
Submitted 17 January 2023
Accepted 10 July 2023
Published 1 December 2023

Corresponding author
Sarah Eljack, s.alshiekh@mu.edu.sa

Academic editor
Ahyoung Lee

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.1513

Copyright
2023 Eljack et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A secure solution based on load-
balancing algorithms between regions
in the cloud environment
Sarah Eljack1, Mahdi Jemmali1,2,3, Mohsen Denden4,5, Sadok Turki6,
Wael M. Khedr1,7, Abdullah M. Algashami1 and Mutasim ALsadig1

1Department of Computer Science and Information, College of Science at Zulfi, Majmaah University,
Majmaah, Saudi Arabia

2Mars Laboratory, University of Sousse, Sousse, Tunisia
3Department of Computer Science, Higher Institute of Computer Science and Mathematics, University of
Monastir, Monastir, Tunisia

4Department of Computer and Information Technologies, College of Telecommunication and Information,
Technical and Vocational Training Corporation TV TC, Riyadh CTI, Saudi Arabia

5Department of Computer Science, Higher Institute of Applied Sciences of Sousse, Sousse University, Sousse,
Tunisia

6Department of Logistic and Maintenance, UFR MIM at Metz, University of Lorraine, Metz, France
7Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt

ABSTRACT
The problem treated in this article is the storage of sensitive data in the cloud
environment and how to choose regions and zones to minimize the number of transfer
file events. Handling sensitive data in the global internet network many times can
increase risks and minimize security levels. Our work consists of scheduling several
files on the different regions based on the security and load balancing parameters in
the cloud. Each file is characterized by its size. If data is misplaced from the start it
will require a transfer from one region to another and sometimes from one area to
another. The objective is to find a schedule that assigns these files to the appropriate
region ensuring the load balancing executed in each region to guarantee the minimum
number of migrations. This problem is NP-hard. A novel model regarding the regional
security and load balancing of files in the cloud environment is proposed in this article.
This model is based on the component called ‘‘Scheduler’’ which utilizes the proposed
algorithms to solve the problem. Thismodel is a secure solution to guarantee an efficient
dispersion of the stored files to avoid the most storage in one region. Consequently,
damage to this region does not cause a loss of big data. In addition, a novel method
called the ‘‘Grouping method’’ is proposed. Several variants of the application of this
method are utilized to propose novel algorithms for solving the studied problem.
Initially, seven algorithms are proposed in this article. The experimental results show
that there is no dominance between these algorithms. Therefore, three combinations
of these seven algorithms generate three other algorithms with better results. Based
on the dominance rule, only six algorithms are selected to discuss the performance of
the proposed algorithms. Four classes of instances are generated to measure and test
the performance of algorithms. In total, 1,360 instances are tested. Three metrics are
used to assess the algorithms and make a comparison between them. The experimental
results show that the best algorithm is the ‘‘Best-value of four algorithms’’ in 86.5% of
cases with an average gap of 0.021 and an average running time of 0.0018 s.

How to cite this article Eljack S, Jemmali M, Denden M, Turki S, Khedr WM, Algashami AM, ALsadig M. 2023. A secure solution based
on load-balancing algorithms between regions in the cloud environment. PeerJ Comput. Sci. 9:e1513 http://doi.org/10.7717/peerj-cs.1513

https://peerj.com/computer-science
mailto:s.alshiekh@mu.edu.sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.1513
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://doi.org/10.7717/peerj-cs.1513

Subjects Algorithms and Analysis of Algorithms, Computer Networks and Communications
Keywords Cybersecurity, Algorithms, Cloud computing, Cloud security, Modeling,
Optimization

INTRODUCTION
Choosing regions or zones in the cloud environment aims to provide better performance
and latency. Cost is also an important factor in choosing regions and zones in the cloud.
Sometimes a business chooses the region based on the location of its customers. Load
balancing is also an essential factor as it improves data security. In fact, the sensitivity of
applications hosted in the clouds varies according to their importance. Indeed, sensitive
applications require more than one region to avoid the risk of interruption. Given an
efficient load balancing system to store the files in the cloud environment is a secure
solution to guarantee an efficient dispersion of the stored files to avoid the most storage
in one region. Consequently, damage to this region does not cause a loss of big data. For
example, if there are many files that have a high-security level and these files are stored in
the same region, a hack of the system damages all these high levels files. The load balancing
ensures the dispersion of these files through different regions.

In the cloud environment, providers connect regions and availability zones through a
point-to-point network. For economic, technical, and security reasons, cloud regions are
geographically distributed at multiple points around the world. This means that the data
passes from one region to another via the Internet network. Data travels through global
routers all the time. The performance and the quality of the links in terms of speed and the
level of security are not the same in all sections of the Internet network. Data availability
of applications is an important factor for the cloud customer. The cloud infrastructure
is designed to ensure this constraint. A global network of interconnected servers and
systems provides nearly limitless fail-over scenarios. Cloud technology makes it possible to
permanently replicate and synchronize any type of data (Alzakholi et al., 2020). In the event
of a disruption server outage or network disruption and the cloud, setup will simply switch
to a replica and prove to offer access to systems and data. For the end user, the transition
is seamless in most scenarios, without realizing that a failure has occurred. Cloud security
is a concern for any organization (Singh & Chatterjee, 2017). Security issues can arise when
moving critical systems and sensitive data to a cloud computing solution (Lee, 2013). In
addition, the load balancing problem is studied in several domains in literature. Indeed,
the healthcare domain focused on the scheduling of the given quality reports to be treated
by physicians in a hospital. The number of pages that have each report must be considered
as a decision variable. this means that a load balancing of the total number of pages will
be imposed (Jemmali et al., 2022c). On the other hand, in the domain of the industry, the
maximization of the minimum completion time for the problem of the parallel machine
is studied in Jemmali & Alourani (2021). In this latter work, a mathematical model is
proposed to solve the NP-hard problem. In the same domain, other work solves this
problem approximately by proposing several heuristics and giving experimental results

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 2/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

resulting from these heuristics to compare between them (Jemmali, Otoom & al Fayez,
2020).

Several research projects studied load balancing in cloud computing. In Al Nuaimi et
al. (2012) and Ghomi, Rahmani & Qader (2017), the authors gave a survey regarding the
application of load balancing in cloud computing. An analysis of the load balancing in
cloud computing is detailed and discussed in Sidhu & Kinger (2013).

The rest of the article is organized as follows. ‘Literature review’ is reserved for the
literature review of the studied problem. ‘Architecture and model’ presents the novel
architecture and model for the cloud system incorporating load balancing. The problem
description is detailed in ‘Problem description’. In ‘Proposed algorithms’, a presentation
of the proposed algorithms is illustrated and discussed. The experimental results and
the discussions of the obtained results are detailed in ‘Experimental and discussion’. A
conclusion and future directives are given in ‘Conclusion’.

LITERATURE REVIEW
According to the latest studies, cloud provider-side or client-side security measures are
not sufficient. Researchers have to put a lot of effort into countering security threats and
defending the cloud system in general. In Arunarani, Manjula & Sugumaran (2017), the
heights included a security service for task planning. For this, they developed an algorithm
based on a hybrid optimization approach to minimize the risk rate. They claim that the
processes developed can both minimize execution costs and meet time constraints. In Chen
et al. (2017), the authors developed new approaches to reduce monetary costs and use
the cheapest resources. Their approach called SOLID consists of selective duplication of
previous tasks and encryption of intermediate data. In Fard, Prodan & Fahringer (2012), the
authors introduced a new model for cloud pricing and a truthful scheduling mechanism.
The goal of this work was to minimize the cost and the global execution time. Their
results are compared with classical algorithms and Pareto solutions. In Francis et al. (2018),
the authors presented a summary of secure data flow planning models in the cloud
environment. The article presents a solid mathematical study for the basic maintenance of
dynamic nodes in graphs andwhichneedupdating for the base number of each vertex.Other
researchers focused on edge-computing techniques in the cloud computing environment
to enhance resource allocation and increase management quality (Hua et al., 2019). In
addition, they affirmed that scheduling mechanisms could present better performance,
especially in real-time applications. In this context, the authors in Sang et al. (2022)
presented heuristics applied in device-edge-cloud cooperative computing. The authors
considered that planning tasks enhanced the use of limited resources in the edge servers.
They studied scheduling problems to find satisfaction and agreement between task numbers
whose deadlines are met for cooperative computing at the device edge. Likewise, in Wang
et al. (2020), the authors developed a binary nonlinear programming (BNP) model to solve
the problem of optimizing deadline violations in different heterogeneous computational
environments like cloud, edge, etc. The goal is to maximize the number of completed
tasks and enhance resource utilization. The authors inHan et al. (2019) proposed a general

