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ABSTRACT
Electrical load forecasting is important to ensuring power systems are operated both
economically and safely. However, accurately forecasting load is difficult because of
variability and frequency aliasing. To eliminate frequency aliasing, some methods set
parameters that depend on experiences. The present study proposes an adaptive hybrid
model of modal decomposition and gated recurrent units (GRU) to reduce frequency
aliasing and series randomness. This model uses average sample entropy and mutual
correlation to jointly determine the modal number in the decomposition. Random
adjustment parameters were introduced to the Adam algorithm to improve training
speed. To assess the applicability and accuracy of the proposed hybrid model, it was
compared with some state of the art forecasting methods. The results, which were
validated by actual data sets from Shaanxi province, China, show that the proposed
model had a higher accuracy and better reliability compared to the other forecasting
methods.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Scientific Computing and
Simulation, Neural Networks
Keywords Gated recurrent unit, Modal decomposition, Average sample entropy, Correlation
number, Load forecasting

INTRODUCTION
Electrical load forecasting plays an important role in power system dispatching and security
detection. However, it is very difficult to accurately forecast load because the electrical load
can be affected by the weather and some accidental factors (Mideksa & Kallbekken, 2010;
Wang et al., 2012). It is, therefore, important to develop an effective load forecasting
method that is both reliable and accurate.

Electrical load measurement data can be contaminated by random noise that reduces
accurate forecasting performance (Xiao et al., 2007; Li, 2020; Ren & Li, 2023). Signal
processing technologies have been developed to reduce the random noise created during
measurement, such as faults in the sensors or power supply equipment failures (Guan et al.,
2021; Wang, Yao & Papaethymiou, 2023). Filtering methods, such as the wavelet analysis
method and the Kalman filtering method, are currently the most common ways of dealing
with the random noise in the data (Quilty & Aadamowski, 2018;Nobrega & Oliveira, 2019).
Electrical load is also affected by people’s consumption habits and varies drastically between
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different periods of time, so frequency aliasing, which occurs when the load sequence is not
sampled at a high enough rate, is a significant problem and makes it harder to accurately
forecast load from the data. Some methods, including empirical mode decomposition
(EMD) and variational mode decomposition (VMD), reduce aliasing by decomposing the
load series (Li & Chang, 2018; Mounir Nada, Ouadi & Jrhilifa, 2023; Rayi et al., 2022). The
disadvantage of these methods is that they use parameters that depend on experiences.

Short-term load forecasting techniques include statistical models (Ren & Li, 2023; Lee
& Ko, 2021; Jin et al., 2021), the machine learning method (Tarmanini et al., 2023; Xie
et al., 2020) and the deep learning method. In these methods, the long and short-term
memory (LSTM) network can find the evolution characteristics of a time series based on a
large number of training samples, resulting in a higher accuracy than traditional machine
learning methods (Mokarram et al., 2023; Rafi et al., 2021). However, LSTM training time
is long, the structure of the LSTM network is complex, and its parameters are difficult to
determine. Compared with the LSTM network, the gated recurrent unit (GRU) network
developed in recent years has a simpler structure and reduces computational complexity,
so it has also been applied in time series prediction (Jung et al., 2021; Pu et al., 2023; Li et
al., 2023).

This article focuses on a hybrid model of adaptive VMD and the GRU network for
short-term load forecasting. To reduce aliasing and random noise, this model uses an
adaptive VMD method, determining the modal number with the average sample entropy
and mutual correlation. This model also uses the GRU network, and further reduces
training time by expanding the random adjustment parameters of the Adam algorithm.
The electric load forecasting results of this proposed model were compared with other state
of the art forecasting methods and found to be both accurate and reliable.

ADAPTIVE VMD FOR LOAD SERIES
This section first introduces the basic principles of VMD, and then proposes an adaptive
VMD model to reduce aliasing and random noise in the load series.

