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ABSTRACT
This paper proposes a tuning method based on the Pythagorean fuzzy similarity mea-
sure and multi-criteria decision-making to determine the most suitable controller pa-
rameters for Fractional-order Proportional Integral Derivative (FOPID) and Integer-
order Proportional Integral-Proportional Derivative (PI-PD) controllers. Due to the
power of the Pythagorean fuzzy approach to evaluate a phenomenon with two mem-
berships known as membership and non-membership, a multi-objective cost function
based on the Pythagorean similarity measure is defined. The transient and steady-
state properties of the system output were used for the multi-objective cost function.
Thus, the determination of the controller parameters was considered a multi-criteria
decision-making problem. Ant colony optimization for continuous domains (ACOR)
and artificial bee colony (ABC) optimization are utilized to minimize multi-objective
cost functions. The proposed method in the study was applied to three different sys-
tems: a second-order non-minimum phase stable system, a first-order unstable sys-
tem with time delay, and a fractional-order unstable system with time delay, to vali-
date its effectiveness. The cost function utilized in the proposed method is compared
with the performance measures widely used in the literature based on the integral of
the error, such as IAE (Integral Absolute Error), ITAE (Integral Time Absolute Error),
ISE (Integral Square Error), and ITSE (Integral Time Square Error). The proposed
method provides a more effective control performance by improving the system re-
sponse characteristics compared to other cost functions. With the proposed method,
the undershoot rate could be significantly reduced in the non-minimum phase sys-
tem. In the other two systems, significant improvements were achieved compared to
other methods by reducing the overshoot rate and oscillation. The proposed method
does not require knowing the mathematical model of the system and offers a solution
that does not require complex calculations. The proposed method can be used alone.
Or it can be used as a second and fine-tuning method after a tuning process.

Subjects Autonomous Systems, Optimization Theory and Computation
Keywords Pythagorean fuzzy logic, Multi-attribute decision making, Fractional-order PID,
PI-PD, Optimization

INTRODUCTION
In control systems, it is aimed to bring the output variable of the controlled system to a
desired reference value. It can analyze the relationship between the system output and the
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reference value given in two categories as transient response and steady-state. Transient
state features are undershot, rise time, peak time, overshoot, settling time, and the steady-
state error value is a steady-state feature. The main aim is to reach this reference value
with minimum transient and steady-state values. In some applications, a reference
curve is defined and the output is requested to behave by this model. The difference
between the output variable of the system and the target reference value is the control
error variable (e). An approximation of e to zero to satisfy the criteria mentioned above
can be accomplished with the unit called a controller. The determination of controller
parameters according to the dynamics of the controlled system and the requirements of
the application is known tuning procedure. The main problem of the tuning procedure is
aimed at achieving as much as possible the transient response, steady-state performance,
stability, and robustness against external disturbances. For the tuning of controller
parameters, the methods of Ziegler–Nichols, Cohen-Coon, and Åström-Hägglund are
crude tuning methods, but they have been the basis for much research in the literature.
Today, tuning methods can be classified into two main categories: analytical and iterative
optimization (or evolutionary algorithm) techniques. There have been many studies on
analytical methods in recent years (Ma & Chen, 2019; Das, Halder & Gupta, 2020; Rao,
Santosh & Dhanya Ram, 2020;Ma et al., 2022).

Iterative optimization methods are algorithms that are mostly based on the ability of
living things to come together and solve a problem they encounter. Popular optimization
methods are Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee
Colony (ABC), Chaotic Ant Swarm (CAS), Ant Colony Optimization for Continuous
Domains (ACOR), Differential Evolution (DE), Cuckoo Search (CS), Penguins Search
Optimization Algorithm (PeSOA), Rat Swarm Optimizer (RSO), or a combination
of these hybrid algorithms. ABC is a general-purpose optimization algorithm and is
generally effective over a wide variety of problems. The ability to converge quickly to the
global optimum is a significant advantage of ABC. The algorithm is simple and easy to
understand. Another advantage of ABC is that the necessity of parameter tuning is less
compared to other algorithms. However, the performance of ABC may decrease when
the problem size is very large. In complex search spaces with many local optima, ABC can
often fall into local optima. ABC is generally slower compared to faster algorithms (Anam,
2017; Gao, Ye & Wu, 2017). The Ant Colony Optimization for Continuous Domains
(ACOR) algorithm provides a significant competitive advantage when compared with
other metaheuristic techniques, thanks to its flexibility and probability-based learning
methods. The performance of ACOR can be adjusted to exhibit more robustness or higher
efficiency depending on the user’s needs. Moreover, ACOR provides superiority over
direct search methods in problems with a large number of local optima. All these features
significantly enhance ACOR’s potential to solve complex optimization problems. Weak
points of ACOR include its performance being sensitive to specific parameter settings,
which can complicate the implementation and adaptation of ACOR. Additionally, ACOR

may consume more memory compared to other algorithms, which can be a problem in
large-scale problems (Socha, 2009; Socha & Dorigo, 2008). There are many studies on
optimization studies in the literature, the studies presented here are just a few of them in
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recent years (Chaki & Bose, 2022; Dhiman et al., 2021;Mzili, Mzili & Riffi, 2023;Mzili et
al., 2022).

In optimization methods, it is aimed to minimize or maximize a function called
objective or cost. For tuning of controller parameters, it is usually aimed to minimize
IAE (Integral Absolute Error), ITAE (Integral Time Absolute Error), ISE (Integral Square
Error), and ITSE (Integral Time Square Error) performance criteria in the cost function
(Khubalkar et al., 2018). Here ‘‘Error’’ is the control error variable (e). Although the
cost function can be reduced to a good degree in the optimization based on the error
variable e only, it is not possible to obtain the desired transient response and steady-
state performance characteristics together. For example, although a short rise time can
be achieved, a high overshoot rate may occur. Even a continuous oscillation may occur,
which is undesirable. The cost function can be set up depending on more than one
parameter (multi-objective optimization) to get out of the high overshoot rate, and con-
tinuous oscillation state, and obtain the minimum steady-state error. A target reference
output can be determined according to the transient and steady-state characteristics
determined by considering the constraints of the controlled system. Obtaining these
reference values can make it possible to provide the desired system output. Thus, almost
all (or considered important) transient and permanent state properties can be obtained.
In some applications, as multi-objective optimization, a cost function is defined based on
the transient and steady-state characteristics of the controlled system, such as rise time,
peak time, overshoot, settling time, and steady-state error values along with performance
criteria, and the cost function is desired to be minimized (Şahin & Ayas, 2019).

