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ABSTRACT
Oral English instruction plays a pivotal role in educational endeavors. The emergence
of online teaching in response to the epidemic has created an urgent demand for a
methodology to evaluate and monitor oral English instruction. In the post-epidemic
era, distance learning has become indispensable for educational pursuits. Given the
distinct teaching modality and approach of oral English instruction, it is imperative
to explore an intelligent scoring technique that can effectively oversee the content of
English teaching. With this objective in mind, we have devised a scoring approach for
oral English instruction based on multi-modal perception utilizing the Internet of
Things (IoT). Initially, a trained convolutional neural network (CNN) model is
employed to extract and quantify visual information and audio features from the IoT,
reducing them to a fixed dimension. Subsequently, an external attention model is
proposed to compute spoken English and image characteristics. Lastly, the content of
English instruction is classified and graded based on the quantitative attributes of oral
dialogue. Our findings illustrate that our scoring model for oral English instruction
surpasses others, achieving the highest rankings and an accuracy of 88.8%,
outperforming others by more than 2%.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Natural
Language and Speech, Social Computing
Keywords Oral English teaching, Multi-modal perception, Encoder-decoder structure, CNN

INTRODUCTION
In light of the pandemic, the shift towards distance education has been evident in teaching
assignments. The unique teaching methodology of oral English instruction poses
challenges in terms of effective monitoring over the network. Thus, there is an urgent
requirement for a technique that can utilize audio and video information to assess the
quality of instruction. By harnessing the full potential of IoT technology, audio and video
sensors, along with other devices, can capture real-time audio and visual data from
monitoring or interactive entities. This enables us to establish pervasive connections
between various entities, as well as relationships between entities and individuals (Luo &
Wu, 2017; Wei, Wu & Cui, 2019).

Recently, evaluation algorithms for image and sound have predominantly relied on
native classification techniques. Deep learning algorithms play a crucial role in
determining the final score by categorizing images or sounds. While these scoring methods
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are efficient, concise, and exhibit high accuracy, they are limited in their ability to process
image and sound features simultaneously, necessitating separate calculations. However, by
constructing a hierarchical network framework, deep learning models can extract
discriminative high-level features in a layered manner, leading to improved classification
and recognition outcomes. Various deep models, including stacked autoencoders, deep
belief networks, and recurrent neural networks (RNNs), have been employed in image
classification research. Notably, these models demonstrate superior performance when
adequate samples are available. For instance, Zhang et al. (2022) achieved improved results
in the classification of wild bacteria through enhancements to ResNeXt50 (Xie et al., 2017).
Wang & Xiao (2021) enhanced feature extraction by incorporating multiple attention
mechanisms into RA-CNN. However, this model faces limitations in capturing long-
distance dependencies due to the small receptive field, thereby restricting its feature
extraction capabilities. Convolutional neural networks (CNNs) have emerged as
mainstream models for scene processing and analysis. However, they still exhibit some
deficiencies (Wang et al., 2021): (1) CNN operations struggle to model long-distance
feature relationships; and (2) CNNs struggle to learn global semantic information. In
contrast, the Transformer model can effectively process global semantic features by
transforming images into sequences of image patches. The Vision Transformer (ViT)
method, introduced by Dosovitskiy et al. (2020), extracts global image features by
leveraging the self-attention module (SA) to capture long-distance dependencies, leading
to significant improvements in classification accuracy. However, ViT is limited to
capturing correlations between pixels within a single image sample, resulting in
suboptimal extraction of output features and generating a large number of model
parameters. Moreover, the model employs class patches, which are output by the last
Transformer, as the final feature representation, resulting in redundancy and poor feature
representation. Although ViT overcomes the drawback of CNNs in capturing long-
distance dependencies, it still exhibits weaknesses in inducing bias (Jia et al., 2022).

