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ABSTRACT
It is important to be able to measure the similarity between two uncertain concepts
for many real-life AI applications, such as image retrieval, collaborative filtering, risk
assessment, and data clustering. Cloud models are important cognitive computing
models that show promise in measuring the similarity of uncertain concepts. Here,
we aim to address the shortcomings of existing cloud model similarity measurement
algorithms, such as poor discrimination ability and unstable measurement results. We
propose an EPTCMalgorithmbased on the triangular fuzzy number EW -type closeness
and cloud drop variance, considering the shape and distance similarities of existing
cloud models. The experimental results show that the EPTCM algorithm has good
recognition and classification accuracy and is more accurate than the existing Likeness
comparing method (LICM), overlap-based expectation curve (OECM), fuzzy distance-
based similarity (FDCM) and multidimensional similarity cloud model (MSCM)
methods. The experimental results also demonstrate that the EPTCM algorithm has
successfully overcome the shortcomings of existing algorithms. In summary, the
EPTCM method proposed here is effective and feasible to implement.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Data Mining and
Machine Learning, Data Science, Neural Networks
Keywords Cloud model, Expectation curve, Similarity measurement, Triangular fuzzy number,
EW-type closeness, Cloud model variance

INTRODUCTION
Natural language is a valuable tool for human communication and thinking.However, there
can be great uncertainty in the use of language, which can be summarized by the concepts
of randomness and fuzziness (Li & Du, 2017). The research on natural language processing
is both challenging and poetic. Artificial intelligence is also marked by ambiguity (Müller
et al., 2022), especially in the era of big data. Although the development of information
transmission and storage technology has improved big data processing, it is still impossible
to obtain a complete, real-time picture of all the data. Li, Di & Li (2000) put forward the
cloud model theory in the early 1990s, which integrates fuzziness and randomness, realizes
the mutual conversion between qualitative concepts and quantitative representations,
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and is intuitive and universal. After several years of exploration and development, the
cloud model has become completer and more universal (Wang, Li & Yang, 2019). The
cloud model has been successfully applied and developed in many fields, such as in the
statistical representation of engineering parameters (Chen et al., 2020; Luo et al., 2022),
system evaluation and decision-making (Tong & Srivastava, 2022; Su & Yu, 2020; Wu et
al., 2020), data mining (Shehab, Badawy & Ali, 2022; Zarinbal, Zarandi & Turksen, 2014),
image processing (Li, Li & Du, 2018; Tversky & Kahneman, 1992), and decision making
problems (Yu et al., 2021; Wang, Huang & Cai, 2020; Zhou, Chen & Ming, 2022). It should
be noted that the practical applications of cloud model theory (such as data mining
and decision analysis) all involve the similarity measurement (Zhang, Zhao & Li, 2004).
Therefore, the similarity measurement will directly influence the actual application of the
cloud model theory.

The comparison between the similarities of cloud model applications is of great interest
to researchers (Li, Wang & Yang, 2019). Cloud models express the uncertainty of data
intuitively and provide a method with which to analyze qualitative concepts similarly
to that of human cognition. The randomness and fuzziness of the cloud model make it
more advantageous in dealing with uncertain problems such as data clustering (Sheng et
al., 2019), data classification (Wang et al., 2021), and similarity searches (Luo et al., 2022).
Cloud models have been developed and improved over time, resulting in the development
of various similarity measurement methods. Zhang et al. (2007) viewed the digital features
of two cloudmodels as elements of two vectors and characterized the similarity of the cloud
models by the cosine angle of the two vectors (LICM). Li, Guo & Qiu (2011) proposed the
area proportional method (expectation-based cloud mode, ECM) based on the expectation
curve. This method uses the intersection area surrounded by the expectation curve and
the horizontal axis of two cloud models to represent similar components, resulting in
the similarity of the cloud models. Inspired by the relationship between the Gaussian
distribution and GCM, researchers have utilized the distance of probability distributions
to determine the Kullback–Leibler divergence (KLD) (Xu &Wang, 2017), earth-movers’
distance (EMD) (Yang, Wang & Li, 2016), and the square root of the Jensen–Shannon
divergence (Yang et al., 2018), to describe the concept of drift (EMDCM) which is reflected
by the distance between two cloud models. Wang et al. (2018) defined a new measure
of fuzzy distance for model clouds based on the α-cuts and they proposed a new cloud
model similarity measurement method using the fuzzy distance measurements (fuzzy
distance-based similarity, FDCM). Yan et al. (2019) used the overlap-based expectation
curve of cloud model (OECM) algorithm as a measurement method to measure the
similarity of cloud models. In this algorithm, the overlapping degree is used to describe
the overlapping part of two clouds, and the overlapping part is transformed into the
similarity of cloud models by using the membership degree of ‘‘3En’’ boundary and the
intersection of two clouds. Li et al. (2020) proposed a cloud model similarity measurement
method (UDCM) based on uncertain distribution. Zhang et al. (2021) put forward a new
similarity measurement method (MSCM) for multi-dimensional cloud models based on
fuzzy similarity principle. Luo et al. (2022) proposed a new structural damage identification
method (MCM) based on a cloudmodel similarity measurement of response surface model
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Table 1 A summary of previous cloudmodel similarity metrics.