Variational mode decomposition
VMD decomposes the original series into several intrinsic mode functions (IMFs), each
of which is a sub-sequence of the frequency modulation and amplitude modulation
(Dragomiretskiy & Zosso, 2014; Zhang & Guo, 2020). VMD demodulates the IMF to its
own fundamental frequency bandwidth and aims to minimize total modal bandwidth to
find the optimal IMF. The VMD includes both variational construction and a variational
solution.

To obtain the analytical signals of each IMF and the corresponding unilateral spectrum,
The modal function obtained by decomposition, represented as: uk(t ),k=1 ,2,...,K is
processed with Hilbert transform (Huang et al., 1998) as follows:(
δ(t )+

j
π t

)
∗uk(t ) (1)

where δ(t ) is the unit impulse signal.

Wang and Li (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1514 2/18

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1514


Center frequency, represented as ωk , is then multiplied by the exponential term e−jωk t

to modulate the spectrum of the mode to its fundamental frequency:[(
δ(t )+

j
π t

)
∗uk(t )

]
e−jωk t (2)

The bandwidth of the mode is then calculated, using the solution of the 2-Norm of the
modulated signal gradient to solve the variational constraint problem:

min
uk ,ωk

{ K∑
k=1

∥∥∥∥∂t [(δ(t )+ j
π t

)
uk(t )

]
e−jωk t

∥∥∥∥2
2

}

s.t .
K∑
k=1

uk(t )= f (t )

(3)

where f (t ) is the original signal.
The variational constraint problem is then transformed into an unconstrained problem

using the Lagrange multiplier method and quadratic multiplication operator alternation
algorithm. By introducing the Lagrange multiplication operator θ(t ) and penalty factor C
into the constraint problem, the unconstrained problem is as follows:

L(uk,ωk,θ)=C
K∑
k=1

∥∥∥∥∂t [(δ(t )+ j
π t

)
uk(t )

]
e−jωk t

∥∥∥∥2
2
+

∥∥∥∥∥f (t )−
K∑
k=1

uk(t )

∥∥∥∥∥
2

2

+

〈
θ(t ),f (t )−

K∑
k=1

uk(t )

〉
. (4)

Then, the optimization problem of uk can be obtained by using the multiplication
operator alternating algorithm:

un+1k = argmin
uk∈X

θ
∥∥∥∥∂t [(δ(t )+ j

π t

)
uk(t )

]
e−jωk t

∥∥∥∥2
2
+

∥∥∥∥∥f (t )−
K∑
k=1

uk(t )

∥∥∥∥∥
2

2

+

∥∥∥∥∥f (t )−
K∑
i=1

ui(t )+
θ(t )
2

∥∥∥∥∥
2

2

 (5)

where i is the iteration control parameter. By using the Parseval/Plancherel Fourier
equidistant method under 2-norm, it can be obtained as follows:

ûn+1k = argmin
ûk ,uk∈X


∫
∞

0
4θ(ω−ωk)2|ûk(ω)|2+2

∣∣∣∣∣f̂ (ω)−
K∑
i=1

ûi(ω)+
θ̂(ω)
2

∣∣∣∣∣
2

dω

. (6)

Therefore, the optimized solution for this quadratic problem is:

ûn+1k (ω)=
f̂ (ω)−

∑K
i6=k,i=1 ûi(ω)+

θ̂(ω)
2

1+2C(ω−ωk)2
. (7)

Finally, the center frequency can calculated using the following quadratic formula:

ωn+1
k =

∫
∞

0 ω|ûk(ω)|2dω∫
∞

0 |ûk(ω)|
2dω

. (8)
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Adaptive VMD
As a non-recursive decomposition method, the number of modes in VMD needs to be set
in advance. When the number of modes is too small, there is insufficient decomposition;
also, some modal functions can result in false spectrum and spectrum breakage (Jiang,
Shen & Shi, 2018). In our previous work, the number of modes is set according to the
cross-correlation coefficient (Shang, Li & Wu, 2023). In the proposed adaptive VMD
model, to improve reliability the number of modes is jointly determined by the cross-
correlation coefficient and the average sample entropy.