To overcome the aforementioned challenges and facilitate the simultaneous processing
of image and voice features, we present a scoring model for oral English teaching based on
multi-modal perception using the Internet of Things, leveraging the ViT framework.
Initially, a CNNmodel is trained to extract image information and audio features from the
Internet of Things, which are subsequently quantified to a fixed dimension. Subsequently,
we introduce a transformer-based approach to attend to both spoken English features and
image features. Finally, the English teaching content is classified and graded based on the
quantitative characteristics of oral dialogue. Our proposed method outperforms state-of-
the-art (SOTA) techniques, demonstrating excellent scoring performance for oral English
teaching. The key contributions of our study are as follows:

We address the challenge of processing images and voices for supervision in oral
English teaching by proposing a scoring model based on multi-modal perception using the
Internet of Things.

We introduce the External Attention and Feature selection module, which effectively
attends to the fused features and enhances accuracy, resulting in SOTA performance.
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RELATED WORK
Vision Transformer adopts a multi-layer Transformer architecture to complete the feature
extraction process, which uses self-attention as the feature function (He et al., 2021). Then,
it exploits the posterior layer Transformer to refine the previous layer’s output.

Firstly, images should be sliced into a series of patches. xp 2 RN� P�P�Cð Þ By the non-
overlapping way. Note that H �W is the size of resolutions in an image, C represents the
number of channels, P � P is regarded as the resolution, and N ¼ HW=P2; is a number of
patches. Subsequently, each of the patches is mapped to the size of D-d space by learnable
linearization mapping vector E 2 R P�P�Cð Þ�D. Subsequently, the classification vector

xclass 2 R1�D is added to the patch sequence header to integrate global features. Finally, the
input of the first-layer Transformer Z0 is obtained by assigning position features to each
patch with Epos 2 R P�P�Cð Þ�D.

Z0 ¼ xclass; x
1
pE; x

2
pE; . . . ; x

N
p E

h i
þ Epos (1)

After inputting Z0 to the first Transformer layer, the Multi-head Attention (MHSA) and
Multi-layer Perceptron (MLP) modules with the residual structure are respectively
adopted for feature extraction. Features are normalized by Layernorm (LN) before input to
these two modules.

To extract refining and sufficient information, ViT uses a multi-layer Transformer
architecture to refine the output features of the previous layers, the formula is:

~Zt ¼ MSA LN Zt�1ð Þð Þ þ Zt�1; t ¼ 1; 2; . . . ;T (2)

Zt ¼ MSA LN ~Zt
� �� �þ ~Zt; t ¼ 1; 2; . . . ;T (3)

where t is the number of layers, ~Zt and Zt are the results of the features processed by the
MSA and MLP modules in the t-th layer, respectively. The global characteristics of the
input image are gradually refined and aggregated into the class patch by the flow process in
the multi-layer Transformer. Therefore, the class patches Z0

T of last layer output are
processed by Layernorm: y ¼ LN Z0

T

� �
Which are the final global features y. The

classification prediction, loss calculation, and backpropagation are input into the classifier
to complete the model’s training.

A SCORING MODEL OF ORAL ENGLISH TEACHING BASED
ON MULTI-MODAL PERCEPTION
In this article, we employ the Internet of Things (IoT) as a means to utilize audio, video
sensors, and other devices for real-time collection of sounds and images from monitoring
or interactive objects. By incorporating IoT, we gather images and voices as the foundation
of our research. To address the challenge of extracting segmentation edge features, we
introduce a modification to the Vision Transformer (ViT) model by replacing the non-
overlapping method with a sliding window approach. This enables us to generate
sequences of image patches, thereby mitigating the difficulties associated with extracting
precise edge features.
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Regard the image resolution as H �W and the calculation method of patch number N ;
the formula can be represented as:

N ¼ H � P þ S
S

�W � P þ S
S

: (4)

The framework of our model is presented in Fig. 1. Firstly, we add xdis 2 R1�D to
calculate the multivariate loss at the end of the patch sequence. Then, we propose the
external attention to dropout the self-attention for each Transformer layer. Subsequently,
we adopt the feature selection module to filter the input of the last Transformer layer,
which can remove redundant features. Finally, we apply the output of the last-layer
Transformer to calculate the loss from various aspects and fuse them.