Multi-criteria decision making (MCDM) defines the situation where there is more than
one criterion and a decision requires taking these criteria into account. In the literature,
there are many MCDMmethods derived for different applications. These are, linear
programming technique for multidimensional analysis of preference (LINMAP), the
analytic hierarchy process (AHP), the multi-attribute utility theory (MAUT), and the
fuzzy technique for order of preference by similarity to an ideal solution (TOPSIS). The
fuzzy set theory-based similarity measure is an effective tool used to measure the overlap
between two fuzzy sets. It tells the degree of similarity between two fuzzy sets formed
according to some criteria. Often create an ideal set that is most representative of the
specified criteria. An instantaneous fuzzy set is created from the measurement data for
the criteria sought from the examined system. Then the similarity between these two
sets is measured. As a result, the higher the similarity between two sets, the higher the
similarity measure will be. From this point of view, cost functions based on similarity
measures are created. There are also applications where fuzzy similarity measure-based
multi-objective optimization is handled as MCDM. For example, Can & Ozguven (2017)
considered tuning as an MCDM process and fuzzified the transient and steady-state
parameters of the system. Afterward, they used the neutrosophic similarity measure as
a cost function between the fuzzy set consisting of fuzzy values they obtained and an
ideal fuzzy set determined according to the control criteria. Ye (2019) proposed to use
Genetic Algorithm instead of the search algorithm used by Can & Ozguven (2017) in their
study. Fu et al. (2021) proposed a self-tuning PID controller design for AC permanent
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magnet synchronous motor based on cosine neutrosophic similarity measure. Ruan, Ye
& Cui (2020) presented a study in which cosine, tangent, and exponential neutrosophic
similarity measure is considered. In these optimization studies based on fuzzy similarity
measure-based MCDM, the desired transient response, and steady-state performance
characteristics can be obtained together at an optimum level.

In closed-loop control systems, controller structures in which the e is handled by
proportional, integral, and derivative operators are called conventional proportional–
integral–derivative (PID) controllers. Depending on the dynamic behavior of the
system to be controlled, these structures could also be proportional (P), proportional
integral (PI), or proportional derivative (PD). The fact that the PID controller contains
three operation operators makes it possible to design controller structures that are not
too difficult. This simplicity is why it is often preferred in many control applications.
Kp,Ki, and Kd are proportional, integral, and differential gains, respectively; these three
parameters determine the performance of the PID controller. The conventional PID
controller has limitations in unstable, integrating, and resonant processes (Tan, 2009).
In particular, it is known that they cannot provide good control performance in non-
linear systems, linear and high-order systems with time delay, and complex and uncertain
systems with unknown mathematical models (Golcuk, 2022). A modified form of the
conventional PID controller to improve the control performance for unstable, integrating,
and resonant processes is the PI-PD controller. In the PI-PD controller, a PD feedback
loop is added to the controlled system. This PD addition can make the open loop unstable
system open-loop stable. In the PI-PD controller, four parameters named Kp,Ki,Kd , and
Kf determine the performance of the controller (Tan, 2009; Onat, 2019). The integral and
derivative operators of the conventional PID controller are integer-order, and it is also
called integer-order PID (IOPID). Fractional order PID (FOPID) or PIλDµ controller was
obtained by using fractional-order integral and derivative operators in the conventional
PID controller, and FOPID was first proposed by Podlubny (1999a). With fractional
integral and derivative operators, a fractional PIλ-PDµ controller is obtained. FOPID
controller shows better control performance compared to conventional PID controller
due to the addition of fractional integral (λ) and fractional derivative (µ) parameters
which are not available in conventional PID controllers. However, the addition of these
two parameters brings difficulties in designing a good controller (Zeng et al., 2015).

As it is known, many uncertain situations can arise both in MCDM processes in
daily activities and engineering problems. This situation also emerges in the analysis of
transient and steady-state properties in control systems. For example, in the process of
adjusting the parameters of a controller, very different system output responses can be
obtained according to the values of the controller parameters. Out of these almost endless
answers, uncertain situations may arise that make it difficult to decide while determining
the one closest to the desired transient and permanent state characteristics. Pythagorean
fuzzy set (PFS) based on fuzzy set theory and used to express uncertain situations is
proposed by Yager (2014). In PFS, a quantity is represented by membership and non-
membership degrees. These two values provide very useful information for desired and
undesired parameter states. The terms between these two values can also be used to
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express uncertainty. Similar to other fuzzy set similarity measure approaches, PFS-based
similarity measure has been defined in the literature (Bryniarska, 2020).

This study proposes a new tuning method for controller parameters in which the
Pythagorean fuzzy similarity measure is used as a cost function. In the study, optimization
algorithms CS, GWO, PSO, ABC, and ACOR were tried, but the targeted transient and
steady-state properties with CS, GWO, and PSO could not be obtained as desired. On the
other hand, the results obtained with ABC and ACOR could be obtained at a satisfactory
level. For this reason, ABC and ACOR were preferred in the study. The performance of
the proposed method was tested on FOPID and PI-PD controllers, which offer effective
control performance. Three different plant models were selected. These are the second-
order non-minimum phase system, the first-order time-delayed unstable system, and the
fractional-order time-delayed unstable system. The proposed method was compared with
cost functions based on IAE, ITAE, ISE, and ITSE performance criteria. According to the
results obtained, it is seen that the proposed method improves the transient and steady-
state characteristics. The main contribution of the proposed method is summarized
below:
The proposed method overcomes the uncertain states that will arise in the determination
of the controller parameters with the PF similarity measure, thus enabling the intended
system transient and steady-state properties to be obtained at the highest possible rate.
The proposed method is based on the transient and steady-state characteristics of the
controlled system. It does not require knowledge of the mathematical model of the
system. This frees you from complex analytical processes.
The proposed method can be used alone or as a second and fine-tuning method after
tuning according to IAE, ITAE, ISE, and ITSE performance criteria. Thus, it makes it
possible to obtain transient and steady-state properties that cannot be obtained with cost
functions based on IAE, ITAE, ISE, and ITSE performance criteria.

In this article, firstly, the structures of FOPID and PI-PD controllers have been
described. Then, ABC and ACOR algorithms and fuzzy similarity measure based on
Pythagorean fuzzy sets are explained. Finally, to evaluate the effectiveness of these
methods, the proposed approach is applied to three different systems, and simulation
results are presented.