The correlation coefficient
The correlation coefficient reveals the correlation degree of two sequences; the higher
the correlation between two sequences, the closer the cross-correlation coefficient is to
1 (Shang, Li & Wu, 2023). With the residual sequence represented as l (n) and the modal
function represented as f (n), the standard cross-correlation coefficient ρc is defined as:

ρc =

N∑
n=0

f (n)l(n)/
√
Rff Rll (9)

where N is the sequence length, and Rll and Rff are the autocorrelation coefficients of l
(n) and f (n), respectively.

The average sample entropy
Each mode after VMD decomposition has its own central frequencies, so the spectrum
will not overlap. As a result, the similarity of each mode is high, and the sample entropy
is small. When the number of decompositions is the optimal value, the sample entropy of
each mode (except the residuals) and the average sample entropy (ASE) should both be
the smallest (Lake, 2010; Sun &Wang, 2018).

With the time series represented as Y (n),n=1 ,2,...,N , and the modal function
represented as uk(n),k=1 ,2,...,K , U (i) is obtained by the modal function of uk(i), as
follows:

U (i)= [uk(i),uk(i+1),...,uk(i+m−1)] (10)

where i= 1,2,...,N −m+1.
Firstly, the maximum distance dm

[
U (i),U (j)

]
between the corresponding elements of

U (i) and U (j) is defined as:

dm
[
U (i),U (j)

]
= max

l=0,1,...,m−1

∣∣uk(i+ l)−uk(j+ l)∣∣. (11)

Then, counting the number of j satisfying the formula dm
[
U (i),U (j)

]
< r for each i,

defined as Bi. Here, j satisfies N −m≥ j ≥ 1 and r is the tolerance of similarity measure.
Based on this, the ratio of Bmi to the total distance of N–m is as follows:

Bmi (r)=
Bi

N −m
. (12)

Next, the average value Bm(r) of Bmi (r) is calculated as follows:

Bm(r)=
N−m∑
i=1

Bmi (r)
N −m+1

. (13)
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Lastly, by increasing the dimension tom +1, the average value of Bm+1i is obtained as
follows:

Bm+1(r)=
N−m∑
i=1

Bm+1i (r)
N −m

(14)

where Bm(r) and Bm+1(r) are the probability that two sequences matchm andm +1
points under the tolerance of similarity measure r, respectively. The sample entropy of
the modal sequence can then be written as:

SE =−ln
[
Bm+1(r)
Bm(r)

]
. (15)

Equation (15) shows that sample entropy is related to bothm and r. eference previous
study (Pincus, 2001) showed that when r is 1 or 2 andm is 0.1∼0.25 STD (STD is the
variance of the sequence), the sample entropy is rarely affected bym and r. Therefore,m
was set to 2 and r was set to 0.2 STD in this study.

In VMD decomposition of a time series, the components of different scales need to
be separated so they occupy their own spectrum bandwidth, and the random noise in
the time series needs to be distinguished from the modal components. Therefore, in this
study, the average sample entropy and the cross-correlation coefficient ρc were used to
jointly determine the number of modes.

HYBRID MODEL FOR FORECASTING
GRU network
The GRU network is a type of recurrent neural network (RNN; Cho et al., 2014) that has
been proposed to solve the problems of long-term memory in back propagation. The
GRU network performs in a similar way to the LSTM network but is computationally
cheaper. The structure of a GRU network is shown in Fig. 1 where xt is the input at the
current node t, ht -1 is the hidden state of transmission at the previous node t -1, yt is the
output, and ht is the hidden state at t.

The GRU network has two gate states, as shown in Fig. 2. Here, r and z are the reset
gate and the update gate, respectively, and can be written as:

r = σ
(
Wr
[
ht−1,xt

]
+br

)
(16)

z = σ
(
Wz
[
ht−1,xt

]
+bz

)
(17)

where σ is the sigmoid function which constrains the data in the interval [0,1];W and b
are the weight and threshold of the networks.