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 3/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

model to solve task distribution and scheduling problems on edge networks in order to
minimize the response time of these tasks. Indeed, jobs are generated in an arbitrary order
and at arbitrary times on mobile devices. Then, they are unloaded on servers with upload
and download delays. In the same context, the authors in Aburukba, Landolsi & Omer
(2021) discussed the delay problem required by IoT applications. According to them, cloud
computing generates unacceptable delays between IoT devices and cloud data centers. They
preferred fog computing, which brings IT services closer to IoT devices. They developed
heuristics based on a genetic algorithm to satisfy requests as much as possible within
acceptable deadlines. In Bezdan et al. (2021), the authors improved the search operator of
traditional FPA by replacing the worst individuals with randomly generated new individuals
in the search space to avoid getting stuck in local minima at the start of the optimization
process. This improved FPA, called EEFPA, was used to find optimal scheduling of tasks
in cloud computing environments, minimizing makespan as the primary goal. EEFPA
was the best planner compared to similar approaches in this study. In the network, the
load balancing is applied to schedule several packets to the different routers ensuring
the load balancing of the total size of transmitted packets through routers (Jemmali &
Alquhayz, 2020a). The gas turbine engine is another domain in that the load balancing is
applied (Jemmali et al., 2019; Jemmali, Melhim & Alharbi, 2019). The GrayWolf Optimizer
(GWO) has been proposed for planning tasks in cloud computing to use resources more
efficiently and minimize overall execution time (Bacanin et al., 2019). This algorithm
has been compared with several scheduling methods such as FCFS, ACO, Performance
Budget ACO (PBACO), and Min-Max algorithms. Experimental results showed that GWO
was the best-performing scheduler and PBACO was his second-best. However, since the
performance of his large-scale GWO has not been evaluated, it is not preferable when the
number of tasks is large. In Tawfeek et al. (2013), the authors developed an optimization
of their colony of ants to handle task scheduling in cloud computing, with the aim of
reducing makespan. This algorithm was compared with his two conventional algorithms
such as FCFS and RR and showed better performance than both. The problem with this
algorithm is that it converges slowly, requiring multiple iterations to get a usable solution.
In Hamad & Omara (2016), the authors proposed a genetic algorithm (GA)-based task
scheduling algorithm to find the optimal assignment of tasks in cloud computing to
optimize manufacturing margins and costs and resource utilization.

In Jia, Li & Shi (2021), the authors presented a task scheduler based on an improved
Whale Optimization Algorithm (IWOA). Standard WOA was improved with IWOA
using two factors: nonlinear convergence coefficient and adaptive population size. IWOA
outperformed the compared algorithms in terms of accuracy and convergence speed when
planning small or large tasks in cloud computing environments.

Various partial computation offload algorithms have been designed for IoT systems
in a heterogeneous 5G network. A review of this work shows that the algorithms were
implemented for the purpose ofminimizing energy consumption and reducing delay (Singh
et al., 2020; Yang et al., 2018). However, researchers have paid little attention to the use
of MEC load reduction for IoT security. In Alladi et al. (2021), the authors implemented
partial computation for many users uploading. The authors described a deep learning

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 4/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

engine (DLE)-intrusion detection architecture based on artificial intelligence (AI) to
identify and classifymedia traffic in the Internet of Vehicles (IoV) into possible cyberattacks.
These DLEs have also been deployed on MEC servers instead of the remote cloud. Taking
into account the mobility of the vehicle and the real-time needs of the IoV network.

Rapid adoption and ease of use across all industries, the pervasiveness of the Internet
of Things concept, and the continued development of infrastructure and technology have
increased user demand for cloud computing, doubling data volumes and user demands.
Scheduling tasks becomes a more difficult topic. Provisioning resources according to
user requirements and maintaining the end-user quality of service (QoS) requirements
is a daunting task (Nayar, Ahuja & Jain, 2019). The work that can be near our objective
studied in this article is the load balancing of the size of files that must be stored in
different storage support (Alquhayz, Jemmali & Otoom, 2020). In this work, the authors
proposed different algorithms using different techniques like the iterative method and
the probabilistic method. Recently, the authors in Jemmali et al. (2022a) apply the load
balancing method by proposing several novel algorithms to solve the problem of the drone
battery for monitoring the solar power plant. The proposed algorithms in this latter work
are assessed and compared between them. The security parameters in scheduling data in
clouds were considered in several works likeMeng et al. (2020) and Houssein et al. (2021).

Table 1 provides a scope of improvement of the related works discussed previously.
In the domain of smart parking, the number of persons in vehicles must be taken

into consideration to schedule the vehicles on the available parking. Several algorithms
are proposed to solve this problem based on the load balancing problem. This problem
is proven to be NP-hard by the authors Jemmali et al. (2022b) and Jemmali (2022). The
budgeting and the management of the projects are exploited to solve a modeled problem
of load balancing. In fact, in Jemmali (2021b), the authors proposed heuristics to solve
the problem of the scheduling of several projects characterized by their expected revenue.
An experimental result shows the best-proposed heuristic in the work compared with all
others. In the same context, the authors in Jemmali (2021a) proposed an optimal solution
for the project assignment. Each project is characterized by its budget. The problem is
to find a schedule that assigns all projects to the given municipalities ensuring the load
balancing of the total budget in each municipality. Another work treated a similar problem
in Alharbi & Jemmali (2020) and Jemmali (2019).

In literature, scheduling problems are the subject of several types of research. Multiple
models are developed (Alharbi & Jemmali, 2020; Mahapatra, Dash & Pradhan, 2017;
Jemmali, 2019) to optimize the data transfer in different domains. The scheduling
algorithms developed in Melhim, Jemmali & Alharbi (2018), al Fayez, Melhim & Jemmali
(2019), Alquhayz & Jemmali (2021b), Jemmali, Melhim & Al Fayez (2022), Hmida &
Jemmali (2022), Sarhan & Jemmali (2023), Jemmali & Ben Hmida (2023), Jemmali et al.
(2022a) and Haouari, Gharbi & Jemmali (2006) can be enhanced by the adoption of the
proposed algorithms in this article.

The proposed algorithms can be applied to the problem described in Boulila et al.,
(2010), Driss et al. (2020), Ghaleb et al. (2019) and Al-Sarem et al. (2020).

These existing works have several limitations that can be presented as follows:

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 5/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Table 1 Scope of improvement of previous work.

Num. Scope of improvement Reference

1 A security and cost-aware scheduling method for non-
homogeneous jobs in a workflow run in the cloud

Arunarani, Manjula & Sugumaran (2017)

2 Task scheduling under selective-duplicate predecessor jobs
to idle time and intermediate data encryption by exploiting
tasks’ laxity time

Chen et al. (2017)

3 Minimizing the completion time and monetary cost Fard, Prodan & Fahringer (2012)
4 Survey of different previous works, by defining the factors

required in securing workflows through the execution
Francis et al. (2018)

5 Algorithms to increase the parallelism and minimize the
processing time

Hua et al. (2019)

6 Task scheduling problem to optimize the service level
agreement: a new formulation into binary nonlinear
programming and developed-heuristic with three stages

Sang et al. (2022)

7 Optimizing deadline violations for executing tasks: a
formulation as a binary nonlinear programming model
maximizing the number of completed tasks and optimizing
the resource utilization of servers

Wang et al. (2020)

8 General model to solve task distribution and scheduling
problems on edge networks in order to minimize the
response time of these tasks

Han et al. (2019)

9 Delay problem required by IoT applications Aburukba, Landolsi & Omer (2021)
10 Improved the search operator of traditional FPA by

replacing the worst individuals with randomly generated
new individuals in the search space to avoid getting stuck in
local minima at the start of the optimization process

Bezdan et al. (2021)

11 Load balancing of the total size of transmitted packets
through two routers

Jemmali & Alquhayz (2020a)

12 Load balancing in the gas turbine engine: algorithms and
approximate solutions

Jemmali et al. (2019) and
Jemmali, Melhim & Alharbi (2019)

13 Gray Wolf Optimizer (GWO) has been proposed for
planning tasks in cloud computing to use resources more
efficiently and minimize overall execution time

Bacanin et al. (2019)

14 An optimization of his colony of ants to handle task
scheduling in cloud computing, with the aim of reducing
makespan

Tawfeek et al. (2013)

15 A genetic algorithm (GA)-based task scheduling algorithm
to find the optimal assignment of tasks in cloud computing
to optimize manufacturing margins and costs and resource
utilization

Hamad & Omara (2016)

16 Whale optimization algorithm to solve the task scheduling
in cloud computing

Jia, Li & Shi (2021)

17 Various partial computation offload algorithms have been
designed for IoT systems in a heterogeneous 5G network

Singh et al. (2020) and Yang et al. (2018)

18 Implementation of a partial computation for many users
uploading

Alladi et al. (2021)

(continued on next page)

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 6/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Table 1 (continued)

Num. Scope of improvement Reference

19 Provisioning resources according to user requirements
and maintaining the end-user quality of service (QoS)
requirements is a daunting task

Nayar, Ahuja & Jain (2019)

20 Dispatching-rules algorithms for the storage of files system:
A load balancing

Alquhayz, Jemmali & Otoom (2020)

21 Load balancing method by proposing several novel
algorithms to solve the problem of the drone battery

Jemmali et al. (2022a)

22 The security parameters in scheduling data in clouds Meng et al. (2020) and Houssein et al. (2021)

• Scalability: some algorithms cannot give a solution in an acceptable time for big-scale
instances;
• Overhead: Different developed heuristics for load balancing can generate overhead;
• Limitation of implementation: Some heuristics can only be suitable to particular kinds
of files and virtual machines with specific characteristics.

