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ABSTRACT
In recent years, neural networks have made pioneering achievements in the field of
medical imaging. In particular, deep neural networks based on U-shaped structures
are widely used in different medical image segmentation tasks. In order to improve
the early diagnosis and clinical decision-making system of lung diseases, it has
become a key step to use the neural network for lung segmentation to assist in
positioning and observing the shape. There is still the problem of low precision. For
the sake of achieving better segmentation accuracy, an optimized pure Transformer
U-shaped segmentation is proposed in this article. The optimization segmentation
network adopts the method of adding skip connections and performing special
splicing processing, which reduces the information loss in the encoding process and
increases the information in the decoding process, so as to achieve the purpose of
improving the segmentation accuracy. The final experiment shows that our
improved network achieves 97.86% accuracy in segmentation of the “Chest Xray
Masks and Labels” dataset, which is better than the full convolutional network or the
combination of Transformer and convolution.
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INTRODUCTION
With the development of deep learning, computer vision technology has made immense
splash in the field of medical image analysis. Medical image segmentation has become an
important branch of medical image analysis (Chen et al., 2021; Li et al., 2022, 2023; Yue
et al., 2022). Stable and highly accurate medical image segmentation can greatly improve
the clinical speed and diagnostic accuracy of doctors.

Technological developments have led to an increased focus on more comprehensive
anatomical models (Simpson et al., 2019), which has led to the development of models for
organ analysis. In the context of organ analysis, the brain and abdomen have emerged as
the most popular areas of medical image analysis. Rapid advances in imaging techniques
and deep learning techniques have resulted in numerous datasets for different applications
in different organs. These data sets can be used to train a dedicated medical segmentation
network model that can segment important organs, tissues, or lesions in the image and
extract the segmented object features. Anatomical models can be constrained and labeled
with contextual information from stable abdominal structures (e.g., liver, spleen, kidneys,
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stomach, pleural effusion) as well as the pelvic cavity (colon, prostate) (Heller et al., 2021;
Ma et al., 2022, 2021). In addition, there are many studies on human tumors, such as brain
tumors, abdominal tumors, head and neck tumors, breast tumors, etc. (Heller et al., 2022;
Bilic et al., 2023; Clark et al., 2013). The latest ones, such as Yuan et al. (2023), have an
average segmentation accuracy of 77.97% and 69.04% respectively in pancreatic tumors
and liver tumors. Accurate segmentation is crucial for clinical applications, including
disease diagnosis, treatment planning, and disease progression detection.

At the present stage, medical image segmentation technology mainly applies the U-
shaped structure of the full convolutional neural network (FCNN) (Long, Shelhamer &
Darrell, 2015). The classical U-shaped structure network consists of a symmetric encoder-
decoder with skip connections, also known as U-Net (Guan et al., 2020; He et al., 2016). In
the encoder, numerous convolutional and downsampling layer combinations are used to
extract deep features with large sensory fields at different scales. Then, the decoder up-
samples the extracted deep features to the resolution of the initial input image and fuses
them with the different scale features in the encoder introduced by the skip connections,
achieving the goal of improving the prediction accuracy by reducing the information loss
in the downsampling process. Such an efficient and simple structural design has enabled
U-Net to achieve great success in the field of medical images. Continuing this design idea, a
series of algorithms such as Res-Unet (Xiao et al., 2018), R2U-Net (Alom et al., 2018), U-
Net++ (Zhou et al., 2020), and UNet3+ (Huang et al., 2020) have been developed for 2D
medical image segmentation tasks (Litjens et al., 2017). Numerous convolutional neural
network (CNN) based methods have demonstrated that CNNs are highly capable at
segmentation tasks.

Currently, CNN-based segmentation methods (Girshick et al., 2015; Bo et al., 2017; Lee
et al., 2017) have achieved excellent results in medical image tasks, but they still cannot
fully satisfy the demand for high accuracy in medical image segmentation tasks. In
addition, the limitations of convolutional operations make it difficult for the CNN
approach to learn explicit global and long-range semantic information. As Transformer
has become the dominant network in the field of natural language processing (NLP),
researchers have tried to apply it to semantic segmentation tasks, and the local operations
of convolution and the global operations of Transformer operations well complement each
other (Vaswani et al., 2017). U-shaped segmentation networks combining CNN and
Transformer, such as TransUNet (Chen et al., 2021), emerged to exploit the advantages of
each for hybrid coding, where the powerful global capability of Transformer and the ability
of CNN to focus on image details at low resolution to overcome the problem of long-range
contextual interactions improved the segmentation accuracy. In Liu et al. (2021), a new
vision transformer called Swin-Transformer is proposed as a generic backbone to perform
image recognition tasks. Inspired by Swin Transformer, researchers then proposed Swin-
Unet (Cao et al., 2021), which replaced the original CNN-based composition of encoders
and decoders with the Swin Transformer block to obtain a U-shaped segmentation
network with pure Transformer.

