduce the Gröbner
bases attack method on this trapdoor function, note that, an attacker is not interested in
all 3n unknowns. To recover the messageM = (a1,...,an) the attacker is only interested in
the values of unknowns ri (i= 1,...,n) containing the information. That is, to recover the
message we do not have to solve the entire system of 2n equations in 3n unknowns.

Gröbner bases method is based on the Buchberger’s algorithm (Buchberger, 1965) which
is used to calculate Gröbner bases G for the ideal I generated by the polynomials in the
system to be solved. Let F be a field and I ⊂ F[r1,...,rn] be an ideal generated by the
polynomials f1,...,fv ∈F[r1,...,rn]. Then a set G={g1,...,gk}⊂ I will be a Gröbner bases
for I with respect to some monomial ordering≺ if the ideal generated by the leading terms
of G is the same as the ideal generated by the leading terms of I . For a given monomial
ordering, every ideal has a Gröbner bases (for details, seeCox, Little & O’shea, 1998;Kreuzer
& Robbiano, 2000).

THE ATTACK MODEL
As stated earlier, the attacker is not interested in the infinitely many solutions of a system of
2n polynomial equations in 3n unknowns. One can exploit the structure of the multivariate
cryptosystem presented in Construction 2.1 to mount a Gröbner basis attack by extracting
a system of n polynomials depending only in in n unknowns r1,...,rn from the resulting
Gröbner basis.

To mount the proposed attack, set the working ring Q[r1,...,rn,s1,...,s2n] of 3n
indeterminates defined over the field of rational numbers Q. After getting the public key
polynomials Z1,Z2,...,Z2n and the ciphertext C = (c1,c2,...,c2n)∈Q2n, perform the steps
in the following attack for the cryptanalysis of the cryptosystem described in Section 2.
Attack 3.1. (Message Recovery Attack)
Input: Public key polynomials Z1,...,Z2n ∈Q[r1,...,rn,s1,...,s2n] and

Ciphertext C = (c1,c2,...,c2n)∈Q2n.
Output: A system of n polynomial equations in n unknowns.

Step 1. Create an ideal I ⊂Q[r1,...,rn,s1,...,s2n] as
I =〈Z1− c1,Z2− c2,...,Z2n− c2n〉.

Step 2. Compute the reduced Gröbner basis G={g1,...,gt }⊂Q[r1,...,rn,s1,...,s2n] of I .
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Step 3. Identify the polynomials G1,...,Gn ∈G depending only on the variables r1,...,rn. That
is, Gi= gj for some gj ∈G such that gj ∈Q[r1,...,rn].

Step 4. Solve the polynomial system of n equations {G1 = 0,...,Gn = 0} for the values of
r1,...,rn to recover the messageM .
Note that, the success of Attack heavily depends on the successful execution of Step 2 of

the attack. We have already noticed that the construction of public polynomials is based
on the constant multiples of the n secret polynomials P1,...,Pn depending only on the
variables r1,...,rn. Therefore, the resulting Gröbner basis will always contain polynomials
depending only on these variables.

We now illustrate Attack 3.1 by mounting it first on the instance of the cryptosystem for
n= 2 as given in [18, Section 4] and then for the case of n= 4.
Example 3.2 Using our notations and symbols given in Section Section 2, we use the
information presented in encryption example of Markovski, Mileva & Dimitrova (2014) to
mount the attack as follows. Here we have n= 2 and the resulting public key consists of
the following 4 polynomials Z1,...,Z4 in 3n= 6 unknowns (r1,r2,s1,s2,s3,s4).

Z1=−8+7r1+13r2−9s1−9s4+11r31 +9r
3
2 +9s

3
1+27r1s4+18r2s2

Z2=21−5r1+4r2+9s1−3s3+3s4−9r31 −6r
3
2 −6s

3
1−3s

4
2−18r1s4−3r2s1−12r2s2

Z3=−10−5r1+ r2+3s1+3s4+ r31 −3r
3
2 −3s

3
1−9r1s4−6r2s2

Z4=13−9r1−18r2+12s1+12s4−16r31 −12r
3
2 −12s

3
1−36r1s4−24r2s2.

This public key has been produced by the key generation process given in Section (2.2)
with the following polynomials:

P1 = r1−2r2,

P2 = r31 −2,

P3 = r31 + r
2
2 + s

3
1+3r1s4+2r2s2+ r1+ r2− s1− s4,

P4 =−s42− r2s1+2r1+ s1− s3− s4.