In this article, a novelmethod based on the grouping procedure is proposed. Thismethod
is applied to different scheduling routines and generates a set of algorithms that solve the
studied problem. In Alquhayz, Jemmali & Otoom (2020), the developed algorithms are
based on the dispatching rules method. The proposed algorithms classify the files into
different groups. The choice of files that contains different groups makes the schedule
more dispersed and gives differentiated results. Changing the way that we select files into
groups and between groups is the core of the difference between the proposed algorithms.

ARCHITECTURE AND MODEL
In the cloud environment, most of the proposedmodels aim tominimize delay and increase
performance. In our work, we propose a new model to assign planning data to appropriate
regions by considering the file stability in each region.

The components of the model are as follows:

• Users are the workflow generators. Data can be files, databases, videos, etc.
• Scheduler represents the developed heuristics: The developed heuristics should provide
suitable scheduling solutions which guarantee a minimum of makespan and the
appropriate destination region. Heuristics consider incoming workflow, the queued
data, and the resource allocation state.
• Cloud service provider: allocate adequate resources to the appropriate services, calculate
costs, and guarantee the availability of the resources.
• Region 1 and 2: These are the cloud resources. It contains all available VMs that are
capable of receiving storage data. Each region has its own characteristics like geographical
position, cost, and availability parameters.

The main idea of this proposal is to assign data to a suitable cloud region. In the cloud,
scheduling is an essential process for guiding files to be stored. After receiving user requests

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 7/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

 Zone 1A

Region 1

Zone 1B

User 1 Sch
e
d
u
lin

g A
lgo

rith
m
s

Cloud Service

Provider CSP

User N

User 2

Zone 2B Zone 2A

Region 2

Figure 1 General overview of the load-balanced cloud environment for availability zones.
Full-size DOI: 10.7717/peerjcs.1513/fig-1

and data, the scheduler component should gather accepted files, analyze them according
to customer constraints and estimate the needed capacities.

Regularly, the cloud service provider sweeps up all available resources and collects
information about regions. This component translates this information to the scheduler,
which contains developed heuristics. The scheduler gathers information again, checks
the developed heuristic results, and assigns each file to the suitable region. The scheduler
component, the heart of our work, is working with the collaboration of a cloud service
provider. It collects the necessary information and dynamically calculates the best solution
to assign and dispatch each file into its corresponding region. Figure 1 shows the proposed
model. In this section, a novel architecture and model for the studied problem will be
presented and detailed.

PROBLEM DESCRIPTION
In general, cloud providers do not charge for viewing or modifying data at the same level of
infrastructure, but they charge for migrating data from one region to another. In addition
to the cost of data transfer, migrating data from one region to another increases the risk
of interception and hacking. The criteria for choosing regions and zones in the cloud
environment is not only the cost but also the stability of the files in each region. Our goal in
this work is to transfer files to the right places to avoid moving them several times. Moving
and transferring files over the global network not only increases the cost of the cloud but
also the likelihood of being intercepted, lost, hacked, etc.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 8/28

https://peerj.com
https://doi.org/10.7717/peerjcs.1513/fig-1
http://dx.doi.org/10.7717/peerj-cs.1513

Table 2 Notations and their definitions.

Notations Definitions

FL Set of files
Vr Set of virtual machines
Vn Number of available virtual machines
Fn Number of total files
i Index related to the file
j Index related to the virtual machine
Fi File number i
Vrj Virtual machine number j
Szi Size of the file Fi
Tfi The used space when the file Fi is executed
Tsj The total used space in the virtual machine Vrj
Tsmin The minimum used space ∀Vrj , j ={1,...,Vn}

In our work, we will develop algorithms that provide load balancing between storage
servers in different regions to minimize migration actions. The method that we propose
ensures the fair distribution of several files to different virtual machines cited in different
regions and zones.

In literature, several heuristics and algorithms are used to find an approximate
solution (Jemmali, 2021b). Alquhayz, Jemmali & Otoom (2020), Jemmali (2021a) prove
that heuristics produce acceptable solutions in a cloud environment. These solutions may
not be perfect, but they are still valuable.

All presented notations and their definitions are defined in Table 2.
Several objective functions can be adopted to solve the studied problem. In this article,

we adopt the objective function detailed in Eq. (1). Hereafter, Gfv denotes the gap of the
used space between the different virtual machines. This gap will be the objective that must
be minimized.

Gfv =
Vn∑
j=1

(Tsj−Tsmin). (1)

The objective is to find a schedule that canminimizeGfv . In these circumstances, finding
an approximate solution is very challenging. In this article, we propose several algorithms
that solve approximately the studied problem. To give a clear idea of the studied problem,
we give Example 1.
Example 1 In this example, we give a scenario that can be realized in a real circumstance.
Suppose that, there are three virtual machines and nine files to be executed by these
virtual machines. In this case, we have Vn = 3 and Fn = 9. The objective is to find a
schedule that can give an acceptable solution to assign all these files to different virtual
machines. Table 3, illustrates the sizes of the different files. Assume that we will choose
the shortest size-based algorithm. This algorithm is based on the following: we sort
all files according to the increasing order of their size and the scheduling will be done
one by one on the virtual machine that has the minimum value of Tsj . The result

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 9/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Table 3 Nine files scenario with its different size.

i 1 2 3 4 5 6 7 8 9

Szi 21 11 12 8 19 5 12 13 4

obtained by this algorithm is presented in Fig. 2. This Figure shows that in the virtual
machine Vr1 the files {2,8,9} are executed. However, in the virtual machine Vr2 the
files {5,6,7} are executed. Finally, in the virtual machine Vr3 the files {1,3,4} are
executed. Now, the calculation of the Tsj is necessary to determine the total gap Gfv . As
a result, the values of Ts1, Ts2, and Ts3 are 28, 36, and 42, respectively. Consequently,
Gfv =

∑3
j=1(Tsj−Tsmin= (28−28)+ (36−28)+ (42−28))= 22. For this schedule, the

gap between the virtual machines is 22. The objective is to find another schedule that gives
a better result which means a gap of less than 22. Applying the algorithm of the longest
size that sorts the files according to the decreasing order of their size and the scheduling
will be done one by one on the virtual machine that has the minimum value of Tsj . The
result obtained by this algorithm is presented in Fig. 3. This Figure shows that in the
virtual machine Vr1 the files {1,2,9} are executed. However, in the virtual machine Vr2
the files {5,6,7} are executed. Finally, in the virtual machine Vr3 the files {3,4,8} are
executed. Now, the calculation of the Tsj is necessary to determine the total gap Gfv . As
a result, the values of Ts1, Ts2, and Ts3 are 36, 36, and 34, respectively. Consequently,
Gfv =

∑3
j=1(Tsj−Tsmin= (36−34)+(36−34)+(34−34))= 4. It is clear the first schedule

presented in Fig. 1 gives a gap greater than the result obtained by schedule 2. The difference
between these two schedules is 22− 4= 18. So, just by changing the sorting method
between the first algorithm and the second one we gain 18 units of gap value.

PROPOSED ALGORITHMS
In this section, we present and detail all the proposed algorithms. These algorithms are
based on the classification method. Indeed, the files are grouped into three groups. The
choice of files that contains different groups makes the schedule more dispersed and gives
differentiated results. Ten algorithms are proposed in this work. All these algorithms are
based on the grouping method.