Swin-Unet has high precision for medical segmentation tasks. Although skipping
connections is used to reduce the loss of spatial information in the downsampling process,
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a large amount of information loss will still affect segmentation accuracy. In order to deal
with this problem, an improved Swin-Unet is proposed in this article. The improved U-
shaped network consists of encoders, decoders, and skip connections, as well as our
addition of multi-scale skip connections and special splicing modules. By adding multi-
scale skip connections, features from different scales of the encoding process and features
from the sampling process on the decoder are introduced for special splicing and fusion,
thus obtaining feature maps that aggregate more information and perform segmentation
prediction. Experiments conducted on the lung dataset show improved network
segmentation prediction accuracy. Specifically, our contributions are summarized as: (1)
the addition of asymmetric skip connections in the U-shaped network, which capture
more spatial information. (2) The creation of a new splicing and fusion module that is able
to fuse feature information from adjacent scales in the encoder and upsample features in
the decoder thus achieves the purpose of increasing the prediction accuracy of
segmentation.

RELATED WORK
CNN-based model
Early medical image segmentation was mainly based on traditional machine learning
techniques (Mcinerney & Terzopoulos, 1996; Boykov & Funka-Lea, 2006; Staal et al., 2004)
such as edge detection-based segmentation algorithms and aggregation-based
segmentation algorithms. With the continuous development of CNN, U-Net, based on the
FCN network (Long, Shelhamer & Darrell, 2015), was proposed to achieve a big leap in the
overall accuracy of medical image segmentation. Due to the concise and efficient U-shaped
structure, various U-based methods have been generated, such as U-Net++ and UNet3+.
And it has been extended from 2D segmentation to 3D segmentation, such as in 3D-Unet
(Kafali et al., 2021), Dense-U-Net (Wu et al., 2021), and KiU-Net (Valanarasu et al., 2020).
At this stage, CNN-based methods have achieved great success in the field of medical
image segmentation.

Transformer to complement CNNs
U-shaped structures have become the de facto standard in various medical image
segmentation tasks, and researchers have introduced attention mechanisms into CNN
networks in order to improve network performance. In Chen et al. (2021), the self-
attention mechanism is integrated into the U-shaped structure for medical image
segmentation. The researchers combined CNN and Transformer, where the Transformer
encodes the feature maps from CNN as the input sequence for extracting the context, and
the encoder still uses the convolutional network to upsample the encoded features. The
combination of the two enhances finer details and improves segmentation accuracy.
However, these are still CNN-based methods.

Vision transformers
The Transformer was proposed in Vaswani et al. (2017) to be applied to machine
translation tasks (Nie et al., 2017). The powerful global modeling capabilities of the
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Transformer, together with its excellent transferability to downstream tasks under large-
scale pre-training, have made it a great success in the fields of machine translation and
natural language processing (NLP) (Chen et al., 2018). Driven by the great success of the
Transformer, researchers have proposed a novel Vision Transformer (VIT) (Dosovitskiy
et al., 2022) that interprets images as a series of patches and processes them with the
standard Transformer encoder used in NLP, which has achieved surprising speed and
accuracy in image detection and segmentation tasks. In contrast to CNN-based models,
VIT has the disadvantage that it requires pre-training processing on large datasets.
Recently, several works have been done on VIT to alleviate the difficulties in its training
process. It is worth noting that an efficient vision transformer with hierarchy was proposed
in Ze et al. (2021) as a new vision backbone, called Swin Transfomer. Based on the
hierarchy-shifted window approach, Swin Transformer has achieved excellent
performance on various vision tasks. After some researchers built a U-shaped encoder-
decoder segmentation network using Swin Transformer as a backbone but found that it
had shortcomings, we tried to improve it and build a new medical semantic segmentation
network with better performance.

METHODS
Overall architecture
The overall structure mentioned in this article is as shown in the Fig. 1. This design consists
of encoder, decoder, and skip connections. The Swin Transformer is the basic unit block.
For the encoder, the medical image is segmented into non-overlapping 4� 4 patches (Li
et al., 2023) of varying sizes by a patch splitting module. In addition, a linear embedding
layer maps the raw-valued features to arbitrary dimensions. The mapped output patch
vector generates a hierarchical feature representation through several Swin Transformer
blocks and patch merging layers. In brief, the patch merging layer is applied to
downsample and increase dimensions, and the Swin Transformer Block is responsible for
learning feature representation. For the skip connections, inspired by U-Net++ (Zhou
et al., 2020), the number of connections is increased on the basis of the original skip
connection. The encoder is composed of the Swin Transformer, the patch expanding layer,
and the patch Splicing layer. The extracted context information is multi-scale fused by the
patch splicing module through skip connections to supplement the spatial information loss
in the down-sampling process. The patch expanding layer is designed to sample and
reduce dimensions to obtain a higher resolution feature map. In the last patch expanding
layer, the feature map is recovered to the input image pixel size by quadruple upsampling.
Finally, the obtained features are applied to the linear mapping layer to output pixel-level
segmentation prediction. The role of each module is explained in detail below.