Literature Publication year Main contents Limitations

Zhang et al. 2007 LICMmethod • The discrimination of the measurement results was low;
•When there is a large difference between the numerical
features of the cloud model, the calculated similarity error is
larger.

Li, Guo & Qiu 2011 ECMmethod • The method ignores the role of hyper-entropy (He) for
cloud models, and the metric results are generally different
from human cognition;
• The calculation steps are tedious and the arithmetic is
complicated.

Yang et al. 2018 EMDCMmethod • The discrimination of the measurement results was low;
• The method do not find the difference between two
different concepts in some special situations due to
neglecting the variation of hyper-entropy (He);
•Moreover, it only have partial interpretability due to the
absence of relationship between entropy and hyper-entropy
(Li, Wang & Yang, 2019).

Wang et al. 2018 FDCMmethod • The method still has a complex arithmetic process and is
costly to run on the CPU;
•Measurement results remain unstable;
• The threshold (δ) of cloud droplets is difficult to
determine.

Yan et al. 2019 OECMmethod • The discrimination of the measurement results is not
good;
• The algorithm only considers the overlap between cloud
models, and does not consider the shape similarity of cloud
models, which can only be partially explained.

Li et al. 2020 UDCMmethod • This method still has integral operations and consumes a
large amount of CPU runtime;
• The calculation results are still influenced by the number
of cloud droplets and the number of experiments.

Zhang et al. 2021 MSCMmethod • The algorithm can fail in some special cases;
• For example, when the two cloud expectation (Ex) are
equal, the metric result will be constant at 1. It ignores
the role of entropy (En) and hyper-entropy (He), which
is inconsistent with human subjective cognition and has
loopholes.

Luo et al. 2022 MCMmethod • Although hyper-entropy is considered in MCM, it will fail
when hyper-entropy is very large;
• The calculation steps are tedious and the arithmetic is
complicated.

updating. A brief summary is given in Table 1 to illustrate the shortcomings of the existing
methods.

Currently, there is no consensus on how to evaluate the similarity measurement method
of cloud models. However, a good cloud concept similarity metric algorithm needs to be
stable and efficient, and able to highlight the differences between the different types of
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clouds. It should ensure greater differentiation and guarantee correct similarity conclusions.
In addition, a similarity metric for cloud models with good performance should be generic.

In order to solve the problems of existing cloud model similarity metrics, this study
aims to propose a new cloud model similarity measurement method using the triangle
cloud model (Gong, Dai & Hu, 2016), an extended model of the normal cloud model, as
the research object. The triangular cloud model similarity (PCM), based on cloud drop
variance, is proposed as the shape similarity of two groups of cloud models. It is combined
with triangular cloud model distance similarity (ETCM) based on EW -type closeness
(Bao & Bai, 2018). Extra consideration is given to the distance and shape similarity of
the cloud model and this method was shown to return better discrimination results. The
experimental results show that the discrimination is higher. The simulation results show
that the measurement results obtained by EPTCM method are consistent with people’s
intuitive impression. This can prove that this method is reasonable. It can be analyzed that
the process in this paper can better distinguish different types of cloud models.

Definitions and notions
Here, we provide definitions, relationships, and necessary lemmas for the normal cloud,
triangular cloud model, and triangular fuzzy numbers. We then describe the variance of
triangular cloud model and EW -type closeness.

Definition 1. Let U be a non-empty infinite set expressed by an accurate numerical
value, and C is a qualitative concept on U. If there is an accurate numerical value x ∈U,
and the mapping y =µC (x)∈ [0,1] of x to C is a random number with a stable law, then
the distribution of (x, y) on the universe U is called a cloud, and each (x, y) is called a
cloud drop (Li, Han & Shi, 1998).

Definition 2. The three characteristic parameters (Ex, En, He) of the cloud model are
the quantitative embodiment of its qualitative concept. The expectation (Ex) of the cloud
is the representation of the expected value of the cloud in the non-empty infinite set
expressed and it is also the center of gravity corresponding to the maximum value of the
membership degree Y ; entropy (En) is a measure of the uncertainty of cloud model, which
reflects the expected dispersion of cloud droplets and the fuzziness of cloud model data.
Hyper-entropy (He) is the entropy of En, which is a measure of the uncertainty of cloud
model entropy. Its value can represent the thickness of cloud, reflecting the randomness of
cloud model data.