MATERIALS & METHODS
Fractional mathematics is a more comprehensive form of classical mathematics in which
derivative and integral orders can also take fractional or complex values as well as integer
values. For many years, the problem of calculating the 0.5-degree derivative of a function
in fractional mathematics has attracted the attention of mathematicians and scientists
(Miller & Ross, 1993). Even today, there is no single answer to this fundamental question,
but numerous definitions for fractional calculus have been proposed. Riemann–Liouville,
Caputo, and Grunwald–Letnikov are the most well-known fractional mathematics
definitions (Gupta & Kumar, 2019). In the following sections, these fractional definitions
are presented.
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Grunwald–Letnikov, Caputo, and Riemann–Liouville fractional
definitions
The Grunwald–Letnikov derivative of function f (t ) with fractional order p, herem is an
integer value satisfying the conditionm< p<m+ 1 and a and t are the limit values, is
given as Eq. (1) (Podlubny, 1999b):

aD
p
t f (t )=

m∑
k=0

f (k)(a)(t−a)−p+k

0(−p+k+1)
+

1
0
(
−p+m+1

) ∫ t

a
(t−τ )m−pf (m+1)(τ )dτ . (1)

Here, the Gamma (0) function is defined by Eq. (2):

0(x)=
∫
∞

0
t x−1e−tdt ,R(Z )> 0. (2)

The Caputo derivative of function f (t ) with fractional order p is given as Eq. (3) (Shah
& Agashe, 2016):

aD
p
t f (t )=

1
0(m−p)

∫ t

a

f (m)(τ )
(t−τ )p−m+1

dτ . (3)

Here,m−1< p<m,m∈N , a, and t are the limit values of integration.
The Riemann–Liouville derivative of function f (t ) with fractional order p, herem is an

integer value satisfying the conditionm−1< p<m,m ∈N , is given as Eq. (4) (Shah &
Agashe, 2016):

aD
p
t f (t )=

1
0(m−p)

dm

dtm

∫ t

a

f (τ )
(t−τ )p−m+1

dτ . (4)

Integer approximation methods for fractional order operators
Fractional calculus has significant advantages in modeling and control system perfor-
mance, but it brings higher computational complexity than integer order calculations
because the fractional derivative operator is a non-local operator that includes all the past
values of the function. This means that more memory elements are needed to store all the
past values. To overcome this computational complexity, integer approximation methods
have been developed to approximate the responses of fractional order elements within
limited operating ranges (Deniz et al., 2020). Continuous fraction expansion (CFE)
(Khovanskii, 1963), Outstalup (Oustaloup et al., 2000), and Matsuda (Matsuda & Fujii,
1993) are examples of well-known integer-order models in the literature.

In the continued fraction expansion method (CFE), sα is determined by expanding the
expression (1+ x)α . The expansion of the expression (1+ x)α satisfying the condition
0<α< 1 is determined by Eq. (5) (Zawadzki & Włodarczyk, 2017):

(1+x)α =
1

1− αx
1+ (1+α)x

2+ (1−α)x
3+ (2+α)x

2+ (2−a)x
5+...

(5)

The expansion of (1+x)α can alternatively be expressed by Eq. (6):

(1+x)α =
1
1−

αx
1+

(1+α)x
2+

(1−α)x
3+

(2+α)x
2+

(2−α)x
5+ ...

. (6)
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Here, the 1st-degree continued fraction expansion of sα is expressed as Eq. (7) by
writing s−1 instead of x :

Sα ∼=
(1+α)s+ (1−α)
(1−α)s+ (1+α)

. (7)

The Oustaloup method gives an integer-order approximation of the fractional-order
operator sα using integer-order transfer functions in a certain frequency range [ωl,ωh] in
specified lower and upper limits (Marushchak et al., 2022). Oustaloup approximation of
the fractional-order operator sα given as Eq. (8):

sα =
(
ωu

ωh

)α k=N∏
k=−N

1+ s/ω′k
1+ s/ωk

. (8)

Here, N is the approximation order, ωu=
√
ωlωh and ω′k , ωk are the zeros and poles of

the equivalent integer order transfer functions, respectively. ω′k and ωk are given by Eqs.
(9) and (10):

ω
′

k =ωl

(
ωh

ωl

)(k+N+0.5−0.5·α)/(2N+1)

(9)

ωk =ωl

(
ωh

ωl

)(k+N+0.5+0.5·α)/(2N+1)

. (10)

The coefficient of the transfer function of the 2N+1 degree approximation is expressed
by Eq. (11):

k5=
(
ωu

ωh

)α
. (11)

The integer order Oustaloup approximation of sα can be expressed by Eq. (12):

sα ∼= k5
N∏

k=−N

s+ω
′

k

s+ωk
= k5

Bnsn+Bn−1sn−1+ ...+B1s+B0
Ansn+An−1sn−1+ ...+A1s+A0

. (12)

Based on the CFE method, the Matsuda method approximates the fractional-order
operator sα to integer order by calculating the gain at logarithmically spaced frequencies.
Logarithmically spaced frequencies, here n approximation order and ωl and ωh lower and
upper-frequency values, are given as Eq. (13) (Koseoglu et al., 2021):

ωk =

ωl

(
ωh

ωl

) k−1
n−1

,n> 1.

ωh,n= 1
(13)

The gains corresponding to these frequencies are expressed by Eqs. (14) and Eq. (15)
(Krishna, 2011):

do(ωk)=
∣∣G(jωk)

∣∣ (14)

dn(ωk)=
ωk−ωn−1

dn−1(ωk)−dn−1(ωn−1)
. (15)
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+++ outputerror

FOPID Controller

Figure 1 FOPID controller block diagram.
Full-size DOI: 10.7717/peerjcs.1504/fig-1

Then, gain values are placed in a (N +1)(N +1) upper triangular matrix. The obtained
upper triangular matrix is expressed as Eq. (16) (Krishna, 2011):

D=


d0(ω0) d0(ω1) d0(ω2) ··· d0(ωn)

d1(ω1) d1(ω2) ··· d1(ωn)
d2(ω2) ··· d2(ωn)

··· ··· ··· ··· ···

··· ··· ··· ··· dn(ωn)

. (16)

The approximate integer order model’s gain coefficients can be expressed as Eq. (17)
using the diagonal elements Dkk of matrix D (Krishna, 2011):

αk =Dkk =


∣∣G(jω)∣∣ if k= 0

ωk−ωk−1

dk−1(ωk)−dk−1(ωk−1)
if k= 1,2,...,n

(17)

Then, using the CFE method, the integer degree approximation of the fractional order
operator sα is expressed by Eq. (18).

sα =α0+
s−ω0

α1+
s−ω1

α2+
s−ω2
α3+...

=α0+
s−ω0

α1+

s−ω1

α2+
··· (18)

Fractional PID and PI-PD controllers
The fractional PID controller has five parameter values with λ (integrator) and µ (deriva-
tive) parameters in addition to the Kp,Ki,Kd parameters that exist in conventional PID.
These additional fractional controller parameters allow the controller to operate over a
wide range. Also, the FOPID controller is more robust than conventional PID controllers
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Controlled
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feedback
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r(t) +

_

e(t) y(t)

reference
+ outputerror

PI-PD Controller

-

GPD

Figure 2 PI-PD controller block diagram.
Full-size DOI: 10.7717/peerjcs.1504/fig-2

when the parameters of the system being controlled change (Agarwal et al., 2019). The
block diagram of the FOPID controller is shown in Fig. 1.