Swin Transformer block
Compared with the traditional multi-head self-attention (MSA) module in the NLP
network, the Swin Transfomer block uses more advanced shifted window-based multi-
head attention (W-MSA and SW-MSA) modules. Non-overlapping windows and cross-
window connections are conducive to more effective modeling. As shown in Fig. 2, two
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consecutive Swin Transformer blocks are shown. Each Swin Transformer block consists of
a multi-attention module based on a mobile window, a two-layer MLP with GELU
nonlinear activation, and two LayerNorm (LN) layers that are normalized.

The two attention modules W-MSA and SW-MSA in the block use different window
configurations, and based on this window mechanism, the consecutive Swin Transformer
block can be represented as:
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Figure 1 The overall structure of the optimized model: the left half is the encoder, the right half is the
decoder, and the middle is composed of multiple skip connections. Image credit: “Chest Xray Masks
and Labels” dataset (https://www.kaggle.com/datasets/nikhilpandey360/chest-xray-masks-and-labels);
License: CC0: Public Domain. Full-size DOI: 10.7717/peerj-cs.1515/fig-1
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ẑl ¼ W �MSA LN zl�1
� �� �þ zl�1 (1)

zl ¼ MLP LN ẑl
� �� �

þ ẑl (2)

ẑlþ1 ¼ SW �MSA LN zl
� �� �þ zl (3)

zlþ1 ¼ MLP LN ẑlþ1
� �� �

þ ẑlþ1 (4)

Similar to the traditional self-attention calculation method, where ẑl and zl represent the
output of the first W-MSA module and the MLP module, respectively.

AttentionðQ;K;VÞ ¼ SoftMax
QKTffiffiffi

d
p þ B

� �
V (5)

where Q;K;V 2 RM2�d respectively represents matrix query, matrix key and value. M
represents the number of patches in a window and d represents the dimensionality of
query and key. Since the relative positions of the axes are at [−M+1, M−1], Therefore the
value of B comes from the bias matrix B̂ 2 Rð2M�1Þ�ð2Mþ1Þ.

Encoder
In the encoder, the original image being partitioned and processed is mapped to C
dimension, and then the data input with C dimension pixel size of H=4 �W=4 tokens is

LN
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1lz
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Figure 2 Swin Transformer block (W-MSA is a multi-head self-attention module with conventional
configuration, and SW-MSA is a multi-head self-attention module based on shifted window
configuration). Full-size DOI: 10.7717/peerj-cs.1515/fig-2
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fed to two consecutive Swin Transformer blocks for feature learning with feature size and
resolution kept constant before and after processing. At the same time, to produce the
layered representation, each patch merging layer will perform 2 × down-sampling to
reduce the number of tokens and increase the feature dimension to 2 × the original
dimension. The above operation is repeated to obtain layered feature maps at different
scales similar to those in convolutional networks.

Patch merging layer: To reduce the resolution and increase the dimensionality of the
features, the input patches are decomposed into four parts and then merged together to
achieve a two-fold downsampling operation and a four-fold increase in dimensionality.
Since the dimension is increased to four times the original dimension, a linear layer is
applied to unify the feature dimension to two times the original dimension.

Decoder
Similar to the encoder, the decoder is also built based on the Swin Transformer block. To
restore the feature map to the input image size and dimensions, a patch expanding layer is
applied to upsample the extracted features, as opposed to the patch merging layer in the
encoder. With the patch expanding layer operation, the feature map is reconstructed to a
higher resolution feature map (2 × upsampling) and the feature dimension is reduced to
half of the original dimension.

Patch expanding layer: In a patch expanding layer, first a linear layer increases the
input feature dimension to twice the input dimension. Immediately afterwards, using
rearrangement and image transformation operations, the feature resolution is expanded to
twice the original input pixels and the feature dimension is reduced to one-half of the input
dimension. With the above processing, the feature dimension becomes one-half of the
initial dimension and the feature size is expanded to twice the original input pixels.

Patch splicing layer: The patch splicing layer is designed to fuse the multiscale features
of the encoding process with the upsample features. This is shown in Fig. 3. In the first two
patch splicing layers, the information (X1 and X2) of the two scales in the encoding process
is concatenated, and the feature dimension is increased to twice the original input
dimension. Subsequently, a linear layer is applied to reduce the dimensionality to the
original input feature dimension. Then the same operation is performed with the
upsampled feature information X3 to obtain the fused output feature Y . The last patch
splicing layer directly fuses the two sets of feature information using a single operation.