External attention
Figure 2 illustrates the intricate architecture of the self-attention module, which serves as
the fundamental feature processing method in ViT. It is important to note that we opted
for the Transformer model instead of convolutional neural networks (CNN) or long short-
termmemory (LSTM) because we need to process distinct types of features, namely images
and voices. CNN or LSTM alone would not suffice for this purpose. Furthermore, the Bert
model is well-suited for handling large datasets. Firstly, we linear the fused features

F 2 R~N�d (~N represents the account of pixels, and d refers to the dimension of the fused
features) to Query 2 R~N�d, Key 2 R~N�d and Value 2 R~N�d. Then, we calculate the
attention weighting matrix byQuery and Key. The specific calculation process is as follows:

ai;j ¼ softmax Query � KeyT
� �

(5)

where ai;j Calculates a similarity score between i-th pixel and j-th pixel. In addition, we
multiply. ai;j By Value and make a residual connection for F to obtain the final output
feature. The formula is as follows:

Image Features

Sound Features

C
o

n
caten

atio
n

Feature

Extraction and Fusion

Transformer Layer

Linear Projection of Patches

Transformer Layer

Transformer Layer

Transformer Loss

Figure 1 The structure of our method. Full-size DOI: 10.7717/peerj-cs.1503/fig-1
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Fout ¼ F þ ai;j � Value; Fout 2 R~N�d: (6)

In the aforementioned calculation process, the inherent correlation between samples is
overlooked, leading to insufficient feature extraction for the model. Most pixels within an
individual sample exhibit correlations with only a few other pixels. Enumerating these
correlations results in redundant calculations and an excessive number of model
parameters.

To address the limitations of self-attention, we introduce an external attention
mechanism. This mechanism enhances the model by capturing correlations among intra-
sample and inter-sample elements through two learnable external memory units. By
incorporating external attention, we improve the model’s feature extraction capabilities
while reducing the number of parameters required for computation.

The detailed structure is shown in Fig. 3. Firstly, we map the feature map F 2 R~N�d to
the vectors QE 2 R~N�d. Then, we use the product of a learnable external memory unit.

Mk 2 RS�d and QE to obtain the attention weighting map AE By the regularization. The
formula is as follows:

AE ¼ Norm QE �Mkð Þ: (7)

Subsequently, we apply the AE and another external memory componentMv 2 RS�d To
compute another more refined feature map. The final output Fout It is obtained by
performing residual operations on the input features. The formula is as follows:

Fout ¼ F þ AE �Mv: (8)

Feature selection
In the sliding windowmethod, it is possible for certain patches to contain only background
information or capture a small portion of foreground objects. Decreasing the step size of

Linear Linear Linear

MatMul

Scaled

SoftMax

MatMul

Q K V

V̂

Figure 2 Self-attention model. Full-size DOI: 10.7717/peerj-cs.1503/fig-2
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the sliding window increases the occurrence of similar patches. Given the abundance of
discriminative features with subtle variations in images and voices, including insufficient
information from multiple patches can lead to redundant output features.

To tackle this issue, we propose the integration of a feature selection module. This
module selectively removes discriminatory parts of images and voices to alleviate
redundancy in the output. By incorporating the feature selection module, we can enhance
the effectiveness of feature extraction by focusing on the most informative and
discriminative aspects of the data. We cannot select the discriminative patches without
attention to weight information for the original patch sequence. According to the attention
weight of the previous L� 1 layers, the feature selection module can select the
discriminative features output by the ðL� 1)-th layer. Besides, we use them as the layer
input to further refine the features. Finally, we regard the ðL� 1)-th layer’s output of the
Transformer as shown in the formula:

ZL�1 ¼ Z0
L�1;Z

1
L�1; . . . ;Z

N
L�1;Z

Nþ1
L�1

� �
: (9)

The attending weights of the previous L� 1 layer are regarded as follows:

al ¼ a0l ; a
1
l ; . . . ; a

K
l

� �
; l ¼ 1; 2; . . . ; L� 1: (10)

ail ¼ ai0l ; a
i1
l ; . . . ; a

iN
l ; a

iNþ1

l

� �
; i 2 0;K½ �: (11)

where K refers to the accounts of attention heads, and then, we feed the continuous
multiplication operation into the feature selection module to integrate the attended
weightings for the previous L� 1 layers, which can be shown in the formula:

a ¼
YL�1

l¼0

ai: (12)

where a records the transfer process of attention weight from the first layer to the
ðL� 1)-th layer, we choose the k indexes. A1;A2; . . . ;AK½ �. They correspond to the
maximum value of each attention head. Finally, the features are chosen to input them to
the L-th layer according to the index. The selected sequence can be expressed as follows:

Z ¼ Z0
L�1;Z

A1
L�1;Z

A2
L�1; . . . ;Z

N
L�1;Z

Nþ1
L�1

� �
: (13)

where Z, regarded as the input of the final layer, drops too many invalid features extracted
to avoid the redundancy of the last output features.

Input Query Norm Output

Mk Mk

Figure 3 External-attention model. Full-size DOI: 10.7717/peerj-cs.1503/fig-3
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Fused multivariate loss function
To address the subtle differences between different classes of images and voices, as well as
the significant differences within the same class, we propose a fused multivariate loss
function that optimizes from multiple perspectives. This approach aims to overcome the
weak bias induction ability of Transformer models.

In our proposed approach, we utilize a combination of cross-entropy loss and
contrastive loss. The cross-entropy loss is employed to capture the noticeable inter-class
differences. On the other hand, the contrastive loss serves to increase the dissimilarity
between features of subclasses while reducing the disparity among features of the same
subclass. In this article, we maintain the calculation of the cross-entropy loss based on the
class patch output from the last Transformer. Simultaneously, we calculate the contrastive
loss using the same patch. The calculation process can be expressed as follows:

s1 ¼ 1
N2
B

XNB

i

XNB

j:yi¼yi

1� cos Zi;Zj
� �� �þ XNB

j:yi 6¼yi

max cos Zi;Zj
� �� a

� �
; 0

� �2
4

3
5 (14)

where NB Is the size of the batch, Zi It is the class patch output of the i-th image through
the model, which is also the final feature representation. Besides, cos Zi;Zj

� �
represents the

cosine similarity of Zi and Zj, which will play a role in the contrast loss when it is greater
than the hyperparameter a. Through backpropagation, s1 can extend the feature
representation between different subcategories and reduce the feature representation
within the same subcategory, alleviating the classification difficulty caused by small
between-class and large within-class differences.

In addition to the previously mentioned loss functions, we recognize the importance of
inductive bias in affecting feature extraction within the Transformer model. Given that
convolutional neural networks (CNNs) possess a strong inductive bias, we introduce a
distillation loss from the CNN to enhance the feature extraction process. In this article, we
incorporate the distillation loss as part of the total loss function. We introduce a distillation
patch, which is added after the input patch sequence. Similar to the class patch, the
distillation patch interacts with other patches in multiple Transformer layers, and the
features of the image are subsequently aggregated. However, unlike the class patch, the
distillation patch reproduces the predicted labels generated by the Teacher model (CNN),
rather than the actual labels.

To achieve the distillation loss, we calculate the Kullback–Leibler (KL) divergence based
on the combination of the labels calculated by the distillation patch and the output labels of
the Teacher Model (CNN). By incorporating the distillation loss, we enable the
Transformer model to learn the inductive bias from the CNN, thereby significantly
improving the feature extraction process. As the partial module of our loss function, the
Student model is guided to perform backpropagation by the loss above. The specific
calculation method is as follows:

s2 ¼ u2KL softmax
Zstu

u

� �
; softmax

Ztea

u

� �� �
(15)
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where Zstu Is the output of the Logist function when using a distillation patch for
classification, Ztea, is the output of the logits function of the Teacher model, and u
represents the distillation temperature.

To summarize, we incorporate three loss functions—cross-entropy loss, contrast loss,
and distillation loss—from different perspectives. These losses are fused together to
enhance the model’s ability to distinguish between subclasses, reduce differences within
the same subclass, and provide the model with inductive bias. This fusion process results in
more refined and discriminative output features.

The cross-entropy loss and contrast loss are calculated based on the same class patch,
and thus, they are considered as a part of the total loss in the fusion process. On the other
hand, the distillation loss is treated as a separate component. The fusion method we
employ can be described as follows:

s ¼ 1� cð Þ sCE y0; yð Þ þ s1 Zð Þð Þ þ cs2 (16)

where sCE y0; yð Þ Is the cross-entropy loss for the predicted y0 As well as the true y;
according to the class patch, and c is the hyperparameter.