New grouping method
This method subdivides the files into three groupsG1,G2, andG3. At the start, these groups
are empty. The number of files in G1, G2, and G3 are denoted by f1, f2, and f3, respectively.
In the practice, f1 = Fn

3 , f2 =
Fn
3 , and f3 = Fn− f1− f2. Consequently, G1 = {F1,...,Ff1},

G2= {Ff1+1,...,Ff1+f2}, and G3= {Ff1+f2+1,...,FFn}. It is clear that the groups G1, G2, and
G3 depend on the manner that initially the files are sorted. Therefore, the initial state of
the set of files is very important to determine the groups. Ten algorithms are presented
in this article based on the grouping method. Changing the way that we select files into
groups and between groups is the core of the difference between the proposed algorithms.
Figure 4 gives an example of the subdivision of the given set of files.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 10/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

7

42

21

8

𝑉𝑀3

1

3

4

𝑇𝑓4

𝑇𝑓3

𝑇𝑓1
36

17

5

𝑉𝑀2

5

6

𝑇𝑓6

𝑇𝑓7

𝑇𝑓5

28

15

4

𝑉𝑀1

9

2

8

𝑇𝑓9

𝑇𝑓2

𝑇𝑓8

7

Figure 2 Schedule 1 applying a shortest size-based algorithm for Example 1.
Full-size DOI: 10.7717/peerjcs.1513/fig-2

𝑉𝑀3

26

13

34

4

3

𝑇𝑓3

𝑇𝑓8

𝑇𝑓4
36

19

31

𝑉𝑀2

6

7

5

𝑇𝑓8

36

32

21

𝑉𝑀1

1

2

9

𝑇𝑓9

𝑇𝑓2 𝑇𝑓7

𝑇𝑓5

𝑇𝑓6

8

Figure 3 Schedule 1 applying a longest size-based algorithm for Example 1.
Full-size DOI: 10.7717/peerjcs.1513/fig-3

Longest file size algorithm (LFS)
Firstly, the files are sorted according to the decreasing order of their size. The scheduling of
the sorted files will be done one by one on the virtual machine that has the minimum value
of Tfi until all files finish their execution. The complexity of this algorithm is depending on
the algorithm that sorts the files. The heap sort is adopted for this algorithm. Consequently,
the complexity of this algorithm is O(nlogn). All these steps are described in Algorithm 2.
Hereafter, we denoted by DER(F) the procedure that receives as input a list of numbers
F and sorts these numbers in decreasing order. These numbers will be the sizes of the
files that we want to sort them. The procedure DER(F) is based on the heap sort method.
Hereafter, we denoted by SCL(F) the procedure that schedules the element i (∀i,1≤ i≤ Fn)

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 11/28

https://peerj.com
https://doi.org/10.7717/peerjcs.1513/fig-2
https://doi.org/10.7717/peerjcs.1513/fig-3
http://dx.doi.org/10.7717/peerj-cs.1513

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐺 𝐺 𝐺

𝑓 files 𝑓 files 𝑓 files

Figure 4 Grouping of a set of files into three groups.
Full-size DOI: 10.7717/peerjcs.1513/fig-4

of F on the virtual machine which has the minimum Tsj . The instructions of SCL(F) are
detailed in Algorithm 1.

Algorithm 1 Scheduling of a list F Algorithm (SCL(F))
1: for (i= 1 to Fn) do
2: Determine j subject to min

1≤j≤Vn
Tsj

3: Update Tsj =Tsj+Fi
4: end for

The instructions of LFS are detailed in Algorithm 2.

Algorithm 2 Longest file size Algorithm (LFS)
1: Call DER(FL)
2: Call SCL(FL)
3: Calculate Gfv
4: Return Gfv

Third-grouped set algorithm (TGS)
The content of the groups depends on the manner that the files are sorted initially. We
adopt three manners to sort the files.

• First manner: Take the files as given initially without applying any sorting.
• Second manner: Sort the files according to the increasing order of their size.
• Third manner: Sort the files according to the decreasing order of their size.

For each manner, firstly we create the groups G1, G2, and G3. After that, we constitute a
permutation for these groups. There are six possibilities to constitute a sequence of groups.
The first sequence is G1, G2, and G3 denoted as {G1,G2,G3}. For this sequence, we schedule
all files in G1, next we schedule all files in G2 and finally, we schedule all files in G3. The
second sequence is {G1,G3,G2}. The third sequence is {G2,G1,G3}. The fourth sequence
is {G2,G3,G1}. The fifth sequence is {G3,G1,G2}. The last sequence is {G3,G2,G1}. So, for
each manner, six sequences are executed and the best solution is picked and returned.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 12/28

https://peerj.com
https://doi.org/10.7717/peerjcs.1513/fig-4
http://dx.doi.org/10.7717/peerj-cs.1513

Third-grouped with minimum-load algorithm (TGM)
The division into groups of files is adopted in this algorithm. Three groups are created by
the same method described in the section ‘New grouping method’ with the three manners
detailed in the same subsection. For each manner, a solution is calculated and the best
solution is selected. The algorithm is designed in five steps. The first step is to apply the
first manner and create the three groups G1, G2, and G3. The second step is to calculate the
load of each group. The load is the sum of all sizes of the files in the group. Indeed, the load
of G1 is denoted by Lo1 and equal to

∑f1
i=1(Szi). The load of G2 and G3 are denoted by Lo2

and Lo3, respectively. So, we have Lo2=
∑f1+f2

i=f1+1(Szi) and Lo3=
∑Fn

i=f1+f2+1(Szi). The third
step is to choose the group which has the minimum load. This group will be denoted byGc .
The fourth step is to schedule the first file in Gc . We update loads of different groups and a
new choice of a Gc will be determined and so on until the schedule of all the files. The total
gap is calculated and denoted by Gfv1. We restart step 1 with the second manner described
in the above Subsection and the total gap for this solution is calculated and denoted by
Gfv2. Finally, for the fifth step, we restart, step 1 with the application of the third manner,
and a new gap is calculated and denoted by Gfv3. The best solution Gfv is calculated as
given in Eq. (2).

Gfv = min
1≤k≤3

(Gfvk) (2)

Third-grouped excluding-files with minimum-load algorithm (TEM)
The first step of this algorithm is the select the Vn longest files. Each file will be scheduled
in a distinguished virtual machine. Now, the Fn−Vn remaining files will be scheduled in
the virtual machines according to TGM . We denoted by EXL(F) the function that returns
a list that contains the Vn longest files among F . We denoted by Rem(F) the function
that returns a list that contains the Fn−Vn remaining files after excluding the Vn longest
files among F . Hereafter, we denoted by IER(F) the procedure that receives as input a
list of numbers F and sorts these numbers in decreasing order. Hereafter, we denoted by
GrP(F) the procedure that subdivided the listed files F into the three groups G1, G2, and
G3 described in the section ‘New grouping method’. The procedure MG() is responsible
to return the group that has the maximum load. The procedure SCLF(L) is responsible to
schedule the first element of L on the available virtual machine. All steps of the algorithm
are described in the Algorithm 3.

Third-grouped one-by-one algorithm (TGO)
The determination of the three groups described above is adopted for this algorithm.
These three groups will be created as described in the section ‘New grouping method’. The
three manners as also applied. For each manner, firstly we create the groups G1, G2, and
G3. After that, we constitute a permutation for these groups. There are six possibilities to
constitute the order of groups. The first order is G1, G2, and G3 and denoted by Order1.
This means that we schedule the first file from G1, the first file from G2, and the first file
from G3. For the fifth order, we schedule applying the same method, the first file from

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 13/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Algorithm 3 Third-Grouped Excluding-Files with Minimum-Load Algorithm (TEM)
1: Set Ls= EXL(FL)
2: Call SCL(Ls)
3: Set Lr =Rem(FL)
4: for (manner = 1 to 3) do
5: if (manner = 2) then
6: Call DER(Lr)
7: end if
8: if (manner = 3) then
9: Call IER(Lr)
10: end if
11: Call GrP(Lr)
12: for (i= 1 to Fn−Vn) do
13: Calculate Lo1, Lo2, Lo3
14: Set Gm=MG()
15: Call SCLF(Gm)
16: Update Gm
17: end for
18: Calculate Gfvmanner

19: end for
20: Calculate Gfv = min

1≤manner≤3
(Gfvmanner)

21: Return Gfv

each group, following the order of the group, is scheduled. The second order is {G1,G3,G2}

and denoted by Order2. The third order is {G2,G1,G3} and denoted by Order3. The fourth
order is {G2,G3,G1} and denoted by Order4. The fifth order is {G3,G1,G2} and denoted by
Order5. The last order is {G3,G2,G1} and denoted byOrder6. So, for eachmanner, six orders
are executed and the best solution is picked and returned. We denoted by SCG(Orderh)
with h= {1,...,6} the procedure that schedules the files following the order received as
input until scheduling of all files.