If X1, X2, and X3 are spliced together directly after the fully connected layer, the number
of parameters does not simply increase linearly but exponentially, which results in a long
model operation time. Therefore, in this module, in order to reduce the number of
parameters and improve the efficiency of information fusion, the design of the fully
connected layer is adopted after splicing in stages, and the information of three different
scales can be fused by adding a small number of parameters. After the module processing,
it connects the shallow features with the deep features to increase the feature information
in the decoding process, thus achieving the purpose of improving the segmentation
accuracy.
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Skip connection
The skip connection plays a key role in the U-shaped segmentation network by combining
shallow, low-level, fine-grained feature maps from the encoder sub-network with deep,
semantic, coarse-grained feature maps from the decoder sub-network. Connecting the
different features through skip connections reduces the loss of spatial information due to
downsampling.

EXPERIMENTS
Datasets
“Chest Xray Masks and Labels” dataset: This dataset (Jaeger et al., 2014; Candemir et al.,
2014) contains the X-ray masks of chest and the corresponding labels; there are 704 images
divided as training set and six images divided as test set. The average Dice Similarity
Coefficient (DSC) and average Hausdorff Distance (HD) is used as evaluation metric to
evaluate our model for lung segmentation in chest.

Concat

X1 X2

Linear

Concat

X3

Linear

Y

2C

C C

C

2C

C

C

Figure 3 Patch splicing layer. Full-size DOI: 10.7717/peerj-cs.1515/fig-3
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Implementation datails
The model was implemented based on Python 3.9.7 and PyTorch 1.11.0. For all training
image cases, data augmentation was used to increase data diversity. The input image size is
set to 224 × 224, and the patch size is set to 4. We train the model on a NVIDIA Geforce
RTX 3060 Laptop GPU with 6 GB memory. The SGD optimizer with momentum 0.9 and
weight decay 1e−4 settings is applied to optimize the regression propagation of our model.
Due to the small number of images in the medical image dataset and the unavailability of
pre-training on a large dataset, the swin-tiny-patch4-window7-224 weights from Swin
Transformer are introduced into the network for subsequent training using Transfer
learning.

Experiment results on Chest X-ray Masks and labels dataset
The segmentation results using different networks on the “Chest Xray Masks and Labels”
test set are shown in Table 1. Our optimized algorithm achieves 97.86% performance on
the DSC evaluation index. Compared with U-Net based on CNN neural networks,
TransU-Net combined with CNN network and Transformer, the accuracy of SwinU-net
before optimization is 0.43%, 0.1%, 0.63%. That is to say, our method achieves a better
segmentation prediction effect. After comparison, it can be proved that the design with the
special fusion module added by our design helps to improve the accuracy. The method of
two fusions from the encoding process can better learn the global and long-distance
semantic interaction information so as to achieve a better split effect.

The segmented images automatically output through the network can visualize the
shape of the lung and its position in the chest cavity, as shown in Fig. 4, which can assist
doctors in the diagnosis of lung defects and greatly improve the efficiency and accuracy of
diagnosis.

Table 1 Comparison on the “Chest Xray Masks and Labels” dataset (average dice score % and
average hausdorff distance in mm, and dice score % for each organ).

Framework Average

Encoder Decoder (DSC)" (HD)#
R50 U-Neta 97.43 –

CNN FCNb 97.66 –

R50 Deeplab-V3c 97.75 –

R50-Vit TransUNetd 97.76 4.77

Swin-Transformer SwinU-nete 97.23 4.53

Our model 97.86 4.37

Notes:
a U-Net (Xiao et al., 2018).
b FCN (Long, Shelhamer & Darrell, 2015).
c Deeplab-V3 (Chen et al., 2017).
d TransUnet (Chen et al., 2021).
e SWinU-net (Cao et al., 2021).
DSC, Dice Similarity Coefficient; HD, Hausdorff Distance.
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Experiment results on COVID-19 CT scan lesion segmentation dataset
Due to the small number of samples in the “Chest Xray Masks and Labels” dataset, training
was performed in the COVID-19 CT scan lesion segmentation dataset as a supplement to
perform medical image segmentation. The dataset contains 2,729 samples, and a 9:1 ratio
was used to divide the training and validation sets. The results in Table 2 show that our
network still achieves excellent performance with an accuracy of 86.34%, which also
indicates the good generalization ability and robustness of our method. Our network can
perfectly perform the segmentation task in the irregular and complex COVID-19 CT and
obtain suitable segmented images for review and identification by professionals.

Ablation experiments on the “Chest Xray Masks and Labels” dataset
Because the data set authors set too few test samples, the test error may be too large.
Therefore, the data set was adjusted, and the samples in the original training set were re-
divided according to the ratio of 9:1 for the next stage of the ablation experiment.

From the results of the ablation experiments in Table 3, it can be concluded that adding
skip connections can help improve the accuracy, and using the special splicing module we
built can slightly improve the segmentation accuracy, but using the special splicing can

Xray images

Manual label

Network prediction

Figure 4 The segmentation results of the optimized model on the “Chest Xray Masks and Labels”
dataset. Image credit: “Chest Xray Masks and Labels” dataset (https://www.kaggle.com/datasets/
nikhilpandey360/chest-xray-masks-and-labels); License: CC0: Public Domain.