For the construction, the random permutation is taken as τ = (3,2,1,4). The secret
matrices involved in transformation Eqs. (4) and (5) are chosen as:

M1=

(
1 −1
2 −1

)
,M2=

(
−1 0
1 1

)
,M3=

(
−1 0
0 −1

)
,M4=

(
1 −2
1 1

)

N1=

(
0 3
1 0

)
,N2=

(
2 1
−1 −1

)
,N3=

(
3 5
1 2

)
,N4=

(
1 0
0 1

)
The leaders involved are l1= (−1,1) and l2= (2,−1). Finally, a the invertible matrix R of

order 2n= 4 is chosen as R=

(
2 −1 0 −3
1 2 −1 −1
0 3 2 0
−3 −1 −1 4

)
.

The message M = (1,1) ∈Q2 is encrypted by evaluating the public polynomials at
r1= 1, r2= 1 and 4 randomly chosen rational numbers s1= s2= s3= 0, s4= 1. That is, the
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resulting ciphertext (c1,c2,c3,c4) is computed as:

c1 = Z1(1,1,0,0,0,1)= 50

c2 = Z2(1,1,0,0,0,1)=−10

c3 = Z3(1,1,0,0,0,1)=−22

c4 = Z4(1,1,0,0,0,1)=−66

With this ciphertext C = (50,−10,−22,−66), we want to recover the corresponding
plaintext M = (1,1) without usin the secret key. For this purpose, we construct the
following system of equations by using the public key polynomials Z1,Z2,Z3 and Z4 and
the ciphertext.

Z1−50= 0,

Z2+10= 0,

Z3+22= 0,

Z4+66= 0.

To mount the Gröbner basis attack, let I = 〈Z1− c1,Z2+ c2,Z3− c3,Z4− c4〉 be the ideal
generated by the above system of multivariate polynomial system of equations.

We use the computer algebra system ApCoCoA (ApCoCoA Team, 2023) and the code
given in Appendix A for calculating the reduced Gröbner bases G for the ideal I . The set G
is found to contain the following four polynomials:

F1 = r1−2r2+1,

F2 = s31+
3
2
r22 +2r2s2+6r2s4+

9
4
r2− s1−4s4−

23
4
,

F3 = s42+ r2s1−4r2− s1+ s3+ s4+3,

F4 = r32 −
3
2
r22 +

3
4
r2−

1
4
.

Recall that the variables ri’s contain the information about the original message while si
are the redundant variables. In the above computed Gröbner basis, we are only interested
in polynomials F1 and F4 that are expressed in two required unknowns r1 and r2. Solving
F1 = 0 and F4 = 0 simultaneously, the only real solution of F4 = 0 is r2 = 1, and F1 = 0
then gives r1= 1. This shows that the plaintext M = (r1,r2)= (1,1) has been successfully
recovered without using the private key.

Remark 3.3. All computations are performed on the platform of Computer Algebra System
ApCoCoA (ApCoCoA Team, 2023). For this purpose the Key Generation Algorithm 2.2
and the Encryption Algorithm 2.3 are implemented in the setting of ApCoCoA as given
in Appendix A. The validity of the findings follows from the fact that our code generated
the same public polynomials P1,P2,P3,P4 and the ciphertext C = (c1,c2,c3,c4) as given in
Markovski, Mileva & Dimitrova (2014). Moreover, the computation of reduced Gröbner
basis of the ideal I has been performed by the built-in function ReducedGBasis(I)

available in ApCoCoA (ApCoCoA Team, 2023).

Ali et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1521 8/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1521


Example 3.4. For the case of n= 4, the multivariate ring over Q in 3n= 12 indeterminates
is Q[r1,...,r4,s1,...,s8]. As per requitremnt of the cryptosystem presented in Markovski,
Mileva & Dimitrova (2014) the following secret polynomials Pi 1≤ i≤ 8 are chosen
such that the polynomial system {P1 = 0,P2 = 0,P3 = 0,P4 = 0} has unique solution
(a1,a2,a3,a4)∈Q4.