Definition 3. If the randomvariable x satisfies x ∼N (Ex,En‘2), whereEn‘∼N (En,He2),
and the certainty of x to the qualitative concept satisfies:

µC(x)= exp(−
(x−Ex)2

2(En′)2
) (1)

then that distribution of x on the non-empty infinite setU is normal cloud (Li, Han & Shi,
1998).
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Definition 4. If the randomvariable x satisfies x ∼N (Ex,En‘2), whereEn‘∼N (En,He2),
and the certainty of x to the qualitative concept satisfies:

µC(x)=


x−

(
Ex−3En′

)
3En′

, x < Ex

1−
x−Ex
3En′

, x ≥ Ex
(2)

then that distribution of x on the non-empty infinite set U is triangle cloud.
Definition 5. If the randomvariable x satisfies x ∼N (Ex,En‘2), whereEn‘∼N (En,He2),

and En 6= 0. At this time, the Eq. (3) exists:

y =


x−(Ex−3En)

3En
, x < Ex

1−
x−Ex
3En

, x ≥ Ex
(3)

then y is called the expected curve of triangular cloud. The expected curve is obtained
from the distribution law of cloud droplets in the horizontal direction. The expected curve
can intuitively describe the shape characteristics of triangular cloud and all cloud droplets
fluctuate randomly around the expected curve.

Definition 6. Fuzzy numbers are convex fuzzy sets defined on real numbers R (Wu &
Zhao, 2008). For a certain fuzzy number, its membership degree satisfies Eq. (4):

F (x)=


x− r l

rm− r l
, r l ≤ x ≤ rm

x− ru

rm− ru
, rm≤ x ≤ ru

0, other

(4)

then r̃ = (r l ,rm,rn) is called triangular fuzzy number. The membership function of r̃ is
F (x) :R→ [0,1], where x ∈R and R is a real number field. r l ,rm,ru are the lower bound,
median, and upper bound of triangular fuzzy numbers, respectively, and r l ≤ rm ≤ ru.
When they are equal, r̃ degenerate into real values.

Definition 7. For a
_
,a⊆ R, and a

_
≤ a, then a=

[
a
_
,a
]
is called interval number. The

relationship between fuzzy numbers and interval numbers is shown in Fig. 1. The whole
number of intervals is recorded as [R ]. for a∈ [R], the Eq. (5) exists:

E (a)=
a+a

_

2
, W (a)=

a−a
_

2
(5)

E(a) andW (a) are respectively the expected value and width of interval number a (Bao,
Peng & Zhao, 2013).

Definition 8. For u∈ F0, F0 is a fuzzy number space (Bao & Bai, 2018). The r-cut set
with fuzzy number u is a closed interval, as shown in Eq. (6):

[u]r =
[
u
_
(r),u(r)

]
, r ∈ [0,1]. (6)

The r-cut interval number of triangular numbers is shown in Fig. 2.
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Figure 1 The relationship between fuzzy number and interval number.
Full-size DOI: 10.7717/peerjcs.1506/fig-1

The order relation on F0 is defined as:
u≤ v , and if and only if for any r ∈ [0,1],u(r)≤ v (r) and . u

_
(r)≤ v

_
(r).

u≥ v , and if and only if for any r ∈ [0,1],u(r)≥ v (r) and u
_
(r)≥ v

_
(r).

Definition 8 can be regarded as a bridge between fuzzy numbers and interval numbers,
and it is also the theoretical basis for the transformation of interval number closeness to
fuzzy number closeness in EW -type closeness.

Lemma 1. If the random variable x satisfies x ∼N (Ex,En
′2
), where En

′

∼N (En,He2),
and En 6= 0.

D(x)= En2+He2 (7)

The D (x) is called the variance of cloud droplets in the cloud model.He determines the
thickness of clouds, and En determines the dispersion degree of cloud droplets. The larger
the difference between He and En, the smaller the shape similarity between two clouds
model.

Lemma 2. Set function: (Bao & Bai, 2018)

g (x)=
1

1+xn
,n> 0,x ∈ [0,+∞) (8)
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 Figure 2 The r-cut interval number of triangular numbers.
Full-size DOI: 10.7717/peerjcs.1506/fig-2

The mapping f : [R]× [R]→[0,+∞) is defined as:

f (u,v)=
(
|E (u)−E (v)|p+

1
3
|W (u)−W (v)|p

) 1
p

,p≥ 1,∀u,v ∈ [R] (9)

then g
(
f (u,v)

)
= nEW (u,v) is the closeness of the interval number u and v.

Lemma 3. Let the mapping N p
EW : F0×F0→ [0,1] be defined as:

N p
EW (u,v)=

(∫ 1

0
(nEW ([u]r ,[v]r ))pdr

) 1
p

,p≥ 1,∀u,v ∈ F0 (10)

then N p
EW (u,v) is called EW -type closeness of triangular fuzzy numbers u and v (Bao &

Bai, 2018).