Full-size DOI: 10.7717/peerj-cs.1515/fig-4

Table 2 Comparison on COVID-19 CT scan lesion segmentation dataset (average dice score % and
average hausdorff distance in mm, and dice score % for each organ).

Framework Average

Encoder Decoder DSC" HD#
R50-Vit TransUNet 85.50 16.53

Swin-Transformer SwinU-net 82.18 20.71

Our model 86.34 13.75

Note:
DSC, Dice Similarity Coefficient; HD, Hausdorff Distance.
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reduce model parameters. Due to the full connection operation used when splicing skip-
connected data, the number of direct splicing parameters increases exponentially, so we
use two-stage full connection operations to achieve the same effect as the original direct
splicing while reducing parameters.

CONCLUSIONS
Our optimized pure Transformer encoder-decoder network can automatically segment
lung parenchyma from chest X-ray images. Use the Swin Transformer block as a feature
extractor to extract feature information, and use skip connections and our special splicing
to learn long-distance semantic information interactively.

One of the more advanced methods at this stage is the combination of CNN and
Transformer, such as TransU-net, and the other is a U-shaped segmentation network
composed of pure Transformer, such as SwinU-net. The former category combines the
advantages of CNN and Transformer to complete the task well, but for the small number
of samples in the medical data set, the generalization ability is not as good as the network
composed of pure Transformer like in this article. The pure Transformer model has the
disadvantage of being insensitive to local perception, but we use migration learning to use
module weights trained on large-scale datasets and use skip connections and splicing
fusion to improve long-distance information interaction and global modeling capabilities,
making up for it. shortcoming. The final experiments show that our model has good
generalization ability and excellent segmentation effects.

However, our network can only segment 2D images, and there is a need for stereoscopic
segmentation of 3D medical images. Therefore, the next stage of segmentation and
application of 3D medical images is our goal and direction.

ACKNOWLEDGEMENTS
We thank the publicly available datasets from National Library of Medicine, National
Institutes of Health, Bethesda, MD, USA, and Shenzhen No. 3 People’s Hospital,
Guangdong Medical College, Shenzhen, China, for our research work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Table 3 Ablation experiments on the “Chest Xray Masks and Labels” dataset (average dice score %
for each organ). Different conditions were set for comparison experiments, and the middle parameter
was the average Dice Similarity Coefficient (DSC) results of training.

Framework Patch splicing No patch splicing

Add 1/4 connection 96.18 96.14

Add 1/8 connection 96.24 96.21

SwinU-net – 95.93

Add 1/4+1/8 connection 97.37 97.31

Dan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1515 11/15

http://dx.doi.org/10.7717/peerj-cs.1515
https://peerj.com/computer-science/


Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Yongping Dan conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Weishou Jin conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.

� Zhida Wang performed the experiments, prepared figures and/or tables, and approved
the final draft.

� Changhao Sun performed the experiments, prepared figures and/or tables, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is in Supplemental File and Zenodo:
Weishou. (2023). Code and Data [Data set]. Zenodo. https://doi.org/10.5281/zenodo.

7997332
Additional data is available at Kaggle:
Database name: Chest Xray Masks and Labels Pulmonary Chest X-Ray Defect

Detection
Owner: Nikhil Pandey
URL: https://www.kaggle.com/datasets/nikhilpandey360/chest-xray-masks-and-labels
COVID-19 CT scan lesion segmentation dataset
Owner: Maede Maftouni
URL: https://www.kaggle.com/datasets/maedemaftouni/covid19-ct-scan-lesion-

segmentation-dataset.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1515#supplemental-information.

REFERENCES
Alom MZ, Yakopcic C, Taha TM, Asari VK. 2018. Nuclei segmentation with recurrent residual

convolutional neural networks based U-Net (R2U-Net). In: NAECON 2018—IEEE National
Aerospace and Electronics Conference. Piscataway: IEEE, 228–233.

Bilic P, Christ P, Li HB, Vorontsov E, Ben-Cohen A, Kaissis G, Szeskin A, Jacobs C, Mamani
GEH, Chartrand G, Lohöfer F, Holch JW, SommerW, Hofmann F, Hostettler A, Lev-Cohain
N, Drozdzal M, Amitai MM, Vivanti R, Sosna J, Ezhov I, Sekuboyina A, Navarro F, Kofler F,
Paetzold JC, Shit S, Hu X, Lipková J, Rempfler M, Piraud M, Kirschke J, Wiestler B, Zhang
Z, Hülsemeyer C, Beetz M, Ettlinger F, Antonelli M, Bae W, Bellver M, Bi L, Chen H,
Chlebus G, Dam EB, Dou Q, Fu C-W, Georgescu B, Giró-i-Nieto X, Gruen F, Han X, Heng
P-A, Hesser J, Moltz JH, Igel C, Isensee F, Jäger P, Jia F, Kaluva KC, Khened M, Kim I, Kim