According to the reset gate r and the hidden state of ht -1, the reset signal can be
obtained, as follows:

h
′

t−1= ht−1⊗ r (18)

where⊗ is the Hamiltonian operator.
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GRU ht

yt

xt

ht�1

Figure 1 Input and output structure of the GRU network.
Full-size DOI: 10.7717/peerjcs.1514/fig-1

The transmission state h
′

t is written as:

h
′

t = tanh
(
Wg

[
h
′

t−1,xt
]
+bg

)
. (19)

Lastly, the transmission state of ht can be written as:

ht = (1−z)⊗ht−1+z⊗h′. (20)

The improved optimization algorithm
The Adam algorithm updates weights by calculating the first and second moments of the
gradient, improving the slow convergence problem caused by the fixed learning rate in
the gradient descent method. The Adam algorithm was used on the random adjustment
parameters in this study to effectively improve the convergence rate.

Firstly, initializing the learning rate µ, and using optimization parametersWt , the
gradient gt , the first momentmt of the gradient and the second moment vt of the gradient
can be calculated, iteratively, as follows:

gt =∇Wt f (Wt ) (21)

mt =β1mt + (1−β1)gt (22)

vt =β2vt−1+ (1−β2)g 2t (23)

where β1 and β2 are the decay rates of the first and the second moments, respectively.
Then, the deviations of the first and second moments of the gradient can be calculated

as:

m
′

t =mt/(1−β1)−η1gt (24)
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v
′

t = vt/(1−β2)−η2g 2t (25)

where η1 and η2 are the adjustment parameters of the first and second moments and the
random numbers on interval [0,1], respectively.

Lastly, the parameters can be updated using the following formula:

wt =wt−1−µm
′

t/

(√
v ′t +ε

)
(26)

where ε is the allowable error to prevent a zero value in the iterative process.

Forecasting process
In this work, a hybrid model of adaptive VMD and the GRU network is proposed to
reduce frequency aliasing and eliminate the randomness of the load series. The electrical
load series is represented as {x(1),x(2),...,x(N )}, where N is the number of samples.
When Ci is the decomposed mode, the prototype mode is calculated, as follows:

Ci={ci(1),ci(2),...,ci(N )}, i= 1,2,...,M . (27)

The forecasting value of the prototype mode at time (N +1) is ĉi(N +1) using the GRU
networks. Reconstructing other components after removing the residual sequence, the
forecasting result at time N +1 is calculated, as follows:

x̂(N +1)=
M∑
i=2

ĉi(N +1). (28)

Figure 3 illustrates the load forecasting process of the hybrid model. First, the load
series is decomposed using the adaptive VMDmodel. Then, each mode is forecasted
in the next time using the improved GRU model. Finally, the sum of the IMF is the
forecasting result of the load series. The forecasting process is as follows:

(a) The IMF of each modal component is obtained by initializing the number of modes
and decomposing the load data using the adaptive VMDmodel.

(b) The cross-correlation coefficient ρc between the noise residue and IMF is calcu-
lated, using Eq. (11).

(c) The sample entropy of each mode and the modal residue, and the average sample
entropy (ASE) are calculated using Eqs. (9) to (15) under different numbers of modes.

(d) The decomposition number K is selected, corresponding to the minimum of ASE
and ρc .

(e) The modal components at the next time point are then forecasted using the
improved GRU network.

(f) The final result is obtained by reconstructing the modal forecasting components.

RESULTS
To analyze the forecasting performance, the root mean square error (RMSE), the mean
absolute error (MAE) and the mean absolute percentage error (MAPE) were calculated, as
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Figure 2 Gate structure of the GRU network.
Full-size DOI: 10.7717/peerjcs.1514/fig-2

follows:

RMSE =

√∑N
n=1(pn− p̂n)2

N
(29)

MAE =
∑N

n=1

∣∣pn− p̂n∣∣
N

(30)

MAPE =

∑N
n=1

∣∣∣ pn−p̂npn

∣∣∣
N

×100% (31)

where pn and p̂n represent the actual value and the forecasted value at the time n,
respectively, and N is the number of samples.