EXPERIMENT AND ANALYSIS
Datasets
The dataset of oral English teaching scoring includes 50,000 images and corresponding
voices, which are from the videos of cram school on the IoT. We choose 40,000 pairs of
image and voice as the training data, 5,000 pairs as validation, and 5,000 as test sets. In
addition, we apply horizontal flip, vertical flip, and auto-augment to expand the dataset,
which can avoid overfitting the model due to too little data.

Implement details
We implemented our experiments with the i7-12900k Cpu, 3080ti Gpu and the Pytorch
deep learning framework. The training settings of the scoring model for oral English
teaching based on the multi-modal perception of the Internet of Things are represented in
Table 1.

We choose accuracy as the evaluation metric, which can be presented as:

Accuracy ¼ Ic
Itotal

(17)

where Ic refers to the accounts of correct classification images and Itotal, refers to the counts
for the total images.

In this article, we utilize a 12-layer structure for the Transformer model. The number of
patches has a significant impact on the model’s parameter count, inversely proportional to
the patch size and proportional to the input image’s resolution. To ensure sufficient data
for the model evaluation and training convergence, we use a resolution of 448 × 448 for
input images. During the training phase, we employ random cropping, while central
cropping is used during the testing phase. The patch size of 16 × 16 from the original ViT
model is retained, and the sliding window step is set to 12. In the training phase, we set the
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hyperparameter α to 0.4. For optimization, we employ stochastic gradient descent (SGD)
with a momentum setting of 0.9. The batch size is set to 32, and the initial learning rate for
training is 0.03. We also incorporate cosine annealing to control the learning rate’s decline.

To gather information, we collect images, audio, and video from various sensors in the
IoT. We then perform feature extraction using ResNet, ensuring that the feature extraction
model satisfies the aforementioned training parameters. Subsequently, we concatenate the
extracted image features and voice features before inputting them into the Transformer
model. Finally, these features are fed into the Transformer to obtain the desired results.

Experiments results
Ranks of classification division
Before performing the experimental performance comparison, we must artificially set
some scoring ranks and unify the classification criteria. We also assign accurate classes to
the features in the dataset. To realize it, we artificially divide the scoring positions into
excellent, good, medium, pass, and poor in Table 2.

Furthermore, to establish the ground truth and evaluate the performance of our model,
we manually scored and classified 50,000 data groups. This process allowed us to obtain
the score distribution and statistics for the entire dataset, as depicted in Figs. 4 and 5.

From the analysis of Figs. 4 and 5, we observed that the majority of the data in the
dataset fell into the categories of “Excellent” and “Medium,” while the classes of “Ideal,”
“Pass,” and “Poor” accounted for a smaller portion. Based on this observation, we
determined that using five ranks for classification would be suitable. The distribution of
ranks shown in Fig. 4 was deemed optimal. It is important to note that the number of
samples in the “Excellent” and “Poor” ranks is relatively low, making further subdivisions
impractical.

Comparison results of different models
To further verify our proposed method, we choose some classical methods to conduct
comparative experiments on oral English teaching scoring tasks, such as LSTM, DB,
DVAN, RA-CNN, MC Loss, and ViT, as shown in Table 3.

Table 3 showcases the impressive performance of our proposed Oral English Teaching
scoring method on the Oral English Teaching scoring dataset. With a remarkable accuracy
rate of 88.8%, our approach outperforms other models and achieves a new state-of-the-art

Table 1 Training settings.

Hyper parameters The values

Learning rate 0.0004

Dropout 0.1

Model optimizer Adam

Transformer size 12

Number of epoch 250

Batch size 30
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performance. When compared to LSTM, our method exhibits a significant improvement
of 14.7% in accuracy. This notable advancement can be attributed to the superior
capabilities of the Transformer architecture in handling multi-modal features compared to
the RNN architecture. In addition, our approach surpasses two CNN-based methods, DB
and RA-CNN, by more than 3% in terms of accuracy, highlighting its effectiveness in

Table 2 Ranks of scoring.