Dan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1515 12/15

http://dx.doi.org/10.7717/peerj-cs.1515#supplemental-information
https://doi.org/10.5281/zenodo.7997332
https://doi.org/10.5281/zenodo.7997332
https://www.kaggle.com/datasets/nikhilpandey360/chest-xray-masks-and-labels
https://www.kaggle.com/datasets/maedemaftouni/covid19-ct-scan-lesion-segmentation-dataset
https://www.kaggle.com/datasets/maedemaftouni/covid19-ct-scan-lesion-segmentation-dataset
http://dx.doi.org/10.7717/peerj-cs.1515#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1515#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1515
https://peerj.com/computer-science/


J-H, Kim S, Kohl S, Konopczynski T, Kori A, Krishnamurthi G, Li F, Li H, Li J, Li X,
Lowengrub J, Ma J, Maier-Hein K, Maninis K-K, Meine H, Merhof D, Pai A, Perslev M,
Petersen J, Pont-Tuset J, Qi J, Qi X, Rippel O, Roth K, Sarasua I, Schenk A, Shen Z, Torres J,
Wachinger C, Wang C, Weninger L, Wu J, Xu D, Yang X, Yu SC-H, Yuan Y, Yue M, Zhang
L, Cardoso J, Bakas S, Braren R, Heinemann V, Pal C, Tang A, Kadoury S, Soler L, van
Ginneken B, Greenspan H, Joskowicz L, Menze B. 2023. The liver tumor segmentation
benchmark (liTs). Medical Image Analysis 84:102680 DOI 10.1016/j.media.2022.102680.

Bo Z, Feng J, Xiao W, Yan S. 2017. A survey on deep learning-based fine-grained object
classification and semantic segmentation. International Journal of Automation and Computing
14(2):119–135 DOI 10.1007/s11633-017-1053-3.

Boykov Y, Funka-Lea G. 2006. Graph cuts and efficient N-D image segmentation. International
Journal of Computer Vision 70(2):109–131 DOI 10.1007/s11263-006-7934-5.

Candemir S, Jaeger S, Palaniappan K, Musco JP, Singh RK, Xue Z, Karargyris A, Antani S,
Thoma G, McDonald CJ. 2014. Lung segmentation in chest radiographs using anatomical
atlases with nonrigid registration. IEEE Transactions on Medical Imaging 33(2):577–590
DOI 10.1109/TMI.2013.2290491.

Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, Wang M. 2021. Swin-Unet: Unet-like pure
transformer for medical image segmentation. In: Karlinsky L, Michaeli T, Nishino K, eds.
Computer Vision–ECCV, 2022 Workshops. ECCV 2022. Lecture Notes in Computer Science, Vol.
13803. Cham: Springer DOI 10.1007/978-3-031-25066-8_9.

Chen J, Lu Y, Yu Q, Luo X, Zhou Y. 2021. TransUNet: transformers make strong encoders for
medical image segmentation. ArXiv preprint DOI 10.48550/arXiv.2102.04306.

Chen LC, Papandreou G, Schroff F, Adam H. 2017. Rethinking atrous convolution for semantic
image segmentation. ArXiv preprint DOI 10.48550/arXiv.1706.05587.

Chen PH, Zafar H, Galperin-Aizenberg M, Cook T. 2018. Integrating natural language
processing and machine learning algorithms to categorize oncologic response in radiology
reports. Journal of Digital Imaging 31(2):178–184 DOI 10.1007/s10278-017-0027-x.

Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D,
Pringle M, Tarbox L, Prior F. 2013. The Cancer Imaging Archive (TCIA): maintaining and
operating a public information repository. Journal of Digital Imaging 26(6):1045–1057
DOI 10.1007/s10278-013-9622-7.

Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M,
Minderer M, Heigold G, Gilly S, Uszkoreit J, Housby N. 2022. An image is worth 16×16
words: transformers for image recognition at scale. ArXiv preprint
DOI 10.48550/arXiv.2010.11929.

Girshick R, Donahue J, Darrell T, Malik J. 2015. Region-Based convolutional networks for
accurate object detection and segmentation. IEEE Transactions on Pattern Analysis Machine
Intelligence 38(1):142–158 DOI 10.1109/TPAMI.2015.2437384.

Guan S, Khan AA, Sikdar S, Chitnis PV. 2020. Fully dense UNet for 2-D sparse photoacoustic
tomography artifact removal. IEEE Journal of Biomedical and Health Informatics 24(2):568–576
DOI 10.1109/JBHI.2019.2912935.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: 2016 IEEE
Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770–778.

Heller N, Isensee F. et al. 2021. AbdomenCT-1K: is abdominal organ segmentation a solved
problem? IEEE Transactions on Pattern Analysis and Machine Intelligence 44(10):6695–6714
DOI 10.1109/TPAMI.2021.3100536.