MATERIALS & METHODS
A novel similarity measure for triangular cloud model
Many studies consider only one aspect to measure the similarity of cloudmodels, therefore,
these methods have some shortcomings. In fact, the similarity of cloud models can be
observed from two aspects: shape and distance. By combining these two perspectives with
scientific methods, a more complete similarity measurement method for cloud models
can be obtained. The EPTCM method proposed here is formed from this perspective.
The EPTCM method consists of a combination of two methods (the ETCM and PCM
methods). Since the ETCM method introduces only Ex and En, it is considered as the
distance similarity between the cloud models. However, the PCMmethod is exactly related
to the shape of the two cloud models (only En and He are considered). After establishing
these two methods, a scientific empowerment method is designed in this article to combine
these two methods scientifically. The ETCM method and PCM method are combined by
empowerment to obtain the final EPTCM method.
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Similarity measure of expected curve of cloud model based on
EW -type closeness
Fuzzy closeness is an important concept for triangular fuzzy numbers (Jiang et al., 2019).
Comparedwith the traditionalHausdorff-distance (Hossein-Abad, Shabanian & Kazerouni,
2020) and P-distance (You & Yan, 2017) formulas, the EW -type distance formula (dPEW )
(Bao, Peng & Zhao, 2013) used in EW -type closeness (Bao & Bai, 2018) considers the
expected difference of two interval numbers and takes into account the difference of
their widths. The simulation results from Bao, Peng & Zhao (2013) show that this method
describes the distance of interval numbers more comprehensively and meticulously, and
the utilization rate of information is greatly improved. Compared with the traditional
exponential closeness (Eq. (11)), EW -type closeness introduces the degree of the interval
number closeness to participate in the calculation. Bao & Bai (2018) show that EW -type
closeness has better discrimination and practicability.

d(A,B)= e−
p
√
|al−bl |p+|am−bm|p+|ar−br |p/q (11)

According to the ‘‘3En’’ rule of the triangle cloud model (Li, Han & Shi, 1998), more
than 90% of cloud droplets fall in the range of [Ex − 3En, Ex + 3En]. Therefore, when
calculating the similarity of the triangular cloud model, we only need to consider the cloud
droplets in this range and the expected curve. As shown in Fig. 3, the forward triangle cloud
‘‘3En’’ rule is introduced to the expected curve in Definition 5, and the transformed curve
formula:

y ′(x)=



x− (Ex−3En)
Ex− (Ex−3En)

, (Ex−3En)≤ x ≤ Ex

1, x = Ex
(Ex+3En)−x
Ex+3En−Ex

, Ex ≤ x ≤ (Ex+3En)

0, other

(12)

Equation (12) conforms to the definition of the triangular fuzzy number in Definition
6 and is denoted as y

′

=< Ex−3En,Ex,Ex+3En>. Therefore, EW -type closeness can
be applied to y

′

. If Ex− (Ex−3En)= (Ex+3En)−Ex = 3En, y
′

is called the symmetric
triangular fuzzy number based on the expected curve (Hwang & Yang, 2007), it is noted as
ỹ
′

= (Ex,3En)T , where Ex and 3En are the expectation and ambiguity (also called width)
of the triangular fuzzy number based on the expected curve, respectively.

According to Definitions 7 and 8, the upper bound and lower bound of the r-truncated
closed interval [u]r of the expected curve can be obtained from triangular fuzzy number
y
′

=< Ex−3En,Ex,Ex+3En>:{
Upper bound : u(r)= Ex+3En(1− r)
Lower bound : u

_
(r)= Ex−3En(1− r) (13)
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Figure 3 Schematic diagram of the expected curve structure parameters of the cloudmodel.
Full-size DOI: 10.7717/peerjcs.1506/fig-3

The expectation and width of interval u are:
E (u)=

u+u
_

2
= Ex

W (u)=
u−u

_

2
= 3En(1− r)

(14)

Therefore, the triangular fuzzy number v = 〈Ex
′

− 3En
′

,Ex
′

,Ex
′

+ 3En
′

〉 of another
group of cloud expectation curves is set. The similarity of the expectation curves of the two
groups of cloud models based on EW -type closeness can be obtained from Lemma 3.

Sim(ETCM)=N p
EW (u,v)=

(∫ 1

0

(
nEW

(
[u]r ,[v]r

))pdr) 1
p

, p≥ 1. (15)

The ETCM algorithm constructs two sets of cloud model expectation curves under the
restriction of ‘‘3En’’ principle into two triangular fuzzy numbers. The EW -type closeness
can be used to calculate the similarity of the two triangular fuzzy numbers under r ∈ [0,1].
Because the ETCM method does not introduce He into the calculation, it was considered
to be the distance similarity of the triangular cloud model. The larger the Sim (ETCM)
value, the higher the distance similarity between the two triangular cloud models, and vice
versa.

Shape similarity measurement of triangular cloud model based on
cloud drop variance
All clouds can be translated to the position x = 0, therefore, the shape of the cloud has
nothing to do with the cloud’s expectation (Ex). As mentioned earlier, the cloud’s En and
He reflect the shape of the cloud and describe the conceptual expansion of the variables.
It is clear that the basic skeleton of the cloud model shape is determined by En with the
‘‘3En’’ rule. In addition, the He controls the dispersion of the thickness or conceptual
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Figure 4 Cloud droplet distribution and the expected curve of three cloudmodels.
Full-size DOI: 10.7717/peerjcs.1506/fig-4

extension of the cloud. Based on the above theory, we sought to determine the relationship
mathematically.