The expressions of the FOPID controller output in the time domain and s-plane are
given by Eqs. (19) and (20), respectively:

u(t )=Kpe (t )+Ki
d−λ

dt−λ
e (t )+Kd

dµ

dtµ
e(t ) (19)

u(s)=Kpe(s)+Kis−λe(s)+Kd sµe(s),(λ,µ> 0) (20)

In the PI-PD controller, which is obtained by combining a forward PI controller and
an internal PD controller with feedback, the PD controller part transforms an open-loop
unstable system into an open-loop stable system (Tan, 2009), whereas the PI controller
part has a significant impact on enhancing the stability process (Kaya, 2003). The block
diagram of the system including the PI-PD controller is shown in Fig. 2.

Four parameter values are Kp,Ki,Kd, and Kf for the PI–PD controller. The transfer
functions of PI-PD controller components are given as Eqs. (21) and (22):

CPI (s)=Kp+
Ki

s
=

Kps+Ki

s
(21)

CPD(s)=Kf +Kd s (22)

Pythagorean fuzzy similarity measure
Zadeh (1965) considering the uncertainty in decision-making, proposed the concept of
fuzzy sets, and great success has been achieved in various areas involving uncertainty. The
fuzzy set A, defined in the universal set X = x1,x2,x3,..., can be expressed by Eq. (23):

A=〈x,µA(x)〉|x ∈X (23)

Here, µA(x) is a membership function in the range [0,1] and is a measure of how
compatible an element x is with the fuzzy set A. The most common types of membership
functions used in fuzzy applications are triangle, trapezoidal, and Gaussian (Can &
Ozguven, 2017). Researchers have developed different fuzzy set extensions to deal with
the increasing fuzziness and uncertainty of real-world data. For this purpose, intuitionistic
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fuzzy sets (IFS) were introduced by Atanassov (1999) as an extension of the concept of
fuzzy sets. The intuitionistic fuzzy set A defined in X is expressed as Eq. (24):

A=〈x,µA(x),νA(x)〉|x ∈X (24)

µA(x) and νA(x) are membership functions showing membership and non-membership
degrees, respectively, and take values between [0,1]. Also, the condition 0 ≤ µA(x)+
νA(x)≤ 1 must be satisfied and πA(x) (degree of hesitation) is expressed by Eq. (25):

πA(x)= 1−µA(x)−νA(x). (25)

There may be cases where the sum of µA(x)+νA(x) in IFS is greater than 1. Pythagorean
fuzzy set (PFS) is proposed by Yager (2014) to deal with uncertainty satisfying the
conditions µA(x)+ νA(x)≤ 1 or µA(x)+ νA(x)≥ 1. A Pythagorean fuzzy set defined
in X is given as Eq. (26). It must also satisfy the 0≤µ2

A(x)+ν
2
A(x)≤ 1 condition. πA(x)

(degree of hesitation) is expressed by Eq. (27) In this way, in decision-making problems;
PFS significantly increased the working range compared to IFS (Bryniarska, 2020):

A=〈x,µA(x),νA(x)〉|x ∈X (26)

πA(x)=
√
1−µ2

A(x)−ν
2
A(x). (27)

The similarity measure is used to determine the degree of similarity between two
or more sets. There are distance-based, probability-based, fuzzy set theory-based, and
graph theory-based approaches to similarity measurement (Can & Ozguven, 2017). The
similarity measure is usually expressed as a numeric value. It is higher when the data
samples are more similar.

X = x1,x2,x3,... is a universal set, A and B are two fuzzy sets defined in X , the
Pythagorean distance measure between fuzzy sets A and B can be expressed by Eq. (28)
(Peng, 2019):

d (A,B)= P

√√√√ 1
2n(t+1)P

n∑
i=1

(
∣∣(t+1−a)(µ2

A(xi)−µ
2
B(xi)

)
−a

(
v2A(xi)−v

2
B(xi)

)∣∣P+∣∣(t+1−b)(v2A(xi)−v2B(xi))−b(µ2
A(xi)−µ

2
B(xi))

∣∣P) (28)

p is the Lp standard and t , a, and b are parameters that satisfy the condition a+b≤ t +1
, 0< a,b≤ t +1,t > 0, and show the uncertainty level. The similarity measure between A
and B is expressed by Eq. (29):

S(A,B)= 1−d (A,B). (29)

Optimization methods
Artificial bee colony algorithm
The artificial bee colony algorithm (ABC), which has been used to solve many opti-
mization problems since its development, is a population-based, heuristic optimization
algorithm developed by Karaboga (2005) inspired by the food search behaviors of honey
bees when collecting nectar from flowers. The ABC algorithm tries to find the maximum
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or minimum point of the problem among possible solutions by finding the source with
the most nectar (Karaboga & Akay, 2009). In the ABC algorithm, the colony consists of
three types of artificial bees; employed bees, onlooker bees, and scout bees. The algorithm
is initiated by generating food sources, which are distributed randomly in a number equal
to the number of employed bees, each corresponding to a solution in the solution space.
These food sources, namely solutions, are generated between the randomly determined
boundary values ( lj and uj) as shown in Eq. (30):

xi,j = lj+ rand (0,1)∗(uj− lj). (30)

Each employed bee is responsible for extracting nectar from only one food source.
The quality of each food source is evaluated by the cost function of the solutions. The
employed bees look for a new food source in the neighborhood of these food sources. This
case can be expressed by Eq. (31):

vi,j = xi,j+ϕi,j∗(xi,j−xk,j) (31)

xk represents a randomly selected food source, and j represents a random dimension. The
candidate solution obtained as a result of the search conducted in the xi neighborhood
using the random number ϕi,j is vi. If the quality of the new food source discovered as
a result of the search is superior to that of the old food source, the employed bee deletes
the old food source information from its memory and records the new food source
information. Onlooker bees choose a food source with a probability proportional to the
food quality as a result of the information they obtain from the employed bees. If this
probability is greater than a randomly generated number, onlooker bees will search for
a new food source in the neighborhood of the relevant food source, similar to employed
bees (Eq. (31)). If the new food source is of better quality than the old one, it deletes the
old one from the memory and records the new food source. When the nectar in a food
source is depleted, that is, if the trial number to find a better food source exceeds the
specified limit value, the bee responsible for that food source switches to the scout bee
phase and performs a random search to discover new sources. The employed, onlooker,
and scout bee phases of the algorithm continue until a predefined criterion or the
maximum number of cycles is reached, and the algorithm is terminated.