Dan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1515 13/15

http://dx.doi.org/10.1016/j.media.2022.102680
http://dx.doi.org/10.1007/s11633-017-1053-3
http://dx.doi.org/10.1007/s11263-006-7934-5
http://dx.doi.org/10.1109/TMI.2013.2290491
http://dx.doi.org/10.1007/978-3-031-25066-8_9
http://dx.doi.org/10.48550/arXiv.2102.04306
http://dx.doi.org/10.48550/arXiv.1706.05587
http://dx.doi.org/10.1007/s10278-017-0027-x
http://dx.doi.org/10.1007/s10278-013-9622-7
http://dx.doi.org/10.48550/arXiv.2010.11929
http://dx.doi.org/10.1109/TPAMI.2015.2437384
http://dx.doi.org/10.1109/JBHI.2019.2912935
http://dx.doi.org/10.1109/TPAMI.2021.3100536
http://dx.doi.org/10.7717/peerj-cs.1515
https://peerj.com/computer-science/


Heller N, Isensee F, Maier-Hein K, Hou X, Xie C, Li F, Nan Y, Mu G, Lin Z, Han M, Yao G, Gao
Y, Shang Y, Wang Y, Hou F, Yang J, Xiong G, Tian J, Zhong C, Ma J, Rickman J, Dean J, Stai
B, Tejpaul R, Oestreich M, Blank P, Kaluzniak H, Raza S, Rosenberg J, Moore K, Walczak E,
Rengel Z, Edgerton Z, Vasdev R, Peterson M, McSweeney S, Peterson S, Kalapara A,
Sathianathen N, Papanikolopoulos N, Weight C. 2022. The state of the art in kidney and
kidney tumor segmentation in contrastenhanced CT imaging: results of the kiTS19 challenge.
Medical Image Analysis 67:101821 DOI 10.1016/j.media.2020.101821.

Huang H, Lin L, Tong R, Hu H, Zhang Q, Iwamoto Y, Han X, Chen Y-W, Wu J. 2020. UNet 3+:
a full-scale connected UNet for medical image segmentation. In: ICASSP 2020—2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway: IEEE,
1055–1059.

Jaeger S, Karargyris A, Candemir S, Folio L, Siegelman J, Callaghan F, Xue Z, Palaniappan K,
Singh RK, Antani S, Thoma G, Wang Y-X, Lu P-X, McDonald CJ. 2014. Automatic
tuberculosis screening using chest radiographs. IEEE Transactions on Medical Imaging
33(2):233–245 DOI 10.1109/TMI.2013.2284099.

Kafali SG, Shih S-F, Li X, Chowdhury S, Loong S, Barnes S, Li Z, Wu HH. 2021. 3D neural
networks for visceral and subcutaneous adipose tissue segmentation using volumetric multi-
contrast MRI. In: 2021 43rd Annual International Conference of the IEEE Engineering in
Medicine Biology Society (EMBC). Piscataway: IEEE, 3933–3937.

Lee CS, Tyring AJ, Deruyter NP, Wu Y, Rokem A, Lee AY. 2017. Deep-learning based,
automated segmentation of macular edema in optical coherence tomography. Biomedical Optics
Express 8(7):3440 DOI 10.1364/BOE.8.003440.

Li H, Wang Z, Yue X, Wang W, Tomiyama H, Meng L. 2023. An architecture-level analysis on
deep learning models for low-impact computations. Artificial Intelligence Review 56:1971–2010
DOI 10.1007/s10462-022-10221-5.

Li H, Yue X, Wang Z, Chai Z, WangW, Tomiyama H, Meng L. 2022.Optimizing the deep neural
networks by layer-wise refined pruning and the acceleration on FPGA. Computational
Intelligence and Neuroscience 2022:8039281 DOI 10.1155/2022/8039281.

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van
Ginneken B, Sánchez CI. 2017. A survey on deep learning in medical image analysis. Medical
Image Analysis 42:60–88 DOI 10.1016/j.media.2017.07.005.

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. 2021. Swin transformer: hierarchical
vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on
Computer Vision (ICCV). Piscataway: IEEE, 9992–10002.

Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. In:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE,
3431–3440 DOI 10.1109/CVPR.2015.7298965.

Ma J, Wang Y, An X, Ge C, Yu Z, Chen J, Zhu Q, Dong G, He J, He Z, Cao T, Zhu Y, Nie Z, Yang
X. 2021. Toward data-efficient learning: a benchmark for COVID-19 CT lung and infection
segmentation. Medical Physics 48(3):1197–1210 DOI 10.1002/mp.14676.

Ma J, Zhang Y, Gu S, An X, Wang Z, Ge C, Wang C, Zhang F, Wang Y, Xu Y, Gou S, Thaler F,
Payer C, Štern D, Henderson EGA, McSweeney DM, Green A, Jackson P, McIntosh L,
Nguyen Q-C, Qayyum A, Conze P-H, Huang Z, Zhou Z, Fan D-P, Xiong H, Dong G, Zhu Q,
He J, Yang X. 2022. Fast and low-GPU-memory abdomen CT organ segmentation: the FLARE
challenge. Medical Image Analysis 82(1):102616 DOI 10.1016/j.media.2022.102616.