According to Lemma 1, the variance D(x)= En2+He2 of the triangular cloud model
consists of En and He. Although the variance does not consider the Ex (the location
relationship of the cloud models) it fully reflects the shape similarity between cloud
models. The greater the En difference between two clouds, the smaller the shape similarity
between two clouds, so consider introducing the mean square error of cloud model to
measure the shape similarity of cloud model. If there are two groups of triangular cloud
models Ci(Exi,Eni,Hei) and Cj(Exj,Enj,Hej), their shape similarity is expressed as:

Sim(PCM)=
min

(√
D(x)i,

√
D(x)j

)
max

(√
D(x)i,

√
D(x)j

) (16)

Regardless of the difference between the Ex of the two cloud models, if the En and He
of the two clouds are equal, their shape similarity Sim (PCM) = 1. Although the Ex of
triangular cloud models C2 and C3 are different, the shapes of the two clouds are consistent
(Fig. 4). The PCM method has better authenticity and timeliness compared with the
similarity method based on the maximum boundary curve of the cloud model in Li, Guo &
Qiu (2011) whose model exaggerates the proportion of He in calculating shape similarity.

The integrated similarity measurement of the triangular cloud model
As previously mentioned, the ETCM method does not consider the influence of He,
while the PCM method does not consider the influence of cloud model Ex. We defined a
weighted calculation method, which combines the twomethods to enrich the completeness
and authenticity of cloud model similarity in order to create an integrated approach that
incorporated the three main characteristic parameters of the cloud model (Ex, En, He).
Referring to the analytic hierarchy process (AHP) and entropy weight method proposed in
the reference (Ruan et al., 2017), we defined a method to determine the similarity weight
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of the integrated cloud model in Eq. (17).
d(α,β)2=

√
(Sim(ETCM)−Sim(PCM))2

d(α,β)2= (α−β)2

α+β = 1
α≥β.

(17)

The calculated weight coefficients (α and β) were used to weight the triangular cloud
ETCM method and PCM method, respectively. Thus, a similarity measurement algorithm
for triangular cloud models based on the dual consideration of shape and distance is
defined. As shown in Eq. (18):

Sim(EPTCM)=αSim(ETCM)+βSim(PCM) (18)

Equation (18) is the final expression of the proposed EPTCM method. The complete
computational procedure of the EPTCM algorithm is shown in Algorithm 1. In order to
verify that the EPTCMmethod was feasible and effective, scientific simulation experiments
were conducted.

EXPERIMENTS AND RESULTS
Here, we verify the feasibility and effectiveness of the proposed EPTCMmethod. Simulation
experiments and time series classification test experiments are conducted respectively by
using MATLAB software.

Cloud model discrimination simulation experiment
Four classical cloud models are given in Zhang et al. (2007) using the collaborative filtering
algorithm as follows:
C1(1.5,0.62666,0.33900)
C2(4.6,0.60159,0.30862)
C3(4.4,0.75199,0.27676)
C4(1.6,0.60159,0.30862)


These four groups of classical cloud models are used to perform simulation experiments

as shown in Li, Guo & Qiu (2011) and Yu et al. (2021). In order to verify the advantages of
the proposed EPTCMmethod over the existing methods (LICM, FDCM, OECM, MSCM),
the four groups of classical cloud models were also used for our simulation experiments.

We classified C1,C4 as group A and C2,C3 as group B. Figure 5 shows that there is
a big gap between the cloud models of group A and group B in terms of distance and
shape similarity. However, within the group, the distance and shape similarity are slightly
different. Therefore, the better similarity measurement methodmaymore accurately reflect
the intragroup differences between group A and group B. Equation (19) was used as the
basis to measure the discrimination ability of the cloud model similarity measurement
method. The following uses the above EPTCM method to measure the similarity of cloud
models among these four cloud models. The EPTCMmethod was to compare and analyze
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Algorithm 1. A cloudmodel similarity metric algorithm based on EW -type closeness and
cloud droplet variance. (MATLAB)
Input: Two sets of cloud models: Ci(Exi,Eni,Hei) and Cj(Exj ,Enj ,Hej).
Output: The Sim(EPTCM) of the two sets of cloud models.
1 function [EPTCM]= EPTCM(PO,PN)
2 z= 1;
3 t= 1;
4 Ex1=PO(1);
5 En1=PO(2);
6 He1=PO(3);
7 Ex2=PN(1);
8 En2=PN(2);
9 He2=PN(3);

%The two sets of cloud model expectation curves are expressed in the form of triangu-
lar fuzzy numbers.

10 symsr;
11 ux1= Ex1−3∗En1∗ (1− r);
12 us1= Ex1+3∗En1∗ (1− r);
13 ux2= Ex2−3∗En2∗ (1− r);
14 us2= Ex2+3∗En2∗ (1− r);

% The expectation values E (u) and E (v) and the widthsW (u) andW (v) of the two
triangular blurred numbers are calculated, respectively.

15 Eu1= (ux1+us1)/2;
16 Eu2= (ux2+us2)/2;
17 Wu1= (us1−ux1)/2;
18 Wu2= (us2−ux2)/2;

% Calculate the difference between the expected value (1E) of the two triangular cloud
models, and the difference (1W ) in width. Substitute into Eqs. (8) and (9) to obtain the
interval number closeness (nEW (u,v)).

19 N1=@(r)1/(1+ ((((abs(Eu1−Eu2))̂z+ ((abs(Wu1−Wu2))̂z)/3))̂(1/z))̂t);
% According to Eq. (15), the obtained interval number closeness (nEW (u,v)) is con-
verted to EW -type closeness. That is Sim (ETCM).