As a case study, experimental electrical data were taken from the Shaanxi province,
China. The original load series was a one-minute interval, with data extracted every
15 min to form the data set. Because of the weekly periodicity of the load series, the final
set of data included 672 samples.

Results of the adaptive VMD model
The ASE of each component, except the residual and cross-correlation coefficient ρc,
were calculated, and then the minimum values of the mode number K were identified
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Figure 3 Forecasting process of the hybrid model.
Full-size DOI: 10.7717/peerjcs.1514/fig-3

corresponding to the minimum ASE and ρc . The minimum ASE indicates that the simi-
larity of each IMF was high, and that the sequence was more ‘‘orderly.’’ The minimum ρc

means that the correlation between the residual sequence and the modal sequence was the
smallest, meaning the reconstructed mode, except the residual, is closer to the real load
sequence. Figure 4 shows the ASE and the cross-correlation coefficient ρc at different time
points; ASE reached the minimum value when the number of decompositions was 5, and
ρc was the smallest when K = 5.
The proposed adaptive VMDmodel decomposes the original electrical load series.

Figure 5 shows the decomposition results of the load series of a day, consisting of 96
samples. In this figure, mode IMF4 has a small amplitude and violent random noise,
giving it a residual sequence. The frequencies of the other modes decrease from top to
bottom, revealing the short-term and long-term characteristics of the load series.

Results of the improved GRU network
A training set was created from 100 groups of load series, with the other load series used
as the test set. The default values of related parameters are given in Table 1.

The forecasting performance of the improved GRU network was compared with the
original GRU model, with both methods using the same training and test data. Table 2
shows the comparison results of both forecasting error and time. Each error index
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Figure 4 ASE and ρc of a load series of differentK.
Full-size DOI: 10.7717/peerjcs.1514/fig-4

was based on the forecasting value of 672 datapoints. There were 100 groups of error
index values in total, and the average value was the error result shown in Table 2. The
forecasting error value of the improved GRU model proposed in this article was less
than the forecasting error value of the original GRU model. The forecasting time of the
improved GRU model was also significantly reduced compared to the original GRU
model because the Adam algorithm uses a random adjustment of parameters.

Table 3 shows the forecasting error for different numbers of modes. When the number
of modes was four, the forecasting error was the smallest, verifying the reliability of the
adaptive VMDmodel.

Results of the hybrid model
The proposed forecasting model was then verified using different types of measured data.
Figure 6A and 7A show the actual valuables and forecasting results (original GRU model
and our hybrid model) on a working day and a non-working day, respectively. In Fig.
6A, the RMSE of the original GRU model was 335.7 MW and the RMSE of the proposed
model was 334.5 MW. In Fig. 7A, the RMSE of the original GRU model and the proposed
model were 335.9 MW and 334.6 MW, respectively. Since these differences were small,
Figs. 6B and 7B further illustrate the comparisons with smaller units on the load (y-axis)
and less forecasting points (x-axis). These figures show that the proposed hybrid model
had better forecasting performance than the original GRU model.
The number of hidden neurons is an important parameter that can affect forecasting

performance. Table 4 shows the forecasting results of different numbers of neurons of
the hidden layer, with all other parameters being optimal. The forecasting error was the
smallest when the number of neurons was 40, but the optimal number of neurons was
different with different datasets.
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Figure 5 Electrical load series and decomposition results of the adaptive VMD.
Full-size DOI: 10.7717/peerjcs.1514/fig-5

Table 1 Default parameter settings of the improved GRU network.