P1 = 5r1+ r2+ r3+2r4+1

P2 =−r21 − r2− r4
P3 =−r1+3r2+2

P4 =−r1r3+2r1+ r2+1

P5 = r21 +5r
2
2 + s

2
1+2r2s2+3r1s4+ r1s5+ r2s5+ r1− r2− s4− s5

P6 = 2r1r3−2r2s1− r3s1− s22+ s2s3− s4s5+ s5s6+ r4s7− s
2
8+3s5− s7+ s8

P7 =−2r2s2+ r3s3+ s23−5s
2
4+ s5s6−2s5s7+ r1+4r4+2s1− s3− s5+ s7+ s8+2

P8 = r22 +5r
2
3 +5r1s1−3s

2
2−3r2s4+2r4s4+ s

2
4+ r2s6+ r3s7+ s

2
7+ s

2
8+ r2− r3+2r4− s5− s7

The random permutation is taken as τ = (3,5,1,6,8,2,4,7) and for the transformations
Eqs. (4) and (5), the secret matrices are taken as:

M1=


1 −1 2 1
2 −1 3 1
1 0 0 −1
2 1 0 0

,M2=


−1 0 0 0
1 1 1 2
0 1 −1 0
0 0 1 2

,M3=


−1 0 3 4
0 −1 0 −3
2 1 3 1
1 0 0 1

,M4=


1 0 0 0
0 1 0 1
0 0 −1 0
0 0 0 1

.

N1=


1 3 0 3
1 0 1 0
2 1 −1 2
3 0 0 1

,N2=


2 1 1 −1
−1 −1 3 4
1 0 −1 0
2 3 5 1

,N3=


3 5 1 −1
1 2 1 0
0 0 2 0
2 0 3 0

,N4=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

.
The leaders l1,l2 and random secret matrix R are

l1= (−1,1,−1,1),l2= (2,−1,−2,2), and R=



2 −1 0 −3 1 0 −1 3
1 2 −1 −1 1 5 0 0
0 3 2 0 0 0 3 2
−3 −1 −1 4 4 2 1 −1
1 −1 2 −2 3 1 4 5
1 4 5 −1 0 0 0 −2
0 1 0 −3 −3 −1 2 0
1 1 −1 −1 1 −1 2 −1


.

The resulting public polynomials are:

Z1=−18r21 +42r
2
2 +88r1r3−65r

2
3 −65r1s1−88r2s1−44r3s1+11s

2
1−20r2s2

−5s22+21r3s3+44s2s3+21s
2
3+33r1s4+39r2s4−26r4s4−118s

2
4+11r1s5+11r2s5−44s4s5

−13r2s6+65s5s6−13r3s7+44r4s7−42s5s7−13s27−57s
2
8+158r1+42r2+67r3+103r4+42s1

−21s3−11s4+113s5−10s7+65s8+187,

Z2=−64r21 −152r
2
2 −72r1r3+190r

2
3 +190r1s1+72r2s1+36r3s1−38s

2
1−232r2s2−78s

2
2
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+78r3s3−36s2s3+78s23−114r1s4−114r2s4+76r4s4−352s
2
4−38r1s5−38r2s5+36s4s5+38r2s6