20 ETCM= int(N1,r,0,1);
21 eval(ETCM);

% Calculate the mean variance of the two sets of cloud models. Calculate the distance
similarity Sim (PCM) of two groups of cloud models by Eq. (16).

22 PCM= (min(sqrt(En1̂2+He1̂2),sqrt(En2̂2+He2̂2))/max(sqrt(En1̂2+He1̂2),sqrt(En2̂2+
He2̂2)));

% Calculate the weight coefficients of ETCM and PCMmethods by Eq. (17). The final
EPTCM algorithm is obtained after the weighting calculation of the two. As shown in
Eq. (18).

23 syms B;
24 [B]=solve((1-2*B) 2̂-sqrt((ETCM-PCM) 2̂)==0);
25 B=vpa(B);
26 A=B(1);
27 if(A<B(2))
28 C=A;
29 A=B(2);
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30 B=C;
31 end
32 EPTCM=A*ETCM+B*PCM;
33 eval(EPTCM);
34 end

 

Figure 5 Visualization of four triangle cloudmodels and their expected curves.
Full-size DOI: 10.7717/peerjcs.1506/fig-5

Table 2 Measurement results of similarity of cloudmodels of FDCM, OECM, LICM,MSCM and EPTCMmethods. The data corresponding to
Formula 19 has been indicated in bold.

Similarity LICM FDCM OECM MSCM EPTCM

Sim(C1,C2) 0.9561 0.4850 0.0049 0 0.2996
Sim(C1,C3) 0.9648 0.5068 0.0297 0 0.3167
Sim(C1,C4) 0.9990 0.9674 0.9696 0.8883 0.9183
Sim(C2,C3) 0.9992 0.9778 0.9403 0.7951 0.8073
Sim(C2,C4) 0.9679 NaN 0.0057 0 0.3002
Sim(C3,C4) 0.9755 0.5325 0.0335 0 0.3268

the results with traditional methods such as LICM, OECM, MSCM and FDCM. The
calculation results are shown in Table 2. The comparison chart ofDiscrimination of the five
methods is presented in Fig. 6. In order to reduce the time complexity in the calculation
process: n= 1, p= 1.

Discrimination= |Sim(C1,C4)−Sim(C2,C3)| (19)

Experiment on time series classification accuracy based on synthetic
control chart dataset
Details of the synthetic control chart dataset
The time series represents the state of an object across different time periods and arranges
them according to their time of occurrence, thus generating a data series. Time series is often
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Figure 6 Discrimination results.
Full-size DOI: 10.7717/peerjcs.1506/fig-6

used in engineering data classification, prediction, and clustering (Alcock & Manolopoulos,
1999). Here, the synthetic control chart dataset (SYNDATA) (Pham & Chan, 1998), a
commonly used time series dataset in the UCI knowledge discovery database, was used to
test the classification accuracy. The SYNDATA dataset contains 600 control chart samples
synthesized by the processes by Alcock and Manolopoulos in 1999 (Pham & Chan, 1998).
This dataset was chosen because it contains the time series’ of multiple trends, which are
volatile and complex and can be a good test of the accuracy of the similarity measurement.
There are six main category patterns in this dataset set; these include normal, circular,
upward trend, downward trend, upward transition, and downward transition. Each
category contains 100 rows of data, with 60 data in each row. All trends were collectively
referred to as ‘‘abnormal trends’’ with the exception of the normal trend. All the abnormal
trends must be corrected, therefore, it is important to detect the abnormal trends quickly
and accurately for strict control processes and good product quality. Because time series
datasets have high requirements for the correctness and time complexity of the algorithms,
they are a logical choice for classification experiments that analyze and study the time series
classification algorithms starting from the correctness and time complexity of the results.

It was important to understand the data structure before applying the SYNDATA
dataset. The synthetic control chart dataset had a labeled dataset. The given datasetDm×n is
a matrix withm= 600 rows and n= 60 columns; every 100 rows of data in 600 rows is one
category with a total of six categories. In Table 3, we describe in detail the composition of
the dataset. When using the SYNDATA dataset for time series classification experiments,
each record is treated as a separate query sequence. Each record needs to be calculated
with the remaining 599 records for cloud model similarity, then the top k largest ones are
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Table 3 SYNDATA-the composition and content details of the data set.
1 Table 33

2 SYNDATA-the composition and content details of the data set.
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selected according to the similarity ranking, and categorized according to the group to
which the k numbers belong.

Detailed introduction of time series classification accuracy test
To verify the accuracy and rapidity of the EPTCM method in a time series classification,
we used the following algorithm and the last 10 rows of data of each main category pattern
were used to form the test set. Previous studies interlaced the extraction of grayscale images
in order to improve the efficiency of grayscale image processing. Here, the first 90 lines
of data of each main category pattern were interlaced, leaving only odd lines. After the
interlaced extraction, there were only 45 lines of data of each main category in the training
set. The remaining 45 lines of data in each main category were divided into three groups,
which were each subdivided into three groups labeled A, B, and C. The groups of data
labeled A, B, and C each contained the every ‘‘abnormal trends’’. Next, the data groups,
A, B, and C, were classified using the k-NN (k-nearest neighbor) (Fuchs et al., 2010; Lin
et al., 2007) algorithm in the machine learning algorithm. The k-NN algorithm is easy to
use and has a simple process. Every row of data in the training set and the test set can
be quantitatively represented as a triangular cloud model by the reverse cloud generator,
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 Figure 7 Classification accuracy of the EPTCMmethod under three kinds of training data with differ-
ent k values.