Three-files swap third-grouped algorithm (TST)
The determination of the three groups described above is adopted for this algorithm.
These three groups will be created as described in the section ‘New grouping method’.
The three manners as also applied. For each manner, firstly we create the groups G1, G2,
and G3. After that, we constitute a permutation for these groups. There are six possibilities
to constitute the order of groups as described in the section ‘Third-grouped one-by-one
algorithm (TGO)’. So, for each manner, six orders are executed. For each order, a swap of
three files is applied. These files are the first file F1 from G1, the first file F2 from G2, and
the first file F3 from G3. The swapping is as follows:

• Restore a copy of F1

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 14/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Algorithm 4 Third-Grouped One-by-one Algorithm (TGO)
1: for (manner = 1 to 3) do
2: if (manner = 2) then
3: Call DER(FL)
4: end if
5: if (manner = 3) then
6: Call IER(FL)
7: end if
8: Call GrP(FL)
9: for (h= 1 to 6) do
10: Call SCG(Orderh)
11: Calculate Gfvhmanner
12: end for
13: end for
14: Calculate Gfv = min

1≤h≤6
(min
1≤manner≤3

(Gfvhmanner))

15: Return Gfv

• Apply a translation of the f1−1 files to the left beginning with position 2 and ending
with position f1.
• Move F2 at the end of G1.
• Move F3 at the front of G2.
• Move the stored copy of F1 at the front of G3.

Now, after the swapping TGO described in the ‘Third-grouped one-by-one algorithm
(TGO)’ on the new set of files obtained after swapping.

Hereafter, the procedure SWap(L1,L2,L3) is responsible to swap F1, F2, and F3 the
first files of the lists L1,L2, and L3 given as input, as the description above.

On-tenth-files swap third-grouped algorithm (OST)
The determination of the three groups described above is adopted for this algorithm.
These three groups will be created as described in the section ‘New grouping method’.
The three manners as also applied. For each manner, firstly we create the groups G1, G2,
and G3. After that, we constitute a permutation for these groups. There are six possibilities
to constitute the order of groups as described in the section ‘Third-grouped one-by-one
algorithm (TGO)’. So, for each manner, six orders are executed. For each order, a swap of
three files is applied. These files are the first Fn

10 files from G1, the first Fn
10 files from G2, and

the first Fn
10 files from G3. The swapping is as follows:

• Restore a copy of the first Fn
10 files from G1

• Apply a translation of the f1−10 files to the left beginning with position 11 and ending
with position f1.
• Move the first Fn

10 files from G2 at the end of G1.
• Move the first Fn

10 files from G3 at the front of G2.
• Move the stored copy of the first Fn

10 files from G1 at the front of G3.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 15/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Algorithm 5 Three-files Swap Third-Grouped Algorithm (TST)
1: for (manner = 1 to 3) do
2: if (manner = 2) then
3: Call DER(FL)
4: end if
5: if (manner = 3) then
6: Call IER(FL)
7: end if
8: Call GrP(FL)
9: Call SWap(G1,G2,G3)
10: for (h= 1 to 6) do
11: Call SCG(Orderh)
12: Calculate Gfvhmanner
13: end for
14: end for
15: Calculate Gfv = min

1≤h≤6
(min
1≤manner≤3

(Gfvhmanner))

16: Return Gfv

Now, after the swapping TGO described in the ‘Third-grouped one-by-one algorithm
(TGO)’ on the new set of files obtained after swapping.

Best-value of three algorithms (BVT)
This algorithm returns the minimum value after running the LFS, TGS, and OST .

Algorithm 6 Best-value of three algorithms (BVT)
1: Call LFS
2: Set Gfv1=Gfv
3: Call TGS
4: Set Gfv2=Gfv
5: Call OST
6: Set Gfv3=Gfv
7: Calculate Gfv = min

1≤h≤3
(Gfvh)

8: Return Gfv

Best-value of five algorithms (BFI)
This algorithm returns the minimum value after running the LFS, TGM , TEM , TGO, and
TST .

Best-value of four algorithms (BFO)
This algorithm returns the minimum value after running the LFS, TGS, TST , and OST .

Based on the above algorithms, it is clear to see that the algorithm BVT dominates
the three used algorithms LFS, TGS, and OST . In the same context, the algorithm BVF
dominates the five used algorithms LFS, TGM , TEM , TGO, and TST . Finally, the algorithm

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 16/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Table 4 Choice of (Fn,Vn).

Fn Vn

12,32,52 4,5,6
60,160,260,360 4,6,8,11
450,550,650 6,8,11

BVF dominates the four used algorithms. Consequently, we discussed only six algorithms
in the experimental results. These algorithms are LFS, TGS, OST , BVT , BFI , and BFO.

EXPERIMENTAL AND DISCUSSION
The performance of the proposed algorithms is measured and discussed in this section.
Several classes of instances are coded and tested. These instances and the proposed
algorithms are codded in C++ using a computer with an i5 processor and memory of 8 GB.
The proposed procedures are tested on a set of instances that are detailed in the following
Subsection.

Instances
The tested instances are coded to be used by the proposed algorithms measuring the
performance in terms of gap and time. These instances are depending on the manner that
we generate the Szi values. Indeed, the generation of Szi is based on two distributions. The
first one is the uniform distribution and is denoted byUN [.]. The second one is the normal
distribution and is denoted by NO[.].

The generated classes are illustrated as follows:

• Class 1: Szi in UN [25,130].
• Class 2: Szi in UN [110,370].
• Class 3: Szi in NO[220,25].
• Class 4: Szi in NO[330,110].

The choice of the number of virtual machines and the number of files that can be tested
are presented in Table 4.

For each number of virtualmachines and each number of files, 10 different instanceswere
generated. In total, the number of generated instances is (3×3+4×4+3×3)×10×4=
1,360. The generation of instances is inspired by the analysis presented in Alquhayz,
Jemmali & Otoom (2020); Alquhayz & Jemmali (2021a), and Jemmali & Alquhayz (2020b).

Metrics
All algorithms presented in ‘Proposed algorithms’ will be discussed based on several
metrics. These metrics are defined as follows.

•
−→
Z The minimum value obtained after executing of all algorithms.

• Z The value of the presented algorithm.
• Mp The percentage of instances when

−→
Z =Z .

• Gp= Z−
−→
Z

Z , if Z = 0, then Gp= 0.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 17/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Table 5 Overall results for all algorithms.

LFS TGS OST BVT BFI BFO

Mp 29.2% 61.3% 40.6% 79.3% 56.4% 86.5%
Ag 0.332 0.115 0.286 0.044 0.195 0.021
Time . 0.0006 0.0006 0.0013 0.0021 0.0018

Notes.
Bold indicates the best results and the underline indicates the second-best results.

• Ag The average Gp for a fixed set of instances.
• Time The time of execution of an algorithm for a fixed set of instances. This time is in
seconds and we recorded it as ‘‘.’’ if the time is less than 0.0001 s.

Discussion results
In this subsection, we discuss the performance of the proposed algorithms. This discussion
is based on five kinds of analyses. The first kind is an overall analysis of the obtained results.
The second kind is based on the number of files discussed. The third kind is based on
the number of virtual machines discussed. While the fourth kind is based on the class’s
discussion. Finally, the fifth kind is based on the pair discussion. These kinds of analyses
are discussed separately in the following subsections.

Overall results
Table 5 presents the overall results for all algorithms. This table shows that the best
algorithm is BFO in 86% of cases with an average gap of 0.021 and an average running time
of 0.0018 s. The second best algorithm is BVT in 79.3% of cases with an average gap of
0.044 and an average running time of 0.0013 s. Table 5 shows that the maximum average
gap of 0.332 is obtained by the LFS algorithm. The minimum running time of 0.0006 s is
reached for TGS andOST algorithms.While the average running time of the LFS algorithm
is less than 0.0001 s.

Number of files discussion
In this subsection, we discuss the variation of the average gap and time when the number
of files changes. Table 6 presents the average gap Gfv of all algorithms according to the
number of files Fn. This latter table shows that for the best algorithm, BFO the minimum
average gap of 0.001 is reached when Fn= 60. The second minimum value of the average
gap of 0.002 is obtained when Fn= 360. On the other hand, for BFO, the maximum average
gap of 0.054 is obtained when Fn= 550.

Table 7 presents the average running time Time in seconds of all algorithms according
to the number of files Fn. This latter table shows that the maximum average running
time of 0.0048 is reached when Fn= 550 for algorithm BFO. While the minimum average
running time of less than 0.0001 is reached four times for the LFS algorithm when
Fn={12,32,52,60}.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 18/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Table 6 The average gapGfv of all algorithms according to the number files Fn.