+42s5s6+38r3s7−36r4s7−156s5s7+38s27+74s
2
8+121r1+287r2−8r3+422r4+156s1

−78s3+38s4−186s5+76s7+42s8+341,

Z3=−46r21 −34r
2
2 +46r1r3+30r

2
3 +30r1s1−46r2s1−23r3s1−8s

2
1−132r2s2−41s

2
2+58r3s3

+23s2s3+58s23−24r1s4−18r2s4+12r4s4−284s
2
4−8r1s5−8r2s5−23s4s5+6r2s6+81s5s6

+6r3s7+23r4s7−116s5s7+6s27−17s
2
8+207r1+193r2+60r3+306r4+116s1−58s3+8s4

+13s5+29s7+81s8+347,

Z4= 63r21 −7r
2
2 −102r1r3−35r

2
3 −35r1s1+102r2s1+51r3s1+194r2s2+72s

2
2−97r3s3−51s2s3

−97s23+21r2s4−14r4s4+478s
2
4+51s4s5−7r2s6−148s5s6−7r3s7−51r4s7+194s5s7−7s

2
7

+44s28−361r1+362r2−106r3−513r4−194s1+97s3−49s5−39s7−148s8−616,

Z5=−87r21 −141r
2
2 +18r1r3−30r

2
3 −30r1s1−18r2s1−9r3s1−27s

2
1−54r2s2+9s

2
2+9s2s3

−81r1s4+18r2s4−12r4s4−6s24−27r1s5−27r2s5−9s4s5−6r2s6+9s5s6−6r3s7+9r4s7
−6s27−15s

2
8+255r1+441r2+86r3+92r4+27s4+60s5−3s7+9s8+386,

Z6=−44r21 −70r
2
2 +22r1r3−25r

2
3 −25r1s1−22r2s1−11r3s1−13s

2
1−32r2s2+4s

2
2+3r3s3

+11s2s3+3s23−39r1s4+15r2s4−10r4s4−20s
2
4−13r1s5−13r2s5−11s4s5−5r2s6+14s5s6

−5r3s7+11r4s7−6s5s7−5s27−16s
2
8+138r1+186r2+53r3+57r4+6s1−3s3+13s4+48s5

−3s7+14s8+208,

Z7=−142r21 −248r
2
2 −76r1r3+285r

2
3 +285r1s1+76r2s1+38r3s1−61s

2
1−416r2s2−133s

2
2

+147r3s3−38s2s3+147s23−183r1s4−171r2s4+114r4s4−678s
2
4−61r1s5−61r2s5+38s4s5

+57r2s6+109s5s6+57r3s7−38r4s7−294s5s7+57s27+95s
2
8+404r1+875r2+55r3+845r4

+294s1−147s3+61s4−257s5+128s7+109s8+929,

Z8=−79r21 +5r
2
2 +136r1r3−136r2s1−68r3s1+ s

2
1−198r2s2−68s

2
2+100r3s3+68s2s3

+100s23+3r1s4−500s
2
4+ r1s5+ r2s5−68s4s5+168s5s6+68r4s7−200s5s7−68s

2
8+479r1

+557r2+151r3+566r4+200s1−100s3− s4+103s5+32s7+168s8+793.

The messageM = (15,10,2,3)∈Q4 is encrypted by evaluating the public key polynomials
at r1 = 15,r2 = 10,r3 = 2,r4 = 3 and 8 randomly chosen rational numbers s1 = 0,s2 =
1,s3 = 2,s4 = 0,s5 =−10,s6 = 2,s7 = 5, s8 = 1. The encryption scheme ?? resulted in the
ciphertext (c1,c2,...,c8) as given below:

c1 = Z1(15,10,2,3,0,1,2,0,−10,2,5,1)= 3258

c2 = Z2(15,10,2,3,0,1,2,0,−10,2,5,1)=−6360

c3 = Z3(15,10,2,3,0,1,2,0,−10,2,5,1)= 585
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c4 = Z4(15,10,2,3,0,1,2,0,−10,2,5,1)=−8226

c5 = Z4(15,10,2,3,0,1,2,0,−10,2,5,1)=−19001

c6 = Z4(15,10,2,3,0,1,2,0,−10,2,5,1)=−9398

c7 = Z4(15,10,2,3,0,1,2,0,−10,2,5,1)=−9244

c8 = Z4(15,10,2,3,0,1,2,0,−10,2,5,1)= 8465.

With this ciphertext C = (3258,−6360,585,−8226,−19001,−9398,−9244,8465), we
want to recover the corresponding plaintextM = (15,10,2,3) without using the secret
key. For this purpose, we construct the following system of equations by using the public
key polynomials Z1,Z2,...,Z8 and the ciphertext C .

Z1−3258= 0, Z2+6360= 0, Z3−585= 0, Z4+8226= 0,

Z5+19001= 0, Z6+9398= 0, Z7+9244= 0, Z8−8465= 0.

To mount Attack 3.1, let I = 〈Z1− c1,Z2+ c2,...,Z8− c8〉 be the ideal generated by
the above system of multivariate polynomial equations. Using the computer algebra
system (ApCoCoA Team, 2023), the reduced Gröbner basis G of the ideal I is computed.
The computed Gröbner basis G contains a total of 34 multivariate polynomials and of
these polynomials, the following five polynomials are depending only on the variables of
interest, that is, r1,...,r4.

G1 = r23 +
8971
24

r3−
15
4
r4−

2221
3
,

G2 = r1+
3
16

r3+
3
8
r4−

33
2
,

G3 = r2+
1
16

r3+
1
8
r4−

21
2
,

G4 = r3r4−
3713
16

r3−
11
24

r4+
919
2
,

G5 = r24 +
27121
288

r3−
11575
144

r4+
1577
36

.