Full-size DOI: 10.7717/peerjcs.1506/fig-7

therefore, the EPTCMmethod can be introduced into the k-NN algorithm. The traditional
k-NN algorithm determines the number of nearest neighbors of a certain eigenvalue by
comparing the distances between the eigenvalues and resulting in the classification of
a different eigenvalue. The EPTCM method was used to replace the relative distances
between the measured eigenvalues in the traditional KNN algorithm for data classification
and statistics. The structural framework of the time series classification accuracy experiment
is shown in Table 4. The classification accuracy is shown in Eq. (20) and the classification
results are shown in Figs. 7 and 8, and Table 5.

PX =
Number of correctly classified samples

The total number of samples
(20)

AverageAccuracy
(
GroupX

)
=

∑10
i=1(PX (k= i))

10
,X =A,B,C (21)

DISCUSSION
Simulation experimental result analysis
The similarity order of the cloud models calculated by the proposed EPTCM method is
as follows: (C1,C4) > (C2,C3) > (C3,C4) > (C1,C3) > (C2,C4) > (C1,C2) (Table 2). This
is consistent with the visual impression in Fig. 5. Table 2 shows that the discrimination of
the EPTCM method for the cloud models in group A and group B was 0.11. The EPTCM
method had the highest discrimination among the five methods, which can better identify
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Table 4 Structural framework for time series classification accuracy experiments.

Steps Content

Step 1: Calculate the feature vectors The data in the dataset Dm×n are followed by the inverse
cloud generator algorithm to obtain three numerical
features for each set of data and use them as the feature
vector for the i th record (time series):
Ci= (Exi,Eni,Hei)
This enables the dimensionality reduction of the dataset,
where 1≤ i≤m;

Step 2: Determine the training set and test set The last 10 rows of data for each major category pattern
in the Dm×n were used to form the test set. The rest of the
data is used as the training set. After interlaced extraction,
there are only 45 lines of data of each main category in the
training set. And the remaining 45 lines of data in each
main category are divided into three groups, which are
grouped into three groups: A, B and C in turn. Make the
three groups of data A, B and C each contain all kinds of
‘‘abnormal trends’’;

Step 3: Calculate the similarity matrix The (EPTCM, LICM, FDCM, OECM, MSCM) method is
used to calculate the similarity between the feature vectors
corresponding to the data in the test set and the feature
vectors corresponding to the data in the training set. The
resulting similarity matrix is generated:

Sim=

 Sim(CTest1,CTrain1)···Sim(CTest1,CTrain45)

...
. . .

...

Sim(CTest60,CTrain1)···Sim(CTest60,CTrain45)



Sim
(
CTesti,CTrainj

)
denotes the similarity between CTesti and

CTrainj calculated using the EPTCM algorithm;
Step 4: Classification experiments are performed according
to the nearest neighbor k values

First, each row of the similarity matrix Sim
(
CTesti,CTrainj

)
is

sorted from largest to smallest, then the top 1 ≤ k ≤ 10
values of each row of the test set similarity matrix
Sim

(
CTesti,CTrainj

)
are selected according to the number

of nearest neighbors k. Finally, the time series classification
experiments are completed by categorizing the number of
groups to which the k numbers belong.

Table 5 Average Accuracy (Eq. (21)) of different methods on various training sets when k = 1∼ 10.

Average Accuracy EPTCM LICM OECM FDCM MSCM

Group A 0.887 0.578 0.640 0.638 0.650
Group B 0.853 0.607 0.533 0.602 0.532
Group C 0.873 0.647 0.587 0.645 0.580

the similarity of the cloud models and better reflect the differences between cloud models
A and B. The MSCM method had a discrimination of 0.0932 between two groups of cloud
models, which is second only to the EPTCMmethod. However, the measurement range of
the MSCM method is very limited. Table 2 reveals that the results of the other four groups
of similarity were all 0 (negative values will revert to 0), with the exception of Sim(C1,C4)
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Figure 8 Classification accuracy of different methods on the training set of group C when k = 1∼ 10.
Full-size DOI: 10.7717/peerjcs.1506/fig-8

and Sim(C2,C3). These results are limited and are inconsistent with human cognition. The
results of the OECM method were 0.0234 for the discrimination between the cloud models
of groups A and B. This indicates that the discriminatory ability of the OECM method is
poor compared to the EPTCMmethod. The discrimination of the FDCMmethod was poor
with results of 0.0104. It is not difficult to see from the data in Table 2 that the Sim(C2,C4)
of the FDCM method is NAN. This is due to the limitation of its algorithm itself. The
method will lose the influence of the judgment expectation on the similarity when the En
andHe of both clouds are equal. We can see that the cloud similarities of LICM are close to
1 and the discrimination is not clear. These results are obviously inconsistent with intuitive
human feeling. Through the above analysis, it can be reflected that the EPTCM method
proposed in this paper has certain superiority compared with the four existing methods.