Ant colony optimization for continuous domains
Ant colony optimization is a population-based metaheuristic optimization algorithm
inspired by the foraging behavior of ants (Dorigo, 1992). When an ant finds a food
source, it evaluates its quality and quantity and carries some of it back to its nest. On its
way back to its nest, it leaves a substance called chemical pheromone trails on the road.
The amount of pheromone left is related to the quantity or quality of the food found.
These trails guide other ants to the same food source. Communication between ants
through pheromone trails helps them find the shortest path (Ojha, Abraham & Snášel,
2015). Initially developed for discrete optimization problems, the ant colony algorithm
was extended to solve continuous optimization problems by Socha & Dorigo (2008).
Continuous-time ant colony optimization (ACOR) is a population-based metaheuristic
algorithm that iteratively generates solutions.
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Figure 3 Solution archive.
Full-size DOI: 10.7717/peerjcs.1504/fig-3

In the ACOR algorithm, the pheromone information is stored in a table called a
solution archive. The solution archive is shown in Fig. 3. The solution archive contains
k solutions, each of n dimensions, initially initialized with random values. A solution sj in
the archive represents a solution vector. The ith variable of the jth solution is denoted by
sij .f (sj) represents the value of the cost function. These solutions are added sequentially
according to their cost functions as f (s1)≤ f (s2)≤ ...≤ f (sk).

In Fig. 3, ω represents the weight vector. The weight vector ω is a Gaussian function.
The best solution obtains the maximum weight. The weight value ω of the solution sj
is calculated by Eq. (32). q is a tuning parameter that affects the convergence rate of the
algorithm. If it is small, the area around the best-ranked solutions is searched and an early
convergence may occur (Afshar & Madadgar, 2008):

ωj =
1

qk
√
2π

e
−(rank(j)−1)2

2q2k2 . (32)

To select and update a solution in the solution table, the probability of selecting each
row in the solution table is calculated given the weight vector ω (Eq. (33)):

pj =
ωj∑k
r=1ωr

. (33)

After the selection is made based on the solution probability value, the parameters of
the solution are updated based on the σ value given in Eq. (34):

σ i
j = ξ

k∑
r=1

∣∣∣sir− sij∣∣∣
k−1

. (34)

σ is the average distance between the selected solution and the other solutions. ξ is
the parameter of the algorithm known as the evaporation rate, and as ξ increases, the
convergence of the algorithm decreases. In the final stage of ACOR,m newly generated
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Figure 4 Flowchart of the optimization algorithms. (A) ABC. (B) ACOR.
Full-size DOI: 10.7717/peerjcs.1504/fig-4

solutions are added to the initial k solutions. The cost function values of k+m solutions
are ranked in ascending order, and in the next step,m worst solutions are removed.
Thus, the solution archive is updated with the values of k best solutions. The algorithm
is executed until the termination criterion is met and the optimum result is obtained. The
flowchart of the ABC and ACOR algorithm is given in Fig. 4.

The proposed cost function for tuning of controller parameters
When determining the controller parameters based on the optimization, it usually uses
cost functions based on the control error variable e. However, e’s minimization alone
is not enough for its effective performance. In addition to minimizing e, the system’s
transient and steady-state properties (undershoot, rise time, peak time, overshoot, settling
time, and steady-state error value) must also be kept at a minimum value. Here, each
of the undershoot, rise time, peak time, overshoot, settling time, and steady-state error
value values are criteria that must be brought to a certain value. Considering all the values
that the controller parameters will take into account, these mentioned parameters will
also take a large number of values. In this respect, determining the best system response
according to the values of all the transient and steady-state properties of the system is a
multi-criteria decision-making problem (Can & Ozguven, 2017). There are many different
methods for MCDM, but fuzzy similarity measure-based MCDM is a preferred method
for the tuning of controller parameters in recent years. In this method, the ideal solution
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Table 1 Some cost functions that are widely used in the literature.

ITAE=
∫ t

0
t |e(t )|dt

ITSE=
∫ t

0
te(t )2dt

IAE=
∫ t

0
|e(t )|dt

ISE=
∫ t

0
e(t )2dt

must be known. The optimum solution is reached by minimizing the distance between
the instant solution and the ideal solution.

In the study, the Pythagorean fuzzy similarity measure was used for the information
on the distance between the ideal solution and the instantaneous solution, as it allows
evaluation the positive and negative distances together. This distance information
was defined as a cost function and its minimization was performed with optimization
algorithms. GWO, PSO, ABC, and ACOR optimization algorithms were tried, but the
desired results could not be obtained with GWO and PSO. On the other hand, the results
obtained with ABC and ACO R could be obtained at a satisfactory level. For this reason,
ABC and ACOR were preferred in the study. For the ABC algorithm, the number of food
sources is 30, and the trial limit parameter is 90. For the ACOR algorithm, the archive size
is 30, the sample size is 40, the q parameter value is 0.5, and Pythagorean fuzzy similarity
measure parameters are p= 1, a= 1, b= 2, t = 3 (Peng, 2019). In both optimization
algorithms, the number of iterations is 100 and the number of populations is 30.

The most commonly used cost functions in Table 1 were selected to be used in these
optimization algorithms, and the cost function obtained with the proposed method was
compared with these cost functions. In the equations in Table 1, e (t ) represents the
difference (error) sign between the reference value applied to the controlled system and
the output of the system, and t is the time variable.

The first step in the methodology of the study is to determine the ideal solution for
MCDM. The ideal solution is determined by the opinion of an expert. The study, it is
aimed to determine the controller parameters that will provide the most suitable transient
and steady-state properties for the system output with MCDM. For this reason, the ideal
solution is the transient and steady-state properties of the system determined according
to expert opinion. Since the Pythagorean fuzzy similarity is used in the study, the ideal
solution and the instantaneous solutions that occur during the optimization should be in
the Pythagorean fuzzy space. This is done by fuzzification of the real values. Fuzzification
is done using Pythagorean fuzzy membership functions for each transient and steady-
state feature. The Pythagorean fuzzy similarity between the ideal solution (or fuzzy set)
and the fuzzy instantaneous solution (or instantaneous fuzzy set) is calculated and the
instantaneous distance is found. With this distance information, a cost function is defined
in the study. Minimization of this cost function was performed with ABC and ACOR
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optimization algorithms. The parameters found at the end of the optimization are the
controller parameters sought. The methodology of the study is described below.

First, based on expert opinion, Pythagorean membership functions are created
individually for parameters such as rise time, settling time, overshoot, undershoot, peak
time, and steady-state error, etc. to satisfy the condition 0≤ µ2(x)+ ν2(x)≤ 1. After,
Kp,Ki,Kd ,λ,µ,Kf values are initially generated at random. These generated values are
provided to the controller selected based on the controller type. Then, the step input
is applied to the system, and the transient and steady-state response characteristics
(rise time, settling time, overshoot, undershoot, peak time, and steady-state error) are
obtained. Each of the obtained system response parameters is passed to membership
functions. The real (or instantaneous) Pythagorean fuzzy set B, which consists of member
and non-member degrees, is the fuzzy set A, which consists of targeted ideal values.