To recover the messageM ∈Q4, solve the system

{G1= 0,G2= 0,G3= 0,G4= 0,G5= 0}. (8)

Label the variables r1,r2,r3, and r4 by x,y,z, and w respectively and then use online
polynomial system solver by Wolfram (available at https://www.wolframalpha.com/
calculators/equation-solver-calculator). The only rational solution of the polynomial
system Eq. (8) is given below:

r1= x = 15, r2= y = 10, r3= z = 2, and r4=w = 3.

Hence, the messageM = (15,10,2,3) is successfully recovered by mounting the attack.

Remark 3.5.We have observed that the proposed cryptosystem is vulnerable to the
Gröbner bases attack. The bipermutations used to produce the public key are linear in
which the polynomials are not multiplied with each other. This can be the weakest part of
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its construction. Because using linear bipermutations the Gröbner bases will contain the
polynomials separately in the variables as were the starting polynomials. Among these, the
polynomials in informative variables can be solved to get plaintext. The main cost in this
attack is the Gröbner bases computation.

COMPLEXITY ANALYSIS
As stated earlier that the success of Attack 3.1, depends on the computation of Gröbner
basis of the ideal of interest. It is also known that the upper bound for the complexity of
finding the solutions of a multivariate polynomial system with the help of the computa-
tion of Gröbner basis is a function of the degree of regularity dreg, the maximum degree
observed during the process of computation. In the worst case scenario, this complexity
is known to be doubly exponential in number of variables n, for details see (Bardet,
Faugère & Salvy, 2015) and the references therein. This means that, in general or random
setting, finding Gröbner basis is not an easy job. However, in the present scenario, to
leave a trapdoor for the multivariate polynomial cryptosystem under consideration,
the polynomials {P1,...,Pn} are special in the sense that the system of equations Eq. (3)
should has a unique solution (r1,...,rn)= (a1,...,an)∈Qn for all choices of the constants
bi’s.

Moreover, for the secure instances of the cryptosystem, the authors suggested that
the value of n= 4 is safe to choose . Therefore, in any such instance, there will be 2n= 8
polynomials in 3n = 12 variables r1,...,r4,z1,...,z8. Out of these 8 polynomials, four
polynomials P1,...,P4 are depending only on 4 variables r1,...,r4. For the required
trapdoor in the construction presented in Construction 2.1, one has to start by choosing
these four polynomials in such a way that the system

P1(r1,...,r4)= b1,

P2(r1,...,r4)= b2,

P3(r1,...,r4)= b3, (9)

P4(r1,...,r4)= b4,

has a unique solution (r1,r2,r3,r4)= (a1,a2,a3,a4) ∈Q4 for all choices of the constants
b1,b2,b3 and b4. Later on, 4 more polynomials are constructed by involving all the 12
variables, making a system of 8 equations in 12 unknowns. The public key polynomials
{Z1,...,Z3n} are then obtained by some random linear combinations of the polynomials
{P1,...,P2n} by using bipermutations Eqs. (4) and (5). In the entire construction, only
n variables r1,...,rn are basic (or informative) and rest of the 2n variables s1,...,s2n are
redundant.

The requirement of the unique solution of the system Eq. (9) makes the system Eq. (7)
of 2n polynomials quite special rather than a general and hence the worst case scenario
of the complexity of Gröbner basis computation is not applicable here. Moreover, we
are not interested in the infinitely many solutions of the system Eq. (7) containing
the values of the redundant unknowns s1,...,s2n but only the unknowns r1,...,rn are
required to recover the messageM . It, therefore, follows that there is no need to compute
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the complete Gröbner basis of the ideal I = 〈Z1 − c1,Z2 + c2,...,Z8 − c8〉. One can
terminate the Gröbner basis computation process when sufficient number of polynomials
depending only on the basic variables are obtained. Again, the worst-case estimate of the
complexity is not applicable.

This can also be achieved with the help of the well known application of the Gröbner
basis, namely, the elimination theory. That is, just calculate the elimination ideal I ∩
Q[r1,...,r4] and then solve the system to recover the message.