Parameters Default valuables

Number of hidden layers 2
Number of Samples 100
Learning rate 0.01
Number of neurons in hidden layer 1 50
Number of neurons in hidden layer 2 50
Number of input sequences 672
Momentum parameter 0.5
Maximum number of iterations 2500
Optimization algorithm Improved Adam algorithm
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Table 2 Comparison of forecasting performance of different GRUmodels.

Methods RMSE
(MW)

MAE
(MW)

MAPE
(%)

Training
time (s)

Forecasting
time (s)

GRU 336 201 1.931 323 3.59
Improved GRU 334 199 1.924 246 1.41

Table 3 Forecasting error under different numbers of modes.

Number of modesK RMSE
(MW)

MAE
(MW)

MAPE
(%)

2 347 217 2.103
3 340 214 2.012
4 334 199 1.924
5 337 210 2.006
6 342 220 2.118
7 347 218 2.095
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Actual valuables
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(b)

Figure 6 (A–B) Forecast results of power loads on a working day.
Full-size DOI: 10.7717/peerjcs.1514/fig-6

The proposed hybrid forecasting model was also compared with the following classical
statistical models: the ARIMA model, support vector regression (SVR), machine learning
(Elman neural network), and the combined model. The parameter settings of the ARIMA
model were set based on Lee & Ko (2021), and the selection of model order was based on
the AIC criterion. The kernel function of the SVR model was the Gaussian radial basis
function and the kernel parameters were optimized based on Sina & Kaur (2020). The
parameter settings of the Elman neural network were set according to Xie et al. (2020), the
optimization algorithm adopted the traditional gradient descent method, and the number
of neurons in both hidden layers was 40. The single method selection and parameter
settings of the combined model were based on Li & Chang (2018).

Table 5 illustrates the comparison of forecasting error of the above methods. Com-
pared with the traditional statistical model and machine learning, the hybrid model
proposed in this work had a higher forecasting accuracy. The traditional statistical
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Figure 7 (A–B) Forecast results of power loads on a non-working day.
Full-size DOI: 10.7717/peerjcs.1514/fig-7

Table 4 Forecasting error under different numbers of neurons.

Number of neurons
in hidden layer 1

Number of neurons
in hidden layer 2

RMSE
(MW)

MAE
(MW)

MAPE
(%)

10 10 359 208 2.101
20 20 354 205 1.999
30 30 338 197 1.912
40 40 332 194 1.887
50 50 339 198 1.986
60 60 345 203 2.002

learning method only obtained the evolution characteristics of the time series based on
a limited number of samples, making it difficult to forecast long-term evolution and
reversal characteristics of a time series. The machine learning methods, such as the radial
basis function (RBF) and back-propagation (BP) neural network, have poor forecasting
ability of a time series, and the Elman network is unable to forecast the long-term
dependence of a time series. The proposed hybrid model, based on the GRU network, is
a deep learning method, which obtains the evolution characteristics of sequences based on
a large number of data, so the forecasting accuracy is higher. Because it is a deep learning
method, the training time of the hybrid model based on the GRU network is much longer
than that of the traditional statistical model and machine learning method.

Finally, the forecasting performance of the hybrid model in this work was compared
with three state of the art methods: the LSTM network, the GRU network and the
QRNN model. The LSTM algorithm and parameter settings were based on Rafi et al.
(2021). The selection and parameter value of the GRU network were based on Shen
et al. (2021). The setting and parameter values of the QRNN network were based on
Cannon (2011). Table 6 compares the forecasting performance of the above methods. The
average forecasting error value shows that, compared with the LSTM forecasting method
combined with EMD and VMD, the AVMDmodel proposed in this article decomposed
the sequence more accurately and improved the accuracy of the GRU network forecasting
results. The maximum and minimum errors also verified the stability and reliability of
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Table 5 Comparison of forecasting error of different forecasting methods.