B1=〈x,µB−RiseTime(x),νB−RiseTime(x)〉|x ∈X

B2=〈x,µB−SettlingTime(x),νB−SettlingTime(x)〉|x ∈X

B3=〈x,µB−Peak(x),νB−Peak(x)〉|x ∈X

The resulting real Pythagorean fuzzy set vector B is obtained as B= [ B1, B2, B3 . . . ].
The ideal set vector A is obtained as A= [ A1, A2, A3], here A1, A2, and A3 represent the
ideal sets created for each parameter. Here, A1= 〈x,1,0〉|x ∈X ,A2= 〈x,1,0〉|x ∈X , A3=

〈x,1,0〉|x ∈ X . The Pythagorean distance measure between sets A and B is determined
by Eq. (28). Then, using the distance measure obtained, the Pythagorean fuzzy similarity
measure between these two sets is determined by Eq. (29). In the proposed method, the
value of the Pythagorean similarity measure is used as the cost function that optimization
algorithms attempt to minimize and cost function is given as Eq. (35):

cost = 1−S(A,B) (35)

The optimal Kp,Ki,Kd,λ,µ,Kf values for the controller are determined by running
optimization algorithms until the cost value reaches the target value or up to a determined
number of iterations. The method of the study is summarized below in the form of
processing steps.
Step 1: Randomly determine the values of Kp,Ki,Kd,λ,µ, and Kf within the specified
lower and upper bounds as defined by the optimization algorithm.
Step 2: Provide these values to the controller.
Step 3: Apply a step input to the system.
Step 4: Obtain the response parameters from the system: rise time, settling time, over-
shoot, undershoot, peak time, steady-state error, etc.
Step 5: Each parameter in the response is evaluated using the corresponding membership
function from the B vector, and fuzzy sets are obtained for each parameter.
Step 6 : Calculate the Pythagorean distance between sets A and B using Eq. (28).
Step 7 : Using this distance, calculate the Pythagorean similarity measure between sets A
and B by Eq. (29).
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Table 2 Range of values of the membership functions for the rise time.

Step response
parameter

Function ranges

µ(Z -type) ν(S-type)

Rise time [1;2] [1.5;2.5]
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Figure 5 Membership functions of rise time.
Full-size DOI: 10.7717/peerjcs.1504/fig-5

Step 8: Utilize this similarity measure as a cost function which optimization algorithms
aim to minimize.
Step 9 : Iteratively tune the values of Kp,Ki,Kd ,λ,µ starting from Step 2 until the value of
the cost function falls below a pre-determined acceptable target.

Z -type and S-type membership functions generated for an example rise time are shown
in Table 2 and Fig. 5. µis the Z -type membership function denoting the membership
degrees and ν is the S-type membership function denoting the non-membership degrees.

For example, if the rise time value is obtained to be 1.8 s after applying the step
input to the system, the membership degree of this value to the µmembership function
is calculated as 0.08 and the membership degree to the ν membership function is
calculated as 0.18 according to the ranges determined in Table 2. In this case, the real
fuzzy Pythagorean set B of the rise time is obtained as B= (0.08, 0.18). The membership
degree of any value corresponding to the red-orange area in Fig. 5 constitutes the ideal
set A. These membership degrees also correspond to the blue area. In other words, a rise
time value of 1 s or less is the ideal target. In these ranges, the degree of membership
of the rise time to the function µis 1, the degree of membership to the function ν is 0,
and the ideal set is shown as A= (1,0). The similarity measure between sets A and B is
calculated by Eq. (29) and is found as 0.3668. In another case, if the rise time value is
1.1 s, the real fuzzy set B is obtained as (0.98.0), and the similarity measure of set B to
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Table 3 Boundary values in optimization algorithms of Example 1.

Boundary values Controller parameters

Kp Ki Kd µ λ

Lower bound 1 0.001 1 0.001 0.001
Upper bound 10 1 30 0.999 0.999

set A is found as 0.9752. These values are a measure of how similar set B is to set A. The
closer the value of the similarity measure is to 1, the higher the similarity between the
two sets. In this example, for set B to approach the ideal Pythagorean fuzzy set A, the
incoming rise time value must be less than or close to 1 s. In this case, the real fuzzy set
B will be close to A= (1.0). If desired, this process is repeated for other system response
characteristics (settling time, overshoot, undershoot, peak, etc.), and a total similarity
measure is obtained with the help of Eq. (29). This similarity measure value is created a
cost function with Eq. (35).

RESULTS
Example 1
In this example, a second-order non-minimum phase system is used (Bingul & Karahan,
2018). The transfer function of the controlled system is expressed by Eq. (36). This system
is difficult to control due to the undershoot and time delay caused by zero in the right half
s plane.

G(s)=
1−5s

(1+10s)(1+20s)
. (36)

For the control of this system, the 4th-integer Matsuda approximation method is used
in the FOPID controller. In the Matsuda approximation, the lower and upper frequencies
are chosen as [10−2,102]. The lower and upper boundary values used in the ABC and
ACOR algorithms to be used in setting the FOPID controller parameters are shown in
Table 3.

Membership functions were created separately for steady-state error, settling time,
peak, and undershoot. The range values of the membership functions created for the
system are shown in Table 4. The graphical representations corresponding to these range
values are given in Fig. 6. It is desirable that the settling time is less than or close to 9 s,
the steady-state error is 0.020 or less, the peak value is between 1 and 1.016, and the
undershoot value is between 150 and 200.

After optimization, the FOPID controller parameters were obtained, as shown in
Table 5, using ITAE, ITSE, IAE, ISE, and the proposed method. The step response
characteristics corresponding to the controller parameters are given in Table 6, and the
graphical representation of the step response is given in Fig. 7.

The study for Example 1, it is aimed to reduce the undershoot using the proposed
method. In addition, the overshoot, settling time, and rise time are desired to be kept
as small as possible. Table 6 shows that the IAE cost function stands out among the
classical cost functions used in both optimization algorithms. It can be said that the
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Table 4 Range values of membership functions for Example 1.

Step response
parameters

Function ranges

µ ν

Settling time [9;11] (Z -type) [10.1;12.1] (S-type)
Peak [0;1;1.016;1.026] (Trapezoid) [1.022;1.032] (S-type)
Steady-state error [0.020;0.040] (Z -type) [0.032;0.052] (S-type)
Undershoot [0;150;200;210] (Trapezoid) [206;216] (S-type)
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Figure 6 Membership functions of Example 1. (A) Settling time. (B) Peak_value. (C) Steady-state error.
(D) Undershoot value.

Full-size DOI: 10.7717/peerjcs.1504/fig-6

proposed method significantly reduces the undershoot compared to the IAE cost function
(156.5210% for ABC and 154.0753% for ACO R). In terms of rise time and settling time,
the proposed method is very close to the IAE cost function. Overall, it can be said that the
proposed method provides a better control performance.