Mcinerney T, Terzopoulos D. 1996. Deformable models in medical image analysis: a survey.
Medical Image Analysis 1(2):91–108 DOI 10.1016/S1361-8415(96)80007-7.

Dan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1515 14/15

http://dx.doi.org/10.1016/j.media.2020.101821
http://dx.doi.org/10.1109/TMI.2013.2284099
http://dx.doi.org/10.1364/BOE.8.003440
http://dx.doi.org/10.1007/s10462-022-10221-5
http://dx.doi.org/10.1155/2022/8039281
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1109/CVPR.2015.7298965
http://dx.doi.org/10.1002/mp.14676
http://dx.doi.org/10.1016/j.media.2022.102616
http://dx.doi.org/10.1016/S1361-8415(96)80007-7
http://dx.doi.org/10.7717/peerj-cs.1515
https://peerj.com/computer-science/


Nie YP, Han Y, Huang JM, Jiao B, Li A-P. 2017. Attention-based encoder-decoder model for
answer selection in question answering. Frontiers of Information Technology & Electronic
Engineering 18(4):535–544 DOI 10.1631/FITEE.1601232.

Simpson AL, Antonelli M, Bakas S, Bilello M, Farahani K, van Ginneken B, Kopp-Schneider A,
Landman BA, Litjens G, Menze B, Ronneberger O, Summers RM, Bilic P, Christ PF, Do
RKG, Gollub M, Golia-Pernicka J, Heckers SH, Jarnagin WR, McHugo MK, Napel S,
Vorontsov E, Maier-Hein L, Cardoso MJ. 2019. A large annotated medical image dataset for
the development and evaluation of segmentation algorithms. ArXiv preprint
DOI 10.48550/arXiv.1902.09063.

Staal J, Abramoff MD, Niemeijer M, Viergever MA, van Ginneken B. 2004. Ridge-based vessel
segmentation in color images of the retina. IEEE Transactions on Medical Imaging 23(4):501–
509 DOI 10.1109/TMI.2004.825627.

Valanarasu JMJ, Sindagi VA, Hacihaliloglu I, Patel VM. 2020. KiU-Net: towards accurate
segmentation of biomedical images using over-complete representations. In: Martel AL, ed.
Medical Image Computing and Computer Assisted Intervention–MICCAI 2020. Lecture Notes in
Computer Science, Vol. 12264. Cham: Springer DOI 10.1007/978-3-030-59719-1_36.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I.
2017. Attention is all you need. In: Proceedings of the 31st International Conference on Neural
Information Processing Systems.

Wu Y, Wu J, Jin S, Cao L, Jin G. 2021. Dense-U-net: dense encoder–decoder network for
holographic imaging of 3D particle fields. Optics Communications 493:126970
DOI 10.1016/j.optcom.2021.126970.

Xiao X, Shen L, Zhiming L, Shaozi L. 2018. Weighted Res-UNet for high-quality retina vessel
segmentation. In: 2018 9th International Conference on Information Technology in Medicine and
Education. Piscataway: IEEE, 327–331 DOI 10.1109/ITME.2018.00080.

Yuan M, Xia Y, Dong H, Chen Z, Yao J, Qiu M, Yan K, Yin X, Shi Y, Chen X, Liu Z, Dong B,
Zhou J, Lu L, Zhang L, Zhang L. 2023. Devil is in the queries: advancing mask transformers for
real-world medical image segmentation and out-of-distribution localization. ArXiv preprint
DOI 10.48550/arXiv.2304.00212.

Yue X, Li H, Fujikawa Y, Meng L. 2022. Dynamic dataset augmentation for deep learning-based
oracle bone inscriptions recognition. Journal on Computing and Cultural Heritage 15(4):76
DOI 10.1145/3532868.

Ze L, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B. 2021. Swin transformer: hierarchical
vision transformer using shifted windows. In: 2021 IEEE/CVF International Conference on
Computer Vision (ICCV). Piscataway: IEEE, 9992–10002.

Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. 2020. UNet++: redesigning skip connections to
exploit multiscale features in image segmentation. IEEE Transactions on Medical Imaging
39(6):1856–1867 DOI 10.1109/TMI.2019.2959609.

Dan et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1515 15/15

http://dx.doi.org/10.1631/FITEE.1601232
http://dx.doi.org/10.48550/arXiv.1902.09063
http://dx.doi.org/10.1109/TMI.2004.825627
http://dx.doi.org/10.1007/978-3-030-59719-1_36
http://dx.doi.org/10.1016/j.optcom.2021.126970
http://dx.doi.org/10.1109/ITME.2018.00080
http://dx.doi.org/10.48550/arXiv.2304.00212
http://dx.doi.org/10.1145/3532868
http://dx.doi.org/10.1109/TMI.2019.2959609
http://dx.doi.org/10.7717/peerj-cs.1515
https://peerj.com/computer-science/

	Optimization of U-shaped pure transformer medical image segmentation network
	Introduction
	Related work
	Methods
	Experiments
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