Forecasting error Forecasting method

ARIMA SVR Elman network Combinational model Our model

MAPE (%) Averages 3.697 3.432 3.789 3.218 1.887
Minimum 1.824 1.896 1.743 1.182 1.176
Maximum 4.719 4.645 4.803 4.410 2.875

MAE (MW) Averages 326 297 359 281 194
Minimum 189 196 181 167 165
Maximum 510 468 514 449 262

RMSE (MW) Averages 475 437 507 421 332
Minimum 316 328 303 280 277
Maximum 773 731 778 682 395

Table 6 Comparison of performance of deep learning methods.

Forecasting error Forecasting method

EMD-LSTM VMD-LSTM EMD-GRU VMD-GRU QRNN Ourmodel

MAPE (%) Averages 1.951 1.937 1.928 1.904 1.910 1.887
Minimum 1.236 1.230 1.242 1.198 1.203 1.176
Maximum 3.294 3.295 3.201 3.187 3.204 2.875

MAE (MW) Averages 204 201 200 196 197 194
Minimum 179 177 183 169 180 165
Maximum 287 290 284 271 279 262

RMSE (MW) Averages 348 342 340 335 338 332
Minimum 291 288 299 280 283 277
Maximum 413 418 408 397 402 395

Training time (s) – 48.4 49.7 34.2 35.6 35.9 32.3

the hybrid model. Compared with other deep learning networks, the parallel structure of
the hybrid model based on the GRU network significantly shortened the training time,
making this model suitable for short-term power load forecasting.

Because it is a deep learning method, the hybrid model requires a large number of
training samples, and therefore the training time is longer than that of machine learning
methods. Training time could be further reduced by reducing the number of training
samples and batch size through a consideration of the periodicity of the load series. Fur-
thermore, based on actual data, a reasonable network structure could be optimized, such
as the number of network layers and nodes, without significantly reducing forecasting
accuracy.

DISCUSSION
The results of this study show the effectiveness of the established hybrid GRU network
with adaptive VMD for forecasting electrical load. The number of modes in adaptive
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VMD decomposition is determined using the average sample entropy and the cross-
correlation coefficient, improving forecasting performance. The adaptive VMD decom-
position eliminated the randomness of the series, and better reflected the time scale
characteristics of every subsequence, improving load forecasting performance, although
it increased the training time of the model.

Furthermore, we clarify the research gaps filled in by the proposed forecasting model.
Because load series have multiple periods and are nonlinear, the proposed model can
improve forecasting accuracy by decomposing the load series into multiple sub-sequences.
It is also difficult to determine the number of modes in VMD, and the proposed adap-
tive VMD can both determine the number of modes and improve the reliability of
decomposition using average sample entropy and the cross-correlation coefficient.
Finally, the proposed hybrid model improves forecasting accuracy at the cost of increased
computational time.

The computational complexity of the proposed hybrid model is similar to that of
LSTM, GRU, and RNN. Although the hybrid model has a longer computational time than
traditional machine learning methods, its forecasting accuracy is significantly improved.
The size of the network and the number of training samples could be further reduced in
practical applications based on data characteristics, reducing computational complexity
and the corresponding computational time, making the hybrid model appropriate for
practical short-term power load forecasting.

CONCLUSIONS
This study established a hybrid model of adaptive VMD and the GRU network and
applied the model to short-term electrical load forecasting. The developed adaptive
VMDmethod determines the modal number using average sample entropy and mutual
correlation. The developed GRU network reduces training time by adding the random
adjustment parameters to the Adam algorithm. The hybrid model reduces frequency
aliasing and the randomness of the series, so its forecasted loads are close to the actual
load data.

Some statistical models and machine learning methods, including ARIMA, SVR, the
Elman networks, and the combined model, and some state of the art models including the
LSTMmethod and the QRNN model, were compared with our proposed hybrid model.
The values of MAPE, MAE and RMSE were reduced in comparison with the traditional
statistical models. The training time of the hybrid model was much smaller than that of
the deep learning method, and the proposed hybrid model had better performance in
short-term load forecasting.
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