Fn LFS TGS OST BVT BFI BFO

12 0.134 0.016 0.016 0.016 0.083 0.011
32 0.355 0.063 0.252 0.022 0.259 0.020
52 0.253 0.203 0.238 0.067 0.081 0.015
60 0.328 0.052 0.300 0.008 0.239 0.001
160 0.264 0.166 0.432 0.049 0.139 0.042
260 0.277 0.102 0.283 0.035 0.221 0.033
360 0.434 0.065 0.252 0.003 0.241 0.002
450 0.474 0.218 0.344 0.151 0.214 0.006
550 0.414 0.118 0.490 0.078 0.154 0.054
650 0.368 0.147 0.193 0.023 0.305 0.023

Notes.
Bold indicates the best results and the underline indicates the second-best results.

Table 7 The running time Time of all algorithms according to the number files Fn.

Fn LFS TGS OST BVT BFI BFO

12 . 0.0001 . 0.0001 0.0002 0.0002
32 . 0.0002 0.0001 0.0003 0.0002 0.0003
52 . 0.0003 0.0002 0.0004 0.0005 0.0005
60 . 0.0002 0.0002 0.0005 0.0008 0.0006
160 0.0001 0.0004 0.0003 0.0008 0.0014 0.0011
260 0.0002 0.0007 0.0006 0.0011 0.0021 0.0017
360 0.0001 0.0006 0.0008 0.0015 0.0026 0.0022
450 0.0001 0.0010 0.0014 0.0025 0.0039 0.0038
550 0.0001 0.0012 0.0020 0.0033 0.0046 0.0048
650 0.0001 0.0013 0.0013 0.0027 0.0047 0.0040

Notes.
Bold indicates the best results and the underline indicates the second-best results.

Table 8 The average gapGfv of all algorithms according to the number of virtual machines Vn.

Vn LFS TGS OST BVT BFI BFO

4 0.324 0.031 0.424 0.007 0.259 0.000
5 0.279 0.132 0.147 0.061 0.109 0.025
6 0.371 0.146 0.244 0.063 0.196 0.056
8 0.355 0.075 0.260 0.012 0.234 0.006
11 0.273 0.176 0.287 0.073 0.130 0.004

Notes.
Bold indicates the best results and the underline indicates the second-best results.

Number of virtual machines discussion
In this subsection, we discuss the variation of the average gap and time when the number of
virtual machines changes. Table 8 presents the average gap Gfv of all algorithms according
to the number of virtual machines Vn.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 19/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

Table 9 The average time Time of all algorithms according to the number of virtual machines Vn.

Vn LFS TGS OST BVT BFI BFO

4 . 0.0003 0.0002 0.0006 0.0010 0.0008
5 . 0.0002 0.0001 0.0003 0.0003 0.0003
6 0.0001 0.0006 0.0006 0.0012 0.0019 0.0017
8 0.0001 0.0008 0.0009 0.0017 0.0029 0.0026
11 0.0001 0.0009 0.0011 0.0021 0.0032 0.0031

Notes.
Bold indicates the best results and the underline indicates the second-best results.

Table 10 The average gapGfv of all algorithms according to classes.

Class LFS TGS OST BVT BFI BFO

1 0.405 0.176 0.348 0.036 0.312 0.002
2 0.347 0.157 0.472 0.056 0.222 0.020
3 0.248 0.053 0.145 0.039 0.096 0.029
4 0.329 0.074 0.179 0.045 0.150 0.031

Notes.
Bold indicates the best results and the underline indicates the second-best results.

Table 11 The average running time Time in seconds of all algorithms according to classes.

Class LFS TGS OST BVT BFI BFO

1 0.0001 0.0006 0.0006 0.0012 0.0021 0.0018
2 0.0001 0.0006 0.0006 0.0013 0.0021 0.0019
3 . 0.0005 0.0007 0.0013 0.0020 0.0019
4 . 0.0006 0.0006 0.0012 0.0020 0.0018

Notes.
Bold indicates the best results and the underline indicates the second-best results.

Table 9 presents the average time Time of all algorithms according to the number of
virtual machines Vn.

Classes discussion
In this subsection, we discuss the variation of the average gap and the time when the class
changes.

Table 10 presents the average gap Gfv of all algorithms according to the classes. This
latter table shows that the minimum average gap of 0.002 is obtained for BFO and for
Class 1. While the class that has the maximum average gap for the BFO algorithm is Class
4. Regarding all algorithms, the maximum average gap of 0.472 is obtained for the OST
algorithm and for Class 2. We can see that, for the BFO algorithm, Class 1 is easier than
the others because for this class the average gap is the minimum value of 0.002.

Table 11 presents the average gap running time Time of all algorithms according to the
classes.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 20/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Ag

Pair(Fn,Vn)

BFI BFO

Figure 5 Comparison between the best algorithm BFO and BFI according to pair (Fn,Vn).
Full-size DOI: 10.7717/peerjcs.1513/fig-5

Pair discussion
In this subsection, we discuss the variation of the average gap when the pair of (Fn,Vn)
changes.

Figure 5 presents a comparison between the best algorithm BFO and BFI according to
the pair(Fn,Vn). This latter figure shows that the curve of BFO is always below the curve
of BFI for all values of the pairs (Fn,Vn). This explains that BFI is the best algorithm. In
addition, it is easy to see that the total number of the different pairs is 34.

Comparison to existing algorithms
In this subsection, we discuss the comparison between the proposed algorithms and the
existing ones. In the literature, in Alquhayz, Jemmali & Otoom (2020), the authors develop
algorithms to solve the storage problem. The best three algorithms in the latter work are
NISA, SIDAr , and SDIAr with percentages of 45.2%, 75.2%, and 41%, respectively as
detailed in Table 7 in Alquhayz, Jemmali & Otoom (2020). On the other hand, the three
best-proposed algorithms are TGS, BVT , and BFO with percentage of 61.3%, 79.3%, and
86.5%, respectively. Now, we compare the three best algorithms in Alquhayz, Jemmali &
Otoom (2020) to TGS, BVT , and BFO. Hereafter, the percentage is calculated based on the
minimum value obtained over the six algorithms (three best-existing algorithms and three
best-proposed ones).

Table 12 presents an overall comparison between the three existing best algorithms
and the three best-proposed algorithms. This table shows that the best algorithm is BFO
in 63.2% of cases with an average gap of 0.145 and an average running time of 0.0018
s. The second best algorithm is BVT in 58.2% of cases with an average gap of 0.167 and
an average running time of 0.0013 s. Table 12 shows that the maximum average gap of
0.429 is obtained by the NISA algorithm. This table shows that the proposed algorithms
outperform those developed in the literature. The best existing algorithm is SIDAr with

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 21/28

https://peerj.com
https://doi.org/10.7717/peerjcs.1513/fig-5
http://dx.doi.org/10.7717/peerj-cs.1513

Table 12 Overall comparison between the three existing best algorithms and the three best-proposed
algorithms.

NISA SIDAr SDIAr TGS BVT BFO

Mp 21.8% 50.8% 34.3% 47.3% 58.2% 63.2%
Ag 0.429 0.232 0.361 0.231 0.167 0.145
Ag 0.0001 0.0019 0.0017 0.0006 0.0013 0.0018

Notes.
Bold indicates the best results and the underline indicates the second-best results.

Table 13 Comparison of the average gapGfv values between the three existing best algorithms and the
three best-proposed algorithms according to the number files Fn.

Fn NISA SIDAr SDIAr TGS BVT BFO

12 0.130 0.113 0.244 0.011 0.011 0.006
32 0.399 0.269 0.365 0.118 0.078 0.077
52 0.360 0.140 0.359 0.322 0.202 0.154
60 0.452 0.207 0.366 0.195 0.155 0.150
160 0.500 0.150 0.363 0.446 0.352 0.349
260 0.475 0.274 0.258 0.337 0.280 0.274
360 0.467 0.122 0.497 0.101 0.041 0.041
450 0.486 0.328 0.483 0.230 0.163 0.018
550 0.590 0.435 0.249 0.342 0.316 0.299
650 0.357 0.341 0.385 0.134 0.010 0.009

Notes.
Bold indicates the best results and the underline indicates the second-best results.

a percentage of 50.8%, while the best-proposed algorithm is BFO with a percentage of
63.2%.