Ranks Values

Excellent 90~100

Good 75~89

Medium 60~75

Pass 40~59

Poor <40

6575

16522

14404

7645

4854

0
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10000

12000

14000

16000

18000

Excellent Good Medium Pass Poor

sre
b

m
u

N

Ranks

Figure 4 Ranks distribution in oral English teaching scoring dataset.
Full-size DOI: 10.7717/peerj-cs.1503/fig-4

0.1315

0.33044

0.28808

0.1529

0.09708

Excellent Good Medium Pass Poor

Figure 5 Ranks statistics in oral English teaching scoring dataset.
Full-size DOI: 10.7717/peerj-cs.1503/fig-5
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extracting and leveraging feature information. Furthermore, our method outperforms the
DVAN model by 10% in accuracy, further emphasizing its superiority and capability in
delivering higher accuracy levels compared to existing models. Finally, when compared to
ViT, our proposed method demonstrates an improvement of over 2% in accuracy. This
improvement is primarily attributed to the incorporation of external attention
enhancements in our approach.

In conclusion, our proposed method not only achieves exceptional accuracy in oral
English teaching scoring but also surpasses other existing models in performance. Its
outstanding accuracy, coupled with its superiority over other methods, establishes its
effectiveness and suitability for accurate and reliable oral English teaching scoring
applications.

Ablation experiment

We carried out the ablation experiments to evaluate the advancement of each module on
the Oral English teaching scoring dataset by gradually integrating each module into ViT.

Table 4 displays the results of our ablation experiments, where we compare the
performance of different Transformer network structures using only the cross-entropy loss
function. The following four configurations are evaluated:

ViT (baseline): This represents the original Transformer model, as described in the ViT
paper.

ViT (EA): In this configuration, we substitute the self-attention module with the
external attention module proposed in our method.

ViT (FS): This configuration incorporates the feature selection module into the ViT
model.

ViT (EA&FS): Here, we combine both the external attention module and the feature
selection module in the ViT model.

The experimental results demonstrate the effectiveness of each modification, and the
corresponding performance metrics are presented in Table 4.

As shown in Table 4, the results highlight the impact of our proposed modifications
using the cross-entropy loss function. The external attention (EA) module improves the
accuracy of ViT by 0.8%. The feature selection (FS) module further enhances the accuracy
to 87.8% compared to ViT. When both the EA module and FS module are applied, our

Table 3 Comparison with other methods based on deep learning framework.

Methods Base model Accuracy (%)

LSTM RNN 74.1

DB (Sun et al., 2020) ResNet-50 85.6

DVAN (Zhao et al., 2017) VGG-16 77.0

RA-CNN (Fu, Zheng & Mei, 2017) VGG-19 82.5

MC Loss (Chang et al., 2020) ResNet-50 84.3

ViT SA 86.8

Ours EA 88.8
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method achieves a significant improvement of 2% over ViT, reaching an accuracy of
88.8%. By leveraging audio and video data from IoT, we have enhanced the attention
mechanism and fusion loss function based on CNN and ViT. This has led to the
identification of key factors in English curriculum and accurate evaluation of English
teaching.

CONCLUSION
The proposed scoring model for oral English teaching based on the multi-modal
perception of the Internet of Things addresses the need for effective scoring and
supervision in online oral English teaching. By leveraging IoT technologies, we extract
audio and video features using a pre-trained CNN model. We then employ Transformer-
based methods for processing spoken English features and image features separately,
highlighting the importance of spoken English features. Based on quantitative elements of
oral dialogue, we classify and grade English teaching content. Comparisons with other
classification methods demonstrate the superior performance of our scoring model,
achieving the highest accuracy rate of 88.8% and surpassing other methods by over 2%.
This signifies the commercial value and practical applicability of our approach in scoring
oral English teaching in IoT environments. Future research directions include expanding
the scope of oral English teaching supervision to encompass all teaching domains.
Additionally, we aim to further enhance our attention mechanisms to identify and attend
to more crucial aspects of oral English teaching, ultimately improving prediction accuracy.
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