Accuracy of the experimental result analysis of time series
classification
Figure 7 shows that the proposed EPTCM method has a good classification accuracy in
the time series classification experiment. When k was 1, 3, 4, 5, or 7, the classification
accuracy of EPTCM was over 90% in the time series classification experiment with group
A. According to the analysis of the data in Table 5, EPTCM achieved Average Accuracy
of over 85% in the time series classification experiment with three training sets. Figure 8
shows the classification accuracy of each method in the range of k= 1∼ 10 when the group
C training set was used in the time series classification experiments. Figure 8 clearly shows
that EPTCM was the best among the five methods in terms of classification accuracy. The
classification accuracy of the EPTCM method also shows good stability with the change of
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Figure 9 Comparison of CPU consumption time between the EPTCMmethod and theMSCMmethod
at runtime.

Full-size DOI: 10.7717/peerjcs.1506/fig-9

k value in the group C training set. The proposed EPTCMmethod has obvious advantages
compared with the existing methods that exhibit low classification accuracy and poor
stability. Figure 9 shows that the EPTCM method is similar to the MSCM method in CPU
overhead time. However, the Average Accuracy of EPTCM was better than that of MSCM.
Table 5 shows that the average accuracy of the EPTCM method was significantly better
than that of the four existing algorithms when groups A, B, and C were used separately.

A comparative analysis of cloud model similarity metrics
Studies by Li, Wang & Yang (2019) and Li et al. (2020) provide the evaluation metrics for
cloud model similarity metrics. Table 6 shows how the EPTCM method compares with
the extant methods in terms of discriminability, efficiency, stability, and interpretability.
Discriminability refers to the ability of the similarity matrix to distinguish between the
differences of two concepts that are not identical; efficiency refers to the time complexity
of computing the similarity between two concepts; stability refers to the fact that the
value of the similarity measure is constant over multiple calculations; interpretability
means that the process of calculating the similarity metric is interpretable. LICM has high
efficiency and stability, but it does not distinguish the differences between two concepts
with the same proportion of numerical features. Additionally, considering numerical
features as a vector does not reflect the relationship between the numerical features
and this lacks interpretability in the calculation process. Simulation experiments also
confirm its low discriminatory ability. MCM and OECM are similarity metrics based
on the overlap of feature curves. They have high efficiency and stability like LICM, but
they do not find the difference between two different concepts in some cases because
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Table 6 Comparison table of cloudmodel similarity metrics.

LICM FDCM OECM UDCM MSCM MCM EPTCM

Discriminability Low Low Low High Medium Low High
Efficiency High Medium High Low Medium High Medium
Stability High Low High Medium High High High
Interpretability Low Medium Medium High Low Medium High

the variation of He is ignored. Moreover, they are only partially interpretable due to the
lack of relationship between En and He. The experimental results show that MSCM has a
moderate discriminative power; it also contains an integral operation process with high
time complexity and its metric results are not affected by the number of cloud drops and the
number of experiments. According to the results of the simulation experiments conducted
by Li et al. (2020), UDCM has good discriminative ability and theoretical interpretability.
However, it retains many integral operations and is less efficient. Although the authors
verify that the results are less variable compared to other algorithms, the results are not
constant. The simulation experiments prove that the EPTCM method has good resolution
ability and the metric results of the EPTCM method are constant and have good stability.
These results are easily obtained from Algorithm 1. The EPTCM method performs a
similarity metric from the shape and distance of the cloud model in both directions and
has good theoretical interpretation; it also retains a small number of integral operations
and has an average performance in terms of efficiency.

In summary, the proposed EPTCM method has certain advantages over the existing
algorithms.

CONCLUSIONS
We proposed a comprehensive cloud model similarity measurement, which combined the
PCM and the ETCM methods to consider both distance similarity and shape similarity.
Then, simulation experiments and time series classification experiments were carried out
using the proposedmethod and the existing cloudmodel similarity measurement methods.
The simulation results show that the metric results obtained by the EPTCM method were
consistent with subjective human perception, which may prove the rationality of the
method. This method also has better discrimination than the existing classical cloud
model similarity methods. The time series classification experimental results show that the
proposed EPTCMmethod still maintains the highest classification accuracy compared with
the existing classical cloud model similarity methods. The classification accuracy remained
relatively stable with changing k values, which verifies the feasibility and effectiveness of the
algorithm. In general, the EPTCM method overcomes many defects of existing methods
and the experimental results confirm its feasibility and effectiveness. However, the EPTCM
method still retains some complex integration operations and takes a long time to process a
large amount of data. There is also no systematic way to change the values of the parameters
p and n before performing the EPTCM method to obtain a better similarity measure.
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Future research will address how to introduce a better fuzzy closeness method in the
process of cloud model similarity calculation for the development of the triangular cloud
model.
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