Table 13 presents the comparison of the average gap Gfv values between the three
existing best algorithms and the three best-proposed algorithms according to the number
files Fn. This latter table shows that for the best algorithm, BFO the minimum average gap
of 0.006 is reached when Fn= 12. The second minimum value of the average gap of 0.009 is
obtained when Fn= 650. On the other hand, for BFO, the maximum average gap of 0.349
is obtained when Fn= 160. Seven times BFO reach the minimum average gap values when
Fn={12,32,60,260,360,450,650}.

The proposed algorithms show their efficiency in the average gap. Indeed, the minimum
average gap of 0.021 is reached when comparing all the proposed algorithms and the
minimum average gap of 0.145 when comparing the existing algorithms to the proposed
ones. The proposed algorithms are non-dominant. This means that the permutation of
some tuples of these algorithms can give better results. The three best-proposed algorithms
are TGS, BVT , and BFO. The results detailed in tables and figures show the performance
of the algorithms. The application of the grouping method has a remarkable impact on the
performance of the algorithms. Indeed, these three algorithms are based on the grouping
method. This means that the grouping method shows its efficiency in the studied problem.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 22/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

CONCLUSION
In this article, a developed optimized algorithms scheduling based on load balancing
for minimizing data migration from one region to another in a cloud environment was
presented. The concept and the model are presented and explained. A novel grouping
method is presented. This method is utilized to obtain performed algorithms to solve the
studied problem. Ten algorithms are proposed. Due to the dominance rule between the
algorithms, only six algorithms are discussed in the experimental results. Four classes of
instances are generated and tested. These classes resulted in 1,360 instances in total. These
experimental results show that the best algorithm is the ‘‘Best-value of four algorithms
(BFO)’’ in 86.5% of cases with an average gap of 0.021 and an average running time
of 0.0018 s. Cloud security is the first challenge for developers and researchers. For a
company, choosing the best region to keep sensitive data is an important task because it
avoids unnecessary migration from one region to another and this can decrease security
levels and increase risks. By giving initial solutions, our proposed algorithms can be
enhanced and give better solutions. In the future, the performance of our algorithms can
be evaluated in the case of big data flow. The proposed algorithms can be enhanced by
applying some meta-heuristics.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Deputyship for Research & Innovation, Ministry of
Education in Saudi Arabia through the project number (IFP-2022-34). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia:
IFP-2022-34.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Sarah Eljack conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Mahdi Jemmali conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the article, and
approved the final draft.
• Mohsen Denden analyzed the data, performed the computation work, prepared figures
and/or tables, and approved the final draft.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 23/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513

• Sadok Turki conceived and designed the experiments, prepared figures and/or tables,
and approved the final draft.
• WaelM. Khedr performed the experiments, prepared figures and/or tables, and approved
the final draft.
• Abdullah M. Algashami analyzed the data, prepared figures and/or tables, authored or
reviewed drafts of the article, and approved the final draft.
• Mutasim ALsadig analyzed the data, prepared figures and/or tables, and approved the
final draft.

Data Availability
The following information was supplied regarding data availability:

The class of instances used in the experimental results and code are available in the
Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1513#supplemental-information.

REFERENCES
Aburukba RO, Landolsi T, Omer D. 2021. A heuristic scheduling approach for fog-

cloud computing environment with stationary IoT devices. Journal of Network and
Computer Applications 180:102994 DOI 10.1016/j.jnca.2021.102994.

Al Fayez F, Melhim LKB, Jemmali M. 2019.Heuristics to optimize the reading of railway
sensors data. In: 2019 6th international conference on control, decision and information
technologies (CoDIT). Piscataway: IEEE, 1676–1681.

Al Nuaimi K, Mohamed N, Al Nuaimi M, Al-Jaroodi J. 2012. A survey of load balancing
in cloud computing: challenges and algorithms. In: 2012 second symposium on
network cloud computing and applications. Piscataway: IEEE, 137–142.

Al-SaremM, Saeed F, Alsaeedi A, BoulilaW, Al-Hadhrami T. 2020. Ensemble
methods for instance-based arabic language authorship attribution. IEEE Access
8:17331–17345 DOI 10.1109/ACCESS.2020.2964952.

Alharbi M, Jemmali M. 2020. Algorithms for investment project distribution on regions.
Computational Intelligence and Neuroscience 2020.

Alladi T, Kohli V, Chamola V, Yu FR, Guizani M. 2021. Artificial intelligence (AI)-
empowered intrusion detection architecture for the internet of vehicles. IEEE
Wireless Communications 28(3):144–149.

Alquhayz H, Jemmali M. 2021a. Fixed urgent window pass for a wireless network
with user preferences.Wireless Personal Communications 120(2):1565–1591
DOI 10.1007/s11277-021-08524-x.

Alquhayz H, Jemmali M. 2021b.Max-min processors scheduling. Information Technol-
ogy and Control 50(1):5–12 DOI 10.5755/j01.itc.50.1.25531.

Alquhayz H, Jemmali M, OtoomMM. 2020. Dispatching-rule variants algorithms for
used spaces of storage supports. Discrete Dynamics in Nature and Society 2020.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 24/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1513#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1513#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1513#supplemental-information
http://dx.doi.org/10.1016/j.jnca.2021.102994
http://dx.doi.org/10.1109/ACCESS.2020.2964952
http://dx.doi.org/10.1007/s11277-021-08524-x
http://dx.doi.org/10.5755/j01.itc.50.1.25531
http://dx.doi.org/10.7717/peerj-cs.1513

Alzakholi O, Shukur H, Zebari R, Abas S, SadeeqM. 2020. Comparison among cloud
technologies and cloud performance. Journal of Applied Science and Technology
Trends 1(2):40–47 DOI 10.38094/jastt1219.

Arunarani A, Manjula D, Sugumaran V. 2017. FFBAT: a security and cost-aware
workflow scheduling approach combining firefly and bat algorithms. Concurrency
and Computation: Practice and Experience 29(24):e4295 DOI 10.1002/cpe.4295.

Bacanin N, Bezdan T, Tuba E, Strumberger I, TubaM, Zivkovic M. 2019. Task
scheduling in cloud computing environment by grey wolf optimizer. In: 2019 27th
telecommunications forum (TELFOR). Piscataway: IEEE, 1–4.

Bezdan T, Zivkovic M, Antonijevic M, Zivkovic T, Bacanin N. 2021. Enhanced flower
pollination algorithm for task scheduling in cloud computing environment. In:
Machine learning for predictive analysis. Singapore, Cham: Springer, 163–171.

BoulilaW, Farah IR, Ettabaa KS, Solaiman B, Ghézala HB. 2010. Spatio-temporal
modeling for knowledge discovery in satellite image databases. In: CORIA. 35–49.

Chen H, Zhu X, Qiu D, Liu L, Du Z. 2017. Scheduling for workflows with security-
sensitive intermediate data by selective tasks duplication in clouds. IEEE Transactions
on Parallel and Distributed Systems 28(9):2674–2688 DOI 10.1109/TPDS.2017.2678507.

Driss M, Aljehani A, BoulilaW, Ghandorh H, Al-SaremM. 2020. Servicing your re-
quirements: an fca and rca-driven approach for semantic web services composition.
IEEE Access 8:59326–59339 DOI 10.1109/ACCESS.2020.2982592.

Fard HM, Prodan R, Fahringer T. 2012. A truthful dynamic workflow scheduling
mechanism for commercial multicloud environments. IEEE Transactions on Parallel
and Distributed Systems 24(6):1203–1212.

Francis AO, Emmanuel B, Zhang D, ZhengW, Qin Y, Zhang D. 2018. Exploration of
secured workflow scheduling models in cloud environment: a survey. In: 2018 sixth
international conference on advanced cloud and big data (CBD). Piscataway: IEEE,
71–76.

Ghaleb FA, Maarof MA, Zainal A, Al-rimy BAS, Alsaeedi A, BoulilaW. 2019. Ensemble-
based hybrid context-aware misbehavior detection model for vehicular ad hoc
network. Remote Sensing 11(23):2852 DOI 10.3390/rs11232852.

Ghomi EJ, Rahmani AM, Qader NN. 2017. Load-balancing algorithms in cloud
computing: a survey. Journal of Network and Computer Applications 88:50–71
DOI 10.1016/j.jnca.2017.04.007.

Hamad SA, Omara FA. 2016. Genetic-based task scheduling algorithm in cloud
computing environment. International Journal of Advanced Computer Science and
Applications 7(4).

Han Z, Tan H, Li X-Y, Jiang SH-C, Li Y, Lau FC. 2019. OnDisc: online latency-sensitive
job dispatching and scheduling in heterogeneous edge-clouds. IEEE/ACM Transac-
tions on Networking 27(6):2472–2485 DOI 10.1109/TNET.2019.2953806.