Example 2
In this example, a first-order unstable system with time delay is used (Zheng, Huang &
Zhang, 2019). The transfer function of the controlled system is expressed by Eq. (37).
Here is a time delay of 2 s in the system.

G(s)=
4

4s−1
e−2s. (37)
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Table 5 FOPID controller parameters of Example 1.

Cost functions Controller parameters

Kp Ki Kd µ λ

Proposed - ABC 3,85425 0,18747 26,72912 0,94487 0,93078
Proposed - ACOR 3,63808 0,22543 26,86921 0,93238 0,88976
IAE - ABC 4,23500 0,19996 30 0,96348 0,94482
IAE - ACOR 4,35456 0,18334 29,99040 0,96882 0,964517
ISE - ABC 2,96801 0,12117 20,17954 0,99900 0,951193
ISE - ACOR 2,83325 0,12908 20,13789 0,98965 0,93637
ITAE - ABC 4,36656 0,14819 28,05841 0,98312 0,99763
ITAE - ACOR 4,54125 0,15282 29,99983 0,99560 0,99899
ITSE - ABC 4,17118 0,16134 29,94718 0,99850 0,97488
ITSE - ACOR 4,33842 0,14845 29,99988 0,99899 0,99513

Table 6 Step response characteristics of Example 1.

Cost functions Step response characteristics

Cost Rise
time

Settling
time

Peak Undershoot Overshoot Steady-state
error

Proposed - ABC 0,00076 2,9122 9,07 1,00689 156,5210 0,6894 0,0040446
Proposed - ACOR 0 2,6556 8,27 1,00749 154,0753 0,7497 0,0064680
IAE - ABC 7,00301 2,0965 6,77 1,00807 228,7976 0,8072 0,0028383
IAE - ACOR 6,77273 2,1943 7,11 1,00869 233,6197 0,8697 0,001817
ISE - ABC 9,99346 10,6293 30,68 1,00232 100,6296 0,2324 0,0040789
ISE - ACOR 9,99504 11,2393 33,78 1,00325 94,3124 0,3256 0,0052995
ITAE - ABC 17,15853 3,3774 11,2 1,01321 201,9418 1,3210 0,0001257
ITAE - ACOR 11,44336 3,3057 12,99 1,00212 279,07845 0,2128 5,17395E-05
ITSE - ABC 11,20865 4,6903 31,95 1,00467 288,9481 0,4677 0,0013975
ITSE - ACOR 11,08463 4,0920 43,72 1,00057 293,1378 0,0578 0,0002674

Table 7 Boundary values in optimization algorithms of Example 2.

Boundary values Controller parameters

Kp Ki Kd Kf

Lower bound 0,0001 0,0001 0,0001 0,0001
Upper bound 1 1 1 1

PI-PD controller is used to control this system. The lower and upper boundary values
used in ABC and ACOR algorithms are shown in Table 7.

Membership functions were created separately for rise time, settling time, peak, and
steady-state error. The range values of the membership functions created for the system
are given in Table 8 and the graphical representations corresponding to these range values
are given in Fig. 8. According to Table 8, it is desired that the rise time value is between 2.7
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Table 8 Range values of membership functions for Example 2.

System response
characteristics

Function ranges

µ ν

Rise time [2.6;2.7;3.2;4.2] (Trapazoid) [3.8;4.8] (S-type)
Settling time [7;10;12.3;13.5] (Trapazoid) [13.0;14.2] (S-type)
Peak [0;1;1.004;1.009] (Trapazoid) [1.0066;1.0116] (S-type)
Steady-state error [0.020;0.040] (Z -type) [0.032;0.052] (S-type)

Table 9 PI-PD controller parameters of Example 2.

Cost functions Controller parameters

Kp Ki Kd Kf

Proposed -ABC 0,205123 0,009411 0,385060 0,289589
Proposed - ACOR 0,170255 0,033297 0,445509 0,391609
IAE - ABC 0,253132 0,003550 0,489021 0,263644
IAE - ACOR 0,244017 0,011608 0,464914 0,292575
ISE - ABC 0,329627 0,000100 0,588211 0,248791
ISE - ACOR 0,307977 0,013471 0,579549 0,292053
ITAE - ABC 0,193323 0,027191 0,478576 0,362265
ITAE - ACOR 0,161996 0,037823 0,445251 0,404665
ITSE - ABC 0,278962 0,000100 0,485693 0,249870
ITSE - ACOR 0,255182 0,026357 0,542944 0,339561

and 3.2 s, the settling time value is between 10 and 12.3 s, the peak value is between 1 and
1.004, and the steady-state error is below 0.020.

As a result of the optimizations, the PI-PD controller parameters were obtained as in
Table 9. The step response characteristics corresponding to these controller parameters
are given in Table 10, and Fig. 9 shows the step response graphically.
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Figure 8 Membership functions of Example 2. (A) Rise time. (B) Settling time. (C) Peak value. (D)
Steady-state error.
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Table 10 Step response characteristics of Example 2.

Cost functions Step response characteristics

Cost Rise
time

Settling
time

Peak Overshoot Steady-state
error

Proposed -ABC 0 3,0527 11,499 1,00035 0,0350 0,002161685
Proposed - ACOR 0 3,0344 12,247 1,00011 0,0117 5,0806E-05
IAE - ABC 3,86494 2,5420 12,153 1,00917 0,9178 0,000226646
IAE - ACOR 3,85965 2,4670 10,812 1,04549 4,5491 0,000122512
ISE - ABC 2,93766 1,8340 18,051 1,14866 14,8664 0,004685965
ISE - ACOR 2,97597 1,8819 18,695 1,16246 16,2467 0,001460794
ITAE - ABC 10,71917 2,8906 13,277 1,00544 0,5446 3,00E-06
ITAE - ACOR 10,52071 3,0094 11,709 1,01983 1,9838 1,10797E-05
ITSE - ABC 4,83668 2,2584 12,186 1,06585 6,5859 0,001661853
ITSE - ACOR 5,08372 2,1716 13,576 1,10544 10,5441 0,000542928

In Example 2, aimed to reduce the overshoot and keep the settling time and rise time
as small as possible with the proposed method. Among the classical cost functions, the
lowest overshoot was obtained by using the ITAE cost function in the ABC algorithm
(0.5446%). When the proposed method is used in the ABC and ACO R algorithms,
much lower overshoots of 0.0350% and 0.0117% occur, respectively. The duration and
amplitude of the oscillation are less when the proposed method is used compared to other
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Figure 9 Step response of Example 2. (1) Proposed method. (2) IAE method. (3) ISE method. (4) ITAE
method. (5) ITSE method.
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Table 11 Boundary values in optimization algorithms of Example 3.

Boundary values Controller parameters

Kp Ki Kd Kf

Lower bound 0.01 0.01 0.01 0.01
Upper bound 5 15 1 10

cost functions. In addition, the target values for rise time and settling time are achieved
with this method.