Several instances of the multivariate cryptosystem as illustrated in Example 3.4 are
computed for n = 4 and the message was successfully recovered by mounting Attack
3.1 and the Encryption Code (Appendix A) on the Dell laptop Latitude 3520 (11th Gen

Intel(R) Core(TM) i5-1135G7 2.40 GHz, 8.0 GB Ram). For the computations
involved in Example 3.4, the CPU time was recorded by ApCoCoA (ApCoCoA Team,
2023) as 7.2 sec. for the complete Gröbner basis computation. On the other hand,
the total CPU time recorded as 285 millisecond by ApCoCoA in the computation of
elimination ideal J = I ∩Q[r1,r2,r3,r4] and then computation of Gröbner basis of J .
In many other instances with the parameter n= 4, the recorded time for the reduced
Gröbner basis computation was within 2 sec. Therefore, the multivariate cryptosystem
presented in Section Construction 2.1 is not secure against Gröbner basis Attack.

CONCLUSION AND FUTURE WORK
In this article, we studied the security of the multivariate polynomial trapdoor public
key cryptosystem proposed byMarkovski, Mileva & Dimitrova (2014). We found that
although the public key consists of less polynomials than the number of variables
which will result in infinite many solutions of the polynomial system, even then the
cryptosystem does not seem to be secure. One can mount a Gröbner bases attack against
the recommended parameter n = 2 and nonlinear multivariate polynomial system
(Eq. (3)) to recover the message without the knowledge of the secret key. The attack
successfully recovers the original message that was encrypted by this cryptosystem in
Section 4 ofMarkovski, Mileva & Dimitrova (2014). Moreover, the successful cryptanalysis
of several other instances of this cryptosystem reveals that this cryptosystem is vulnerable
to Gröbner bases attack. Moreover, the starting step in the key generation algorithms is
to choose suitable polynomials in a way that the system (Eq. (3)) should have a unique
solution. Although a linear system to meet this requirement can be constructed trivially
but the construction of a nonlinear system of polynomial equations for n≥ 4 is not an
easy task. Therefore, a concrete way should be provided to formulate a system having
unique real solution to generate a strong public key; that is, a public key to produce a
ciphertext which is secure against Gröbner bases attack. Hence, we conclude that there
are many security flaws in the proposed multivariate cryptosystem.
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APPENDIX A. KEY GENERATION AND ENCRYPTION CODE
The following code iswritten inCoCoL language for the computer algebra systemApCoCoA
(ApCoCoA Team, 2023). In the code below, the parameters are as stated below:

Parameter Description with reference to Section Construction 2.1.
N The value of n taken as 2 or 4
PolyYs The seceret polynomials P1,...,P2n
Perm The random permutation τ
MatAs The matricesM1,...,M4

MatBs The matrices N1,...,N4

Leads The leaders l1 and l2
Rmat The random matrix R of order 2n×2n
PlainTxtZ The 3n-tuple containing the message and the random 2n values of

s1,...,s2n

Define SBIMPK(N, PolyYs, Perm, MatAs, MatBs, Leads, Rmat, PlainTxtZ)
PolyXs := [];
For I := 1 To 2*N Do
Append(PolyXs, PolyYs[Perm[I]]);
EndFor;
Vx := [];Vy := [];
For I := 1 To N Do
Append(Vx, PolyXs[I]);
Append(Vy, PolyXs[I+N]);
EndFor;
Vx :=Mat([Vx]);Vy :=Mat([Vy]);
Fxy := [];
For I := 1 To 4 Do
Append(Fxy, Vx*MatAs[I]+Vy*MatBs[I]);
EndFor;
—1st e-transformation use L1, Vx, and Vy to get Xd, Yd
F1L1Vx := Leads[1]*MatAs[1]+Vx*MatBs[1]; –called it x-dash to use in F2
F2f1Vx := F1L1Vx*MatAs[2]+Vy*MatBs[2]; –Called it y-dash to use it in F3
—2nd e’-transformation use L2, x-dash, and y-dash
F3f2L2 := F2f1Vx*MatAs[3]+Leads[2]*MatBs[3]; –Called it y-ddash
F4f1f3 := F1L1Vx*MatAs[4]+F3f2L2*MatBs[4]; –called it x-ddash
Zmat := []; –row vectro Z
For I := 1 To N Do
Append(Zmat, F4f1f3[1][I]);
EndFor;
For I := 1 To N Do
Append(Zmat, F3f2L2[1][I]);
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EndFor;
Zmat :=Mat([Zmat]);
PU := List(Zmat*Rmat);
Cipher := Eval(PU, PlainTxtZ);
Return (PU[1],Cipher[1]);

EndDefine;
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