Haouari M, Gharbi A, Jemmali M. 2006. Bounding strategies for scheduling on identical
parallel machines. In: 2006 international conference on service systems and service
management, vol. 2. Piscataway: IEEE, 1162–1166.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 25/28

https://peerj.com
http://dx.doi.org/10.38094/jastt1219
http://dx.doi.org/10.1002/cpe.4295
http://dx.doi.org/10.1109/TPDS.2017.2678507
http://dx.doi.org/10.1109/ACCESS.2020.2982592
http://dx.doi.org/10.3390/rs11232852
http://dx.doi.org/10.1016/j.jnca.2017.04.007
http://dx.doi.org/10.1109/TNET.2019.2953806
http://dx.doi.org/10.7717/peerj-cs.1513

Hmida AB, Jemmali M. 2022. Near-optimal solutions for mold constraints on two
parallel machines. Studies in Informatics and Control 31(1):71–78.

Houssein EH, Gad AG,Wazery YM, Suganthan PN. 2021. Task scheduling in
cloud computing based on meta-heuristics: review, taxonomy, open chal-
lenges, and future trends. Swarm and Evolutionary Computation 62:100841
DOI 10.1016/j.swevo.2021.100841.

Hua Q-S, Shi Y, Yu D, Jin H, Yu J, Cai Z, Cheng X, Chen H. 2019. Faster parallel core
maintenance algorithms in dynamic graphs. IEEE Transactions on Parallel and
Distributed Systems 31(6):1287–1300.

Jia L, Li K, Shi X. 2021. Cloud computing task scheduling model based on improved whale
optimization algorithm. Wireless communications and mobile computing. Hindawi
Limited.

Jemmali M. 2019. Budgets balancing algorithms for the projects assignment. Interna-
tional Journal of Advanced Computer Science and Applications 10(11).

Jemmali M. 2021a. An optimal solution for the budgets assignment problem. RAIRO-
Operations Research 55(2):873–897 DOI 10.1051/ro/2021043.

Jemmali M. 2021b. Projects distribution algorithms for regional development. ADCAIJ:
Advances in Distributed Computing and Artificial Intelligence Journal 10(3).

Jemmali M. 2022. Intelligent algorithms and complex system for a smart parking for
vaccine delivery center of COVID-19. Complex & Intelligent Systems 8(1):597–609
DOI 10.1007/s40747-021-00524-5.

Jemmali M, Alourani A. 2021.Mathematical model bounds for maximizing the mini-
mum completion time problem. Journal of Applied Mathematics and Computational
Mechanics 20(4):43–50.

Jemmali M, Alquhayz H. 2020a. Equity data distribution algorithms on identical routers.
In: International conference on innovative computing and communications. Cham:
Springer, 297–305.

Jemmali M, Alquhayz H. 2020b. Time-slots transmission data algorithms into network.
In: 2020 international conference on computing and information technology (ICCIT-
1441). Piscataway: IEEE, 1–4.

Jemmali M, Bashir AK, BoulilaW,Melhim LKB, Jhaveri RH, Ahmad J. 2022a. An
efficient optimization of battery-drone-based transportation systems for monitoring
solar power plant. IEEE Transactions on Intelligent Transportation Systems 1–9.

Jemmali M, Ben Hmida A. 2023. Quick dispatching-rules-based solution for the two par-
allel machines problem under mold constraints. Flexible Services and Manufacturing
Journal 17:1–26.

Jemmali M, Melhim LKB, Al Fayez F. 2022. Real time read-frequency optimization
for railway monitoring system. RAIRO-Operations Research 56(4):2721–2749
DOI 10.1051/ro/2022094.

Jemmali M, Melhim LKB, Alharbi M. 2019. Randomized-variants lower bounds for gas
turbines aircraft engines. In:World congress on global optimization. Cham: Springer,
949–956.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 26/28

https://peerj.com
http://dx.doi.org/10.1016/j.swevo.2021.100841
http://dx.doi.org/10.1051/ro/2021043
http://dx.doi.org/10.1007/s40747-021-00524-5
http://dx.doi.org/10.1051/ro/2022094
http://dx.doi.org/10.7717/peerj-cs.1513

Jemmali M, Melhim LKB, Alharbi MT, Bajahzar A, Omri MN. 2022b. Smart-
parking management algorithms in smart city. Scientific Reports 12(1):1–15
DOI 10.1038/s41598-021-99269-x.

Jemmali M, Melhim LKB, Alharbi SOB, Bajahzar AS. 2019. Lower bounds for gas
turbines aircraft engines. Communications in Mathematics and Applications
10(3):637–642.

Jemmali M, Melhim LKB, Alourani A, AlamMM. 2022c. Equity distribution of quality
evaluation reports to doctors in health care organizations. PeerJ Computer Science
8:e819 DOI 10.7717/peerj-cs.819.

Jemmali M, OtoomMM, Al Fayez F. 2020.Max-min probabilistic algorithms for parallel
machines. In: Proceedings of the 2020 international conference on industrial engineering
and industrial management. 19–24.

Lee J. 2013. A view of cloud computing. International Journal of Networked and Dis-
tributed Computing 1(1):2–8 DOI 10.2991/ijndc.2013.1.1.2.

Mahapatra S, Dash RR, Pradhan SK. 2017. Heuristics techniques for scheduling
problems with reducing waiting time variance. In: Heuristics and hyper-heuristics-
principles and applications. Rijeka: IntechOpen, 43–64 DOI 10.5772/intechopen.69224v.

Melhim LKB, Jemmali M, Alharbi M. 2018. Intelligent real-time intervention system ap-
plied in smart city. In: 2018 21st Saudi computer society national computer conference
(NCC). IEEE, 1–5.

Meng S, HuangW, Yin X, Khosravi MR, Li Q,Wan S, Qi L. 2020. Security-aware dy-
namic scheduling for real-time optimization in cloud-based industrial applications.
IEEE Transactions on Industrial Informatics 17(6):4219–4228.

Nayar N, Ahuja S, Jain S. 2019. Swarm intelligence and data mining: a review of
literature and applications in healthcare. In: Proceedings of the third international
conference on advanced informatics for computing research. 1–7.

Sang Y, Cheng J, Wang B, ChenM. 2022. A three-stage heuristic task scheduling for
optimizing the service level agreement satisfaction in device-edge-cloud cooperative
computing. PeerJ Computer Science 8:e851 DOI 10.7717/peerj-cs.851.

Sarhan A, Jemmali M. 2023. Novel intelligent architecture and approximate solution for
future networks. PLOS ONE 18(3):e0278183 DOI 10.1371/journal.pone.0278183.

Sidhu AK, Kinger S. 2013. Analysis of load balancing techniques in cloud computing.
International Journal of Computers & Technology 4(2):737–741.

Singh A, Chatterjee K. 2017. Cloud security issues and challenges: a survey. Journal of
Network and Computer Applications 79:88–115 DOI 10.1016/j.jnca.2016.11.027.

Singh J, Bello Y, Hussein AR, Erbad A, Mohamed A. 2020.Hierarchical security
paradigm for iot multiaccess edge computing. IEEE Internet of Things Journal
8(7):5794–5805.

TawfeekMA, El-Sisi A, Keshk AE, Torkey FA. 2013. Cloud task scheduling based on ant
colony optimization. In: 2013 8th international conference on computer engineering &
systems (ICCES). Piscataway: IEEE, 64–69.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 27/28

https://peerj.com
http://dx.doi.org/10.1038/s41598-021-99269-x
http://dx.doi.org/10.7717/peerj-cs.819
http://dx.doi.org/10.2991/ijndc.2013.1.1.2
http://dx.doi.org/10.5772/intechopen.69224v
http://dx.doi.org/10.7717/peerj-cs.851
http://dx.doi.org/10.1371/journal.pone.0278183
http://dx.doi.org/10.1016/j.jnca.2016.11.027
http://dx.doi.org/10.7717/peerj-cs.1513

Wang B, Song Y,Wang C, HuangW, Qin X. 2020. A study on heuristic task scheduling
optimizing task deadline violations in heterogeneous computational environments.
IEEE Access 8:205635–205645 DOI 10.1109/ACCESS.2020.3037965.

Yang L, Zhang H, Li M, Guo J., Ji H. 2018.Mobile edge computing empowered en-
ergy efficient task offloading in 5G. IEEE Transactions on Vehicular Technology
67(7):6398–6409 DOI 10.1109/TVT.2018.2799620.

Eljack et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1513 28/28

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2020.3037965
http://dx.doi.org/10.1109/TVT.2018.2799620
http://dx.doi.org/10.7717/peerj-cs.1513