Example 3
In this example, a fractional-order unstable system with time delay is used (Zheng, Huang
& Zhang, 2019). The transfer function of the controlled system is expressed by Eq. (38).
A delay of 0.2 s exists in the system. The Matsuda 4th-integer approximation method was
used for fractional-order expressions. In the Matsuda approximation, the lower and upper
frequencies are chosen as [10−2,102].

G(s)=
1

s1.2−1
e−0.2s. (38)

PI-PD controller is used to control this system. The lower and upper boundary values
used in ABC and ACOR algorithms are given in Table 11.

Membership functions were created separately for rise time, settling time, peak value,
and steady-state error. The range values of the membership functions created for the
system are given in Table 12 and the graphical representations corresponding to these
range values are given in Fig. 10. It is desired that the rise time value is between 0.2 and
0.3, the settling time value is between 1.2 and 1.4 s, the peak value is between 1.010 and
1.020, and the steady-state error is 0.020 or less.
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Table 12 Range values of membership functions for Example 3.

Step response
characteristics

Function ranges

µ ν

Rise time [0;0.20;0.30;0.60] (Trapazoid) [0.46;0.76] (S-type)
Settling time [0;1.2;1.4;1.6] (Trapazoid) [1.51;1.71] (S-type)
Peak [0;1.010;1.02;1.03] (Trapazoid) [1.026;1.036] (S-type)
Steady-state error [0.020;0.040] (Z -type) [0.032;0.052] (S-type)
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Figure 10 Membership functions of Example 3. (A) Rise time. (B) Settling time. (C) Peak value. (D)
Steady-state error.
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As a result of the optimization, the PI-PD controller parameters were obtained as in
Table 13. The step response characteristics corresponding to these controller parameters
are shown in Table 14, also with their graphical representation in Fig. 11.

The proposed method is aimed to reduce the overshoot and settling time and to
ensure the rapid rise of the system by keeping the rise time at a low value. In the study
for Example 3, a high overshoot occurs in classical cost functions. Using the proposed
method significantly reduced the overshoot (1.6146% for ABC and 1.9951% for ACOR).
When Table 14 is examined, the closest values to the proposed method are obtained
with the IAE cost function. However, when this cost function is used, the overshoot and
oscillation amplitude remain high. The proposed method is more successful than other
cost functions in terms of both settling time and overshoot.
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Table 13 PI-PD controller parameters of Example 3.

Cost functions Controller parameters

Kp Ki Kd Kf

Proposed - ABC 2,90751 5,37721 0,91313 3,59872
Proposed - ACOR 2,57532 7,04771 0,96888 4,42026
IAE - ABC 4,18961 4,20858 0,96295 2,56451
IAE - ACOR 3,41911 7,86324 0,99990 4,02977
ISE - ABC 5 1,81265 0,98228 1,67829
ISE - ACOR 4,99999 2,00939 0,99001 1,75439
ITAE - ABC 2,05523 12,17386 0,99148 6,16731
ITAE - ACOR 2,35804 11,49377 0,96658 5,72718
ITSE - ABC 4,92597 2,68150 0,97324 1,94001
ITSE - ACOR 4,84777 3,29170 0,98349 2,16358

Table 14 Step response characteristics of Example 3.

Cost functions Step response characteristics

Cost Rise
time

Settling
time

Peak Overshoot Steady-state
error

Proposed - ABC 0,06171 0,3653 1,196 1,01614 1,6146 0,000449084
Proposed - ACOR 0,07595 0,3849 1,211 1,01995 1,9951 0,000318058
IAE - ABC 0,42686 0,2349 1,347 1,06865 6,8656 0,00064668
IAE - ACOR 0,43256 0,2494 1,647 1,06372 6,3721 0,000271386
ISE - ABC 0,30752 0,2076 1,32 1,11591 11,5918 0,002759882
ISE - ACOR 0,30751 0,2064 1,314 1,11929 11,9296 0,002433699
ITAE - ABC 0,16289 0,2832 1,814 1,06765 6,7650 0,000162688
ITAE - ACOR 0,16284 0,2720 1,818 1,08660 8,6604 0,000173114
ITSE - ABC 0,05220 0,2056 1,333 1,13784 13,7840 0,001456771
ITSE - ACOR 0,05246 0,2058 1,547 1,140847 14,0847 0,00103878

CONCLUSIONS
In this article, a tuning method is proposed in which the Pythagorean fuzzy similarity
measure is used as a cost function to determine the optimal parameters of the FOPID
and PI-PD controllers. To test the proposed method, three previously studied system
test systems were utilized: a second-order non-minimum phase system, a first-order
unstable system with time delay, and a fractional-order unstable system with time delay.
In addition, the performance of the proposed method’s cost function is compared to that
of widely used time-dependent cost functions such as ITAE, ITSE, IAE, and ISE. ABC and
ACOR algorithms were used for optimization.

When the results obtained from the simulation studies are compared, it is seen that
the cost function in the proposed method provides effective control performance by
providing improvements in the system response parameters compared to ITAE, ITSE,
IAE, and ISE cost functions. With the proposed method, in all three system models
examined in the study, the cost function was significantly minimized as intended and thus
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Figure 11 Step response of Example 3. (1) Proposed method. (2) IAE method. (3) ISE method. (4) ITAE
method. (5) ITSE method.
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the targeted transient and steady-state properties can be obtained. In the first example,
in a second-order non-minimum phase system, the most important parameter for the
control problem is to keep the undershoot ratio low. In addition, other parameters should
be reduced together with this parameter. With the proposed method, the undershoot ratio
(obtained 156.5210% using ABC and obtained 154.0753% using ACOR) could be reduced
together with other parameters. The second example is unstable and has a time delay.
In this example, keeping the overshoot rate low and reducing the amount of oscillation
comes to the fore. With the recommended method, these two conditions can be improved
significantly compared to other methods (overshoot obtained 0.0350% using ABC and
overshoot obtained 0.0117% using ACOR). The third example is fractional, unstable,
and includes a time delay. In this example, it is important to reduce the overshoot rate
(1.6146% using ABC and 1.9951% using ACOR) and oscillation. In all three examples,
control error was minimized using other methods, but a large amount of overshoot and
oscillation occurred. In the proposed method, control error could be minimized together
with other transient and steady-state parameters, as intended.

The proposed method only requires the transient and steady-state properties of the
system. It does not require knowledge of the mathematical model of the system. So, the
study also provides a solution for tuning the controller parameters that do not require
complex calculations. The fact that it does not require complex analytical methods greatly
simplifies the tuning process. This offers great convenience in real applications. According
to the expected behavior of the system response, the membership functions can be tuned
as desired and easily used for different controllers and systems. As a continuation of this
study, the proposed method can be tested on reel applications.
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